
Master’s Thesis

Augmented Data Discovery

Implementation of an Augmented Data Discovery solution

Arnout R. Berkenbosch

Company Supervisor: R. Bakkenes

Graduation Supervisor: Prof. Dr. A.E. Eiben

Second Reader: Dr. E.R. Dugundji

Vrije Universiteit Amsterdam

Avanade Netherlands BV

August 31st, 2020



Augmented Data Discovery

Implementation of an Augmented Data Discovery solution

A.R. Berkenbosch
2620585

Master Project Business Analytics

Vrije Universiteit Amsterdam
Faculty of Science
Business Analytics
De Boelelaan 1081a
1081 HV Amsterdam

Host organization:
Avanade Netherlands B.V.

Orteliuslaan 1000
3528 BD Utrecht

August 2020



Preface

Before you lies the thesis “Augmented Data Discovery”, which targets the automation
of the data science process. It has been written to fulfill the graduation requirements
of the Master Business Analytics at the Vrije Universiteit Amsterdam. I was engaged
in researching and writing this thesis from March until August 2020.

The project was undertaken at Avanade BV in Utrecht, where I undertook an in-
ternship. My research question was formulated together with my supervisor, Robin
Bakkenes. The research took place under difficult circumstances due to COVID-19
as I could not be physically present at the office and the university during the
entire internship period. Fortunately, Avanade and the university showed excellent
flexibility during this pandemic, which allowed me to properly conduct my research.
Using communication platforms, such as Microsoft Teams and Zoom, I was able to
get the support I needed to complete my research.

I would like to thank Avanade as a whole for providing me with the tools needed
to conduct this research. I would also like to thank my company supervisor Robin
Bakkenes in particular for his guidance.

I would like to thank my supervisor from the university Prof. Dr. A.E. Eiben for his
guidance during the internship. I would also like to thank my fellow students for their
support and advice in my study group, who also fall under the guidance of Prof. Dr.
A.E. Eiben. Also, I would like to thank Dr. E.R. Dugundji for being the second reader.

I hope you enjoy your reading.

Arnout Berkenbosch

Utrecht, August 31st, 2020

i



Executive Summary

Problem Definition: Data discovery is the process of collecting and analyzing
data to gain insights into the different trends and patterns that are within the data.
Augmented data discovery aims to automate this data discovery process. Much time
is spent by data scientists in analyzing the data. By automating the iterative steps
that a data scientist must perform, the time that is spent on the data science process
can be shortened significantly. Augmented data discovery is expected to play a more
important role in the future. Therefore, Avanade as a leading digital innovator would
like to do research on this topic as this will most likely be an important part of their
process in the nearby future.

Approach: To explore the possibilities of augmented data discovery solution, a
prototype is created in Python. In the prototype, several data mining methods are
implemented to create an automated workflow. Missing values are handled using a
simple imputation method, imputing the median for numeric values and the mode for
categorical values. Outliers are handled using the interquartile range (IQR) method.
A framework called Featuretools is used for automatically creating new features. Two
automated modeling frameworks are used, Tree-based Pipeline Optimization Tool
(TPOT) and Auto-sklearn. Both frameworks handle several pre-processing steps,
such as data transformations, decomposition and feature selection. Next to that,
they both use an automated modeling approach where they pick a model and also
tune its hyperparameters. This is done for either a classification or regression problem.

Results: The obtained results, by testing the prototype on a variety of different
datasets, showed that this automated solution was capable of achieving some good
results in online data competitions, such as Kaggle. The major advantage of such an
augmented data science solution is efficiency. With minimal effort, such a solution is
still able to obtain good results.

Conclusion: The prototype showed that this automated solution worked quite well.
With some improvements and modifications, this prototype could evolve into a well
working augmented data discovery tool. Such a tool could save valuable time within
Avanade’s data science process.
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1 Introduction

1.1 About Avanade

Avanade is founded in the year 2000 by Accenture LLP and Microsoft Corporation.
Avanade wants to take the lead as a digital innovator. They provide business
solutions, innovative digital services and design-led experiences for its customers
and clients. This is delivered by using Microsoft products and the power of people.
Their professionals combine business, technology and industry expertise to build and
deploy business solutions in order to realize results for Avanade’s clients and also
their customers. Globally, Avanade has around 29,000 people digitally connected
divided over 23 countries [Avanade, nd].

1.2 Business context and problem statement

Data discovery is the process of collecting and analyzing data to gain insights into
the different trends and patterns that are within the data. It is an important first
step in making critical business decisions based on the organization’s data. During
the data discovery process data is firstly gathered, then prepared (Data Preparation)
and finally analyzed (Analytics, generating insights and visualize those insights).
A business could act upon the insights generated from their data. Data discovery
unlocks essential information which is important when making business decisions
[MicroStrategy, nd].

Augmented data discovery (also named Augmented Data Science) is an increas-
ingly applied Business Intelligence (BI) option for automatically preparing and
processing business data. This is especially challenging for unstructured data from
sources, such as Data Lakes, IoT feeds and customer service interactions. This can in
return save valuable time for a business when a great part of this process is automated.

Augmented data discovery covers the entire automated data science process. One
part of this process involves data preparation, such as cleaning and feature engi-
neering. A second part of this process is data analytics where a model is selected
and the hyperparameters are set. In the process of augmented data discovery, these
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parts could be named augmented data preparation and augmented analytics. The
flowchart in Figure 1 shows the steps within a data science process that we aim to
automate.

Figure 1: Flowchart of the data science process

Augmented data preparation processes data for profiling, quality, cleaning and mod-
eling, which is providing data for data discovery and analytics. Augmented analytics
is the automation of creating insights or predictive models using Machine learning
methods. This is motivated by the idea that augmented data discovery is a "rising
BI capability for automatically preparing and organizing enterprise data for BI and
Data Science.” Avanade expects that augmented data discovery will play a more
important role in the future. Gartner identifies Augmented Analytics among the top
trends of Data & Analytics at the Gartner Data & Analytics Summit [Gartner, 2019].

Within the field of data science, much time is spent on the process of preparing and
collecting the data. According to the estimations of experts and interviews, a data
scientist can spend up to 80% of their time in collecting and preparing data before it
can be explored and analyzed [Lohr, 2014]. This is a manual process that is very
time-consuming. Nowadays data volumes are increasing and also becoming more
complex, which makes analyzing the data even more difficult. By automating the
iterative steps that a data scientist must perform, the time that in spent on the data
discovery and preparation can be shortened by 50-80% [Agarwal, nd].

Due to these beneficial effects, Augmented data discovery is expected to play a more
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important role in the future. Therefore, Avanade, as a leading digital innovator, is
interested in researching this topic as this will most likely be an important part of
their process in the nearby future. The deliverables of this research can afterwards
be expanded and applied to their activities, which in return can be used with their
clients.

1.3 Research question

The objective is to research the possibilities of augmented data discovery. In addition,
this research is supported by creating a prototype. The goal of this prototype is to
design and create an augmented data discovery solution with the Python programming
language, which could be implemented into the Microsoft Cloud environment using
Azure resources. Hence, the following research question emerges:

"How and to what extent can a data discovery process be automated with an
augmented data discovery solution using Azure resources?"

For this research the following sub-questions are determined:

• What is Augmented Data Discovery and how is this deployed within an
organization?

• Which pre-processing steps can be automated?

• How can feature engineering and feature selection be automated?

• How can model-building be automated?

• What is the trade-off between efficiency and quality?

1.4 Report Structure

The following chapters are discussed in the remainder of this thesis. Firstly, Chapter
2 provides the literature research, in which the related work of this topic is discussed.
Secondly, Chapter 3 gives an explanation how such an automated data science tool
could appear. Chapter 4 explains the implementation in Azure. Chapter 5 presents
which datasets are used for this research. Chapter 6 gives a general overview of the
approach in creating the prototype. The upcoming Chapters 7, 8, 9, 10, 11, 12, 13
and 14 will go deeper into the globally discussed approach per topic. Next in Chapter
15, the experimental setup is explained in which also the evaluation metrics of the
prototype are discussed. In Chapter 16 the results of the performed experiments are
presented and discussed. Finally, in Chapter 17 the conclusion of this research is
given.
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2 Literature review

This section discusses relevant literature on the subject. Augmented data discov-
ery is a relatively new topic and is seen as an important application in the near
future. Therefore, not too much literature is available on the subject. There are
not many researchers that have done similar research on this topic. One similar
research on augmented data science was found. This research is conducted by
[Uzunalioglu et al., 2019]. Their solution introduces a set of modules that is uncov-
ering data structure and data quality, generating new features and identifying and
tuning a model for the specific task. To find sufficient literature, the subject is split
into separate parts. More literature could be found on the following individual topics:

• Pre-processing

• Feature engineering

• Modeling

2.1 Pre-processing

Data pre-processing is the first step in the data science process. Here the raw
data is transformed into a more suitable format for machine learning models to
understand. [García et al., 2015] have published an educational book that describes
the pre-processing part of data mining in a very extensive manner. This can be
used to get a clear view of all pre-processing steps that could be considered in the
augmented data discovery solution. From there it can be investigated whether these
steps can be automated or not and which pre-processing methods are best to be
automated. These are pre-processing steps like handling missing values, extreme
values and data transformations. [Bilalli et al., 2016] show that pre-processing can
be done by an automated approach, using ideas from meta-learning. They considered
many pre-processing techniques and data mining algorithms. They built a tool
in Weka, which makes it possible for non-experts in data science to perform data
pre-processing.
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2.2 Feature engineering

Another important and time-consuming data science procedure is feature engineer-
ing. Various research is done to automate this process, whereby several different
systems are developed. [Kanter and Veeramachaneni, 2015] developed the Data Sci-
ence Machine. This machine can derive predictive models automatically from raw
data. To achieve that, they first developed the Deep Feature Synthesis algorithm to
automatically generate features for relational datasets. Secondly, they implemented
a machine learning pipeline which is generalizable. They created a framework called
Featuretools, which is implemented into Python. [FeatureLabs, 2019] provides the
documentation of deep feature synthesis. [Lam et al., 2017] introduced a system
that they called One Button Machine. This system performs automatic feature
discovery in relational databases. The One Button Machine automatically applies
advanced data transformations and performs the joining of database tables to extract
useful features from the data. [Khurana et al., 2016] presents a novel system that
performs feature engineering automatically for supervised learning. This system is
called "Cognito". Cognito explores various feature constructions, meanwhile it is
maximizing the accuracy.

2.3 Modeling

When the dataset is fully prepared, a model can be constructed. There are many dif-
ferent algorithms to choose from and it is the data scientist’s task to determine what is
the best model for the problem and set its hyperparameters. [Thornton et al., 2013]
showed that selecting a model and setting the hyperparameters can be done using
an automated approach. They do this using recent innovations within Bayesian
optimization. They show that their method performed better in most cases than
standard selection methods. Their solution is built in WEKA. [Feurer et al., 2015a]
introduced a new robust AutoML system, which is based on scikit-learn. They
follow and extend the method introduced by [Thornton et al., 2013]. Their method
is called Auto-Sklearn. Similarly, Auto-Sklearn uses Bayesian optimization in order
to find the best combination of models, feature pre-processors and hyperparameters
to maximize the accuracy. [Olson et al., 2016] introduced a tree-based pipeline opti-
mization tool in Python, which uses a version of genetic programming in order to
maximize the classification accuracy. This was one of the first automated machine
learning methods. They wrote several papers on the topic in 2016 and 2017 and
won two best paper awards. Both Auto-sklearn and tree-based pipeline optimization
tool are available in Python and are improved since their original paper was published.
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3 Augmented Data Science Tool

This chapter discusses how an augmented data science tool could appear. Its step-
by-step process is explained. Which steps can be automated and when does the user
of the tool needs to provide input or manual adjustments. A tool like this will not be
fully automated as the input of a data scientist is important. It is not the intention
for such a tool to be the replacement of a data scientist, but rather a supporting
tool. For describing this tool lets assume it has a working graphical user interface
(GUI) in which the user can perform certain operations.

