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Executive Summary

In recent years, machine learning models have shown the ability to be highly accurate in several
applications. Such models are able to handle nonlinear relationships and can be used to boost
efficiency of companies. Furthermore, machine learning models have shown to outperform tra-
ditional models in different fields. However, the improvements they are able to bring, comes at
a cost of interpretability. Machine learning models are very complex and can be seen as a black
box. In a black box model, the input is mapped to an output. This mapping process is opaque
and therefore difficult to understand. The understanding of this mapping is key in fields like
model development and model validation. In other words, creating transparency in a black box
model is necessary. In this research, transparency in black box models will be created through
model interpretation.

The goal of this research is to investigate and generate knowledge about interpretation methods
for black box models. In interpretation methods some properties are defined. The first is the
difference between local and global model interpretation. Local model interpretation refers to the
explanation of a model’s prediction. Global model interpretation is the process of understanding
the behavior of a model. In this research the focus will be on local model interpretation. How-
ever, the possibility of creating global interpretation with multiple local interpretations is also
investigated.

Second, a difference must be made between model specific and model agnostic interpretation
methods. Model specific methods leverage the inner workings of a model. That means, that such
a method will only be applicable, for example, a neural network. Model agnostic methods treat
the model truly as a black box model. These types of methods will not look at a model’s inner
workings and can therefore be used for any type of models. The focus will be on such methods
since the ability that they work on any type of model is very useful.

Without proper models, proper analysis on interpretation methods is not possible. Therefore,
the first part of this research will be developing these models. In this research, several probability
to default acceptance models are developed. The type of models that will be developed, are a
logistic regression model, a random forest, a gradient boosting model and a neural network. From
these models, the gradient boosting model performed the best. However, using machine learning
for probability to default modelling introduces some challenges. One of them is class imbalance.
One of the solutions to solve this problem is balancing the data set and creating a rating system.
Furthermore, using tree ensembles can introduce tail risk in a probability to default curve.

On interpretability methods, the main focus will be on local, model agnostic methods. The two
most used methods are the SHAP and the LIME methods. Therefore, a theoretical and practical
analysis is performed in this research. First, an analysis on the settings of these methods is done.
Furthermore, the methods are judged on their capability to detect influential features. Finally,
the methods will be investigated on their capability to provide global model interpretation.

After this research, the conclusion is made that both methods are able to generate useful expla-
nations and therefore can create local interpretation. However, the LIME method is subject to
a large space of parameters. The setting of these parameters have influence on the generated
explanation. Furthermore, the data must be standardized if one plans to use the LIME method.
Finally, the SHAP method is able to provide global interpretation, where the LIME method has
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more difficulty with providing global interpretation. All this makes that the SHAP method has
preference above the LIME method. However, it is wise to use both methods next to each other,
as methods could behave different in other environments. In this research, a test is proposed to
see which method is able to detect influential variables better in different settings.
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1 Introduction

Machine learning models, such as neural networks and ensemble models, have shown to be highly
accurate in several applications. These models are able to handle multiple nonlinear relationships
and can model interaction effects between variables. Due to the complexity of these models,
they are often treated as black box. In a black box model, the input is mapped to an output.
However, this mapping process is opaque and difficult to understand, meaning that these models
are difficult to analyze and validate. However, model interpretation plays an important role in
developing and validating models. In general, users are uncomfortable using models if they are
opaque. Therefore, interpretability of models is necessary to create insight, transparency and
develop trust in black box models.

1.1 Problem Statement

One of the applications where machine learning can outperform traditional models is credit risk.
At the Financial Risk Management (FRM) team of Deloitte Risk Advisory, they develop such
models. The model that will be developed in this research is a probability to default (PD) model.
A PD model is used for client acceptance, capital calculations and serves several other goals. As
a PD model is used for several goals, it is also subject to different optimization targets. When a
PD model is used for client acceptance, the model must have accurate scores and must be able
to distinguish clients correctly. In other words, the model should have sufficient performance on
a client level. However, when a PD model is used for capital estimations, performance on client
level is less important. Instead, the model must be able to estimate the PD on a portfolio level
correctly such that enough capital is retained by a lending company.

Therefore, it is important to understand and trust the model deployed. Furthermore, if such
a model is used for client acceptance, clients have the right for explanation according to the
General Data Protection Regulation (GDPR). These regulations describe that a client has the
right for an explanation of why the application was denied.

All this means that model transparency is needed and can be achieved through interpretation
of the model. Therefore, model interpretation possibilities of black box models are investigated
in this study. The goal of this study is to provide an analysis, theoretical and practical, and
generate knowledge on interpretation methods for black box models.

Model interpretation can be divided into two subcategories. The first is global model inter-
pretation. Global model interpretation is the process of interpreting the general model behavior.
As an example, the well-known feature importance method for tree ensembles can be seen as
global interpretation. The second is local model interpretation. The process of local model in-
terpretation refers to explaining decision or predictions of a black box model. In this research,
the emphasis will be on such interpretations.

Several model interpretation techniques leverage the inner workings of a black box model, such
techniques are called model specific. However, if every type of black box model needs its own
explanation technique, the field of interpretation techniques will be very large and complex.
Furthermore, if a team needs to review many models, learning and using all different kinds of
methods is time consuming and expensive. Therefore, model agnostic methods are created. Fur-
thermore, model agnostic methods have more practical value. For example, if a model is only
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accessible externally. In model agnostic methods, the inner workings of a model will not be
leveraged. This means that the model will be treated completely as black box. In this research,
the emphasis will be on model agnostic methods.

1.2 Related Work

In this section some related work in the subject will be discussed. First, some articles will be
discussed that used machine learning for a PD model. Second, some interpretation methods will
be discussed.

For a long time, PD modeling is done by using logistic regression. However, with the rise of
machine learning models, the traditional models were challenged by the machine learning mod-
els. In ”Machine learning in credit risk modelling” [1], the authors explore models like Random
Forest and Gradient Boosting. They show that these models perform significantly better than
the traditional methods. Furthermore, deep learning can also be used to improve current models
[2]. However, both articles focus on predictive performance. In PD modeling, outcomes are often
calibrated using a rating system. If a rating system is used, machine learning is still able to
outperform traditional models and a rating system can even increase the robustness of a model
[20].

The field of interpretation techniques has been rising over the past years. A lot of research
went into developing model-specific methods for deep learning models, e.g., computer vision and
natural language processing. However, these fields are outside of the scope of this research and
therefore left out. The two main methods that are discussed in this research are the LIME [22]
and SHAP [14] frameworks. These methods will be further explained in Section 6. Unfortu-
nately, not a lot of research has been done on these frameworks. However, both frameworks have
robustness issues [4]. Although, the authors raised the question if it is reasonable to judge the
frameworks on robustness if the underlying model is not robust.

The data set used in this research has been taken from a website called Kaggle, which will
further be explained in Section 2.1. After some research into other projects that used this data,
it became clear that a gradient boosting model was performing the best on this data set. Further
knowledge about the data and models could also be taken from this competition. However, this
could lead to insufficient understanding in the data, developed models and use case. Under-
standing these parts are from great importance to generate the knowledge needed during the
inspection of transparency methods. For example, understanding the data and the use case can
help confirming transparency outcomes by checking if they align with human intuition.

1.3 Outline

In various machine learning studies, the focus lies on achieving the highest possible predictive
performance. In this study, that will be different as the focus will be on interpretation tech-
niques. However, proper interpretation is not possible without proper models. Therefore, this
study consists of two parts. The first will be the development of several models. Thereafter, the
two transparency methods will be investigated.

In Chapter 2, the data used in this research will be explored. In this section, an overview
of the data will be given. Furthermore, all the pre-processing steps required are described in
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that section. In Chapter 3, the model development will be discussed. Besides the theoretical
explanation of the used models, several other methods are discussed. Such methods concern
hyperparameter optimization, rating system calibration and model evaluation. In Chapter 4, the
experimental setup is discussed. In Chapter 5, the model performance is shown and two models
are selected. These two models are used to assess the transparency methods. In Chapter 6, a
theoretical analysis of the transparency is given. Whereafter, in Chapter 7, an analysis is done
on several properties using the created models and the created data set. In Chapter 8, a conclu-
sion of the analysis will be given. Finally, in Chapter 9, recommendations and opportunities for
further research are given.
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2 Data Description and Preparation

In this section, the data used in this research will be introduced. The data will be described
and some insights in the data will be given. Furthermore, the procedure of data aggregation is
explained. At last, the methods used to select features will be explained.

The availability of data is crucial for this research. However, choices in data engineering can
highly affect performance of future models. Important is, that achieving high performance does
not have a high priority. Therefore, a generic approach is taken to create a data set that can be
used in this research. However, the goal is to achieve reasonable models that are able to capture
patterns present in the data set.

2.1 Data Description

The data used for this study is taken from a data science competition site named Kaggle. The
competition is called the Home Credit Default Risk Competition1. Home Credit is a non-bank
financial institution focusing on people with little or no credit history. Home Credit mostly op-
erates in Asia and the Commonwealth of Independent States (old Soviet Union states). A couple
of years ago, they started operating in the USA. Unfortunately, the origin of the data set is not
known.

In Figure 1, an overview of the data can be found. In this figure, all available tables and
their relationships are shown. Furthermore, some initial information on the data in each table is
present.

Figure 1: Data overview

1https://www.kaggle.com/c/home-credit-default-risk
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On Kaggle, companies host a competition with a data set and a question. The question of Home
Credit is, ”Can you predict how capable each applicant is of repaying a loan?” The answer to
this question can be defined by the following target:

TARGET =

{
1, client with payment difficulties,

0, else.
(1)

A client has payment difficulties if he or she had a late payment more than X days on at least
one of the first Y installments on the loan2. Unfortunately, it is not available what these X and
Y are. However, the target should be a good description whether the new applicant is credit-
worthy. To simplify the definition given in (1), a client with payment difficulties will be labelled
as ”Default” and ”No Default” otherwise.

There are two versions of the main application table, a train and test version. Only the train
version contains the target variable. Therefore, the test version and all related data in other ta-
bles will be discarded in this research. The test version could be used to assess the performance
of the model in an unbiased way. However, predictive performance is not in the scope of this
research and such an analysis is left out.

In the main table, new applications are listed. In other tables, information about previous
credits can be found. Here, a distinction is made between credits at other bureaus or previous
credits at Home Credit. For both, information is available on payment behavior of the new
applicant. This information helps assessing the creditworthiness of an applicant. An overview of
the information can be found in Table 1. For a detailed description of all attributes available in
the tables, one can check Appendix A.

Table Shape Information
Application (307,511; 122) Information about loan and applicant
Bureau (1,465,325; 17) Info of previous loans at other institutions re-

ported to Credit Bureau
Bureau balance (14,701,612; 3) Monthly balance of credits in Credit Bureau
Prev. Application (2,354,993; 37) Info of previous loans at Home Credit
POS CASH balance (10,572,221; 8) Monthly balance of previous loans in Home

Credit
Installments payments (8,251,754; 8) Past payment data for each installment of pre-

vious credits at Home Credit
Credit card balance (1,413,701; 23) Monthly balance of client’s previous credit

card loans in Home Credit

Table 1: Information on all the tables

In Table 1, it can be seen that the tables are from different sizes. Therefore, the additional tables
need to be aggregated with the main table. Besides in Figure 1, the relationships between tables
can be found in Table 2.

2Note that these X and Y do not relate to those stated in the list of symbols and are only used here.
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Relationship Description
Application → Bureau One row in Application can have zero or more in

bureau
Application → Prev. application One row in Application can have zero or more in

Prev. application
Bureau → Bureau balance One row in Bureau can have zero or more in Bu-

reau balance
Prev. application → POS CASH One row in Prev. application can have zero or

more in POS CASH balance
Prev. application → Installments One row in Prev. application can have zero or

more in Installments payments
Prev. application → Credit card One row in Prev. application can have zero or

more in Credit card balance

Table 2: Relationships between tables

2.2 Exploratory Data Analysis

In this section, some exploratory insights into the data will be given. Due to the size of the data,
not all attributes will be thoroughly investigated. Instead, some general insights into the data
will be given. Furthermore, the target variable will be analyzed in order to create understand-
ing in the target. At last, some interesting aspects that were found during the analysis are shown.

In Figure 2, the percentage of missing values for several attributes can be seen. Attributes
that do not contain missing values are omitted in this picture. In total, 103 attributes contain
missing values. Several algorithms, e.g., Random Forest, can handle missing values. Unfortu-
nately, not all algorithms have that property, e.g., a Neural Network. Therefore, all missing
values need to be replaced. The exact missing value treatment will be discussed in Section 2.4.1.

Figure 2: Percentage of missing values, columns without missing values are omitted
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Notable is that 99.64% of the attributes RATE INTEREST PRIVILEGED and RATE INTEREST PRIMARY
are missing. These attributes can be found in the previous application table. Attributes with
that number of missing values barely contain any information.

Each attribute can be of numerical or categorical type. In Table 3, the distribution of nu-
merical and categorical between the different tables can be seen. In these numbers, client IDs
are omitted. Client IDs are not informative features and can only be used as as a relationship
indicator between tables.

Column Numerical Categorical
Application 76 44
Bureau 12 3
Bureau balance 1 1
Prev. Application 17 19
POS CASH balance 5 1
Installments payments 6 0
Credit card balance 20 1

Table 3: Number of numerical and categorical features for each table

2.2.1 Target variable analysis

In this section, an analysis of the target variable is done. As described in Section 2.1, the target
is defined by:

TARGET = Y =

{
0, No Default,

1, Default.
(2)

The target variable is binary, which means that the learning goal is binary classification. In
binary classification, the balance between the classes has a large influence. In Table 4, it can be
seen that the target is skewed towards one class, the majority class. In other words, the data set
is highly imbalanced, where the class Default is the minority class. Models created on imbalanced
data can be biased towards the majority class. Such bias can occur when a model learns mostly
classification rules for the majority class.

Percentage No Defaults Percentage Defaults
91.93% 8.07 %

Table 4: The target variable is highly imbalanced

2.3 Feature Engineering

Feature engineering is an important step in the process of developing a predictive model. The
quality and quantity of features will influence model performance. In this section, the process of
feature engineering and the techniques used are explained.

As explained in Section 2.1, the data consists of several tables. Therefore, all these tables need
to be aggregated into one. Such an aggregation can be done by performing several calculations,
e.g., taking the sum or the mean. By combining these methods of aggregation, multiple features
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for each attribute can be created. Since the dimensionality of the data set is already high, i.e.,
207 columns, this will be the only method used.