3.1 Process description

The first step in a data science project is to formulate a question within the data
problem. This question can either belong to a classification or a regression problem,
in which a certain variable must be predicted based on the available data. Secondly,
the data must be fed to the tool, this can be done using the GUI in which a dataset
for training can be uploaded to the tool. Python can handle different types of files
so multiple options are possible here, for example CSV files, JSON files, excel files
or a table from an HTML document. Python has also the ability to interact with
databases and retrieve tables from there. Also, when available, an unlabeled dataset
(e.g. test set for prediction) can be uploaded.

Once the dataset of choice is uploaded, the user should specify the index column and
the target variable column. It should be indicated by the user when no unique index
column exists, then an index will be created. The target variable is the variable that
needs to be predicted.

When the index and target variable are specified, an overview will be presented to
the user with some information about the data per feature, such as the data types,
percentage of missing values and some descriptive statistics. Now the user can make
decisions based on the presented data, but is not obligated to do so. Features can be
removed if the user finds those irrelevant. Features can be removed with a missing
value percentage above a certain threshold specified by the user. The user can check
whether the data types are incorrectly inferred. If this is the case, the user has the

6



option to adjust the data type of the feature in question into the correct data type,
which will be beneficial for the remaining data science process.

At this point, the data will most likely not be clean and immediately ready for a
model to train. So the data needs to be pre-processed. The pre-processing of the data
will deal with missing values, extreme values (outliers), performing data transforma-
tions and perhaps with help of natural language processing. This will be done using
certain methods that are intended for such actions. This will be an automated process.

After pre-processing, the next step is feature engineering. For feature engineering,
an automated method discussed in the literature review will be used. How this
exactly works will be explained more extensively in Chapter 9. Before modeling
a selection out of the existing features must be made. Therefore several feature
selection methods are used.

Finally, a model can be built from the resulting dataset. This is done using an
automated model building method, several of these methods exist and are discussed
in the literature review. The final created model with its hyperparameters settings
will be exported so the model can be used at another time.

The trained model can be used on the test set, that is the unlabeled dataset for
which a prediction is desired. After following the same pre-processing steps the
model can be used to create a prediction on the test set. The generated prediction
will be exported as a CSV file. That prediction contains the index and the predicted
values.

3.2 Prototype

For this research, a prototype will be developed to show whether an augmented data
science tool as described is possible. The goal is to create a tool that comes close
to the process explained above. The prototype will be slightly less extensive and
simpler than discussed in the process description. This is due to the limited time
for this project. In the upcoming chapters, the approach of the prototype will be
explained, which methods are considered, which methods are chosen and why those
methods are chosen. In addition, it is investigated how such a solution could be
operative using Azure resources.
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4 Azure implementation

Avanade, as a Microsoft partner, is using Azure resources for their working activities.
One condition of the prototype is that it should be able to run in the Microsoft cloud
environment using Azure resources.

4.1 Microsoft Azure

Microsoft Azure is a set of cloud services that is growing constantly and is helping
organizations providing in all sorts of business needs, which helps businesses taking on
their challenges. Azure gives the freedom to use your favorite tools and frameworks
in order to develop, manage and deploy applications on a massive global network
[Microsoft, ndc].

4.2 Used Azure resources

In order to run the created prototype, three Azure resources are used. These are the
following resources:

• Azure Databricks

• Azure Data Lake Storage Gen2

• Azure Data Factory

4.2.1 Azure Databricks

Databricks is an analytics platform, which is optimized for the Microsoft Azure cloud
services platform. It enables collaboration between data engineers, business analysts
and data scientists by providing streamlined workflows and an interactive workspace
integrated into Azure. It appears similar to Jupyter notebook, in which code can run
one piece at a time in a notebook environment. It supports multiple programming
languages, such as R and Python [Microsoft, ndd].
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4.2.2 Azure Data Lake Storage Gen2

Azure Data Lake Storage Gen2 is used for storing data. It is a cost-effective and
highly scalable solution. Data Lake Storage Gen2 is optimized for analytics workloads.
Here for example csv files are stored, which can be processed by the script created
in Databricks [Microsoft, ndb].

4.2.3 Azure Data Factory

Azure Data Factory is a cloud-based extraction, transformation and load (ETL) and
data integration service. Data Factory allows for created data-driven workflows,
called pipelines within Data Factory, which can perform ETL operations on the data.
Complex ETL processes can be build by using services such as Azure Databricks
and Azure Data Lake Storage Gen2 [Microsoft, nda].

4.3 Prototype

For the created prototype the datasets are stored in Azure Data Lake Storage Gen2.
The Python code is created in Azure Databricks. Azure Data Factory is used to
create the workflow. Thus the pipeline, which in this case is the Databricks notebook.
This pipeline retrieves the data from the Data Lake Storage and performs analysis
on the data. In Azure Data Factory, certain parameters could be specified for the
pipeline to be processed. This could be parameters such as the index, target variable
and other parameters that need to be manually set.

9



5 Data

In this chapter, the conditions that the datasets should meet and the different
datasets that are used in the experiments are described. For this research open-
source datasets are used. The used datasets are from the following public data
platforms:

• Kaggle (https://www.kaggle.com/)

• Driven Data (https://www.drivendata.org/)

• Zindi (https://zindi.africa/competitions)

5.1 Conditions

There are several conditions when selecting a dataset. One of these conditions is that
there should be diversity in the datasets. The different datasets contain for example
not solely numerical values or categorical values, but rather a mix of different data
types. Both binary and multiclass classification problems should be treated. Next to
that, the dataset should be large enough to support the process. Also, the dataset
should not be perfect. It should contain noise such as outliers or missing values, here
lies the challenge in automating these pre-processing steps. Contrarily, it should not
be a dataset that is too "dirty" that it is not usable at all.

In addition, there are some limitations to the prototype which creates some additional
conditions which the dataset should meet in order to be processed by the created
prototype. The dataset must be a single CSV or JSON file for the training set and
if available an additional CSV or JSON file for the test set. Also, the task must be a
classification or regression problem, containing one single target variable. This can
be a binary or multi-class problem in case of a classification problem. Also, natural
language processing is not taken into account by the prototype.

5.2 Dataset 1 - Titanic

The first dataset that is used, is the Titanic dataset from Kaggle. This was the
dataset that was first used to create this tool. This dataset was chosen because it
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is simple, it is not clean and it is small. A small dataset was very convenient for
creating the tool, this speeds up running all created methods and functions during
the testing phase.

This is a simple competition especially for people that want to get acquainted with
data science. It is a small dataset that has different data types: text, numeric,
categorical and boolean data. It is not a clean dataset, it also contains missing
values. It is a binary classification problem, in which the target is to predict whether
a passenger has survived or not based on the provided data. The data contains
information about the passenger such as age, class, gender, etc.

The data competition is available on:
https://www.kaggle.com/c/titanic/

5.3 Dataset 2 - Mobile price classification

The second dataset was also a small dataset from Kaggle, named mobile price classi-
fication. This dataset was mainly chosen to try another dataset than the Titanic
dataset to see how the tool would handle this. There was not a competition that
could be entered for this dataset.

This dataset consists of all sorts of mobile phone information. The target variable is
categorically named price range. This price range varies from low = 0 till 3 = very
high. To predict this, the data set provides information on the mobile phones, such
as bluetooth, Wi-Fi, 4G, RAM, battery power, etc.

The dataset is available on:
https://www.kaggle.com/iabhishekofficial/mobile-price-classification

5.4 Dataset 3 - Australia rain prediction

The third dataset is about predicting the rain in Australia. This dataset was from
Kaggle but it was not a competition. Also, this dataset was used to see how the
tool would handle this different dataset. It was interesting as this was a significantly
larger dataset than the first two.

The dataset contains about 10 years of daily weather observations from multiple
weather stations, so quite a large dataset. The target is to predict whether it is going
to rain tomorrow or not, so yes or no. In the dataset various information is given,
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such as location, rainfall that day, temperature, etc.

The dataset is available on:
https://www.kaggle.com/jsphyg/weather-dataset-rattle-package

5.5 dataset 4 - Random Acts of Pizza

The fourth dataset is from a data competition that is organized purely for fun,
where people on the Reddit community requested a pizza via a posted message. All
kind of data was gathered from these posts the people made, such as the number
of reactions to the post, number of up-votes, number of down-votes, time of post,
etc. Eventually, the goal is to predict whether the person that posted the request
for a pizza successfully received a pizza from someone. This dataset is quite un-
balanced as most people did not receive a pizza, which creates an additional challenge.

The data competition is available on:
https://www.kaggle.com/c/random-acts-of-pizza

5.6 Dataset 5 - Pump it up

The fifth dataset contains data on the state of water pumps in Tanzania. Based on
the provided data the goal is to classify the pump as either: functional, functional
needs repair or non-functional. There are records of almost 60.000 different water
pumps available in the training data. To classify this multiclass problem there is
data available such as what kind of pump is operating, when the pump was installed,
how the pump is managed, region, etc.

The data competition is available on:
https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/

5.7 Dataset 6 - Richter’s Predictor: Modeling
Earthquake Damage

The sixth dataset relates to the earthquake in Nepal in 2015. The goal is to predict
the level of damage to the buildings caused by that earthquake where 1 = low
damage, 2 = medium damage and 3 = almost complete destruction. The training
data has information about more than 260.000 buildings. The data consists of all
sorts of information about the building characteristics, such as the number of floors,
age of the building, what the building is made of, etc. There are 38 explanatory
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variables in total.

The data competition is available on:
https://www.drivendata.org/competitions/57/nepal-earthquake/

5.8 Dataset 7 - Insurance prediction

The seventh dataset holds information on insurances for buildings in Nigeria. A
company offers insurance policies for buildings in that area for damage caused by,
for example, fire, vandalism or storm. The goal of this data competition is to predict
for a building if it will have an insurance claim during a specified period. This is
a binary classification problem where it should be predicted if there is at least one
claim in the insured period (1) or none (0). In order to predict this, a predictive
model is build based on the building characteristics with a total of 14 features. The
training data contains information little over 7000 buildings, thus not a large dataset.
The data is slightly unbalanced. Most buildings do not file a claim in the given period.

The data competition is available on:
https://zindi.africa/competitions/data-science-nigeria-2019-challenge-1-insurance-prediction

5.9 Dataset 8 - House Prices: Advanced Regression
Techniques

Dataset 8 is a playground data competition on Kaggle, which is convenient for
the first time testing the automated regression approach. It involves a regression
problem where the target is to predict the house price. In order to predict this
price, the dataset provides all sorts of information about the houses, such as location,
build year, information on the rooms, etc. 79 explanatory variables are describ-
ing the houses. The training data contains data of 1460 houses, so not a large dataset.

The data competition is available on:
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/overview

5.10 Dataset 9 - Restaurant Revenue Prediction

The ninth dataset is from a data competition that is created by TFI. TFI is the
company behind many popular brands such as Burger King. The goal of this com-
petition is to predict the annual revenue of a restaurant based on the provided
information. The training data consist of demographic, real estate and commercial
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data. Remarkably, in this data competition training data only contains information
on 137 restaurants while the test set contains over 100.000 restaurants. There are 41
features available in the dataset to train on. So there is not much data to train on,
but a lot to predict.

The data competition is available on:
https://www.kaggle.com/c/restaurant-revenue-prediction/overview

5.11 Dataset 10 - DengAI: Predicting Disease Spread

The tenth dataset is about the Dengue fever. Dengue fever is a disease that is carried
by mosquitoes that occurs in tropical parts of the world. It causes flu-like symptoms
in mild cases. Severe cases can cause severe bleeding or even death. The target is to
predict the weekly cases of dengue fever in a city in a certain week. These cities are
in San Juan, Puerto Rico, Iquitos and Peru. To predict this, environmental data is
used. The goal of this competition is to get an understanding of the relationship
between dengue fever and climate. It is a really small dataset, where the training set
consists of only 1456 records with 24 explanatory variables.

The data competition is available on:
https://www.drivendata.org/competitions/44/dengai-predicting-disease-spread/

page/80/

5.12 Dataset 11 - Bike Sharing Demand

Dataset 11 is about a bike sharing system. A bike-sharing system is where people
can rent a bike from a particular location and they can return it to another location.
These systems are often introduced in large cities around the world. For this com-
petition, the data is used from the bike sharing system in Washington. With this
competition it is the goal to study the mobility in the city by predicting the hourly
demand of bicycles based on the weather data. The data to work with consists of the
date and weather data, such as temperature, wind speed and humidity. The training
set contains data of every hour from the 1st of January 2011 until 19 December 2012.

The data competition is available on:
https://www.kaggle.com/c/bike-sharing-demand/overview
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5.13 Dataset 12 - Urban Air Pollution

Dataset 12 is about air pollution. This is a data competition on Zindi that has
recently started (3 July). This competition is about the air quality in Africa. In many
African cities, the air quality is getting worse. The challenge within this competition
lays in finding ways to track the air quality by diving deeper into the data. In order
to predict the air quality, the dataset consists of weather data and observations
from a satellite that is tracking pollutants in the atmosphere. The air quality is
measured in PM2.5 concentration, this is a common measure for air quality. In
the training set, there are over 30.000 daily observations with 80 explanatory features.

The data competition is available on:
https://zindi.africa/competitions/zindiweekendz-learning-urban-air-pollution-challenge
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6 Approach

This chapter explains the approach of the data science process, which we aim to
automate. The steps from pre-processing until modeling are discussed. Multiple
methods will be suggested per topic. In the upcoming chapters, it will be explained
per topic which methods are used within the created prototype and why those
methods are used.

6.1 Pre-processing

The data mining steps described in this chapter are mainly based on [García et al., 2015].
From this, the following pre-processing steps emerge:

• Recognizing Data types

• Data Cleaning

– Missing Value Imputation

– Outlier Handling

• Data Transformation & Normalization

• Dimensionality reduction

6.1.1 Recognizing Data types

Within the same dataset, there are usually different data types. In order to perform
proper pre-processing these data types should be recognized. In Python there are
parsers to automatically infer the datatype. Using pandas in Python the following
data types can be automatically inferred:

• Integer

• Float

• Boolean

• Object (string or mixed type)
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There is also the data type category, but this data type will not be automatically
recognized. This will be recognized as an integer or object data type depending on
how the categorical feature is represented in the column. This parser in Python
works well, however this type inference does not allow wrong records. For example,
a text value which has been filled in incorrectly in a numerical column, such as age,
will cause the column to be labeled as an object type. Therefore, a manual step must
be included in the prototype to ensure the data types will be correctly recognized.

6.1.2 Data Cleaning

When the data is successfully integrated into a single dataset, the data must be
cleaned as it is most likely not error-free. A chunk of the data may be "dirty data".
Dirty data include noisy data, such as outliers, or missing data. When a large
proportion of the data is dirty, less reliable models will be produced. Therefore, dirty
data should be cleaned.

Missing Values

A real-life dataset contains most likely missing values. There are several schemes
to handle these missing values. The simplest approach is to discard the instances
with missing values, which could be a reasonable method if the dataset contains
only a small amount of missing values. Another approach is the imputation of
missing values, which aims to fill the missing values with estimated values. These
could be a very basic imputation method, such as imputing the mean or median for
numeric values and the mode for categorical values. Also, machine learning based
methods could be used. An algorithm, such as K-Nearest Neighbors or Support
Vector Machines, could be used to predict the value of the missing records.

Not a single imputation method performs best on all classifying problems, so for each
different dataset, another method could achieve better results. A further explanation
of this topic is given in Chapter 7.

Outlier Detection and handling

An outlier is an observation point that differs significantly from the other observations
within the dataset. An outlier could be caused by a measurement error or due to the
variability of what is observed or measured. Possible methods of handling outliers
that are considered for applying in the prototype are:

• Median Absolute Deviation (MAD)

• Interquartile range (IQR)
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• Z-score

More on these methods is explained in Chapter 8.

6.1.3 Data Transformations

The collected data, as it is, may not be ideal for obtaining accurate predictive
models. The attributes are "raw" and they still have a meaning from their original
domain. Transforming (also referred to as scaling) the original attributes, could help
to improve the predictive model.

Data Normalization

A basic transformation strategy is normalization. With normalization, no new
attributes are generated, but the distribution of the original values is transformed
into a new set of values. Three popular normalization methods are:

• Min-Max Normalization (Min-Max Scaling)

• Z-score Normalization (Standardization)

• Robust Normalization (Robust Scaling)

In Chapter 11 these methods are explained.

Data Transformation

In contrast to normalization, data transformation aims to create new attributes.
This is often called transforming the attributes. Usually, the original raw attributes
are converted into another format using various mathematical formulas. There are
many different transformation methods, some of those are:

• Linear Transformation

• Box-Cox Transformation

• Polynomial Feature Transformation

For normalization and transformation, there is no universally best approach. It has
to be investigated what transformation method(s) suits an automated solution best.
More on these methods is explained in Chapter 11.

18



6.1.4 Dimensionality reduction

One major problem in data mining for large datasets, which has many potential
predictors, is the "curse of dimensionality". Because of the computational complexity
of the data mining algorithms, dimensionality can become a real hurdle for efficiency.
To tackle this problem, there are some dimension reducer methods developed. Some
of these methods are:

• Principal Component Analysis (PCA)

• Truncated SVD

• Kernel PCA

• Independent component analysis (ICA)

From these methods, Principal Component Analysis is perhaps the most well-known
method. More on this is discussed in Chapter 13.

6.2 Feature Engineering

In the literature research, various papers were mentioned that proposed an auto-
mated feature engineering solution. One of those solutions was called "Cognito"
[Khurana et al., 2016]. They constructed software whereby the user should up-
load a file and then features could be created. So this cannot be used within
Python, in which this augmented data science solution is developed. Another
paper discussed the One Button Machine [Lam et al., 2017]. This framework is
not available to the public. The last method was called Deep Feature Synthesis
[Kanter and Veeramachaneni, 2015]. The framework they created, called Feature-
tools, is available in Python. Therefore, this accessible method is most promising
for an augmented data science solution build in Python. More on Deep Feature
Synthesis and how it works is discussed in Chapter 9.

6.3 Feature Selection

During feature selection, the features that eventually will be used for training
the model are selected. When there are too many features this could negatively
influence the model. After performing deep feature synthesis many different features
are created, this could be several hundred additional features. Not all of these
features are relevant to the model. The benefits of decreasing the number of features
are: it reduces overfitting, it shortens training time and it can improve the model
performance [Shaikh, 2018]. The following methods are considered when selecting
features:
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• Removing highly correlated features

• Removing features with low variance

• Select k best features

• Select top n percentile of features

• Recursive feature elimination

This will be further explained in Chapter 12.

6.4 Modeling

There are some automated Machine learning packages within Python, which are
discussed in the related literature. Two promising methods for modeling found during
the literature research are Auto-sklearn [Feurer et al., 2015a] and Tree-based Pipeline
Optimization Tool (TPOT) [Olson et al., 2016]. These automated machine learning
methods frees the data scientist from selecting the model and its hyperparameters.
Both are available within Python and are a great addition to the augmented data
discovery solution, which is solely built in Python. These frameworks also cover
some parts of the pre-processing. In Chapter 10 these two modeling approaches are
extensively explained.
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7 Missing Values

In this chapter, the missing value imputation methods, that are considered using,
are discussed. These methods consist of a simple imputation method and a machine
learning based method, namely k-Nearest Neighbors.

7.1 Simple imputation

One of the methods that is considered for implementing in the prototype is a simple
imputation method. With this simple imputation method, the median is imputed
for numeric values and the mode for categorical values. The median is preferred
over the mean because the data is not known upfront. Therefore, nothing could be
assumed about possible extreme outliers which can drastically influence the mean.
Thus, the median seems to be more appropriate in this case. Although this is a
very simple and fast method. This method does have some disadvantages. One
of the limitations of this imputation method is that imputing the same value, me-
dian or mode, for all missing values will lead to a reduced variance and resulting in
an unbalanced dataset. This is especially the case when there are many missing values.

For the optimal performance of this method, it is important that the data types
of the columns are correctly inferred. Because this approach will be automated,
the parser in Python is used to retrieve the datatype and based on the data type
either the median for numeric values or the mode for categorical values is used. The
parser in Python cannot handle dirty records as was mentioned earlier in Chapter
6. For example, a numeric column could be incorrectly labeled as an object type.
When this occurs the mode will be imputed in that column instead of the median.
This could negatively influence the results while modeling. To avoid this issue, an
additional manual step is added in which the user can select columns where the data
type needs to be changed. When the datatype is wrongly labeled as an object, where
it should be numeric, then the column could be indicated by the user to convert
the data type to numeric. The values that are not numeric in that column will be
deleted, so a missing value remains which will be imputed again. An example is
presented in Figure 2. Here the datatype was recognized as an object due to the
dirty record ’a’ in the age column. When the datatype gets converted this value is
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removed from the dataset.

Figure 2: Example of changing the datatype of the column age from object to a
numeric data type

7.2 k-Nearest Neighbors

Another method that is considered for imputing missing values is the k-nearest neigh-
bors imputation approach. The k-Nearest Neighbors algorithm is a classification
and regression method which finds the k nearest training examples within the given
feature space, where k is specified by the user. A visual example is presented in
Figure 3 with k = 3. In the image, the green circle is the unknown data point. When
looking at the three closest neighbors, the majority are blue squares. Thus, the un-
known green circle gets classified as a blue square. Sklearn has a class that performs
this imputation named the KNNImputer. With this method, the missing values are
imputed using k-Nearest Neighbors. This class uses the euclidean distance metric by
default that supports missing values. The missing values are imputed using values
from the nearest neighbors that do have a value for that feature [Scikit-Learn, ndb].
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Figure 3: Example k-Nearest Neighbors with k = 3

For the KNNImputer it is required that all data is numeric. Thus all categorical/text
features have to be encoded. This can be done by encoding every category of the
categorical features using a label encoder [Scikit-Learn, ndf]. Then the target labels
are encoded with values between 0 and n-1. With n the different number of labels
within the categorical feature. Figure 4 provides an example of this process. Here
the three different fruits are encoded by 0, 1 and 2.

Figure 4: Example of label encoding

The main drawback of encoding categorical features with the label encoder is that it
can cause errors when performing on the test set that has an additional category
within a feature. Using the label encoder this can cause the different categories to be
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numbered in another fashion. An example with the fruit is given in Figure 5. Here
one apple has been replaced by avocado which causes the numbering to be shifted.
During training, banana was 1, but in the test set banana is now 2.

Figure 5: Example of the label encoder with shifted values

This will result in bad modeling because the model is trained on different values.
This can be solved by encoding entirely on the training and test set. However, then
the model must be trained again every time there is a new test set to get the correct
encoding. This is not very efficient for business purposes. Especially with large
datasets which can lead to enormous training times.