Deep Feature Synthesis (DFS) [11] will be used for the data aggregation. DFS is an automated
feature engineering method that can handle data sets with multiple tables and relationships.
The ”Deep” in Deep Feature Synthesis represents the ability to stack multilevel relationships.
DFS can aggregate tables when all relationships between tables are known. It is also possible to
perform data transformations for feature engineering within one table, e.g., taking the absolute
of a numeric value. However, such transformations are not performed in order to keep the dimen-
sionality of the data set manageable. Upfront, it is impossible to know which aggregation method
is going to be effective. Therefore, multiple aggregation primitives are used. The aggregation
primitives used are listed in Table 5.

Data aggregations
Sum
Min
Max
Mean
Standard dev.
Count

Table 5: Aggregation primitives

Some examples of created features are listed below. In these examples, words in front of the
parentheses are the aggregation primitives. The words in small caps are the table in which the
attribute is present. The attribute itself is always present after a dot.

• MEAN(bureau.AMT-CREDIT-SUM-DEBT), AMT-CREDIT-SUM-DEBT is the amount
of credit in debt by a previous credit agency. DFS calculates the mean over all debts
known at other agencies, as well as all the other primitives. The depth of this feature is
one, since AMT-CREDIT-SUM-DEBT is present in a table directly related to the main
table.

• MEAN(previous-application.SUM(install-payments.AMT-INSTALMENT), AMT-INSTAL-
MENT is the prescribed installment payment on a previous credit. This feature creates a
sum of this amount for each previous application. Whereafter, the mean is taken over each
previous application of one client. The depth of this feature is two.

After all aggregations are performed, the total data set contains 1,130 features. At this stage all
missing values were left missing. Due to this fact, a large number of the 1,130 features contain
missing values.

2.4 Pre-processing of data

Before the data can be fed to the models, the data must be pre-processed. First, all missing
values will be deleted or replaced. Whereafter, categorical variables will be transformed so that
all models are able to process them. At last the solution regarding the imbalanced data set will
be described.
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2.4.1 Missing value treatment

Some models are able to handle missing values. However, not all models possess this ability. In
order to work with one data set, all missing values need to be treated upfront. At first, features
with a lot of missing values will be eliminated. This is done using some threshold, for numerical
variables the threshold is set on 70% and 50% for categorical variables. These thresholds were
set on the number of features that got erased afterward. Due to the size of the data set more
strict thresholds are possible. However, fully optimizing the performance is not in the scope of
this research.

After the elimination, missing values need to be imputed. Missing values in categorical fea-
tures will be replaced with the category ”Unknown”. With numerical features, a distinction is
made between the original features and the one made in Section 2.3. The engineered features
are imputed with zero. A missing value in this type of feature indicates that there was no infor-
mation available. Imputing these features with zero should imply that there was no information.
Original features are imputed with their mean. An overview of the missing value treatment can
be seen in Table 6.

Variable type Treatment
Categorical Set to unknown
Engineered numerical Imputed with zero
Original numerical Imputed with mean

Table 6: Overview of missing value treatment

2.4.2 Encoding categorical variables

As described in Section 2.2, several categorical variables are present in the data set. The al-
gorithms used in this research can cope with categorical variables in different ways. However,
to simplify and prevent the use of multiple data sets, one universal technique is applied. The
technique used is called one-hot encoding, in statistics referred to as dummy variables.

If the categorical variables consist of L categories, L − 1 dummy variables are created. In that
dummy variable, an indicator value represents one if the category is present in that instance and
zero otherwise. The Lth variable is encoded in the combination of all dummy variables being
zero.

2.4.3 Balance data set

In Section 2.2.1, the imbalanced nature of the data set was described. If models are trained on
highly imbalanced nature, the probability exists that a model will only learn majority class clas-
sification rules. Furthermore, the risk exists that the model will be biased towards the majority
class. In this research, data is sampled in order to create a more balanced data set. Sampling
can be done by oversampling the minority class or undersampling the majority class.

Oversampling is the process of creating artificial data with the data that already exists. This
can amplify data biases which can cause a larger generalization error. This can be caused by
several issues, for example through a relative lack of data or an inappropriate learning bias [26].
Undersampling removes instances from the majority class and thus data is thrown away. The
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desired ratio is 1 : 2. This ratio was decided after some discussion. With a full balancing of the
data set to a 1 : 1 ratio, too much data would be thrown away. On the other side, a lower ratio
will cause a biased acceptance model.

This means that eventually, for each minority class instance, two majority class instances are
present. This is done by taking all minority class instances and sample random majority class
instances, without replacement, until the desired ratio is achieved.

Unfortunately, undersampling brings another challenge. The technique chosen has a warping
effect on the posterior probability [21]. That is, the probabilities predicted cannot be interpreted
as a PD anymore. It should rather be interpreted as a credit score. The results are good client
classifications, needed for client acceptance, but bad client and portfolio PD estimations, needed
for capital calculations. Therefore, the credit score needs to be translated to a PD. This can be
done using credit rating calibration. This will be further explained in Section 3.7.

2.4.4 Standardization of the data

The data set consists of hundreds of features. These features have different type of units, e.g.,
dollars, m2, days or are even unitless. The problem of these different types of units is that not
all models are able to cope with that. It is not a problem for tree ensembles since these type
of models depend on making splits in the data. However, other models, like neural networks,
will have problems with data that has different units. One disadvantage is that the optimization
process will be slow. Furthermore, weights in the network can be extremely high if one unit
is in thousand dollars and another unit as a range between zero and one. Large weights in a
network can cause a model that is non-robust. Therefore, the data needs to be standardized,
or normalized. The data will be standardized by removing the mean and scaling to the unit
variance. In mathematical terms, the following operations are done:

x̄i =
xi − µi
σi

, (3)

where x̄i is the standardized feature, xi is the unstandardized feature, µi is the mean of that
feature and σi is the variance of that feature.

2.5 Feature Selection

After feature engineering, the feature space is enormous. In total, there are more than 1,000
features. Therefore, features need to be eliminated. Multiple methods are used for feature selec-
tion. As explained in Section 2.4.1, features with a large number of missing values are already
removed. Features with a lot of missing values will not contain a lot of information that can be
exploited by a model.

In some sense, features that are highly correlated with each other contain the same informa-
tion. Therefore, one of these features will become redundant. This means that one of these
features can be removed. Features are highly correlated if their correlation exceeds a certain
threshold. In this research, the threshold is set on 0.9. If this value was set higher, the number of
features erased by this feature was too high. Lowering the threshold could the learning process of
some models, e.g., a neural network. However, as explained, in Section 1.2, a gradient boosting
model is expected to perform the best. Such a model is not affected by correlation between
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features.

Furthermore, some features contain only one value. Features with one single unique value cannot
be of use for any model, since it has zero variance. Therefore, the features with only one value
are removed.

At last, feature selection is performed through feature importance. In a tree-based model, the
importance of a feature can be calculated. If this importance is zero, the feature is not used by
the model. Since the dimensionality of the data is still high, such features are assumed to have
little predictive power and therefore removed from the data. As a tree-based model, Gradient
Boosting is used. In the creation of such a model, data is sampled at random. This can result
in different models for several runs. Therefore, five Gradient Boosting models are created. The
features that have an importance of zero, in all models, will be removed. Gradient Boosting
models will be further explained in Section 3.4.

After all operations, the feature space is reduced from more than 1,000 features, to a final data
set with 431 features. An overview of all the feature selection methods can be found in Table 7.

Mechanisms Explanation Features removed
Missing value Erase under certain threshold, whereafter the

values are imputed
373

Correlation Erase features with higher correlation than 0.9 475
Single unique value Features with only one value are erased 5
Feature importance Remove features with zero importance in a

Gradient Boosting Model
8

Table 7: Overview of feature selection

Finally, three variable exists that are external credit scores. Financial institutions can buy such
scores from external companies. One of the goals of this research is to show that machine learning
can replace traditional models using such scores. Therefore, the external scores will not be used
in the model development and will therefore be dropped from now on. However, they will be
used later in further analysis into transparency methods. Upfront, it is reasonable to assume that
these scores will be strong predictors. Therefore, they can be used to investigate transparency
methods to see if they are able to pick up such predictors. More on transparency will be explained
in Section 6.
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3 Model Development

In this section, the models used in this research will be explained. At first, the baseline model will
be explained. As a baseline model, logistic regression is used since it is a widely adopted model
for PD estimation. Second, a decision tree will be explained, because two of the four models are
tree ensembles. A tree ensemble combines multiple decision trees. Third, the methods Random
Forest and Gradient Boosting will be explained. These methods are widely used and known for
their predictive power. Last, an Artificial Neural Network (ANN) will be explained.

After the explanation of all models, Bayesian optimization will be discussed. With Bayesian
optimization, hyperparameters are tuned. After this, the credit rating system will be explained.
At last some model evaluation methods will be discussed.

3.1 Logistic Regression

Logistic regression, sometimes referred to as logit, is one of the most used statistical methods
for classification. A big advantage of the logit model is that it computes a probability given
some predictor variables. The logistic regression model squeezes the output of a linear function
between zero and one by using the logit function. The logit function is defined by:

logit(η) =
1

1 + exp(−η)
. (4)

In logistic regression η is defined by a linear function. This means that η can be defined as:

η = β0 +

M∑
i=1

βixi, (5)

where M is the number of features, xi is feature i and β a vector of parameters. The vector of
parameters β contains an intercept and a coefficient for each feature xi. Note that Equation (5)
relates to the linear regression model. In logistic regression, the linear regression model is trans-
formed with the logit function. The transformation enables the model to handle classification
problems and the output of probabilities. The combination of the two equations above leads to
the full model for classification:

P (Y = Default|X) =
1

1 + exp(−(β0 +
∑M
i=1 βixi))

. (6)

The parameters need to be estimated using data. This is done using the limited memory BFGS
method [13]. The Limited memory BFGS method is an optimization algorithm often used in
machine learning. It is a robust method and uses limited computer memory. Furthermore,
to avoid overfitting, L2 regularization is used. L2 regularization penalizes large weights and
therefore shrinks them. If large weights are penalized, features that seem over important in the
data set will not get a too large weight. Important to note is that it does not shrink weights to
zero. Hence, it is no feature selection method.

3.2 Decision Tree

A decision tree is a commonly used machine learning model. It uses a tree structure to predict
the target variable y using some predictor variables X. An example of a simple decision tree can
be found in Figure 3.
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Figure 3: Example of a simple decision tree

This decision tree predicts whether one would default based on his income. When someone’s
income is lower than 10,000, this decision tree will predict that the person will default. One way
to interpret a decision tree, is to see it as a set of rules. For this example, such a rule could be;
if Income < 10, 000 then Default else No Default.

The tree above uses only three predictor variables. Therefore, it is easy to build. However,
when multiple predictor variables are used, building a tree can be more complex. Several algo-
rithms exist for building trees. A commonly used algorithm is the Classification And Regression
Tree(CART) algorithm [7]. The goal of CART is to develop a binary tree that minimizes the er-
ror in each terminal node. A terminal node is a last node in the tree and represents the prediction.

A common approach for building trees is a greedy approach called recursive binary splitting.
In each iteration, a new node will be designed. Such a node will split the data set into two
subsets, as in Figure 3. In order to minimize the error, the splitting will be done according to a
splitting criterion. The criterion quantifies how well a split separates the target variable. In the
CART algorithm, this is done according to the Gini Impurity. The Gini Impurity is defined by:

IG(p) = 1− pDefault, (7)

where pDefault is the fraction of instances labeled as going into default in the set. The split with
the lowest impurity will perform the best. Another criterion is the information gain. In the next
iteration, the same calculations will be made on a subset of the data. The subset is created with
the instances split by the node above.

As the algorithm is a recursive method, stopping criteria are needed. First, a node is a ter-
minal node if there are no new splits possible that improve the splitting criterion. Second, if a
new node covers only a small subset of the data set, e.g., 5 or 10 instances, the node will not be
added. This stopping criterion is also used to prevent overfitting.

One of the biggest problems with decision trees is that they can create overly complex mod-
els. This happens when the model uses too many splits and the model will overfit to the training
set, also known as high variance. Furthermore, decision trees are known to be non-robust. The
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model is highly sensitive to small changes in the training set. These small changes can lead to
different models while the same relationships are present in the data.

3.3 Random Forest

An ensemble method is a form of machine learning where, multiple models are combined into
one larger model. Bagging and boosting are the two most known ensemble methods. Boosting
will be explained in Section 3.4. The most used algorithm of bagging for decision trees is the
Random Forest algorithm developed by Breiman [6].

Bagging, or bootstrap aggregation, tries to overcome the problems of a single decision tree.
By building multiple trees, a model is created that is more stable and that can generalize better.
All trees are built on random subsets of the data. The predictions of all trees are combined in
one final prediction. A simplified example of a Random Forest can be seen in Figure 4.

Figure 4: A simplified example of a Random Forest.
Source: https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd

The general algorithm for bagging with trees can be described in two steps. The number of trees
to build, B is defined upfront. The steps for constructing an ensemble model using bagging can
be seen in Algorithm 1.

Algorithm 1: General algorithm for bagging decision trees

for b = 1, ..., B do
Sample, with replacement, n training instances. Creating subsets Xb and Yb;
Train a decision tree using the subset Xb and Yb;

end
Predictions ←majority vote of all trees;

A danger in bagging is the creation of similar trees. Often, the same features are found to be
important in a decision tree. If this happens, trees will get correlated and bagging them will
not be of any advantage. This results in the fact that the model will still have a high variance.
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Therefore, a Random Forest does not consider all features when building a tree. When a tree
is constructed, a random subset of Xb is selected as candidates for a split. Therefore, trees will
be different since different features are used while building the random forest. For classification,
the authors of the paper recommend to create a subset of

√
M features for each split [6].

If the Random Forest algorithm is used for classification, the model is an ensemble of B classifi-
cation trees. Each tree predicts whether the client will default or not by assigning a default or no
default. However, by combining all trees, a probability can be determined. The probability that
a client will default is defined by the fraction of trees that predicts a default. An implication is
that probabilities close to zero and one rarely occur. This happens because the decision trees are
trained on different data sets. This process causes that the trees will become uncorrelated. That
causes that it is very common that all trees will agree that a person will go in default. Therefore,
the probabilities are centered around the average probability.

3.4 Gradient Boosting

Boosting is another famous ensemble method, just as bagging. Where bagging builds several
trees independently, boosting builds trees sequentially. Trees in the ensemble are dependent on
the performance of other trees in the ensemble. In general, subsequent base predictors, e.g.,
a decision tree, learns from the mistakes of the previous predictors. The approach taken for
gradient boosting is based on the paper from Friedman(1999) [9]. A naive formalization for
boosting can be found in Algorithm 2.