7.3 Prototype

For the prototype the simple imputation method and the KNN imputation method
were considered. Based on the arguments discussed above, using the KNN imputation
in an augmented data discovery solution is not very practical. This is also the case
with other imputation methods that use a machine learning based approach, such
as k-means clustering. It can be used with datasets that only contain numerical
values or are already encoded when retrieved from the data source. Therefore the
simple approach is preferred for the prototype. This method will work on all sorts
of datasets. It will not be the best imputation method for every dataset, but it is
overall a well-working imputation method.
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8 Outliers

In this chapter, the different outlier handling methods that are considered are
discussed. These are the following methods:

• Median Absolute Deviation (MAD)

• Interquartile range (IQR)

• Z-score

8.1 Median Absolute Deviation (MAD)

This is a relatively simple outlier detection method. The median of the residuals
is calculated in order to detect outliers. First, the absolute difference between all
values and the median is calculated. From those values, the median is taken, which
yields the MAD (Equation 1). This MAD value is used for detecting outliers by
observing whether a number is a certain value away from the MAD. The default
threshold for this distance is 3 MAD.

MAD = median(|Xi −median(X)|) (1)

This method could be effective. However, it can also be too aggressive when classifying
values that are not that much different than the other values. Another downside is
that if half of the data has the same value, then MAD would be 0, causing all values
that are different to be detected as an outlier [Oracle, nd].

8.2 interquartile range (IQR)

Another method for detecting outliers is the interquartile range (IQR) method
[Brownlee, 2018]. This method defines the middle half of the data between the 25th
and 75th percentiles (Equation 2).

IQR = Q3 −Q1 (2)

The IQR method identifies outliers by observing which observation points are outside
the lower bound and upper bound. The lower and upper bound are determined by
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taking the IQR times a factor k (commonly 1.5) below the 25th percentile or above
the 75th percentile. This yields:

Lowerbound = Q1 − k ∗ IQR (3)

Upperbound = Q3 + k ∗ IQR (4)

The advantage of using the interquartile range with augmented data preparation is
that this method can be used regardless of the distribution, which is useful when
generalizing a method for different datasets.

8.3 Z-score

The Z-score is a metric that helps to understand whether a data point is smaller or
greater than the mean and how far away from the mean. The Z-score can tell how
many standard deviations a data point is from the mean. The Z-score is given by
Equation 5, where µ is the mean and σ is the standard deviation [Maini, nd].

Zscore =
x− µ
σ

(5)

When a data point is more than 3 standard deviations away from the mean, then
this point is considered an outlier. A disadvantage of this method is, it assumes
the data is normally distributed. This is not ideal for an augmented data science
solution as we do not know the distribution beforehand.

8.4 Prototype

After investigating the three methods explained in this chapter, the IQR method is
implemented in the prototype. The IQR method does not depend on the distribution
of the data, which is unknown. Unlike Z-score which assumes the data is normally
distributed. The MAD method also has its disadvantages when many data points
have the same values. Therefore, the IQR method seems the most appropriate
method for automated data preparation.
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9 Feature Engineering

This chapter discusses the method used for automated feature engineering. For
feature engineering, the method proposed by [Kanter and Veeramachaneni, 2015]
named Deep Feature Synthesis is used.

9.1 Deep Feature Synthesis

Featuretools [FeatureLabs, 2019] is the framework build in Python that performs
Deep Feature Synthesis (DFS). DFS is an algorithm that can automatically generate
features derived from the relationships between the data points within a dataset.
The algorithm follows the relationships within the data to a base field, then it
applies mathematical functions along that path to create a new feature. DFS stacks
calculations consecutively, each feature can be defined as having a certain depth d.
DFS works especially well with relational tables, but can also work well with single
data tables [Kanter, 2018]. [Gordon, 2018] gives an extensive example of the use of
deep feature synthesis and several encountered problems on the way using a single
data table. His full notebook is available on [Github, 2018].

Featuretools takes instances with a relationship as input and outputs a single newly
created feature. Some of the aggregation function used within DFS are:

• Sum

• Mean

• Max/Min

• Standard deviation

• Mode

• Count

Featuretools can also derive multiple features from a single feature, such as date.
For a date object, it will automatically generate the features Day, Month, Year,
DayOfWeek and IsWeekend features. These are often helpful features in modeling.
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9.1.1 Example

An example is given in Figure 6 to illustrate how DFS works. The data in this
example is about a store that has orders, customers and products that all have their
own table. In the example, the average order size per customer is calculated. Firstly
they start with the product, which holds the ProductId and the Price. The direct
feature (dfeat) is calculated to add the price to the product orders table. Then
the relational feature (rfeat) is calculated by taking the sum of the product prices
per OrderID, SUM(Product.Price). Then another relational feature is calculated to
calculate the average order size per CustomerId, AVG(Orders.SUM(Product.Price))
[Kanter and Veeramachaneni, 2015].

Figure 6: Example of Deep Feature Synthesis for creating new features at different
depths, with d = 3, by using the relationships between the tables

In this small example, it is only calculating the average product price per customer,
which is added as a feature in the dataset. In larger datasets DFS will create many
more features. Then more aggregation functions are used and there are more features.
For example, the aggregation functions mentioned above. This can cause DFS to
create hundreds of new features, or even more if desired. This is done in a relatively
short period of time whereas someone would do this manually, it would take quite
some time to create that many features.

9.1.2 Feature encoding

Machine learning models need numeric data in order to work. Therefore text data
should be encoded. Featuretools can do this for you, using a One Hot Encoding. This
One Hot Encoding creates a binary column for each category within the categorical
feature. A visualized example is presented in Figure 7. Because there are three types
of fruit, it creates three binary columns with 0’s and 1’s indicating whether a specific
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fruit is in that instance or not.

Figure 7: Example of a One Hot Encoding

.

9.2 Prototype

DFS is implemented in the prototype. Although in the prototype only single tables
are used, DFS can still create some valuable features. A manual step is included in
the prototype in which the user should indicate what feature it wants to aggregate
on in relation to the other features. The user could indicate a single feature, but
also more or none.
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10 Modeling

In this chapter, two automated modeling approaches are discussed, namely TPOT
and Auto-sklearn. There are two main challenges with automated modeling in data
science. One challenge is that no single machine learning algorithm performs best
on all datasets. Another problem is that some machine learning algorithms are
highly dependent on hyperparameter optimization. The two automated modeling
approaches, discussed in the next two paragraphs, do tackle these problems. For each
of the approaches, the used methods are briefly explained. A further explanation of
some of those methods is explained in the upcoming chapters.

10.1 Tree-based Pipeline Optimization Tool (TPOT)

TPOT [Olson et al., 2016] is an automated machine learning tool within Python
that optimizes tree-based machine learning pipelines using genetic programming.
There are several pipeline operators implemented in TPOT. All of these operators
use existing implementations available in the scikit-learn package. The four main
types of implemented pipeline operators are:

• Pre-processors

• Decomposition

• Feature Selection

• Models

Pre-processors

TPOT implements the following four pre-processing operators from Sklearn:

• Min-Max Normalization (MinMaxScaler)

• Z-score Normalization (StandardScaler)

• Robust Normalization (RobustScaler)

• Polynomial Transformation (PolynomialFeatures)

These four transformation methods are explained in Chapter 11.
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Decomposition

TPOT implemented a Principal Component Analysis (PCA) using a randomized
Singular Value Decomposition (SVD). This method and other decomposition methods
are explained in Chapter 13.

Feature Selection

The feature selection methods that are implemented in TPOT are:

• Select top k features (SelectKBest)

• Select top n percentile of features (SelectPercentile)

• Remove features with low variance (VarianceThreshold)

• Recursive feature elimination (RFE)

These four feature selection methods are explained in Chapter 12.

Models

TPOT is focused solely on supervised learning models. They implemented the
following supervised classification and regression operators:

• Decision Tree

• Random Forest

• Gradient Boosting

• Extreme Gradient Boosting (XGBoost)

• Linear Support Vector Machine (SVM)

• Logistic Regression

• k-Nearest Neighbors

• Linear regression

• Ridge regression

• Lasso regression

These models are further explained in Chapter 10.
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10.1.1 Optimizing Tree-Based Pipelines

TPOT uses a genetic programming algorithm that is implemented in the Python
package DEAP [Fortin et al., 2012]. The default settings of TPOT runs ten genera-
tions with a population size of 100. With these settings, the genetic programming
algorithm is generating 100 random tree-based pipelines from which their accuracy is
validated on the dataset. From these 100 pipelines, the top 20 from the population
are selected for the next generation. This is done with the Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) selection scheme, which is an evolutionary algo-
rithm. Here pipelines are selected to maximize the accuracy while also minimizing
the number of operators used in the pipeline. From the 20 selected pipelines, that are
selected for the next generations, each creates five offspring, these are five copies of
the pipeline. 5% of those created offspring cross over with other offspring using the
one-point crossover method. Remaining offspring that are unaffected are randomly
changed by a single point in the pipeline, insert mutation or shrink mutation is
applied, each with a probability of 1/3. With mutation, some part of the pipeline
gets altered. This causes to create slightly different pipelines, which are perhaps
better. After each generation again the top 20 pipelines get selected and the process
repeats for the new generations. Each generation the pipeline gets slightly altered,
which has a chance of improving that pipeline [Olson et al., 2016].

10.2 Auto-sklearn

Auto-sklearn [Feurer et al., 2015a] is the other automated machine learning approach.
It uses Bayesian optimization in order to find the best combination of models. Auto-
sklearn uses an ensemble construction that is automated, this steps allows using all
different classifiers or regressors that are found during the Bayesian optimization.
The same pipeline operators as for TPOT are discussed for this approach:

• Pre-processors

• Decomposition

• Feature Selection

• Models

Pre-processors

Auto-sklearn implemented the following three pre-processing operators quite similar
to TPOT:

• Min-Max Normalization (MinMaxScaler)
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• Z-score Normalization (StandardScaler)

• Polynomial Transformation (PolynomialFeatures)

Compared to TPOT, Auto-sklearn excludes Robust Normalization. The transforma-
tion methods are explained in Chapter 11.

Decomposition

Unlike TPOT, Auto-sklearn implemented multiple decomposition methods, these
are the following methods:

• Principal Component Analysis (PCA)

• Truncated SVD

• Kernel PCA

• Independent component analysis (ICA)

These methods are explained in Chapter 13.

Feature Selection

In Auto-sklearn the following feature selection methods are implemented:

• Select top k features (SelectKBest)

• Select top n percentile of features (SelectPercentile)

• Recursive feature elimination

• Classification-based feature selection with Extremely Randomized Trees

These methods are explained in Chapter 12.

Models

Auto sklearn implemented considerably more modeling methods than TPOT did.
They implemented the following 15 supervised classification and regression operators:

• Gaussian Naive Bayes

• Bernoulli Naive Bayes

• Multinomial Naive Bayes

• Decision Tree
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• Random Forest

• Extremely Randomized Trees

• Adaptive Boosting (AdaBoost)

• Gradient Boosting

• Linear Support Vector Machine (SVM)

• Kernel Support Vector Machine (SVM)

• Linear Discriminant Analysis (LDA)

• Quadratic Discriminant Analysis (QDA)

• Linear Classification via online stochastic gradient descent (SGD)

• Maximum Margin classification via Online Passive Aggressive algorithms

• k-Nearest Neighbors (kNN)

• Linear regression

• Ridge regression

• Lasso regression

These different classification and regression methods are briefly explained in Chapter
14.

10.2.1 Automated ensemble construction of models evaluated during
optimization

Auto-sklearn uses Bayesian hyperparameter optimization. This is a data-efficient
method in finding the best hyperparameters for the model. However, with the goal
of simply making a good prediction, it is quite a wasteful method due to losing all
models during the optimization process, although these models did perform almost
as good as the best-performing model. Auto-sklearn uses the created models rather
than discarding those. They store the models and afterwards these models are used
to construct an ensemble out of them. This automatically constructed ensemble
does not have one single hyperparameter setting and is therefore less sensitive to
overfitting and more robust.

Individual models are often outperformed by ensembles. Ensembles perform especially
well when the individual models, of which the ensemble is constructed, are strong on
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their own and if the individual models make uncorrelated errors. These individual
models are different in nature and therefore correlated errors are unlikely. They
found that the models found by Bayesian optimization creating a uniformly weighted
ensemble out of them did not work well. Therefore, they use ensemble selection
in order to optimize these weights in correspondence with [Caruana et al., 2004].
This is a greedy approach. It starts with an empty ensemble and then it iteratively
adds a model that maximally increases the validation performance of the ensemble
[Feurer et al., 2015a].

10.3 Comparison of TPOT against Auto-sklearn

In this chapter, two automated modeling approaches are discussed, TPOT and
Auto-sklearn. These frameworks use a different approach. Each method has its own
advantages and disadvantages.

The scaling operators used in both methods are almost the same. Concerning the
composition methods, Auto-sklearn has the choice of 4 different operators while
TPOT uses solely PCA. This creates more possible different pipelines for Auto-
sklearn. The amount of models is also significantly larger within Auto-sklearn than
TPOT. This is a advantage as this enables Auto-sklearn to deal with a larger variety
of datasets.

Auto-sklearn uses an ensemble of multiple models. This often yields better modeling
results. A disadvantage is that the model is rather complex, containing dozens of
different models. This makes the best ensemble model difficult to interpret. TPOT
on the other hand chooses for the best model a single classifier or regressor (e.g.
Decision Tree or Random Forrest), which is easier to understand.

Another disadvantage of Auto-sklearn is that it can only run on Linux, unlike TPOT
that can run on each operating system. This could be a rather inconvenient limitation.

The most important metric to compare these methods is to validate both the modeling
performance. This is done in Chapter 16.

10.4 Prototype

For the prototype, both automated modeling approaches are used. This is done
in order to make a comparison between the two frameworks based on the results.
From the literature, it is not clear whether one method is better than the other.
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Thus, both will be used and then a comparison can be made based on the results.
So two versions of the prototypes are created, with one supporting TPOT and one
supporting Auto-sklearn. The results are discussed in Chapter 16.
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11 Data Transformation

In Chapter 6 several possible transformation methods are discussed, from which
many are implemented in either TPOT or Auto-sklearn. In this chapter, those
methods are explained more extensively.

11.1 Normalization

The three proposed normalization methods in Chapter 6 were:

• Min-Max Normalization (Min-Max Scaling)

• Z-score Normalization (Standardization)

• Robust Normalization (Scaling)

11.1.1 Min-Max Normalization (Min-Max Scaling))

Min-max normalization scales all the values of the feature within a certain scale,
usually between 0 and 1 or -1 and 1. Equation 6 shows the formula of this method.

xscaled =
x−min(x)

max(x)−min(x)
(6)

11.1.2 Z-score normalization (Standardization)

This normalization method transforms the attribute values that they now present a
standard deviation of 1 and a mean equal to 0. This normalization method centers
the data by using the following formula seen in Equation 7, where µ is the mean
and σ is the standard deviation [García et al., 2015].

xscaled =
x− µ
σ

(7)

11.1.3 Robust Normalization (Robust scaling)

This method is similar to Min-max normalization, it uses the interquartile range
instead of the min and the max for scaling the data. Using the interquartile range
instead of the min-max method makes it less sensitive for extreme values in the data.
This method has the following formula seen in Equation 8.
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xscaled =
x−Q1(x)

Q3(x)−Q1(x)
(8)

11.1.4 Prototype

Not a single normalization method performs best on every dataset. In the automated
modeling approaches, that are used in the prototype, these methods are already
implemented. They use all the methods in different pipelines to observe whether
the model improved. So, this makes these frameworks very convenient for using
transformations in an augmented data science solution.

11.2 Transformation

The discussed data transformation methods were:

• Linear Transformation

• Box-Cox Transformation

• Polynomial Feature Transformation

11.2.1 Linear transformation

The linear transformation is the simplest form of transformations. Some linear trans-
formations are average, sum, rotations, etc. These are meaningful transformations.
Lets explain this with the following example. If A is a set of attributes and B a
subset of the attributes in A, with r being a set of real numbers. Then apply the
following expression:

Z = r1B1 + r2B2 + ...+ rmBM (9)

This derived a new attribute Z, by taking a linear combination of the attributes
within B. It should be noted that even with a linear transformation, to find a proper
transformation often some experiments are needed. Which makes this method not
optimal for an automated approach [Lin, 2002].

11.2.2 Box-cox transformation

The Box-cox transformation is designed to fit the data automatically by transforming
the continuous variable in an almost normal distribution [García et al., 2015]. This
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seems useful for an automated solution. The big drawback is that this however only
works for non-negative values, which makes this method not ideal for many datasets.

11.2.3 Polynomial feature transformation

This is an operator that generates features that are interacting using polynomial
combinations between the numerical features. These transformations are generally
created when one wants to include the assumption there is a nonlinear relationship
between the numerical features and the target variable. This method is mostly used
to add complexity to linear models with little features or when a dependency is
suspected between one and another feature [Dorpe, 2018].

So from the given set of attributes x1, x2, ..., xn a derived attribute Y is computed
from the set of existing features. If there is for example a two dimensional input
sample of the form [x1, x2]. Then the created degree 2 polynomial features are:
[1, x1, x2, x21, x22, x1x2] [Dorpe, 2018].

[Lin, 2002] shows that when no knowledge is available, a transformation could be
approximated with a polynomial transformation. This makes it a suitable method
for an automated approach.

11.2.4 Prototype

From the discussed methods the polynomial features method seems the most promis-
ing for an automated data science solution. The polynomial features transformation
is available in Sklearn and, similar to the normalization methods mentioned above,
implemented in TPOT and Auto-sklearn. This, combined with the explanation
above, makes this method the most convenient for implementing into the prototype.
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12 Feature Selection

Selecting fewer features to eventually train the model, could positively influence
the model. After DFS many features could be created, therefore feature selection
methods are of great use to reduce some irrelevant features. In the approach (Chapter
6), some methods were mentioned for selecting features. Those were the following
methods:

• Removing highly correlated features

• Removing features with low variance

• Select k best features

• Select top n percentile of features

• Recursive feature elimination

In this chapter, these methods will be explained more extensively.

12.1 Correlated features

To check for correlated features, a correlation matrix is created. In the correlation
matrix, every feature is compared to each other feature using Pearson correlation
coefficient. Pearson correlation coefficient is defined as follows:

ρx,y =
E[(X − µx)(Y − µy)]

σxσy
(10)

Where:

• ρ is Pearson’s correlation coefficient between x and y

• E is the expectation

• µx is the mean of x

• µy is the mean of y

• σx is the standard deviation of x
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• σy is the standard deviation of y

Features with a correlation coefficient of higher than 0.7 can be considered highly
correlated [Calkins, 2005]. Therefore, 0.7 is the threshold that is set to remove
correlated features.

12.2 Low variance features

This is a simple feature selection method, implemented in TPOT, where it removes
features when their variance does not meet a certain threshold. This will get rid of
the features that have the same value for almost every instance. The variance is
given by Equation 11.

V ar(X) = p(1− p) (11)

Where p is the probability, so when one wants to delete all features that have the
same value in 90% of all instances then p should be set to 0.9 [Scikit-Learn, ndd].

12.3 Select k best features

This method selects the k best features. The k best features are determined by some
function. This could be a regression or classification function. The eventual p-values
per feature will rank the importance of the features. Then the k top-ranked features
are selected. Both TPOT and Auto-sklearn use this method in their framework
[Scikit-Learn, ndd].

12.4 Select top n percentile features

This is similar to the select k best features method. Instead of selecting k number
of features, it selects a specified highest scoring percentage of features. The scores
are equivalent to select k best features, determined by either a regression or classifi-
cation function. This method is also used in both automated modeling approaches
[Scikit-Learn, ndd].

12.5 Recursive feature elimination

With recursive feature elimination (RFE) the eventual set of features that are se-
lected are obtained by recursively trying smaller sets of features. This method
is used in TPOT and Auto-sklearn. Firstly, the initial set of features is used for
training. Then, the importance of the features is obtained through an external
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estimator which assigns weights to each of the features, for example a linear model
(e.g. Support Vector Machine) or the coefficients. Next, the least important features
are removed from the set of features. This process is recursively repeated on the
current set of features until the desired number of features remain [Scikit-Learn, ndd].

12.6 Classification-based feature selection with
Extremely Randomized Trees

With this approach, used in Auto-sklearn, feature selection is done based on the
classifier Extremely Randomized Trees. Using this classification method the feature
is scored and the best scoring ones are selected to create the model. Recursive
feature elimination is also classification-based as this uses a linear model to assign
the weights. How this classifier works in general is explained in Chapter 14. For
selecting the features, Extremely Randomized Trees uses the Gini index for scoring,
this score can also be named the Gini Importance of the feature. From this scoring
metric the top k features are selected.

12.7 Prototype

For the created prototype the highly correlated features will be deleted before using
the automated modeling approach. This will often reduce the number of features,
which is favorable because so many features could be created during deep feature
synthesis. Passing fewer features to the automated modeling approach reduces
training time. Also having too many correlated features could possibly negatively
influence the model. With the automated modeling approaches TPOT and Auto-
sklearn the other discussed feature selection methods are used, depending on the
created pipeline.
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13 Dimensionality reduction

In Chapter 6, several dimensionality reduction methods are discussed, all implemented
in either TPOT or Auto-sklearn. In this chapter, the mentioned methods are briefly
explained. Those are the following methods:

• Principal Component Analysis (PCA)

• Truncated SVD

• Kernel PCA

• Independent component analysis (ICA)

13.1 Principal Component Analysis (PCA)

PCA is performing a linear dimensionality reduction. This is done using approximated
Singular Value Decomposition (SVD) of the data, it then keeps only the most
significant singular vectors in order to project the data to a lower-dimensional space
[Scikit-Learn, ndg].

13.2 Truncated SVD

This method is similar to PCA performing a linear dimensionality reduction. Contrary
to PCA, it performs the dimensionality reduction using truncated SVD. The data
is not centered before computing the SVD by this estimator. Therefore, truncated
SVD can work with sparse matrices [Scikit-Learn, nde].

13.3 Kernel PCA

Kernel PCA also performs principal component analysis, it is an extension of regular
PCA. But with kernel PCA it is performing PCA in a reproducing kernel Hilbert
space, this allows for non-linear mapping [Feurer et al., 2015b].
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13.4 Independent component analysis (ICA)

ICA finds basis vectors so that the original data projected on these basis vectors
are maximally statistically independent. It can be seen as an extension of PCA.
Classically, ICA is used to separate mixed signals, this problem is known as the
"blind source separation" problem [Jutten and Comon, 2010]. Also, ICA can be used
as a linear decomposition method to find components [Scikit-Learn, ndc].

13.5 Prototype

All of these methods are implemented in either TPOT or Auto-sklearn. From
these methods, PCA is implemented in both automated modeling approaches. Auto-
sklearn, on the other hand, has also implemented the other three discussed approaches,
Truncated SVD, Kernel PCA and ICA. So, all of these methods are used in the
prototype due to both approaches are used for comparison.
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14 Classification and Regression
Algorithms

From the automated modeling approaches discussed in chapter 10 many different
methods were mentioned. In this chapter, each of those methods will briefly be
explained. This concerns the following classification and regression algorithms:

• Gaussian Naive Bayes

• Bernoulli Naive Bayes

• Multinomial Naive Bayes

• Decision Tree

• Random Forest

• Extremely Randomized Trees

• Gradient Boosting

• Extreme Gradient Boosting (XGBoost)

• Adaptive Boosting (AdaBoost)

• Linear Support Vector Machine (SVM)

• Kernel Support Vector Machine (SVM)

• Logistic Regression

• Linear Classification via Online Stochastic Gradient Descent (SGD)

• Maximum Margin classification via Online Passive Aggressive algorithms

• Linear Discriminant Analysis (LDA)

• Quadratic Discriminant Analysis (QDA)

• k-Nearest Neighbors (kNN)

• Linear regression
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• Ridge regression

• Lasso regression

14.1 Naive Bayes

The Naive Bayes classifier is a simple probabilistic classifier used in machine learning,
based on Bayes theorem (Equation 12). Bayes theorem is used to find the probability
that A occurs given that B has already happened. Bayes theorem makes the
assumption that the predictor, or in this case the features, are independent. That is
the reason it is called "naive".