Algorithm 2: General algorithm for boosting decision trees

Fit initial model F1(x);
for b = 1, ..., B do

Fit a model on the residuals hb(x) = y − Fb(x);
Create new model Fb+1(x) = Fb(x) + hb(x);

end

B is again the number of trees used in the ensemble, this number can best be set using a holdout
set. On this holdout set, the performance of the ensemble is tracked. When this performance
stops increasing, the number of trees used should not increase. If trees will still be added, it is
likely that the final model overfits to the training data.

The gradient boosting algorithm is an additive model. This means that a recursive function
can be defined as followed:

Fb+1(x) = Fb(x) + hb(x) = y, for b ≥ 0, (8)

this equation can be rewritten as:

hb(x) = y − Fb(x) = rb, (9)

where hb(x) is the to be created model where the target are residuals rb.

Gradient boosting differs from Algorithm, 2 in several steps. First, in Gradient Boosting new
trees are not fitted on the residuals. However, they are fitted on pseudo-residuals called rb. These
pseudo-residuals are computed by the gradient of a loss function. Second, in classification, the
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unit of the predicted value is the log odds. Furthermore, a learning rate ν is introduced.
As input, Gradient Boosting needs training data and a differentiable loss function L(yi, F (xi)).
Any differentiable loss function can be optimized. In most classification problems, the log loss
function is used. The log loss function is defined by:

L(yi, F (xi)) = −(yilog(p) + (1− yi)log(1− p)), (10)

where p is equal to the predicted probability to default.

The first step in the algorithm, is to initialize a model with a constant value. This model is
called the initial leaf and is defined by F0(x). The model F0(x) can be seen as the base value.
The initial model F0 is computed by solving:

F0(x) = argmin
γ0

N∑
i=1

L(yi, γ0), (11)

where γ0 relates to the log(odds) for the base prediction.

Step two of Gradient Boosting consists of four phases. These phases are repeated until B trees are
created. The first phase is to compute the pseudo-residual rb. The pseudo-residual is computed
by taking the gradient of the loss function:

rib = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (xi)=Fb−1(xi)

. (12)

With knowledge of the derivative for the log loss function, the pseudo-residual can be rewritten
as:

rib = −
(
− yi +

exp(γ)

1 + exp(γ)

)
=

(
yi −

exp(γ)

1 + exp(γ)

)
= yi − p, (13)

where γ is the most recent predicted log(odds). The pseudo-residuals are then used as the target
variable when a new tree is built. This is the second phase. In this phase, a regression tree is
fitted to rb. This creates terminal nodes Rjb, where j = 1, . . . , Jb. The variable Jb represents
the number of terminal nodes in tree b. All pseudo-residuals end up in one of these terminal nodes.

The third phase consists of computing the new log(odds) values γjb. The value of γjb repre-
sents the output value for that terminal node. For each terminal node, γjb is computed by
solving:

yjb = argmin
γ

∑
xi∈Rij

L(yi, Fb−1(xi) + γ), (14)

where xi are the instances that fall in terminal node Rij . When all output values are computed,
the fourth phase updates Fb(x). This means that new predictions are created for each sample.
The new predictions are generated by the following:

Fb(x) = Fb−1(x) + ν

Jb∑
j=1

γjbI(x ∈ Rjb). (15)

In this equation, the learning rate ν is present. The learning rate is usually small, e.g., 0.1. With
the learning rate, the residuals are reduced step by step. In this way, Gradient Boosting reduces
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overfitting. The four phases are repeated until the desired number of trees B is reached.

The final approximation FB(x) is related to the log-odds. This can be inverted to yield probability
estimates according to:

P (y = 1|x) =
exp(FB(x))

1 + exp(FB(x))
(16)

Besides the learning rate ν, several options exist to prevent overfitting. The first is taking a
subsample when creating a tree. This procedure looks like that subsample for splitting in a
random forest algorithm as explained in Section 3.3. If sampling is performed, the same problem
arises as with a Random Forest. Due to the fact that trees will predict contradictory outcomes
and probabilities close to zero and one will not occur. Second, the same regularization techniques
for trees can be used, as controlling the maximum depth or the minimum number of observations
present in a leaf.

3.5 Artificial Neural Network

An Artificial Neural Network (ANN) is a complex mathematical model. This model consists out
of fully connected neurons. These neurons are mimic the neurons in the human brain. An ANN
consists out of three parts, the input layer, one or more hidden layers and the output layer. Every
layer is fully connected, these connections mimic the synapses in our brain. An example of an
ANN can be seen in Figure 5. In this example, the input layer consists out of four nodes. There
are two hidden layers with respectively five and seven nodes. Finally, there is the output layer
consisting out of three nodes. Each layer is connected with a weight matrix. This weight matrix
is combined with the neuron values to compute the neuron values in the next layer.

Figure 5: An example of an Artificial Neural Network.
Source: https://medium.com/coinmonks/

the-artificial-neural-networks-handbook-part-1-f9ceb0e376b4
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The neural network in Figure 5 is called a Multilayer Perceptron (MLP). An MLP is a class
of feedforward neural networks and consists of multiple linear perceptrons in combination with
activation functions. A perceptron consists of one neuron and can be seen in Figure 6.

Figure 6: An example of a linear perceptron.
Source: https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53

In a linear perceptron, no activation function is used. If this is the case, an MLP is not able
to capture nonlinear relationships. The standard activation function is the logistic activation
function:

φ(z) =
1

1 + exp(−z)
(17)

An advantage of the sigmoid activation function is the ability to bound the output between zero
and one. This is an important property if an MLP is used for classification. However, if z is
large, either positive or negative, the gradient of this function will be very small. If this occurs,
it is called vanishing gradients. The problem of vanishing gradients is that the gradient is so
small, or even zero, that the perceptron or MLP does not learn or optimizes slowly. Therefore,
other activation functions were created. One of these activation functions is the Rectified Linear
Units (ReLU) [18]. It is a popular replacement for the sigmoid activation function. The ReLU
function can be described as:

f(z) = z+ = max(0, z). (18)

There is one problem with ReLU. In Equation (18), it can be seen that all values equal to or
smaller than zero are treated the same. Therefore, LeakyReLU was invented [15]. LeakyReLU
can be mathematically defined as:

f(z) =

{
z, if z ≥ 0,

α× z, otherwise.
(19)

Here α is a scaling factor. The scaling factor is often smaller than one. LeakyReLU allows small
gradients where z is equal to zero, where ReLU returns a gradient of zero.

The linear perceptron of Figure 6 can be mathematically written as:

z = b+
5∑
i=1

wi × xi. (20)

New in this equation is the bias b. With the bias b, the activation function can be shifted such
that it will better fit the data. If multiple perceptrons are combined into an MLP, the weights
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wi in Equation (20), combine into one matrix W [l]. This matrix represents all the connections
between two layers. When training an MLP, these matrices are optimized. For this optimization,
the matrices need to be initialized. The initialization process that is used is called the Glorot
Uniform initialization process [10].

Such an optimization is done using backpropagation. Backpropagation stands for backward
propagation of errors. It is an iterative process that optimizes the weights matrices W [l], for each
layer l. At each iteration, the error is propagated backwards through the network using gradient
descent. However, the search space is not always convex. Therefore, several implementations
exist. These implementations use some form of stochastic optimization so that backpropagation
will not get stuck in local optima. In this research, the Adam optimizer is used [12].

Like any other machine learning model, an ANN can overfit. A way to prevent this is by using
dropout [25]. The idea is that large weights in an ANN are a sign of overfitting. Therefore,
shrinking weights will prevent overfitting.

3.6 Bayesian Optimization of Hyperparameters

The goal of machine learning algorithms is to find a model that maximizes the performance
on a training set. However, these algorithms have settings that influence the performance of a
model. Such settings are called hyperparameters. Examples of hyperparameters are the number
of trees, B, used in a Gradient Boosting model or the number of hidden layers in a neural network.

The aim of hyperparameter optimization is to find hyperparameters of an algorithm that max-
imizes performance on the validation set. In this research, cross validation is used in order to
create a good estimation of the model’s generalization on the data. However, this makes that
evaluating a set of hyperparameters is computationally expensive. Every time hyperparameters
are evaluated, several new models are trained. Methods like grid and random search are often
used to find good hyperparameters. These methods are uninformed and do not know the per-
formance of previous evaluations. Therefore, these methods try a lot of hyperparameter settings
that will perform well.

An example of an informed search is Bayesian optimization [24]. The idea behind Bayesian
optimization is spending more effort in deciding which hyperparameters to test in the next eval-
uation. Therefore, Bayesian optimization is more efficient since the method chooses the next
hyperparameters in an informed manner.

In the optimization process, a probabilistic model is formed that maps hyperparameters to a prob-
ability of a score on the objective function. This function is defined by P (score|hyperparameters).
This model is called the surrogate for the objective function. With this knowledge, the algorithm
can be written as in Algorithm 3.
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Algorithm 3: General algorithm for Bayesian optimization

Build a surrogate probability of the objective function;
while i ≤ MaxIter do

Search hyperparameters that perform best on the surrogate;
Apply hyperparameters;
Update surrogate model with new results;

end

There are two remaining challenges in this algorithm. The first is the search of the hyperparame-
ters that perform well. In this research, this is done according to the Expected Improvement(EI).
The second challenge is how the surrogate model can be built. A commonly used method is the
Tree Parzen Estimator(TPE) [5].

In order to search the hyperparameter space efficiently, a possible distribution of each hyper-
parameter is defined. Such a distribution can be specific for each hyperparameter. In this
research, the distributions are based on the model documentation and on domain knowledge.

In the optimization process, the optimization target has a big influence on the results. In this
research, it is important that a good distinction can be made between good and bad clients.
Therefore, the AUC score has been chosen as optimization metric and will be maximized. This
score will be further explained in Section 3.8.2.

3.7 Rating system calibration

As explained in Section 2.4.3, balancing the data set has a warping effect on the posterior prob-
ability. Therefore, the models are predicting the likeliness someone will default instead of the
PD. In order to transform the score into the PD, a rating system will be created [20].

A credit rating system is based on a ranking system. A rank in this system corresponds to
some level of creditworthiness. A high credit rating is equal with a low PD where a low credit
rating corresponds to a high PD. This means that a credit score can relate to the PD.

The calibration of such a system, is the mapping process under which each score from a model is
matched to a credit rating. The mapping process consists of several steps. At first, all clients in
the training set are ranked on their predictions of a model. Second, these clients are divided over
G bins. All these bins are equal in size. Suppose, 1,000 clients are available and 10 bins are used,
i.e., G = 10. This means that each bin contains 1000

10 = 100 clients when constructing the bins.
After the division is made, the lowest and the highest score in a bin will form the boundaries for
that bin.

In practice, the last bin is often reserved for a PD of one even if there are no clients that
have such a PD. In this research that will be omitted since it does not affect any analysis.

When all clients are divided, the actual PD in each bin will be calculated according to the
formula:

PD =
Observed Defaults

All Observations
. (21)
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All G probabilities will be used as estimation for the clients that land in a specific bin. All
probabilities can be combined into one PD curve.

Finally, the quality of the rating system can be evaluated. First, the clients in the test set
are divided over all bins. However, they are not ranked but the binning boundaries created on
the training set are used. Then again, the PD is calculated for each bin according to (21). This
will result in another PD curve, this time an out-of-sample curve. The difference between the
in-sample and the out-of-sample curve can then be used as a performance measure of the quality
of the PD estimations. As a metric, the Root Mean Squared Error(RMSE) is used. This will be
further explained in Section 3.8.3.

3.8 Model Evaluation

In order to make a fair comparison between several models, proper model evaluation is necessary.
One of the fundamentals of model evaluation for classification is the confusion matrix. The
confusion matrix enables the visualization of the model’s performance in a table. An example of
a confusion matrix can be found in Table 8. In this table, TP stands for True Positives, FN for
False Negatives, FP for False positives and TN for True Negatives.

Predicted label
No Default Default

True label No Default TP FN
Default FP TN

Table 8: Template of a confusion matrix

A lot of performance measurements can be taken out of the confusion matrix. Two important
ones are precision and recall. Precision gives the proportion of clients that are predicted to
default that actually defaulted. Mathematically, this can be defined as:

Precision =
TP

TP + FP
. (22)

Recall measures the proportion of clients that defaulted were actually predicted as a default.
This can be defined by the following:

Recall =
TP

TP + FN
. (23)

Recall gives the information on how many defaults were missed. Sometimes, the recall is referred
to as the True Positive Rate(TPR). So, predicting only defaults will lead to a recall of 1. On the
opposite, precision measures how many of these predicted defaults were actually defaults.

Another useful measure that can be calculated out of the confusion matrix is the specificity.
The specificity measures the proportion of the correctly predicted defaults from the population
of defaults. The measure is defined by:

Specificity =
FP

TN + FP
. (24)

With the specificity, the False Positive Rate(FPR) can be defined by taking 1− Specificity.

28



One very useful performance metric for a PD model takes the cost of default into account.
Such a metric gives a perfect insight in the risk of model. Such a metric can be used if the cost
of default is known for each instance. With this knowledge, a model can take a decision with
taking the likeliness of a default and the costs of it into account. Unfortunately, such data was
not available in this research.

3.8.1 F1-Score

It is clear that one wants both precision and recall as high as possible. However, optimizing on
two measures is not practical. Therefore, a combination of precision and recall is desired. Such
a combination is called the F1 score. The F1 score combines the precision and recall using the
harmonic mean and can be defined as follows:

F1 score =
2× Precision× Recall

(Precision + Recall)
. (25)

The score calculates the accuracy for a certain label, instead of the total accuracy. This means
that the F1 score can be calculated for both labels yielding different results. As it is desirable to
catch as many defaults, the F1 score for the label default will be given.

3.8.2 AUC-ROC Curve

Together, the FPR and the TPR (recall) combine into the AUC-ROC curve. The AUC-ROC
curve tells how much the model is capable of distinguishing between classes. The curve represents
a trade-off between the TPR and the FPR, an example of the curve can be found in Figure 7.