P (A|B) =
P (B|A)PA
P (B)

(12)

As mentioned earlier, there are three variants of Naive Bayes implemented in Auto-
sklearn. The difference between those variants is about how the data appears.
Bernoulli Naive Bayes is used for binary data. Multinomial Naive Bayes is used for
discrete data. Gaussian Naive Bayes is used for continuous data [Gandhi, 2018a].

14.2 Decision Tree

A decision tree uses a tree-shaped model to make decisions with the possible conse-
quences. This includes the probability of an outcome. A decision tree starts in a
single node. This node branches into different possible outcomes. Then again those
nodes lead to other additional nodes. This goes on, which forms a treelike shape. A
decision tree contains only conditional statements at each node, where the decision
is based on. A decision tree can be used for regression and classification problems.
Figure 8 shows an example of a decision tree [Brid, 2018].
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Figure 8: Example of a decision tree, where it is decided whether someone should
take the bus or go walking. This is decided by first looking at the weather,
then the time that is left and whether he or she is hungry so that he or
she can walk by a café for some food.

14.3 Random forest and Extremely Randomized Trees

Random forest and extremely randomized trees are methods that use an ensemble
of multiple individual decision trees. Both of these algorithms can also be used for
regression and classification purposes. Both methods are trained with the method
bagging. Bagging stands for Bootstrap Aggregation, which aims to decrease the
variance. The idea of bagging is that the combination of those multiple models,
in this case the decision trees, will together increase the result of the model. The
difference between the two methods exists in the splitting rule. With random forest,
the split is determined by the information gain or Gini impurity, which are metrics for
determining the best. For extremely randomized trees the splitting rules are randomly
generated, then the best one gets selected [Yiu, 2019] [Feurer et al., 2015b].

14.4 Gradient Boosting

Similar to Random Forest, Gradient Boosting is an ensemble of decision trees. This
can also be used for either regression or classification. Instead of Bagging, now
boosting is used. Boosting is the strategy of combining multiple simple models into
one. These simple models are referred to as "weak learners", which are boosted to
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create a strong model. Gradient boosting uses gradient descent to minimize the loss
function of the model. Gradient descent is an optimization algorithm for finding a
local minimum of a function which can be differentiated. AdaBoost and XGBoost
are a variant on gradient boosting. The popularity of these methods has grown due
to their good performance in data competitions, such as Kaggle [Mujtaba, 2020].

14.5 Support Vector Machines (SVM)

The support vector machine algorithm aims to find the optimal hyperplane in a
dimensional space of size n so that it can classify the different classes. It can handle
both classification and regression problems. The optimal hyperplane is the one with
the largest margin (or distance) between the data points of the distinctive classes
(Figure 9) [Gandhi, 2018b].

Figure 9: Example of the support vector machine algorithm in two dimensions.
The two classes, indicated as squares and circles, are separated with the
two support vectors creating the maximum margin possible.

In the classifying algorithms listed above, linear SVM and kernel SVM are mentioned.
The difference is that linear SVM uses linear support vectors and kernel SVM uses
the kernel trick which allows for non-linear classification.

14.6 Logistic regression

The logistic regression classifier is a method used in TPOT. Logistic regression is
similar to linear regression, but linear regression solves regression problems and
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logistic regression solves classification problems. This method is especially useful for
binary classification problems. Logistic regression aims to maximize the likelihood
function. An example is given in Figure 10.

Figure 10: Example of a logistic regression in machine learning. This is a binary
classification problem where everything below the threshold gets clas-
sified as 0 and above the threshold gets classified as 1. The curve is
called a sigmoid function.

14.7 Generalized Linear Models (GLM)

Generalized Linear Models can be used for either regression or classification purposes.
Under GLM fall the two methods listed above used in Auto-sklearn, namely linear
classification via online stochastic gradient descent (SGD) and maximum margin
classification via online passive aggressive algorithms. These are both linear classifi-
cation algorithms. In Auto-sklearn, they use only online learning algorithms from
the GLM category since they were interested in scaling their automated machine
learning framework to large datasets. With online algorithms, the input is processed
piece by piece instead of that the entire input is available from the beginning.

Linear classification via online stochastic gradient descent (SGD) uses some loss
function which is either a hinge, negative log likelihood or a Huber loss. Hinge is a
soft-margin linear SVM (higher tolerance for misclassification), Huber loss a smoothed
version of the hinge and negative log likelihood results in logistic regression. Maximum
margin classification via online passive aggressive algorithms solves constrained
optimization problems iteratively in order to update the weights of the model, which
guarantees small steps and retains a larger margin [Feurer et al., 2015b].
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14.8 Discriminant Analysis

Discriminant Analysis is used for classification and quite similar to logistic regression.
In Auto-sklearn they implemented two variants from the discriminant analysis family.
These are the two classifiers: linear discriminant analysis (LDA) and quadratic
discriminant analysis (QDA). LDA uses a linear decision surface and assumes that
the different classes have an identical covariance. QDA uses a quadratic decision
surface, which makes it more flexible than LDA, and has the assumption that the
values of all features are normally distributed [Scikit-Learn, nda].

14.9 K-Nearest Neighbors (KNN)

This algorithm was already explained in Chapter 7 as a missing value imputation
method. KNN can be used for a classification or regression problem. It finds the k
nearest training examples within the given feature space, where k is specified by the
user.

14.10 Classical linear regressors

The three classical linear regressors used in both TPOT and Auto-sklearn are Linear
regression, Ridge regression and Lasso regression. Linear regression fits a straight
line between the data points which minimizes the residual sum of squares. The
formula is given by Equation 13.

Yi = β0 + β1Xi1 + ...+ βpXip + εi (13)

Ridge regression is a linear least squares regression with l2 regularization. Lasso
regression is a linear least squares regression with l1 regularization. L2 avoids
overfitting issues and l1 works better with a huge amount of features because it
shrinks the less important features. The difference between these methods is that
the ridge and lasso regression add a penalty term to the loss function of the ordinary
least squares (OLS) method (Equation 14). Ridge regression adds the summation of
the squared weights to the OLS loss function with some factor lambda as a penalty
term (Equation 15). Lasso regression adds the summation of the absolute values of
the coefficients to the OLS loss function with some factor lambda as a penalty term
(Equation 16) [Nagpal, 2017].

OLSloss =
n∑

i=1

(yi − λ
p∑

j=1

xijβi)
2 (14)
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Ridgeloss =
n∑

i=1

(yi − λ
p∑

j=1

xijβj)
2 + λ

p∑
j=1

β2j (15)

Lassoloss =
n∑

i=1

(yi − λ
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj | (16)
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15 Experimental setup

To test the prototype’s performance, some experiments will be executed. For that
multiple datasets are used which are discussed in Chapter 5. In this chapter, the
setup of these experiments is discussed and also how the performance of the prototype
is evaluated.

15.1 Training/validation/test split

Each dataset is split into a training set (67%) and a validation set (33%). In the
Python notebook, a random state is added which sets a seed for the random generator,
causing the dataset to make the training validation split in the same manner every
time. This is done in order to compare TPOT to Auto-sklearn in a fair manner.
When the dataset is from a data competition, then a separate testing set is provided.
That testing set can be used to evaluate the model in the data competition where
the score can be compared to other competitors.

Figure 11: train/validation/test split

15.2 Modeling

For modeling both the automated modeling approaches, TPOT and Auto-sklearn,
are used. Both are used in order to investigate whether one framework performs
better than the other.

For TPOT the number of generations and population size should be set. This is
set to 5 generations with a population size of 50. This is lower than the default
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setting, but this causes the algorithm not to have extremely large training times
for the larger datasets. For Auto-sklearn no such additional information has to be
provided. We can however provide the scoring function for both methods. The
default scoring function is accuracy, this can be changed to for example f1-score
or precision. This will be an option for the user of the tool to define the scoring
function. This is especially useful for highly unbalanced datasets where the accuracy
is a rather irrelevant metric. For regression problems, the mean squared error is used
as a scoring function.

15.3 Evaluation metrics

Several evaluation metrics are used to evaluate the performance of the constructed
model. These evaluation metrics are based solely on the training and validation data.
The following evaluation metrics are used for classification problems:

• Confusion matrix

• Accuracy

• Precision

• Recall

• F1-score

• Area Under the Receiver Operating Characteristic Curve (AUROC)

• Online competition submission score

To evaluate regression models, other evaluation metrics are used. The three metrics
used are [Karbhari, 2018]:

• Mean absolute error (MAE)

• Mean squared error (MSE)

• R2 score

These evaluation metrics, combined with a online data competition submission score
(if possible), will provide a good insight on how the augmented data science tool
performed.
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15.3.1 Confusion matrix

The output of a machine learning model for a classifying problem can be represented
in a confusion matrix (Figure 12). This metric can visualize the performance of the
machine learning model.

Figure 12: Confusion matrix

The example in Figure 12 is a 2x2 confusion matrix which is for a binary classification
problem. In this case, the output can be either "Yes" or "No". Within this confusion
matrix there are the following terms:

• True Positives (TP): These are cases that are correctly predicted "Yes".

• True Negatives (TN): These are cases that are correctly predicted "No".

• False Positives (FP): These are cases that are wrongly predicted "Yes" because
they are actually "No".

• False Negatives (FN): These are cases that are wrongly predicted "No" because
they are actually "Yes".

These terms mentioned above can be used to determine the accuracy, precision and
recall [Markham, 2014].

15.3.2 Accuracy

The accuracy is the fraction of the correctly predicted cases out of all cases (Equation
17). Accuracy is an important metric, but in some cases it is not. In an unbalanced
dataset, where for example 90% of all cases are classified true, a model that classifies
everything as false obtains a high accuracy of 90%, but is however a bad model.
Therefore, including other metrics is important.

Accuracy =
TP + TN

Total
(17)
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15.3.3 Precision

The precision is the fraction of the correctly predicted cases from all the cases that
are predicted true (Equation 18). So, when the cases are predicted as true, how
often is this correct [Markham, 2014].

Precision =
TP

TP + FP
(18)

15.3.4 Recall

The recall, also known as sensitivity, is the fraction of the correctly predicted cases
from the cases that are actually true. So, when the cases are actually true, how often
is this correctly predicted.

Recall =
TP

TP + FN
(19)

15.3.5 F1 score

The F1 score, or F1 measure, is a metric that seeks the balance between precision
and recall. The F1 score is the harmonic mean of those two metrics (Equation 20)
[Markham, 2014].

F1score = 2 ∗ precision ∗ recall
precision+ recall

(20)

15.3.6 Area Under the Receiver Operating Characteristic Curve
(AUROC)

This is an important metric for checking a classification model’s performance. It
consists of the AUC (Area Under The Curve) and ROC (Receiver Operating Char-
acteristics) curve. Combined it can also be written as AUROC. This metric explains
how much the model is capable of distinguishing between different classes. A perfect
model has an AUC of 1, when the AUC is 0.5 then the model has no class separation
whatsoever. The ROC curve is the True Positive Rate (TPR) (Equation 21) plotted
against the False Positive Rate (FPR) (Equation 22) where the TPR is actually the
recall. In Figure 13 an example is given of the ROC curve where is indicated what
the AUC is. [Narkhede, 2018].

TPR =
TP

TP + FN
(21)

FPR =
TN

TN + FP
(22)
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Figure 13: Example of ROC curve and AUC

15.3.7 Mean absolute error (MAE)

The mean absolute error calculates the sum of the absolute difference between the
predicted and the actual values (Equation 23).

MAE =
1

n

n∑
t=1

|actualt − predictedt| (23)

15.3.8 Mean squared error (MSE)

The MSE is similar to MAE, except instead of the absolute difference the squared
difference is taken (Equation 24) [Karbhari, 2018].

MSE =
1

n

n∑
t=1

(actualt − predictedt)2 (24)

15.3.9 R2 score

Perhaps the most important score for evaluating a regression model is the R2 score.
This score indicates how well the regression fits the data. For the R2 score, 1.0 is
perfect and 0 is the worst. The formula for the R2 score is shown in Equation 25.

R2 = 1− SSRes

SStotal
(25)
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Where SSRes is the sum of squares of residuals and SStotal is the total sum of squares.

15.3.10 Online data competition submission score

When the data is from a data competition, then a prediction can be submitted.
This scored submission can be compared to other competitors that have made a
submission on the data competition platform. This is a good way to evaluate the
model in comparison to others. The metric used to score the submission varies per
competition. This can for example be the accuracy or AUROC.
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16 Results

In this chapter, the results obtained from the created prototype are discussed. The
augmented data science tool is used with the different datasets discussed in Chapter
5. The models are evaluated by observing the evaluation metrics discussed in Chapter
15. Two versions of the prototype are used, one with the TPOT framework and one
with Auto-sklearn. This is done in order to make a comparison between the two
frameworks, so it can be determined which framework suits such a solution better.
The final selected classifier or regressor that is used on the dataset, constructed by
the automated modeling approach, will also be mentioned.

16.1 Titanic

The titanic dataset was the first dataset processed through the tool. After the pre-
processing steps were done, both TPOT and Auto-sklearn were used for modeling.
The accuracy is used as a scoring function. The best found classifier by TPOT is a
Decision Tree Classifier. Auto-sklearn constructed an ensemble out of 21 different
models. Most of these individual models, with the highest weights, are Random
Forrest and Gradient Boosting classifiers. Table 1 shows the confusion matrices of
these models and Table 2 shows the evaluation metrics.

Table 1: Confusion matrices Titanic dataset. TPOT (left) and Auto-sklearn (right).
Actual/Predicted No Yes
No 162 13
Yes 44 76

Actual/Predicted No Yes
No 163 12
Yes 39 81

Table 2: Evaluation metrics Titanic dataset
TPOT Auto-sklearn

Accuracy 0.807 0.827
Recall 0.780 0.803
Precision 0.820 0.839
F1-score 0.789 0.813
AUROC 0.780 0.803
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From the confusion matrices, it can be observed that it predicts who survived quite
good for both modeling approaches. Most of the cases are correctly predicted. This
is also supported by the values obtained from the evaluation metrics. It has a high
accuracy of 80% and 82%. Also, the other metrics are around that value, thus overall
it seems a sufficient model. Auto-sklearn does perform slightly better, approximately
2% better on all metrics.

This was an open Kaggle competition. Kaggle used the accuracy as a scoring metric
in this competition. The prediction was uploaded to Kaggle resulting in a score of
0.785 (TPOT) and 0.790 (Auto-sklearn). So, quite similar scores but slightly better
for Auto-sklearn. The score achieved by Auto-sklearn is approximately the top 22%
on the leaderboard, which is pretty good for the little effort that goes into running it
through the tool.

16.2 Mobile price classification

The second dataset was the mobile price classification. This was also a small dataset,
just like the Titanic data. As a scoring function, the accuracy is used on this dataset.
Using the tool on this data, resulted in Linear Support Vector Classifier (Linear
SVC) for TPOT. Auto-sklearn constructed an ensemble out of 28 models. Similar
to TPOT, from those models all are Linear Support Vector Machine classifiers. So
according to both approaches, this algorithm seems to be the best. The confusion
matrices are shown in Table 3 and Table 4 shows the evaluation metrics.

Table 3: Confusion matrices mobile phone price classification. TPOT (on top) and
Auto-sklearn (below).

Actual/Predicted 1 2 3 4
1 165 4 0 0
2 0 155 7 0
3 0 11 143 8
4 0 0 9 158

Actual/Predicted 1 2 3 4
1 165 4 0 0
2 1 160 1 0
3 0 3 153 6
4 0 0 2 165
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Table 4: Evaluation metrics mobile phone price classification
TPOT Auto-sklearn

Accuracy 0.941 0.974
Recall 0.940 0.974
Precision 0.941 0.974
F1-score 0.940 0.974
AUROC 0.957 0.973

By observing the confusion matrices, it is clear that the tool performed very well
on the validation data with both TPOT and Auto-sklearn. Almost all cases are
predicted correctly. This translates to very high accuracy, recall, precision and
F1-score of around 0.94 and 0.97 for all metrics. Both models also have a very high
AUROC, which indicates the goodness of the model. Auto-sklearn does outperform
TPOT again. This time with approximately 3%, which is quite a lot considering
how close to 100% it is. There was no Kaggle competition for this dataset, so no
comparison to other competitors could be made.

16.3 Australia rain prediction

This dataset was large compared to the already discussed datasets. This was also a
slightly unbalanced dataset. TPOT uses a Gradient boosting classifier in its best
pipeline. Auto-sklearn created an ensemble out of eight different models where the
model with the highest weight is a Random Forest classifier with 32 % followed by a
Linear SVM with 28%. Table 5 shows the confusion matrices of these models and
Table 6 shows the evaluation metrics.

Table 5: Confusion matrices Australia rain dataset. TPOT (left) and Auto-sklearn
(right).

Actual/Predicted No Yes
No 34616 1850
Yes 4997 5461

Actual/Predicted No Yes
No 34400 2066
Yes 4781 5677
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Table 6: Evaluation metrics Australia rain dataset
TPOT Auto-sklearn

Accuracy 0.854 0.854
Recall 0.736 0.743
Precision 0.810 0.806
F1-score 0.762 0.767
AUROC 0.736 0.743

The augmented data discovery solution worked reasonably well on this dataset.
TPOT and Auto-sklearn performed very similarly, there is not much between the two.
Both models that are created are quite decent in predicting the rain for tomorrow.
Auto-sklearn is a little better in predicting the "Yes" cases, in which we are interested.
Therefore Auto-sklearn seems to be a slightly better overall model, which also can
be seen in the 1% higher AUROC metric. This was not a Kaggle competition, thus
no comparison to others could be made.

16.4 Random Acts of Pizza

With this relatively small dataset, the data was slightly unbalanced where three-
quarters of the target variable is classified as "False". So, it is interesting to see how
this is handled by the augmented data science solution. As a scoring function, the
f1-score is used, because of the slightly unbalanced dataset. TPOT fits a Random
Forest classifier as the best model on the data. Auto-sklearn constructed an ensemble
of six models. The highest weighted model, making up 84% of the total ensemble, is
a linear classification via online stochastic gradient descent classifier. The confusion
matrices are shown in Table 7 and Table 8 shows the evaluation metrics.

Table 7: Confusion matrices acts of pizza dataset. TPOT (left) and Auto-sklearn
(right).

Actual/Predicted False True
False 987 16
True 210 121

Actual/Predicted False True
False 915 88
True 172 159
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Table 8: Evaluation metrics acts of pizza dataset
TPOT Auto-sklearn

Accuracy 0.831 0.805
Recall 0.675 0.696
Precision 0.854 0.743
F1-score 0.707 0.713
AUROC 0.675 0.696

This dataset is processed fairly well by the augmented data science solution. Both
TPOT and Auto-sklearn have high accuracy which is expected due to the dataset
being rather unbalanced. Therefore, accuracy is not a very important metric in
assessing the models. Observing the other metrics, Auto-sklearn seems to have
constructed a slightly better model than TPOT did, in which it is capable of
classifying the "True" cases correctly more often. The AUROC is the metric that is
used in the Kaggle competition for scoring. TPOT achieve a Kaggle score of 0.651,
approximately the top 32% of the competition. Whereas Auto-sklearn achieves a
score of 0.664, which is in the top 27% of the competition. These scores are pretty
decent. Thus, for this dataset Auto-sklearn again performs better than TPOT.

16.5 Pump it up

This was a decent sized dataset and also a multiclass problem. During the automated
process, TPOT fits a Random forest classifier on the dataset. Auto-sklearn created
an ensemble of size six, existing predominately out of random forest classifiers. For
this dataset the accuracy was used as a scoring function. In Table 9 the confusion
matrices of these models are shown and Table 10 shows the evaluation metrics.

Table 9: Confusion matrices pump it up dataset. TPOT (on top) and Auto-sklearn
(below).

Actual/Predicted Functional Functional needs repair Non functional
Functional 9592 226 901
Functional needs repair 754 463 208
Non functional 1627 91 5740

Actual/Predicted Functional Functional needs repair Non functional
Functional 9373 380 966
Functional needs repair 709 515 201
Non functional 1597 161 5700
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Table 10: Evaluation metrics pump it up dataset
TPOT Auto-sklearn

Accuracy 0.806 0.795
Recall 0.663 0.667
Precision 0.744 0.707
F1-score 0.689 0.683
AUROC 0.773 0.765

From the confusion matrices, it can be observed that the tool performed well in
classifying the different water pumps. Both automated modeling approaches have
very similar scores when observing the evaluation metrics. TPOT seems to be slightly
better, but this is not a major difference. The competition score on driven data
was 0.795 for TPOT and 0.799 for Auto-sklearn, the accuracy was used as a scoring
metric for this competition. This was approximately the top 21% of the competition,
so quite good. For this dataset, it could not be determined which modeling approach
performs better.

16.6 Richter’s Predictor: Modeling Earthquake Damage

Also, this was a multiclass problem and quite a large dataset. As a scoring function,
the accuracy was used. When processing this dataset through the augmented data
science solution, TPOT used a Random Forest classifier on this problem. Auto-
sklearn used an ensemble out of six models, in which it predominately consists out
of Adaboosting models. The confusion matrices are shown in Table 11 and Table 12
shows the evaluation metrics.

Table 11: Confusion matrices earthquake dataset. TPOT (on top) and Auto-sklearn
(below).

Actual/Predicted Low damage Medium damage Complete destruction
Low damage 3665 4552 78
Medium damage 1438 42059 5430
Complete destruction 107 11195 17475

Actual/Predicted Low damage Medium damage Complete destruction
Low damage 4105 4099 91
Medium damage 1653 41647 5627
Complete destruction 139 10893 17745
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Table 12: Evaluation metrics earthquake dataset
TPOT Auto-sklearn

Accuracy 0.735 0.738
Recall 0.636 0.654
Precision 0.730 0.729
F1-score 0.669 0.682
AUROC 0.728 0.739

When looking at the confusion matrices and evaluation metrics, it appears that
the tool performed decently. TPOT and Auto-sklearn perform relatively similar on
this problem. On the driven data competition the F1 score was used as a scoring
metric. TPOT achieved a score of 0.734 and Auto-sklearn achieved a score of 0.735,
here the difference is hardly noticeable. This was approximately the top 11% of the
competition, which is really good. Thus, it seems that although the metrics are not
very high it still is a very good model compared to other competitors.

16.7 Insurance prediction

The insurance prediction competition considers quite a small dataset. This data
problem is a binary classification problem. This is a somewhat unbalanced dataset.
Therefore, the AUROC is used as a scoring function instead of the accuracy. TPOT
fitted a linear support vector machine to the data. Auto-sklearn constructed an
ensemble out of four different models, where the two most relevant models (54% and
42%) were both a linear classification via online stochastic gradient descent classifier.
The confusion matrices are shown in Table 13 and Table 14 shows the evaluation
metrics.

Table 13: Confusion matrices insurance prediction dataset. TPOT (left) and Auto-
sklearn (right).