Figure 7: An example of the AUC-ROC curve.
Source: https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

However, a curve is not a useful metric. Fortunately, the area under the curve (AUC) can be
calculated. The higher the AUC, the better the model distinguishes the classes. An AUC of 0.5
is the worst situation. It happens when a model is not able to learn anything. The AUC can be
smaller than 0.5, this only happens if the model learns the opposite of what it should.
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3.8.3 RMSE

With the procedure described in Section 3.7, it can be computed how well the rating systems, and
therefore the models, perform. This will be done using the Root Mean Squared Error (RMSE).
The RMSE can be defined as follows:

RMSE =

√∑G
i=1(P̂Di − PDi)2

G
, (26)

where G is again the number of bins. Furthermore, P̂Di is the PD estimated on bin i with the
training set and PDi is the observed PD on the test set.

It is obvious that mistakes are undesirable. However, big mistakes have larger consequences
than small mistakes. The RMSE penalizes large mistakes more than small mistakes. Therefore,
the RMSE is considered a good measurement to compute the differences between the PD curves.
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4 Experimental Setup

In this section, the experimental setup will be discussed. First, the training and the test setup
are discussed. Thereafter all settings of the hyperparameters are given. All this research is
conducted in the programming language Python.

4.1 Training and test set up

In order to train and evaluate the model, a split in the data set is necessary. At first, the data
set is split into a training and test set. The training data is used to train and tune the models.
The test set is only used to evaluate the models.

The training data contains 85% of the data, whereas the test data consists of the other 15%
of the data. The train-test ratio is rather high. However, the training data still needs to be
balanced after this step. Therefore, the initial split ratio is set high. However, after balancing
the train-test ratio is small, i.e., 58%− 42%. Unfortunately, the initial train-test ratio cannot be
adapted. If the initial ratio is changed, proper testing of the rating system will be difficult.

4.1.1 Model setup

In model training, the training data is utilized. At first, the training data is sampled in order
to balance the data set as described in Section 2.4.3. After this operation, the hyperparameters
will be tuned using cross-validation as described in the sections below. After all hyperparameters
are tuned, the models will be trained using the full balanced training set. These models are the
final models and the final performance is tested using the test set. Note that the test set is not
balanced and represents the true distribution.

4.1.2 Credit rating setup

In the development of the credit rating system, the whole training set is utilized. The training
set is not balanced. In the creation of the system, the training data should represent the true
distribution. After the system is created, the PD estimations for each bin are evaluated with the
observed PD in the test set.

4.2 Logistic Regression

The implementation used for Logistic Regression, is the scikit-learn implementation [19]. Scikit-
learn is one of the largest open-source libraries for machine learning in Python. It implements
regularized Logistic Regression using the Limited memory BFGS method.

As regularization method, L2 regularization is used. Furthermore, to control computational
time but still have convergence of the optimization method, a maximum number of iterations is
used. An overview of the settings can be seen in Table 9.

Hyperparameter Value
Regularization L2
Max iterations 750

Table 9: Settings for Logistic Regression
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4.3 Random Forest

The most used Random Forest implementation in Python is the algorithm of scikit-learn [19].
Scikit-learn is one of the largest open-source libraries for machine learning in Python.

As with any other algorithm, Random Forest is sensitive to its hyperparameters. Not all hy-
perparameters are optimized to reduce the complexity of the optimization process. The hyper-
parameters that are optimized can be found in Table 10. The q in front of the distribution means
that the distribution is quantized and a step size is used in order to reduce computational times.

Hyperparameter Influence Distribution Range Step size
Number of estimators Number of trees QUniform (50, 750) 25
Max features Max features con-

sidered when split-
ting a node

QUniform (40, 400) 20

Max depth Max depth of a tree QUniform (1, 150) 5
Min samples split Min number points

placed in a split
QUniform (2, 50) 5

Min samples leaf Min number points
in a lead

QUniform (1, 50) 5

Table 10: Settings for Bayesian optimization for LGBM

In general, the Random Forest will learn better if the first three hyperparameters are large and
the last two small. However, this can increase computational time drastically or cause overfitting.
Therefore, these hyperparameters are optimized following the procedure explained in Section 3.6,
with a 3-fold cross validation and 100 iterations. The best performing settings found are shown
in Table 11.

Hyperparameter Value
Number of estimators 500
Max features 160
Max depth 50
Min samples split 15
Min samples leaf 5

Table 11: Hyperparameters found by Bayesian optimization for a Random Forest

4.4 Gradient Boosting

In this research the Light Gradient Boosting Machine (LGBM) implementation of Microsoft [16]
is used. LGBM is a gradient boosting algorithm designed for faster training speed and high
accuracy. It has a low memory usage. This is of great use due to the size of the data set, i.e.,
802 Megabyte.

The hyperparameters are optimized according to the procedure in Section 3.6, with a 3-fold
cross validation and 100 iterations. The hyperparameters are optimized, their influence on the
model and their range can be found in Table 12. If there is a q in front of the distribution, the
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distribution is quantized and a step size is used in order to reduce computational times. If that
is the case, the step size columns will indicate what the step size is.

Hyperparameter Influence Distribution Range Step size
Number of leaves Maximum number

of leaves
QUniform (5, 50) 5

Learning rate Regularization fac-
tor

LogUniform (log(0.005), log(0.5)) -

Subsample for bin Sample size for bin-
ning

QUniform (20,000, 240,000) 20,000

Reg α Regularization fac-
tor

Uniform (0, 1) -

Reg λ Regularization fac-
tor

Uniform (0, 1) -

Colsample by tree Which features are
used

Uniform (0.6, 1) -

Subsample Subsample size of
the data

Uniform (0.5, 1) -

Min child samples Minimal amount of
data in a leave

QUniform (20, 500) 5

Table 12: Settings for Bayesian optimization for LGBM

The hyperparameter settings that performed best in the Bayesian optimization can be found in
Table 13.

Hyperparameter Value
Number of estimators 3077
Number of leaves 20
Learning rate 0.007770
Subsample for bin 160,000
Reg alpha 0.715208
Reg lambda 0.532382
Colsample by tree 0.617681
Subsample 0.900419
Min child samples 345

Table 13: Hyperparameters found by Bayesian optimization by LGBM

4.5 Neural Network

As Python implementation, the Keras framework is used [8]. An ANN is highly sensitive to its
hyperparameters. A distinction is made between the structure of the ANN and the optimization
method(Adam). In order to keep the hyperparameter space manageable, the default parameters
of the Adam optimizer are used. Furthermore, not all components in the ANN’s structure are
optimized. The activation functions for the hidden layers are static. All the hyperparameters
that are optimized and their distributions can be found in Table 14.
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Hyperparameter Influence Distribution Range Step size
Dropout Regularization fac-

tor
Uniform (0, 1) -

Number of nodes Nodes for layer l QUniform (1, 500) 10
Activation function For the first l − 1

layers
- Leaky ReLU -

Activation function For the output
layer

- Sigmoid -

Table 14: Settings for Bayesian optimization for an ANN

For LeakyRelu, the α is set on 0.25. The hyperparameters found after 100 iterations with 3-fold
cross validation can be seen in Table 15.

Hyperparameter Value
Number of epochs 20
Dropout 0.6475
Hidden layers 3
Nodes layer 1 300
Nodes layer 2 160
Nodes layer 3 200

Table 15: Neural network results
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5 Model performance

In this section, the performance of all models is reported. A distinction is made between two
types of performance. The first is the classification performance. The second is the quality of
the PD estimation. Finally, the performance of all models are compared and the best model will
be picked.

5.1 Classification performance

The classification performance measures the client discrimination ability of the model. The
client discrimination ability tells how well a model is able to distinguish good clients from bad
clients. If the classification performance is acceptable, a model can be used as a client acceptance
model. A confusion matrix allows visualization of the performance of a classification model. The
visualization is a matrix that shows the correct and incorrect labeled instances. The confusion
matrices can be seen in Figure 8.

Figure 8: Confusion matrices of all models

The numbers in the confusion matrix above are absolute. Therefore, it is not easy to compare
them quickly. In Figure 9, the normalized confusion matrices can be seen for all models.
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Figure 9: Normalized confusion matrices of all models

The performance metrics used for the classification performance are the AUC and the F1 score.
In Table 16, the metrics are shown for all models.

Model AUC F1
LGBM 0.7565 0.3021
LogReg 0.7208 0.2509
Neural network 0.7278 0.2562
Random forest 0.7241 0.2584

Table 16: Performance of all models

5.2 Probability to Default estimation

In this section, the quality of the rating system is evaluated. The PD can be evaluated for the
whole portfolio, but also for each group in the rating system. In Figure 10, the PD curves can
be found. In this analysis, the last bin where the PD should be one is left out. Since it does not
influence performance of the model.
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Figure 10: PD curves of all models

The RMSE between these curves can express the quality of the calibration. Since the PDtrain

represents the predicted curve and PDtest represents the observed curve. The RMSE of all curves
can be found in Table 17.

Model RMSE
LGBM 0.01649
LogReg 0.00551
Neural network 0.00711
Random forest 0.12268

Table 17: RMSE of the curves for all models

If the PD estimations for all bins are combined, the portfolio PD estimation can be calculated.
The estimations on portfolio level can be seen in Table 18.
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Model PDtrain PDtest

Observed 8.0730% 8.0735%
LGBM 8.0732% 8.1599%
LogReg 8.0722% 8.1272%
Neural network 8.0726% 8.1041%
Random forest 8.0734% 8.3340%

Table 18: PD estimation on portfolio level for all models

In Appendix B, the resulting credit rating systems for every model can be found.

5.3 Interpretation of performance

In this section, the results shown in the previous two sections will be discussed. For this dis-
cussion, it is important to keep the business in mind. As a reminder, a PD model is mostly
used as a client acceptance model and a capital calculation model. For an acceptance model, the
discriminatory power is important. In other words, the model should be able to distinguish good
from bad clients. For capital calculations, it is important that PD estimations are accurate on
a portfolio level. Therefore, the results in the previous sections must be combined in order to
determine the best model.

In Section 5.1 the classification performance is shown. It can be seen that the LGBM clearly
outperforms all other models. Looking at both metrics and the confusion matrix, it can be
concluded that this model is the best in distinguishing good from bad clients. Furthermore, all
other models perform similar. Therefore, it cannot be determined yet which models to discard yet.

In Section 5.2, the performance on portfolio level can be seen. It can be seen that the neural
network and the logistic regression are well performing on portfolio level. The gradient boosting
model slightly worse. However, the random forest performs the worst of all and is therefore
discarded from this point on.

As the gradient boosting model is performing well on both business tasks, this model is deemed
as the best performing model and should therefore be used. Both the logistic regression and the
neural network are performing similar on both domains. Therefore, the conclusion can be made
on which of these two models are performing better. However, because the complexity of the
logistic regression is much lower than the complexity of the neural network, the logistic regression
is preferred above the neural network.

A remarkable observation in the rating systems, are the tails from the tree ensembles. These
tails occur because of the structure of the models. During the learning process, subsets of the
data are taken. This leads to uncorrelated trees. In other words, trees that predict the opposite.
Because of this, predictions close to zero or one rarely occur. This leads to the predictions being
centered around the average probability in the data set.
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6 Transparency

In this section, two transparency methods are discussed. An important distinction in trans-
parency methods is the difference between model agnostic and model specific methods. model
agnostic methods can be used for any type of models. model specific can only be used for a
specific model, e.g., a neural network. First, a well-known global method for tree ensembles will
be discussed. This method will sometimes be used as a reference method. After this, model
agnostic frameworks like LIME and SHAP will be discussed. The focus will be on these two
frameworks as they are the most used methods.

6.1 Tree ensembles

A decision tree can be easily interpreted. If one starts at the top of the tree and follows the path
until the terminal node, each node can be connected by an ”AND” statement. When trees will
get larger such interpretation will be much more complex. Furthermore, an ensemble of trees
cannot be interpreted this way. However, there are other ways to interpret a decision tree, such
as feature importance method described below.

In a decision tree, the overall feature importance can be determined. There are several ways
to calculate a feature’s importance. The idea of feature importance is to compute the attribution
of features to the model. In general, two methods to determine feature importance are used.
The first is the split method. This method counts the occurrence of a feature over all splits. The
second method is the gain method. This method calculates for each split the gain in accuracy.
A disadvantage of these methods, is that no information is given if the influence is positive or
negative. The only interpretation achieved with feature importance, is that the identification of
important features.

6.2 LIME

One of the most used model agnostic transparency methods is Local Interpretable model agnos-
tic Explanations (LIME) [22]. LIME creates a local interpretable surrogate model. A surrogate
model is an approximation of the underlying black box model. A surrogate model can approxi-
mate the black box model globally or locally. LIME creates such an approximation locally, i.e.,
around a specific instance. The interpretable surrogate model is turned to an explanation for that
specific instance. This is done by interpreting, in the case of a linear model, its coefficients. With
these explanations, LIME tries to provide local transparency. By combining multiple instances
across the input space, LIME tries to provide global transparency.

An explanation is a description of which features influences the model’s prediction on a certain
instance xi. The process of generating an explanation is developing an interpretable model on a
locally defined data set. Examples of interpretable models are linear models, short decision trees
and decision rules. The current LIME interpretation focuses on the development of linear models.

Mathematically, LIME creates an explanation by solving the following equation:

ξ(x) = argmin
g ∈G

L(f, g, πx) + Ω(g), (27)

where f is the black box model to be explained, G is a class of local models, i.e., linear regression
models. Furthermore, πx is a proximity measure, sometimes referred to as the kernel, between
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instances. This proximity measure defines the locality of the explanation. Ω(g) is a complexity
measure of g. This complexity measure is static and defined upfront. With linear surrogate
models, the complexity of the model relates to the number of variables the model is allowed to
use. By setting this value small, LIME generates sparse surrogate models.

In words, Equation (27) can be described as the search for an interpretable model while achieving
local accuracy and keeping the complexity of the linear model low. The definition of the loss
function is important and can be described as the locally weight square loss:

L(f, g, πx) =
∑
z ∈ Z

πx(z)(f(z)− g(z))2. (28)

In this equation Z is the set of instances in the locally defined neighborhood and is sampled
around the instance xi. Since the explanation is a local model, errors close to xi need to be
penalized harder. The proximity measure πx takes care of this and thereby defines the locality
of the surrogate model. Important to note is that the locality of the surrogate model has a large
influence on the explanation. The proximity measure is defined by the exponential kernel:

πx(z) = exp(
−D(x, z)2

σ2
), (29)

where D is a distance metric and σ is the kernel width. The distance metric that is often used
is the Euclidean distance:

D(x, z) =

√√√√ M∑
i

(xi, zi)2, (30)

where M is the number of features. However, using the Euclidean distance metric could have
some implications. For example, the Euclidean distance has difficulties in distinguishing close by
instance from far away instances in a high dimensional space [3]. However, the impact of this is
unclear. Furthermore, unstandardized data can corrupt a distance metric. The impact of this
will be investigated in Section 7.3.