Actual/Predicted False True
False 1648 172
True 352 191

Actual/Predicted False True
False 1507 313
True 285 258
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Table 14: Evaluation metrics insurance prediction dataset
TPOT Auto-sklearn

Accuracy 0.778 0.747
Recall 0.629 0.652
Precision 0.675 0.646
F1-score 0.642 0.649
AUROC 0.629 0.652

The augmented data science tool performed poorly on this dataset. It has quite a
high accuracy, but the other metrics are a fair amount lower. It seems that the tool
had difficulties classifying whether there will be a claim or not. The competition
scores on Zindi were 0.601 for TPOT and 0.624 for Auto-sklearn. This score is based
on the AUROC. Auto-sklearn did perform slightly better than TPOT. This score
ended up in approximately the top 50% on the leaderboard of the competition. This
is not very impressive compared to the previous results with the other datasets, but
also not extremely bad.

16.8 House Prices: Advanced Regression Techniques

This was the first dataset that was used to test the automated regression method.
After pre-processing was completed, the remaining dataset was processed by TPOT
and Auto-sklearn. TPOT fitted a Gradient Boosting Regressor to the data. Auto-
sklearn created an ensemble out of two models, which were both ridge regressions.
The evaluation metrics are shown in Table 15.

Table 15: Evaluation metrics House price prediction
TPOT Auto-sklearn

Mean absolute error 16415.804 17196.212
Mean squared error 907966311.828 1013412307.341
R2 score 0.876 0.862

The evaluation metrics seem pretty good. Both approaches have a good R2 score.
The mean absolute error indicates that the approaches are approximately 17.000 off
the actual price on average. This was a Kaggle competition where the submission
is scored on the Root-Mean-Squared-Error of the logarithmic prices instead of the
actual prices. This resulted in a Kaggle score of 0.138 for TPOT and 0.150 for
Auto-sklearn. TPOT ended up in the top 43% of the competition and Auto-sklearn
ended up in the top 56%. This is not too bad, but it is worse compared to the
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classification tasks. Remarkably, TPOT outperforms Auto-sklearn quite clearly when
looking at the Kaggle leaderboard.

16.9 Restaurant Revenue Prediction

With this dataset, there was not a lot of data to train on. After processing through
the augmented data science tool both automated modeling approaches were used
to create a regression model. TPOT fitted a random forest regressor. Auto-sklearn
fitted an ensemble out of four models, in which the most relevant model (90%) was a
support vector machine regressor. So again both a different regressor. The evaluation
metrics are shown in Table 16.

Table 16: Evaluation metrics restaurant dataset
TPOT Auto-sklearn

Mean absolute error 1018011.955 1073760.025
Mean squared error 4015351467572.691 4753409570059.237
R2 score 0.525 0.438

The training set was really small, which became smaller after the training/validation
split, so these metrics are not that trustworthy. Nevertheless, the values are not
great, there are large errors and a bad R2 score. On Kaggle the root mean squared
error was used as a metric. TPOT achieved a score of 1908153.655, which was the
top 67% of the competition. Auto-sklearn achieved a score of 2262881.226, which
was the bottom 10% of the competition. So these results are not very good, in which
especially Auto-sklearn constructed a very bad regression model. Again, pretty
disappointing results for a regression problem.

16.10 DengAI: Predicting Disease Spread

This data competition concerns a small training set. After pre-processing was done,
TPOT and Auto-sklearn were used for modeling. TPOT fits a k-nearest neighbors
regressor as the best model on the data. Auto-sklearn constructed an ensemble of
nine models. The two highest weighted models are a k-nearest neighbors regressor
(32%) and gradient boosting regressor (22%). The evaluation metrics of this training
data is presented in Table 17.
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Table 17: Evaluation metrics disease spread prediction
TPOT Auto-sklearn

Mean absolute error 8.655 9.797
Mean squared error 354.374 453.249
R2 score 0.849 0.806

The evaluation metrics look quite good. This is however a small training set, so
these results could be unreliable. TPOT seems to have the upper hand over Auto-
sklearn. On driven data, the mean absolute error was used as a scoring metric.
TPOT achieved a competition score of 30.175 and Auto-sklearn a score of 26.593.
These scores are quite a bit higher than the MAE obtained from the evaluation
metrics on the validation set, which could be a result of the small training set. Auto-
sklearn ended up in the top 22% of the competition, which is good. Auto-sklearn
outperformed TPOT on this dataset quite clearly.

16.11 Bike Sharing Demand

This relatively small dataset was processed by the prototype in order to predict the
bike-sharing demand. In this process, both TPOT and Auto-sklearn are used for
modeling. TPOT constructed a gradient boosting regressor for this dataset. Auto-
sklearn constructed an ensemble of size four, where the highest weighted regressor
was a ridge regression with 60%. Table 18 shows the evaluation metrics of this
regression problem.

Table 18: Evaluation metrics Bike Sharing Demand
TPOT Auto-sklearn

Mean absolute error 31.382 28.074
Mean squared error 2027.596 2307.454
R2 score 0.937 0.929

When looking at the evaluation metrics, both modeling approaches seem to have
created quite a good model. The error for both modeling approaches is not that
high considering the demand is on average approximately 200. Both R2 values are
really high, indicating a good model. Both models were uploaded to Kaggle where
the Root Mean Squared Logarithmic Error (RMSLE) was used for scoring. TPOT
achieved a submission score of 0.436, which is really good and with that score ended
up in the top 22% of the competition. Auto-sklearn scored 0.665 in the competition,
which is a lot worse than TPOT scored. With this score, it only ended up in the top
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73% of the competition. So, also with this regression problem, TPOT outperforms
Auto-sklearn.

16.12 Urban Air Pollution Challenge

With this competition, the air pollution is predicted through a regression model.
The data was processed through the prototype to create such a model. Both TPOT
and Auto-sklearn are used for modeling after pre-processing was done. TPOT fitted
an XGboost regressor to the data and Auto-sklearn constructed an ensemble of
three models: a ridge regression, a K-nearest neighbors regressor and an AdaBoost
regressor. Table 19 shows the evaluation metrics of this regression problem.

Table 19: Evaluation metrics urban air pollution challenge
TPOT Auto-sklearn

Mean absolute error 20.017 26.051
Mean squared error 851.600 1288.641
R2 score 0.603 0.400

The evaluation metrics do not look very impressive. Especially Auto-sklearn appears
to have constructed a bad predictive model with only an R2 value of 0.4. TPOT did
a lot better with an R2 value of 0.6, but that is still not very high. Both solutions
were submitted on the Zindi data competition, where the root mean squared error is
used for scoring. TPOT achieve a score of 34.053 and Auto-sklearn achieved a score
of 39.544. At the time of submission, only 13 competitors were on the leaderboard,
so the comparison is rather difficult to make. Auto-sklearn ended on place 10 out of
13 with that score, which is not good. TPOT achieved fourth place out of 13, which
is decent. Again TPOT outperforms Auto-sklearn on a regression problem.

16.13 Discussion

The results presented in this chapter show that an augmented data science solution
can achieve good results for different classification and regression problems. For most
classification problems it was able to distinguish between the different classes and to
construct a good predictive model. In the data competitions it often performed fairly
well against other competitors, it was regularly in the top quarter of the competition.
This is quite good considering the effort that goes into processing a dataset through
the tool. For the regression problems, the prototype was not working as well as it
did for the classification problems. There were some decent results, but also some
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disappointing ones.

One of the sub-questions was about the trade-off between efficiency and quality.
From these results, it can be concluded, that the efficiency is very high as the effort
that goes into processing a dataset through the prototype is minimal. On the other
hand, the quality did not suffer too badly under this automatic approach, especially
for classification problems where some valuable results were obtained. However,
spending more time on the individual problems by getting a better understanding of
them will most likely enable one to obtain better results at the cost of time.

When comparing the two frameworks, TPOT and Auto-sklearn, it is noticeable that
Auto-sklearn did perform similar or better than TPOT with each of the classification
tasks. All metrics were often higher and it also scored better in the data competitions.
When looking at the regression problems, TPOT does often perform better than
Auto-sklearn with one exception, which was the Disease Spread competition. On all
other problems, TPOT performs better and this was often a lot better. It seemed
that Auto-sklearn was regularly not capable of constructing a good regressor.

An advantage of Auto-sklearn compared to TPOT is the computation time. When
processing large datasets, such as the earthquake dataset, the prototype with TPOT
would run for approximately 15 hours. On the same dataset where Auto-sklearn
was used, it only runs for a bit longer than an hour, which is significantly faster.
Considering the enormous difference in running time and also achieving better results
most of the time, Auto-sklearn is preferred over TPOT for classification problems.
For regression problems, TPOT is preferred. TPOT has longer training times, but
the results were much more consistent and often better than Auto-sklearn.
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17 Conclusion

In this final chapter, the main conclusions of the conducted research are discussed.
Also, the research question will be answered. Finally, possible future research for
improving this work is addressed.

This research aimed to do research on the possibilities of augmented data discovery
(or augmented data science). Thus, the automation of the data science process.
Augmented data discovery is expected to play a more important role in the future.
Avanade is interested in this topic as they expect this will play a more important
role within their data mining process. For this thesis the following research question
is defined:

"How and to what extent can a data discovery process be automated with an
augmented data discovery solution using Azure resources?"

For this research, the augmented data discovery process is split into three parts,
namely pre-processing, feature engineering and modeling. A great deal of research
has been conducted in order to automate those three parts. In addition, a prototype
is created to show whether an augmented data science solution is possible.

In the created prototype some relatively basic pre-processing steps are implemented.
Handling missing values is done through a simple imputation method, namely im-
puting the median or the mode. Extreme values are handled using the interquartile
range method. During the literature research, some helpful frameworks were found
in automating some parts of the data science process. Those frameworks are im-
plemented in Python. The framework Featuretools uses deep feature synthesis in
order to create new features from the original features. This framework can, with
little input from the user of the prototype, create a great number of new features
that could be useful for modeling. Two similar frameworks TPOT and Auto-sklearn
are both automated modeling approaches that can automatically choose a machine
learning model for classification or regression and also tune its hyperparameters. In
addition, TPOT and Auto-sklearn also handle some pre-processing steps, such as
data transformations, decomposition and feature selection.
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Based on the literature research and the created prototype, it can be concluded that
an augmented data discovery solution is possible. The obtained results by testing
the prototype showed that this automated solution was capable of achieving good
results in the online data competitions. A comparison is made between the two
frameworks Auto-sklearn and TPOT. From this comparison, it is concluded that
from the two frameworks Auto-sklearn works better on classification problems and
TPOT performs better on regression problems. Also, the prototype is able to run
using Azure resources which is desired by Avanade. The major advantage of such an
augmented data science solution is efficiency. With minimal effort, such a solution is
able to obtain quite good results.

The time available for this project was not enough to develop a fully developed and
operational tool. While the results have shown that an augmented data science
solution is possible, still many improvements could be introduced in addition to the
created prototype. The prototype supports classification and regression problems.
In the future, it could be improved by also supporting clustering and time series
forecasting problems. Also, the tool does not support image recognition tasks which
could be a favorable feature. The prototype, as it is, does not use natural language
processing on the data. Implementing an automated natural language processing
pipeline enables the tool to handle different datasets that contain much textual
data. Another limitation of the prototype is that it does not support multi-label
predictions. It can now only predict one single feature. To make the prototype fully
operational, an Graphical User Interface could be created that makes it easy to use.

Augmented data discovery will play a more important role in the near future. In
a relatively short period of time, it was possible to create a working prototype
that could perform some decent analysis. With the proposed improvements that
are mentioned, together with the frameworks, such as TPOT, Auto-sklearn and
Featuretools that are still being improved, such an augmented data science solution
could be improved, achieve better results and be part of Avanade’s data science
process.
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