In Algorithm 4, the complete process of creating an explanation can be seen. Important to
note is that Z is a set. Therefore, the addition of the vector 〈zi, f(zi), πx(zi)〉 can be interpreted
as the addition of that vector at the end of the set. Meaning that the elements of Z will contain
of N elements and the elements will look like 〈zi, f(zi), πx(zi)〉.

Algorithm 4: Algorithm for sparse explanation generation with LIME

Z ← {};
for i = 1, ..., N do

zi ← sample around xi;
Z ← Z + 〈zi, f(zi), πx(zi)〉 ;

end
g ← K-Lasso(Z, K) ;
return wg

One of the steps in the algorithm, is the sampling around the instance xi. LIME treats numerical
and categorical features differently. Numerical features are sampled around a Gaussian distribu-
tion, where the mean and standard deviation is taken out of a training set. Categorical features
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are sampled around their frequency, again this statistic is taken out of a background data set.

A feature selection method is used to comply with the complexity Ω(g). An example of such a
method is the K-Lasso regression. The training pairs for the regression are of the form (zi, f(zi))
and they are weighted according to the proximity measure πx. The number of features of zi
that are allowed to be used is defined by K. With this number, LIME is able to produce sparse
explanations even if the dimensionality of the underlying data set is high. The number K needs
to be specified at the upfront.

For the explanation to be true, the resulting linear model should be locally faithful. Fortunately,
goodness-of-fit statistics can be calculated on Z. The model created by LIME can produce sev-
eral statistics. The most important statistic is the R2 score. The R2 score is the proportion
of variance in the target variable that is accounted for by the model. However, in LIME the
weighted R2 is used. This means that the score of an explanation, and the explanation itself,
are dependent on the locality of the regression. Therefore, the kernel width σ should be chosen
carefully. However, choosing σ while optimizing on the R2 score can be dangerous. In such
optimization process, the intercept of the regression could take over the model. If this happens,
the coefficients in the model will become very small. This leads to an explanation that is not
useful. An interpretation of the intercept is not possible. Unfortunately, no other approach to
finding a correct σ is known. That leads to the fact that σ should be carefully evaluated by the
user until the explanations make sense and some reasonable R2 is achieved.

A conclusion drawn from this, is that the correct definition of the neighborhood Z is unclear
and could be different for different models and other data sets. The implications of this can be
seen in Figure 11. In this figure, the lines show the local models for each kernel width. It can
be seen that the local models, and therefore the explanations, are very different. A solution to
avoid the kernel width problem can be to change the kernel. This will be further explained in
Section 6.3.

Figure 11: The quality of the local model is highly dependent on the kernel width
Source: https://christophm.github.io/interpretable-ml-book/lime.html
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6.3 SHAP

Shapley Additive Explanations(SHAP) is a unified approach for interpreting model predictions
[14]. SHAP assigns each feature an attribution value for a certain prediction. With these attri-
bution values, explanations are generated. These explanations can be generated for every model,
so SHAP can be called model agnostic. However, calculating such explanations can be compu-
tationally expensive. Therefore, several model specific implementations exist to speed up the
computational time. In order to make a fair comparison between SHAP and LIME, the model
specific versions were left out of scope.

Just as LIME, SHAP is in principal a local method, however SHAP can also provide global
interpretation. This will be explained later in this section. Local methods often work with sim-
plified inputs x′ that maps to x. This mapping is done with a mapping function hx(x′) = x.
This mapping value can be defined as:

h(x′i) =

{
1 if original feature value xi is included,

0 if xi is toggled off.
(31)

Local methods try to ensure g(z′) ≈ f(hx(z′)), where z′ ≈ x′, meaning that the local model g
should be accurate to the black box model f .

SHAP is a framework of additive feature attribution methods. Such methods have a local model
that is a linear function of binary variables:

g(z′) = φ0 +
M∑
i=1

φiz
′
i. (32)

In this function, M is the number of simplified features and z′ ∈ {0, 1}M . The symbol φ is the
attribution effect to each feature and is defined as φi ∈ R. An important variable in this equation
is φ0. This variable represents when all the simplified inputs are toggled off, i.e., missing. This
can be interpreted as the base value of the model and is predicted if none of the features are
known, e.g., taking the average as predicted value.

An important property of SHAP is local accuracy. Local accuracy ensures that the explana-
tion model matches the original model. This can be expressed by:

f(x) = g(x′) = φ0 +
M∑
i=1

φix
′
i (33)

Other properties the SHAP framework has are missingness and consistency. The missingness
property states that if a feature is not present in the simplified input, it should not achieve any
value. Mathematically, this can be written as:

x′i = 0 −→ φi = 0 (34)

The last property is called consistency. Consistency states that if a model changes so that a
feature contribution increases, then the feature’s attribution should increase too.

The attribution effect φi is called the SHAP value. These values are the Shapley values of a
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conditional expectation function of the original model. Shapley values are taken from game the-
ory [23]. In a game with a payout, the Shapley value gives the information how to distribute the
payout fairly among the players. In feature attribution, the payout is linked to the prediction
and the players are linked to the features. This means that the goal of SHAP is to distribute
the attribution to a prediction fairly over all features. An advantage of this, is that the SHAP
framework benefits from the research that has been done in the field of Shapley values. This
makes that the framework has a strong theoretical foundation.

As mentioned before, the SHAP framework is able to provide more than local transparency.
As said before, the SHAP value is unique for a certain instance. Meaning that, the SHAP value
for a specific variable is dependent on the value of all other variables in the instance. This
property brings a useful addition to the framework. Consider a set of 1,000 instances with 10
variables, x, and generate explanations with SHAP for all instances. The result is a matrix con-
taining 1,000 rows and 10 columns with a SHAP value for each situation. If the global behavior of
a variable is desired, one can visualize all the SHAP values for that variable. Such a visualization
is called a SHAP Dependence Plot. In such a figure, the variable value is plotted against the
SHAP value. In this visualization, several situations can occur. The first is horizontal dispersion
of variable values. This contains the information how a feature influences the prediction. The
second is vertical dispersion, vertical dispersion occurs when equal variable values have different
SHAP values. This means that the variable is interacting with other variables in that instance.
Investigating vertical dispersion can give information about the interaction effect between two
variables and helps discovering relationships in the data set. With such combinations of SHAP
values, local explanations can be combined to give global transparency.

The model agnostic version is the KernelSHAP. KernelSHAP combines the Shapley values with
the LIME method described in Section 6.2. According to Lundberg et al. [14], LIME should
have different settings in order to satisfy the properties described above. The settings should be
the following:

Ω(g) = 0,

πx(z′) =
(M − 1)(

M
|z′|
)
|z′|(M − |z′|)

,

L(f, g, πx) =
∑
z′ ∈ Z

πx(z′)(f(z′)− g(z′))2,

(35)

where |z′| is the number of non-zero elements in |z|. Important to note is that if |z′| is equal to
zero or to M , πx(z′) is not defined. However, two defined properties will help dealing with this

problem: φ0 = fx(∅) and f(x) =
∑M
i=0 φi. According to the authors, the undefined proximity

weights can be avoided by analytically eliminating two variables using these constraints.

Furthermore, the complexity measure Ω(g) is defined as zero. As the SHAP method fairly
distributes the difference between the prediction and the average over all features. This is a
property that it inherits from the classic Shapley values [17]. This means that the complexity of
the resulting explanation is not taken into account during the optimization process

The main difference with LIME is the proximity measure πx(z′), which is one of the largest
theoretical issues in LIME. Furthermore, the sampling method around the instance of interest
differs.
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The sampling method consists of several steps. The first step is toggling off features using
the mapping function described in Equation (34). A feature is off when its value differs from the
value in the instance of interest. The value is set to unknown. However, many models cannot
handle unknown feature values. Therefore, the value of the feature is sampled from a background
data set. This process mimics the unknown feature value.

Furthermore, the proximity measure does not use a distance metric or a kernel width. Instead,
it uses the fact that features are toggled off and it will take that into account.

6.4 Theoretical comparison

In this section, a theoretical comparison between SHAP and LIME is made. SHAP and LIME
are very similar methods. However, they do differ in several ways. The main difference is the
proximity measure. In SHAP the proximity measure is also referred to as the SHAP kernel. In
LIME the proximity measure is defined as the exponential kernel. Due to the exponential kernel,
LIME is subject to more hyperparameters. Besides the kernel itself as a hyperparameter, the
exponential kernel has two additional hyperparameters. The first is the distance metric between
two data points. As a distance metric, the Euclidean distance is often used with tabular data.
However, the Euclidean metric is known to behave badly with high-dimensional data [3]. As a
second hyperparameter, the exponential kernel uses a kernel width to define the size of the local
neighborhood. Both the distance and the kernel width adds extra hyperparameters to the LIME
method in comparison to SHAP. This makes it more difficult to generate reasonable explanations.

Furthermore, the LIME method has no theoretical justification for the exponential kernel. How-
ever, the SHAP kernel connects model interpretation with game theory and thereby gaining
theoretical advantage. This also makes that SHAP benefits from research already done in the
classic Shapley values.

Second, SHAP does not penalizes complexity as LIME does. The SHAP method looks for a
full explanation. In this full explanation, the method tries to identify all features that con-
tributed to the prediction. In LIME, the method looks for sparse explanations. This makes
that the number of features desired in the explanation method is another hyperparameter that
must be set. Furthermore, with making the explanation sparse, feature selection must be used.
The feature selection method used, has big influence on both the generated explanation as the
computational time.

Another difference, is the fact that LIME creates a surrogate model that must hold for the
locally defined neighborhood. This makes that LIME can give a global overview of the model’s
behavior by generating multiple explanations for different instances across several local neigh-
borhoods. However, changing hyperparameters can lead to different explanations, this makes
it difficult to detect patterns with the explanations. Because different hyperparameters lead to
different explanations in the same local region. SHAP does not create a model for a local neigh-
borhood. Instead, it creates an explanation which must be true for that instance according to
the theory behind Shapley values. Therefore, these explanations can be combined to show global
patterns discovered by the model more easily than LIME.
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7 Transparency Analysis

In this section, several analyses on the transparency methods are performed. First, the parame-
ters of the methods and their influence on the explanations is investigated. Second, the impact
of standardizing or not standardizing the data will be investigated. Third, the strong predictors
that were left out, i.e. the external credit scores, will be added to the model in order to see if the
methods are able to detect their importance. Fourth, the ability to detect the most influential
variables is investigated. Finally, the methods will be investigated on their ability to give global
transparency.

Important to note is that the Random Forest is not taken into account in this analysis. In
Section 5, it can be seen that the LGBM outperforms the Random Forest. Since both are tree
ensembles, the Random Forest model will not be used in this section.

7.1 LIME parameters

The parameters used in the LIME method have a large influence on the generated explanation.
The explanation can change significantly for an instance if the parameters are changed. Several
parameters exist, the parameters investigated in this research are the number of features used
in the explanation, the kernel width used in Equation (29) and the feature selection method.
At first, the feature selection method will be investigated in combination with the number of
features and a static kernel width. Second, the kernel width will be adjusted in combination with
the number of features and the feature selection method will be static.

A LIME explanation can be assessed in three different ways. First, it can be checked if the
explanation is locally faithful. This means that the prediction of the created local model should
be close to the prediction of the complex model. This can be defined as the absolute error where
the prediction of the complex model is defined as the true value. Furthermore, as a local model
should hold for the local neighborhood, the model’s performance in this neighborhood can be
investigated. This performance is measured by taking the R2 metric. Finally, the difference
between the local model’s prediction and its intercept is taken. This difference tells how many
importance is actually assigned to the features. Therefore, a small difference is undesired since
such an explanation will not give any useful insights. Important is that the intercept is compared
with the local model prediction and not the black box model prediction.

7.1.1 Feature selection method analysis

In the LIME implementation several options exist for feature selection. The following list is a
summation of these options.

• Forward selection

• Auto

• None

• Lasso path

Forward selection method is a well-known method. This method is an iterative process where, in
each iteration, a variable is added that results in the best performing model. The process stops
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if the number of desired features are reached. Lasso is a linear model with sparse coefficients. In
the auto selection method, forward selection is used until the number of desired features exceeds
six. After this, a regression model is trained on all features and the variables with the highest
coefficients are selected. These variables are then used for the final surrogate model. The none
option uses all features and ignores the number of desired features.

In this analysis, 500 explanations are created for each feature selection method. These 500
explanations are divided over 10 different numbers of desired features. This is divided in a range
starting at 5 and that ends at 50 with a step size of 5. This analysis has both be done for the
LGBM and the developed neural network.

LGBM results
In Figures 12, 13 and 14 the results of the analysis can be seen. One conclusion drawn from
the figures is that if more features are used, the quality of the prediction will rise. However, the
quality of the explanations will have more variance, according to the rising standard deviation.
Making it more uncertain if an explanation will be of good quality. Furthermore, the conclusion
can be drawn that the lasso and the forward selection method are the best performing methods. In
Figure 15, the computational times can be seen. The forward selection method is computationally
expensive in comparison with the Lasso method. Therefore, from now on, the lasso method is
used.

Figure 12: The mean absolute error on 50 explanations using the LGBM as complex model
with different feature selection methods

Figure 13: The mean R2 on 50 explanations using the LGBM as complex model with different
feature selection methods
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Figure 14: The mean difference using 50 explanations and the LGBM as complex model

Figure 15: Difference between prediction and intercept

Neural network results
In Figures 16, 17 and 18 the results of the analysis can be seen. The conclusions for the neural
network are very similar to the LGBM results. However, it can be seen that the lasso method
does not perform similarly to the forward selection method anymore. It can be seen that the
lasso method performs significant better on the local neighborhood, with similar R2 performance.
However, it can be seen the difference between the intercept and the prediction is very low.

Figure 16: The mean absolute error on 50 explanations using the neural network as complex
model with different feature selection methods
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Figure 17: The mean R2 on 50 explanations using the LGBM as complex model with different
feature selection methods

Figure 18: The mean difference between the prediction and the intercept using 50 explanations
using the neural network

In Figure 19, the computational times can be seen. The trend seen in the computational times
for the LGBM can also be seen in this figure. From now on, the lasso method will be used.
One of the reasons is the cheap computational power, this will be useful in other analysis on the
method.

Figure 19: Computational time of all regression methods in seconds
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7.1.2 Kernel width analysis

For this analysis, 50 explanations are generated for 50 different settings. These settings consist
out of 5 different kernel widths, i.e. 5, 10, 15, 20, 25. Where a kernel width of 15 approximates
the default setting of the LIME implementation, i.e.,

√
Number of columns× 0.75. The number

of columns refers to the number of variables used in the model. The range for the number of
features used in the explanation starts at 5 and ends at 50 with a step size of 5. Larger values than
50 are undesired, since it increases the complexity of the local model. An increasing complexity
means a decrease in interpretability of the local model. Important to note is, that the size of the
kernel width did not affect the computational times significantly.

LGBM results
From Figure 20, a trend can be seen. This trend shows that the mean error and its standard
deviation is increasing when the number of features used is increasing. In Figure 21, it can be
seen that the R2 score is increasing while the standard deviation stays the same. The conclusion
that can be drawn from this, is that there exists a trade-off. This is a trade-off between accuracy
on the instance or on the local neighborhood. It shows that if one desires a high accuracy on the
instance, a small number of features should be chosen. On the other hand, if one desires a good
explanation for the locally defined neighborhood, more features should be added to the expla-
nation. In Figure 22, there is also no relationship between the kernel width and the difference
between the intercept and the prediction.

Unfortunately, there is not a clear difference in performance of the different kernel widths. How-
ever, a different kernel width highly affects the explanation. This is an issue because there is no
clear indication on a reasonable value of the kernel width. From now on, the kernel width will
be kept at the default value.

Figure 20: The mean absolute error on 50 explanations using the LGBM as complex model
using different kernel widths
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Figure 21: The mean R2 on 50 explanations using the LGBM as complex model using different
kernel widths

Figure 22: The mean difference between the prediction and the intercept using 50 explanations
using the LGBM as complex model

Neural network Results
In Figures 23, 24 and 25, the results of the neural network can be seen. Again, the results of
the neural network look very similar to the results of the LGBM. The same conclusions can be
drawn from the figures below. However, from Figure 25, it can be seen that a small kernel width
causes a larger difference between the prediction and the intercept. However, this conclusion is
uncertain since the standard deviation is also higher.

Figure 23: The mean absolute error on 50 explanations using the neural network as complex
model using different kernel widths
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Figure 24: The mean R2 on 50 explanations using the neural network as complex model using
different kernel widths

Figure 25: The mean difference between the prediction and the intercept using 50 explanations
using the neural network

7.2 SHAP parameters

The most important parameter in the SHAP method is the size of the background data set. The
background set is used for sampling the toggled off variables. The larger the data set, the better
the approximations of the SHAP values will be. However, a large background set will lead to a
longer computational time. The effect of the size of the background set is analyzed for both the
LGBM and the neural network.

In the experiment, the 10 highest SHAP values will be shown. A development curve of these
10 features will be created over 12 settings. The setting available is the size of the background
set. This can be set on 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1,000, using a
background set of more than a 1,000 features will lead to unreasonable computational times.

LGBM Results
In Figure 26, the estimated SHAP values can be seen. It can be seen that the algorithms have
difficulties to converge. It can be seen that after, approximately, 700 instances. However, from
now on, the size of the background will be set on 400. This in order to manage computational
times. The computational times can be seen in Figure 28.
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Figure 26: The R2 on 100 explanations using the LGBM as complex model

Neural network Results
In Figure 27, the development of the SHAP values can be seen. If the size of the background
data set is small, the approximations are not stable yet meaning the approximations will not be
correct. When the number of instances used increases, the approximation becomes more stable
and oscillates between a certain range. From now on, a background set of 600 will be used in
SHAP explanations for the neural network.

Figure 27: Development of SHAP values for two instances and the LGBM

Computational Time
In Figure 28, the computational times for both models can be seen. It is observed that the
computational time behaves linearly with the size of the background set. Furthermore, the
computational times for the LGBM is much longer than the computational time for the neural
network. The computational time for generating a prediction with the LGBM is three times
longer than generating a prediction with the neural network.
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Figure 28: Development of SHAP values for two instances and the neural network

7.3 Standardization

In machine learning, standardizing, or normalizing, the data has a lot of impact on model perfor-
mance. In deep learning, data with different units can lead to no or slower convergence. Second,
if features have a unit difference of several thousands, e.g., a person’s income and the person’s
credit score, a neural network has to learn large weights to compensate which leads to a highly
unstable network. However, if one builds a tree ensemble, e.g., an LGBM, standardizing the data
has little to no impact.

First, it will be shown that an LGBM finds the same relationships if the data is standard-
ized. This will be not be done for a neural network since the model convergence is dependent on
standardizing the data. Therefore, discovered relationships can be different causing comparisons
irrelevant. Second, the impact on the explanation methods will be shown by comparing several
explanations.

7.3.1 Similar models

In order to investigate the impact of standardizing the data, a new model needs to be trained.
This new model is trained on data which is created according to the process described in Sec-
tion 2.4.4. Furthermore, the new standardized LGBM will be trained with the same setting as
described in Section 4.4.

In order to make a comparison of the transparency methods, it is necessary that they discovered
the same relationships. To ensure this, a comparison is made of the performance of the models.
Furthermore, the feature importance method described in Section 6.1 is used to draw similarities
between the models.

In Table 19, it can be seen that the performance metrics are the same. In the third column,
the correlation between the predicted probabilities is very high. These results show that the two
models are very likely to be similar.
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AUC standardized AUC Standard Correlation Probabilities
0.75648 0.75647 0.99656

Table 19: Performance metric is the same and the predicted probabilities are highly correlated

Furthermore, in Figure 29, it can be seen that the performance of the models is very similar.

Figure 29: Confusion matrices of the models look very similar

In Table 20, the feature importance of both models are shown. The feature importance shown
is the split count. The table shows that the models are very similar. However, the split counts
have some small deviations, but they are still close together. Therefore, the assumption is made
that both models are similar. This means that explanations should be similar. However small
deviations in the explanation are allowed because the models are not exactly the same.
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Features Importance
unstan-
dardized

Importance
standard-
ized

Amt. Credit 1415 1420
Days Birth 1219 1247
Amt. Annuity 1170 1212
Days Last Phone Change 937 956
Days ID Publish 875 869
Days Employed 846 846
MAX(bureau.Days Credit) 790 818
SUM(bureau.Amt. Credit Sum) 741 746
Days Registration 727 681
MEAN(bureau.Amt. Credit Sum) 694 702

Table 20: Split count feature importance for the top 10 important features for both models

7.3.2 Comparison of explanations

If the explanations are generated for both models, it can be seen whether standardizing the data
had any influence on the eventual explanation. In Figure 30, the two SHAP explanations can
be seen. The upper explanation is the explanation for the original model and the lower one is
the explanation for the standardized model. It can be observed that both explanations are very
similar. Important to note, is that only the top 10 SHAP values are shown. Furthermore, all the
explanation generated in this section, are generated from the same instance.

Figure 30: SHAP explanation for the original(above) and standardized(below) model

In Figure 31, the generated LIME explanations can be seen. For this method, it can be observed
that the explanations have changed. However, they still have some similarity. The change seen
can be caused by the distance metric. As explained in Section 6.2, the distance metric can behave
badly if the features are in different units. If a feature has a range of a couple of thousands, it
takes over the distance metric compared to features that have a range between zero and one.
More comparisons that show the same result can be seen in Appendix C.
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Figure 31: LIME explanation for the original(above) and standardized(below) model

7.4 Identifying important features

As explained in Section 2.2.1, some variables were left out. These variables are external credit
scores. Obviously, these scores are good predictors of the creditworthiness of a new client. There-
fore, it is expected that if these variables are added to the model the performance will increase
significantly. In this section, these variables will be added to the model. Whereafter, it will be
checked if both explanation methods are able to detect this addition to the model and observe
these strong predictors. From now on, the model with the additional variables will be referred
to as the full model. Furthermore, this analysis will be done for both the LGBM and the neural
network.

In Table 21, it can be seen that the performance of the model significantly increases when the
credit scores are added to the model.

LGBM Neural network
Original 0.7565 0.7278
Full 0.7881 0.7724

Table 21: ROC AUC score of the original and full models

In Figures 32, 33, 34 and 35, it can be seen that both methods are able to detect the strong
predictors. Important to note that the figures for the SHAP method are not the full explana-
tion. Only the variables with the largest SHAP value are displayed. For each figure, the above
explanation is the explanation for the original model. The explanation below is an explanation
for the full model.
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Figure 32: Explanations using the LGBM and the SHAP method

Figure 33: Explanations using the LGBM and the LIME method
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Figure 34: Explanations using the neural network and the SHAP method

Figure 35: Explanations using the LGBM and the LIME method
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More comparisons that show the same result can be seen in Appendix D.

7.5 Changing influential features

For an interpretation method to be of value, it should be able to detect variables that had a large
influence on the model prediction. In this section, this will be investigated for both methods on
both models. The investigation is done for the most positive and the most negative variable in
the explanation.

The general approach for this analysis can be described in several steps. The first step is to
generate explanations with both methods for a specific instance. Second, the variable that con-
tributed the most negative in the prediction is identified. In other words, the variable that raises
the predicted probability the most according to the explanation. After the selection of this vari-
able, a new value will be assigned to this variable for that particular instance. The new value will
be sampled at random from the training set to create this new instance. Finally, a prediction will
be made with this new instance. This prediction will be compared with the original prediction.
The second approach is the same but with the variable that lowers the predicted probability the
most according to the explanation method.

Since the feature with the most negative impact is changed, the prediction should be lower.
However, it can happen that the sampled value has an even more negative impact on the model
prediction. The effect of this should be small. If a feature has a large negative impact, only a
few values should exist that cause an even larger negative impact. Therefore, if the cumulative
change in prediction is taken over a large number of explanations, a clear trend can be seen. In
this analysis, the number of features in this analysis is set on 200.

Figure 36: Change in prediction when, according to the method, the feature with the most
negative influence was changed

In Figure 36, it can be seen that, in the case of the LGBM, the SHAP method is better in
recognizing the feature that influences the prediction in a negative way. Furthermore, it can be
seen that no conclusion can be drawn for the neural network. In Figure 37, this is the case for the
LGBM. For the LGBM, LIME and SHAP have similar performance in picking the most negative
feature. However, in the case of the neural network, it seems that SHAP is better in recognizing
the most positive influencing feature.
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Figure 37: Change in prediction when, according to the method, the feature with the most
positive influence was changed

The reason that the highest absolute influential feature is not changed, is that it would be
unclear whether the prediction will increase or decrease. One option to solve this problem is to
take the absolute value of the change in prediction. However, it could happen that the prediction
changes in the opposite way than expected. If the absolute value is taken on this change, the
curve in the figures above will increase faster than it actually does. Two reasons exist that the
prediction changes in an unexpected way. First, the new sampled value can cause an even higher,
or lower, prediction than the current value. Then, the curve will be overconfident because of the
analysis design. Second, it can happen that the explanation method wrongly identified a positive
influential feature as positive influential, or negative influential. If this happens, the curve will
be overconfident by actually the lack of a method being a good identifier of influential features.

7.6 Global behavior

In this section, the ability to express global behavior for both methods will be investigated. This
will only be done for the LGBM, because the method described in Section 6.1 can be used as a
reference.

As can be seen in Section 6.1, feature importance for trees can be created in several ways.
In Table 22, the split count can be seen.

Features Total split
Amt. Credit 1420
Days Birth 1247
Amt. Annuity 1212
Days Last Phone Change 956
Days ID Publish 869
Days Employed 846
MAX(bureau.Days Credit) 818
SUM(bureau.Amt. Credit Sum) 746
Days Registration 681
MEAN(bureau.Amt. Credit Sum) 702

Table 22: Split count feature importance for the top 10 important features
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The feature importance can differ greatly when different measurements are used, e.g., split count
and total gain. Therefore, the total gain of the features will be shown in Table 23. This also
means that the globally important features indicated by SHAP and LIME can be present in of
the two tables. Therefore, a method receives one point if a global feature is present in one table
and two if it is present in both.

Features Split gain
MEAN(bureau.Days Credit) 66120
Days Employed 59000
Days Birth 44299
MAX(bureau.Days Credit) 33797
Amt. Credit 30248
Education Type Higher Education 28907
SUM(bureau.Amt. Credit Max Overdue) 28734
Region Rating Client 26965
Days Last Phone Change 26315
Code Gender F 24783

Table 23: Total gain feature importance for the top 10 important features

7.6.1 Global interpretation SHAP

As described in Section 6.3, SHAP is able to create global interpretation by combining local
interpretations. As SHAP values are unique to an instance, one SHAP value can create an
insight locally. However, if these SHAP values are collected for more instances, e.g., 200, a global
interpretation can be created. By taking the mean of the absolute value of the SHAP values of
the instance, feature importance can be created. This can be seen in Table 24. In total, SHAP
was able to detect eight features that were in either the split count or the gain importance.
Furthermore, the SHAP method scored 13 points.

Features Importance
MEAN(bureau.Days Credit) 0.0260
Days Birth 0.0244
Days Employed 0.0241
Code Gender F 0.0230
SUM(bureau.Amt. Credit Max Overdue) 0.0196
MAX(bureau.Days Credit) 0.0185
Days Last Phone Change 0.0180
MEAN(bureau.Amt. Credit Sum Debt) 0.0177
Amt. Annuity 0.0164
SUM(bureau.Amt. Credit Sum Debt) 0.0142

Table 24: Mean absolute SHAP value for the top 10 important features

Furthermore, if one does not take the absolute value, the current feature importance can be
extended. This extended feature importance can show if the influence on the model is positive
or negative for low or high feature values. Such a feature importance plot can be seen in Figure
38.
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Figure 38: Global feature importance using SHAP values

Third, if one zooms in on a particular variable, in this example Days Birth. If the value of
a feature is plotted against its SHAP value, the relationship with the target variable can be
observed. Such a SHAP dependence can be seen in Figure 39. In this figure it can be seen that
older people or more likely to default according to the model. Furthermore, with such plots,
interaction between features can be investigated. In the figure, people that had higher education
are colored red. It can be seen that young, high educated people are riskier than young, low
educated people. A reason for this could be the fact that young, high educated people often have
a student debt making it more difficult to payback their loan.

Figure 39: SHAP dependence plots can help investigate discovered relationship

7.6.2 Global interpretation LIME

In this section, a possible global interpretation technique will be discussed for the LIME method.
Unfortunately, the coefficients created by the LIME method do not have the same properties
as the SHAP values. However, the idea of combining local explanations can still provide some
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meaningful insights into the global behavior of a model. In order to get this understanding of
global behavior, 200 LIME explanations are generated with each ten variables. For each expla-
nation, the coefficients are ranked and scored. The scoring depends on the rank of each variable.
The feature with the largest coefficient will receive a scoring of ten, the second largest a scoring
of nine and eventually the variable with the smallest coefficient will receive a scoring of one. The
intuition behind this, is that important variables occur often in the explanation. Therefore, such
a ranking system over a large number of explanations can give insight into the global importance
of all the variables.

After all explanations are generated, all features can be ranked according to their importance.
In Table 25, the globally important features identified by the LIME method can be seen. Just as
the SHAP method, LIME was able to detect eight out of the ten features present in either the
gain or split count importance. Furthermore, in total it detected 11 features.

Features Importance
SUM(bureau.Amt. Credit Max Overdue) 1929
Code Gender F 1739
Region Rating Client 1601
Education Type Higher education 1047
MEAN(bureau.Days Credit) 809
SUM(previous application.MEAN(credit
card balance.Count Drawings ATM
Current))

679

Days Employed 617
Days Birth 474
Max(bureau.Days Credit) 396
Family Status Married 381

Table 25: Occurrences in 200 LIME explanations for the top 10 important features
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8 Conclusion

In this section, the LIME and SHAP methods will be compared using the analysis done in Section
7. In total five different analysis have been performed. The first is analyses on the parameters of
the methods. Second, the impact of standardizing the data has been investigated. Third, it was
investigated if the methods were able to detect strong predictors. Fourth, the impact of changing
variables that had a strong influence on the model is observed. Finally, the ability of providing
global interpretations was investigated.

In the parameter analysis, it was observed that the parameters of the LIME method have a
strong influence on the eventual explanation. Such parameters are the variable selection method,
kernel width and the number of variables used in the explanation. It has been shown that differ-
ent settings lead to different explanations and a different quality of explanations. Furthermore,
it was observed that the forward selection and the lasso method were the better performing
methods. Of these two methods, the lasso method was more efficient, speaking of computational
times. Therefore, the lasso variable selection was preferred.

In general, if more variables are used, the explanations will be of better quality. However,
using more features will increase the complexity of the surrogate model. Furthermore, it was
shown that a trade-off exists in the LIME method. If one desires high accuracy on the instance,
lower accuracy on the neighborhood should be accepted and vice versa. Finally, it was shown
that the kernel width had a big influence on the eventual explanation. However, no relationship
could be found between the kernel width and the quality of an explanation.

The parameters described above are not all the parameters used by the LIME method. Other
parameters are the distance metric, the kernel used and number of instances in the local neighbor-
hood. All these parameters influence the explanation and it is difficult to find correct settings. It
means that for each setting, new parameter settings should be investigated until the explanation
makes sense. Obviously, all this is a big disadvantage for the LIME method.

The SHAP method does not have such a large parameter space. The only parameter of in-
fluence is the size of the background data set. It has been shown that the effect of the size is
rather small. A larger background set means better estimations for the SHAP values and a larger
computational time.

Second, standardizing the data had impact when the LIME method was used. The distance
metric used in this method can corrupt explanations if the data is not in the same unit. There-
fore, if the underlying model used unstandardized data, the SHAP method should be used. The
SHAP method uses a different proximity measure and the unit of variables does not have any
impact on this metric.

Third, when the three strong predictors were added to the model, both methods were able
to detect these strong predictors. This makes both models suitable for detecting variables that
have a strong influence on the predictions.

Fourth, the ability to detect features that have the largest influence was investigated. The
variables with the largest SHAP value or the largest LIME coefficient were changed, both posi-
tive and negative. After the value of the variable was changed, the change in the prediction was
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observed. It was shown that SHAP was slightly better in detecting the most influential variable
since the cumulative change in the prediction was larger.

Finally, the ability of giving a global interpretation was investigated. The SHAP method has
the ability to give a global interpretation by definition. By generating a lot of explanations,
the SHAP method is able to detect global relationships and give an insight into variable rela-
tionships. Especially, the dependence plot created by the SHAP method can be really valuable.
Unfortunately is the LIME method not able to to create such insights by definition. However,
by generating a lot of explanations, a global insight can be created.

To conclude, both SHAP and LIME are able to generate reasonable explanations. Both meth-
ods can detect features that had influence on the prediction. However, unstandardized data
can corrupt LIME explanations. Furthermore, the use of the explanation should be taken into
account. If explanations are used for model development or validation, both methods can be
used. However, using the LIME method as explanation method towards the model users can
cause problems. The influence of the parameters on the LIME explanation is large and makes it
impossible to distinguish the most correct explanation. Therefore, it is recommended to use the
SHAP method in such use cases.
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9 Discussion

The goal of this research was to investigate the use of machine learning in a probability to de-
fault(PD) model and to provide transparency to such models. It has been shown that machine
learning models can outperform traditional models if one looks at discriminatory power. How-
ever, during the development of the models, it was discovered that the use of machine learning
introduces new problems.

An example of such a problem is the problem of imbalanced data. Imbalanced data can cre-
ate biased models. These biased models are skewed towards the majority class, this results in
predicting a lower PD. If such a model is used in production as a client acceptance model, a bank
is exposed to more risk in reality than the model is predicting.

In this research, a solution is created for this problem. First the data is balanced. In this
way a model is able to learn more about defaults. However, such an operation has a warping
effect on the posterior probability. In other words, the probability distribution of the predictive
model is not aligned with the true distribution. Therefore, a rating system is introduced. A
rating system creates a link between a model prediction and the probability to default. It was
shown that the combination of a machine learning model and a rating system creates an accurate
and robust PD model.

Furthermore, it was shown in Section 5.2 that using a tree ensemble can introduce tail risks
in the PD curve. A tree ensemble often consists of contradictory predicting trees, this means
that the predictions will be centered around the mean PD in the training set. The tail risk was
even higher in the Random Forest compared to the LGBM. However, it is not clear yet what the
business implication is for this problem. This could be a topic for further research.

Second, an analysis of the two most used explanations methods was done. Both methods are
able to provide meaningful explanations. Such explanations can be used to provide transparency
and interpretation for machine learning models. Furthermore, the methods can be used to gain
trust in the inner workings of the models. By generating a large number of explanations, the
behavior of a model will become clear. Both methods can be used to provide local interpretation
and global interpretation. However, the abilities of the SHAP method exceeds the abilities of the
LIME method in global interpretation. The combination of SHAP values can show discovered
relationships and help analyzing the working of black box models.

However, the LIME method does have some issues. For example, it has been shown that it
is not a correct method if the data set is not standardized. Furthermore, the LIME method uses
several parameters that highly affect the explanation. Unfortunately, there are, not yet, no clear
procedures for identifying correct values of these parameters. This could be a subject for future
research.

A limitation of this research is the focus on one particular data set. As this gave other ben-
efits, like deep understanding in the models, data and use case. However, the methods can
behave differently on other data sets and other use cases. Therefore, the main recommendation
is to use both methods next to each other. The analysis done in Section 7.5, is able to help
deciding which method is more suitable for that use case. The creation of more of such analysis
is also a suitable topic for future research.
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Furthermore, it was explained that the intended use of the explanation has an influence on
which method to use. A future study towards regulations on black box models could help decid-
ing when to use which method. For example, the LIME method could work better for a certain
black box model. However, the SHAP explanation is the only explanation that is compliant with
the regulation on that use case. In this case, the SHAP method will get preference even if the
LIME method will generate better explanations.

A limitation of this research, is the focus on two explanation frameworks. However, focusing
on two methods gave the ability investigate the methods more. Besides LIME and SHAP, other
methods exist. For example, one could generate counterfactual explanations. A counterfactual
explanation provides an actionable explanation in the form of ”if not X, then not Y”. More
information on counterfactual explanations and other interpretation techniques can be found in
the book Interpretable Machine Learning by Christoph Molnar [17].
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A List of all available attributes

Table Attribute Description
Application SK ID CURR ID of loan in our sample
Application TARGET Target variable (1 - payment difficulties, 0 - other)
Application NAME CONTRACT TYPE Identification if loan is cash or revolving
Application CODE GENDER Gender of the client
Application FLAG OWN CAR Flag if the client owns a car
Application FLAG OWN REALTY Flag if client owns a house or flat
Application CNT CHILDREN Number of children the client has
Application AMT INCOME TOTAL Income of the client
Application AMT CREDIT Credit amount of the loan
Application AMT ANNUITY Loan annuity
Application AMT GOODS PRICE For consumer loans it is the price of the goods for

which the loan is given
Application NAME TYPE SUITE Who was accompanying client when he was applying

for the loan
Application NAME INCOME TYPE Clients income type
Application NAME EDUCATION TYPE Level of highest education the client achieved
Application NAME FAMILY STATUS Family status of the client
Application NAME HOUSING TYPE Housing situation of the client
Application REGION POPULATION

RELATIVE
Normalized population of region where client lives

Application DAYS BIRTH Client’s age in days at the time of application
Application DAYS EMPLOYED How many days before the application the client

started current employment
Application DAYS REGISTRATION How many days before the application did client

change his registration
Application DAYS ID PUBLISH How many days before the application did client

change the identity document with which he applied
for the loan

Application OWN CAR AGE Age of client’s car
Application FLAG MOBIL Did client provide mobile phone
Application FLAG EMP PHONE Did client provide employer phone
Application FLAG WORK PHONE Did client provide work phone
Application FLAG CONT MOBILE Was mobile phone reachable
Application FLAG PHONE Did client provide home phone
Application FLAG EMAIL Did client provide email
Application OCCUPATION TYPE What kind of occupation does the client have
Application CNT FAM MEMBERS How many family members does client have
Application REGION RATING CLIENT Rating of the region where client lives
Application REGION RATING CLIENT

W CITY
Rating of the region where client lives with taking
city into account

Application WEEKDAY APPR PROCESS
START

On which day of the week did the client apply for
the loan
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Table Attribute Description
Application HOUR APPR PROCESS

START
Approximately at what hour did the client apply for
the loan

Application REG REGION NOT LIVE
REGION

Flag if client’s permanent address does not match
contact address (1=different, 0=same, at region
level)

Application REG REGION NOT WORK
REGION

Flag if client’s permanent address does not match
work address (1=different, 0=same, at region level)

Application LIVE REGION NOT WORK
REGION

Flag if client’s contact address does not match work
address (1=different, 0=same, at region level)

Application REG CITY NOT LIVE CITY Flag if client’s permanent address does not match
contact address (1=different, 0=same, at city level)

Application REG CITY NOT WORK
CITY

Flag if client’s permanent address does not match
work address (1=different, 0=same, at city level)

Application LIVE CITY NOT WORK
CITY

Flag if client’s contact address does not match work
address (1=different, 0=same, at city level)

Application ORGANIZATION TYPE Type of organization where client works
Application EXT SOURCE 1 Normalized score from external data source
Application EXT SOURCE 2 Normalized score from external data source
Application EXT SOURCE 3 Normalized score from external data source
Application APARTMENTS AVG Normalized information about building where the

client lives3

Application BASEMENTAREA AVG Normalized information about building where the
client lives3

Application YEARS BEGIN EXPLUATA-
TION AVG

Normalized information about building where the
client lives3

Application YEARS BUILD AVG Normalized information about building where the
client lives3

Application COMMONAREA AVG Normalized information about building where the
client lives3

Application ELEVATORS AVG Normalized information about building where the
client lives3

Application ENTRANCES AVG Normalized information about building where the
client lives3

Application FLOORSMAX AVG Normalized information about building where the
client lives3

Application FLOORSMIN AVG Normalized information about building where the
client lives3

Application LANDAREA AVG Normalized information about building where the
client lives3

Application LIVINGAPARTMENTS AVG Normalized information about building where the
client lives3

Application LIVINGAREA AVG Normalized information about building where the
client lives3

Application NONLIVINGAPARTMENTS
AVG

Normalized information about building where the
client lives3
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Table Attribute Description
Application NONLIVINGAREA AVG Normalized information about building where the

client lives3

Application APARTMENTS MODE Normalized information about building where the
client lives3

Application BASEMENTAREA MODE Normalized information about building where the
client lives3

Application YEARS BEGINEXPLUATA-
TION MODE

Normalized information about building where the
client lives3

Application YEARS BUILD MODE Normalized information about building where the
client lives3

Application COMMONAREA MODE Normalized information about building where the
client lives3

Application ELEVATORS MODE Normalized information about building where the
client lives3

Application ENTRANCES MODE Normalized information about building where the
client lives3

Application FLOORSMAX MODE Normalized information about building where the
client lives3

Application FLOORSMIN MODE Normalized information about building where the
client lives3

Application LANDAREA MODE Normalized information about building where the
client lives3

Application LIVINGAPARTMENTS
MODE

Normalized information about building where the
client lives3

Application LIVINGAREA MODE Normalized information about building where the
client lives3

Application NONLIVINGAPARTMENTS
MODE

Normalized information about building where the
client lives3

Application NONLIVINGAREA MODE Normalized information about building where the
client lives3

Application APARTMENTS MEDI Normalized information about building where the
client lives3

Application BASEMENTAREA MEDI Normalized information about building where the
client lives3

Application YEARS BEGINEXPLUATA-
TION MEDI

Normalized information about building where the
client lives3

Application YEARS BUILD MEDI Normalized information about building where the
client lives3

Application COMMONAREA MEDI Normalized information about building where the
client lives3

Application ELEVATORS MEDI Normalized information about building where the
client lives3

Application ENTRANCES MEDI Normalized information about building where the
client lives3

Application FLOORSMAX MEDI Normalized information about building where the
client lives3
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Table Attribute Description
Application FLOORSMIN MEDI Normalized information about building where the

client lives 3

Application LANDAREA MEDI Normalized information about building where the
client lives 3

Application LIVINGAPARTMENTS
MEDI

Normalized information about building where the
client lives3

Application LIVINGAREA MEDI Normalized information about building where the
client lives3

Application NONLIVINGAPARTMENTS
MEDI

Normalized information about building where the
client lives3

Application NONLIVINGAREA MEDI Normalized information about building where the
client lives3

Application FONDKAPREMONT MODE Normalized information about building where the
client lives3

Application HOUSETYPE MODE Normalized information about building where the
client lives3

Application TOTALAREA MODE Normalized information about building where the
client lives3

Application WALLSMATERIAL MODE Normalized information about building where the
client lives3

Application EMERGENCYSTATE MODE Normalized information about building where the
client lives3

Application OBS 30 CNT SOCIAL
CIRCLE

Observations of client’s social surroundings with ob-
servable 30 DPD default

Application DEF 30 CNT SOCIAL
CIRCLE

Observations of client’s social surroundings defaulted
on 30 DPD

Application OBS 60 CNT SOCIAL
CIRCLE

Observations of client’s social surroundings with ob-
servable 60 DPD default

Application DEF 60 CNT SOCIAL
CIRCLE

Observations of client’s social surroundings defaulted
on 60 DPD

Application DAYS LAST PHONE
CHANGE

How many days before application did client change
phone

Application FLAG DOCUMENT i Did client provide document i, i = 2, 3, ..., 21
Application AMT REQ CREDIT BU-

REAU HOUR
Number of enquiries to Credit Bureau about the
client one hour before application

Application AMT REQ CREDIT BUR-
EAU DAY

Number of enquiries to Credit Bureau about the
client one day before application (excluding one hour
before application)

Application AMT REQ CREDIT BUR-
EAU WEEK

Number of enquiries to Credit Bureau about the
client one week before application (excluding one day
before application)

Application AMT REQ CREDIT BUR-
EAU MON

Number of enquiries to Credit Bureau about the
client one month before application (excluding one
week before application)
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Table Attribute Description
Application AMT REQ CREDIT BUR-

EAU QRT
Number of enquiries to Credit Bureau about the
client 3 months before application (excluding one
month before application)

Application AMT REQ CREDIT BUR-
EAU YEAR

Number of enquiries to Credit Bureau about the
client one day year (excluding last 3 months before
application)

Bureau SK ID CURR ID of loan in our sample - one loan in our sample can
have 0,1,2 or more related previous credits in credit
bureau

Bureau SK BUREAU ID ID of previous Credit Bureau credit related to our
loan

Bureau CREDIT ACTIVE Status of the Credit Bureau (CB) reported credits
Bureau CREDIT CURRENCY Recoded currency of the Credit Bureau credit
Bureau DAYS CREDIT How many days before current application did client

apply for Credit Bureau credit
Bureau CREDIT DAY OVERDUE Number of days past due on CB credit at the time

of application for related loan in our sample
Bureau DAYS CREDIT ENDDATE Remaining duration of CB credit at the time of ap-

plication in Home Credit
Bureau DAYS ENDDATE FACT Days since CB credit ended at the time of application

in Home Credit
Bureau AMT CREDIT MAX

OVERDUE
Maximal amount overdue on the Credit Bureau
credit so far

Bureau CNT CREDIT PROLONG How many times was the Credit Bureau credit pro-
longed

Bureau AMT CREDIT SUM Current credit amount for the Credit Bureau credit
Bureau AMT CREDIT SUM DEBT Current debt on Credit Bureau credit
Bureau AMT CREDIT SUM LIMIT Current credit limit of credit card reported in Credit

Bureau
Bureau AMT CREDIT SUM

OVERDUE
Current amount overdue on Credit Bureau credit

Bureau CREDIT TYPE Type of Credit Bureau credit
Bureau DAYS CREDIT UPDATE How many days before loan application did last in-

formation about the Credit Bureau credit changed
Bureau AMT ANNUITY Annuity of the Credit Bureau credit
Bureau bal-
ance

SK BUREAU ID Recoded ID of Credit Bureau credit

Bureau bal-
ance

MONTHS BALANCE Month of balance relative to application date

Bureau bal-
ance

STATUS Status of Credit Bureau loan during the month

POS CASH
balance

SK ID PREV ID of previous credit in Home Credit related to loan
in our sample

POS CASH
balance

SK ID CURR ID of loan in our sample
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Table Attribute Description
POS CASH
balance

MONTHS BALANCE Month of balance relative to application date

POS CASH
balance

CNT INSTALMENT Term of previous credit

POS CASH
balance

CNT INSTALMENT FUTU-
RE

Installments left to pay on the previous credit

POS CASH
balance

NAME CONTRACT STATUS Contract status during the month

POS CASH
balance

SK DPD DPD during the month of previous credit

Credit card
balance

SK DPD DEF DPD during the month with tolerance of the previous
credit

Credit card
balance

SK ID PREV ID of previous credit in Home credit related to loan
in our sample

Credit card
balance

SK ID CURR ID of loan in our sample

Credit card
balance

MONTHS BALANCE Month of balance relative to application date

Credit card
balance

AMT BALANCE Balance during the month of previous credit

Credit card
balance

AMT CREDIT LIMIT AC-
TUAL

Credit card limit during the month of the previous
credit

Credit card
balance

AMT DRAWINGS ATM
CURRENT

Amount drawing at ATM during the month of the
previous credit

Credit card
balance

AMT DRAWING CURRENT Amount drawing during the month of the previous
credit

Credit card
balance

AMT DRAWINGS OTHER
CURRENT

Amount of other drawings during the month of the
previous credit

Credit card
balance

AMT DRAWINGS POS
CURRENT

Amount drawing or buying goods during the month
of the previous credit

Credit card
balance

AMT INST MIN REGU-
LARITY

Minimal installment for this month of the previous
credit

Credit card
balance

AMT PAYMENT CURRENT How much did the client pay during the month on
the previous credit

Credit card
balance

AMT PAYMENT TOTAL
CURRENT

How much did the client pay during the month in
total on the previous credit

Credit card
balance

AMT RECEIVABLE PRIN-
CIPAL

Amount receivable for principal on the previous
credit

Credit card
balance

AMT RECIVABLE Amount receivable on the previous credit

Credit card
balance

AMT TOTAL RECEIVABLE Total amount receivable on the previous credit

Credit card
balance

CNT DRAWINGS ATM
CURRENT

Number of drawings at ATM during this month on
the previous credit

Credit card
balance

CNT DRAWINGS CURRENT Number of drawings during this month on the pre-
vious credit
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Table Attribute Description
Credit card
balance

CNT DRAWINGS OTHER
CURRENT

Number of other drawings during this month on the
previous credit

Credit card
balance

CNT DRAWINGS POS
CURRENT

Number of drawings for goods during this month on
the previous credit

Credit card
balance

CNT INSTALMENT MATU-
RE CUM

Number of paid installments on the previous credit

Credit card
balance

NAME CONTRACT STATUS Contract status on the previous credit

Credit card
balance

SK DPD DPD during the month on the previous credit

Credit card
balance

SK DPD DEF DPD during the month with tolerance of the previous
credit

Previous ap-
plication

SK ID PREV ID of previous credit in Home credit related to loan
in our sample

Previous ap-
plication

SK ID CURR ID of loan in our sample

Previous ap-
plication

NAME CONTRACT TYPE Contract product type of the previous application

Previous ap-
plication

AMT ANNUITY Annuity of previous application

Previous ap-
plication

AMT APPLICATION For how much credit did client ask on the previous
application

Previous ap-
plication

AMT CREDIT Final credit amount on the previous application

Previous ap-
plication

AMT DOWN PAYMENT Down payment on the previous application

Previous ap-
plication

AMT GOODS PRICE Goods price of good that client asked for (if applica-
ble) on the previous application

Previous ap-
plication

WEEKDAY APPR PROCESS
START

On which day of the week did the client apply for
previous application

Previous ap-
plication

HOUR APPR PROCESS
START

Approximately at what day hour did the client apply
for the previous application

Previous ap-
plication

FLAG LAST APPL PER
CONTRACT

Flag if it was last application for the previous con-
tract

Previous ap-
plication

NFLAG LAST APPL IN DAY Flag if the application was the last application per
day of the client

Previous ap-
plication

NFLAG MICRO CASH Flag Micro finance loan

Previous ap-
plication

RATE DOWN PAYMENT Down payment rate normalized on previous credit

Previous ap-
plication

RATE INTEREST PRIMARY Interest rate normalized on previous credit

Previous ap-
plication

RATE INTEREST PRIVI-
LEGED

Interest rate normalized on previous credit

Previous ap-
plication

NAME CASH LOAN PUR-
POSE

Purpose of the cash loan
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Table Attribute Description
Previous ap-
plication

NAME CONTRACT STATUS Contract status of previous application

Previous ap-
plication

DAYS DECISION Relative to current application when was the decision
about previous application made

Previous ap-
plication

NAME PAYMENT TYPE Payment method that client chose to pay for the pre-
vious application

Previous ap-
plication

CODE REJECT REASON Why was the previous application rejected

Previous ap-
plication

NAME TYPE SUITE Who accompanied client when applying for the pre-
vious application

Previous ap-
plication

NAME CLIENT TYPE Was the client old or new client when applying for
the previous application

Previous ap-
plication

NAME GOODS CATEGORY What kind of goods did the client apply for in the
previous application

Previous ap-
plication

NAME PORTFOLIO Goal of the previous application

Previous ap-
plication

NAME PRODUCT TYPE Was the previous application x-sell or walk-in

Previous ap-
plication

CHANNEL TYPE Through which channel the client was acquired

Previous ap-
plication

SELLERPLACE AREA Selling area of seller place of the previous application

Previous ap-
plication

NAME SELLER INDUSTRY The industry of the seller

Previous ap-
plication

CNT PAYMENT Term of previous credit at application of the previous
application

Previous ap-
plication

NAME YIELD GROUP Grouped interest rate into small medium and high of
the previous application

Previous ap-
plication

PRODUCT COMBINATION Detailed product combination of the previous appli-
cation

Previous ap-
plication

DAYS FIRST DRAWING Relative to application date of current application
when was the first disbursement of the previous ap-
plication

Previous ap-
plication

DAYS FIRST DUE Relative to application date of current application
when was the first due supposed to be of the previous
application

Previous ap-
plication

DAYS LAST DUE 1ST VER-
SION

Relative to application date of current application
when was the first due of the previous application

Previous ap-
plication

DAYS LAST DUE Relative to application date of current application
when was the last due date of the previous applica-
tion

Previous ap-
plication

DAYS TERMINATION Relative to application date of current application
when was the expected termination of the previous
application

Previous ap-
plication

NFLAG INSURED ON APP-
ROVAL

Did the client requested insurance during the previ-
ous application
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Table Attribute Description
Installments
payments

SK ID PREV ID of previous credit in Home credit related to loan
in our sample

Installments
payments

SK ID CURR ID of loan in our sample

Installments
payments

NUM INSTALMENT VER-
SION

Version of installment calendar of previous credit

Installments
payments

NUM INSTALMENT
NUMBER

On which installment the payment was observed

Installments
payments

DAYS INSTALMENT When the installment of previous credit was sup-
posed to be paid

Installments
payments

DAYS ENTRY PAYMENT When was the installments of previous credit paid
actually

Installments
payments

AMT INSTALMENT What was the prescribed installment amount of pre-
vious credit on this installment

Installments
payments

AMT PAYMENT What the client actually paid on previous credit on
this installment

Table 26: List of all available attributes

3What is average ( AVG suffix), modus ( MODE suffix), median ( MEDI suffix) apartment size, common area,
living area, age of building, number of elevators, number of entrances, state of the building, number of floor
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B Credit Rating systems

(a) LGBM
Group 1 2 3 4 5 6 7 8 9 10
Range (0,

0.099)
(0.010,
0.135)

(0.136,
0.171)

(0.172,
0.208)

(0.209,
0.250)

(0.251,
0.299)

(0.300,
0.358)

(0.359,
0.434)

(0.435,
0.546)

(0.547,
1)

PDtrain 0.49% 1.03% 1.71% 2.56% 3.83% 5.21% 7.25% 10.48% 16.20% 31.97%
PDtest 1.28% 1.97% 2.68% 3.70% 4.88% 6.29% 7.79% 10.65% 14.68% 27.67%

(b) LogReg
Group 1 2 3 4 5 6 7 8 9 10
Range (0,

0.112)
(0.113,
0.155)

(0.156,
0.194)

(0.195,
0.232)

(0.233,
0.273)

(0.274,
0.319)

(0.320,
0.372)

(0.373,
0.438)

(0.439,
0.533)

(0.534,
1)

PDtrain 1.79% 2.53% 3.30% 4.22% 5.43% 7.09% 8.28% 10.64% 14.22% 23.22%
PDtest 1.63% 2.75% 3.27% 3.86% 6.06% 6.92% 8.77% 10.59% 15.26% 22.17%

(c) Neural network
Group 1 2 3 4 5 6 7 8 9 10
Range (0,

0.132)
(0.132,
0.181)

(0.182,
0.221)

(0.222,
0.256)

(0.257,
0.289)

(0.290,
0.323)

(0.324,
0.360)

(0.361,
0.410)

(0.410,
0.501)

(0.502,
1)

PDtrain 1.21% 2.00% 2.95% 3.98% 5.07% 6.39% 8.73% 11.03% 14.59% 24.80%
PDtest 1.69% 2.36% 3.45% 4.10% 5.51% 6.82% 8.06% 10.24% 15.48% 23.32%

(d) Random Forest
Group 1 2 3 4 5 6 7 8 9 10
Range (0,

0.127)
(0.128,
0.171)

(0.172,
0.208)

(0.209,
0.244)

(0.245,
0.281)

(0.282,
0.322)

(0.323,
0.370)

(0.371,
0.434)

(0.435,
0.539)

(0.540,
1)

PDtrain 0.00% 0.00% 0.00% 0.00% 0.03% 0.17% 0.76% 2.87% 14.21% 62.70%
PDtest 1.68% 2.62% 3.01% 4.08% 4.92% 5.76% 7.75% 10.25% 16.69% 26.58%

Table 27: Credit rating for all models
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C Additional standardized explanations

In this section, additional explanations are provided. These explanations provide extra proof
that the SHAP method is robust against unstandardized data, while the LIME methods have
issues. Note that the upper explanation is always an explanation of the unstandardized model
where the explanation below is the explanation of the standardized model. Some difference is
seen in the SHAP explanation, however the difference in the LIME explanation is larger.

Figure 40: Influence of standardizing the data for the SHAP method

Figure 41: Influence of standardizing the data for the LIME method
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D Additional strong predictor explanations

In this section, some additional explanations are shown that provide extra proof that both meth-
ods are able to detect the strong predictors. The upper explanation is always an explanation of
the original model where the explanation below is the explanation of the full model.

D.1 LGBM results

Figure 42: Example of the detection strong predictors for the SHAP method
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Figure 43: Example of the detection strong predictors for the SHAP method

Figure 44: Example of the detection strong predictors for the LIME method
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Figure 45: Example of the detection strong predictors for the LIME method
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D.2 Neural network results

Figure 46: Example of the detection strong predictors for the SHAP method

Figure 47: Example of the detection strong predictors for the SHAP method
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Figure 48: Example of the detection strong predictors for the LIME method

Figure 49: Example of the detection strong predictors for the LIME method
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