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Abstract

Context. Road maintenance is an important part of maintaining the quality of

public roads. Regular maintenance is important to ensure that the roads are

safe, it can improve traffic flow, it will increase the lifespan of the road, and

there are economic benefits as well.

Goal. The first goal of this research is to study the impact that road main-

tenance has on traffic intensity, with a focus on the impact it has on freight

traffic. The second is to forecast the traffic intensity during maintenance. And

the third is to implement a model that incorporates a graph neural network

because it can utilise the data from multiple sensors at once.

Method. To study the impact of road maintenance on traffic intensity, hypothe-

sis tests were performed. To predict the traffic intensity, a seasonal naive (base-

line) model, Holt-Winters exponential smoothing, a Spatial Temporal Graph

Neural Network (GNN), and a Transformer were implemented.

Results. Hypothesis tests confirmed that there was a significant change in

traffic intensity during maintenance compared to the traffic intensity before

maintenance. Comparing the models based on their RMSE and MAE showed

that XGBoost had the lowest errors for the 5-minute forecast for passenger

traffic and for the hour-ahead forecast for both types of traffic. The GNN had

the lowest errors for the 5-minute forecast for freight traffic.

Conclusions. This study concludes that there is a significant change in traffic

intensity during maintenance. On the detour there is a significant increase in

both types of traffic and on the advisory route there is a significant increase in

freight traffic. Rijkswaterstaat can use this information to plan these advisory

routes to facilitate freight traffic. The forecasts of the XGBoost models showed

that they can accurately predict traffic intensity, even during maintenance. The

GNN had lower errors than the other models, except for XGBoost. However,

it had lower errors than XGBoost for the 5-minute forecast for freight traffic.
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1

Introduction

1.1 Context

Road maintenance is an important part of maintaining the quality of public roads. Most

people only consciously experience the nuisance they cause, but they do not realise all

the benefits that maintenance can bring. Regular maintenance of roads is important for

several reasons:

Safety

Regular maintenance to repair roads ensures that they are safe for use by vehicles. This

can help prevent accidents caused by potholes and other types of damage.

Smooth Traffic Flow

Maintenance of roads can improve traffic flow by repairing damages, this can help reduce

congestion and delays on the road, making it easier for people to reach their destination.

Increased Lifespan

Regular maintenance can extend the lifespan of the road, preventing it from deteriorating

and requiring more extensive repairs later on. This can also help save money in the long

run by avoiding more expensive maintenance projects.

Economic Benefits

Roads are essential for the transportation of goods and services, and maintenance can help

keep the road network in good condition. This can help support (local) businesses by
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1. INTRODUCTION

providing reliable access to customers and suppliers.

Overall, road works are important because they help maintain and improve the road net-

work, making it safer and more efficient for everyone who uses it.

1.2 Problem Statement

Rijkswaterstaat has to perform road maintenance to ensure the quality of roads and to

keep up with the demand of road users. However, they would like to perform maintenance

with minimal disruption to the traffic flow. Unfortunately, it is not possible to have no

disruption to traffic when road maintenance is performed, but by understanding the impact

that these road works have on different types of traffic, it will be possible to decrease its

impact and improve the experience that road users have with maintenance.

1.3 Research Goals and Questions

This thesis aims to research the impact that road maintenance has on traffic intensity,

with a specific focus on the impact of maintenance on freight traffic. Another goal of this

thesis is to predict the traffic intensity during maintenance and research whether models

are robust to changes in traffic flow because of the maintenance. The final goal is to

determine whether a model that incorporates a graph neural network can utilise the data

from multiple sensors to enhance forecasting accuracy in comparison to models that rely

on data from only one sensor. For these goals, the following research questions were made:

• Does road maintenance have a significant impact on the intensity of freight traffic?

• Can models accurately forecast the traffic intensity during maintenance?

• Can a model that incorporates a graph neural network and utilises data from multiple

sensors at once forecast traffic intensity better than other models that use data from

only one sensor?

1.4 Business Info

1.4.1 Rijkswaterstaat

Rijkswaterstaat is the institution responsible for maintaining and developing roads and

waterways in the Netherlands. Rijkswaterstaat schedules road maintenance and gives

advice about alternative routes in case of road works. The department ‘West-Nederland

2



1.5 Thesis Outline

Noord’ (WNN) of Rijkswaterstaat is responsible for the construction and maintenance of

highways in the province of Noord-Holland. Until 2030 WNN is facing a lot of highway

maintenance, and they will also renovate and replace multiple bridges, tunnels, roads,

sluices and the largest pumping station in Europe in IJmuiden. They want to obtain

insight into the impact of maintenance on the traffic intensity on the road network with a

focus on minimizing its impact on freight traffic.

1.4.2 Centrum Wiskunde & Informatica

Centrum Wiskunde & Informatica (CWI) is the national research institute for mathematics

and computer science in the Netherlands. Their main goal is to generate new ideas that

have positive impacts on society, the economy, and various scientific fields. In the coming

years, their focus is on the following four areas of research: Algorithms, Data Intelligent

systems, Cryptography Security, and Quantum Computing.

1.5 Thesis Outline

This paper is set up in the following way: in Section 2, literature related to this paper will

be discussed. Then in Section 3 the highway maintenance project will be discussed and the

traffic intensity data will be analysed. The methods that will be applied in this paper are

explained in Section 4 and their implementation details and results are shown in Section

5 and Section 6, respectively. Then the paper will conclude a discussion of the findings in

Section 7 and with a conclusion in Section 8.
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2

Literature Review

In this section, literature about traffic forecasting will be discussed. Various types of models

have been used for traffic forecasting purposes. Traditionally statistical (time series) models

have been used. However, in recent years, different types of neural networks have also

been applied to this task and are showing promising results. Additionally, hybrid models

that combine statistical models and neural networks have been explored. Some studies

have utilized other models, such as XGBoost (eXtreme Gradient Boosting) and clustering

methods for forecasting.

2.1 Statistical Models

For time series data, exponential smoothing methods are well-known and have been ex-

tensively applied to different types of time series data (4, 10). There are multiple types of

exponential smoothing methods. Specifically, for time series that have multiple seasonal

components, Holt-Winters exponential smoothing is most often used. Holt-Winters expo-

nential smoothing can be used as a baseline model for more complex models, as papers

often compare their newly proposed models to Holt-Winters (22, 29).

2.2 XGBoost

XGBoost is an algorithm that uses gradient-boosted decision trees for machine learning

tasks. It has been successfully applied to traffic prediction by different researchers (1, 9).

In (18) XGBoost is used to predict hourly traffic intensity. This study also investigates the

effect of different types of regularization on the performance of XGBoost. The performance
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2. LITERATURE REVIEW

of the XGBoost model was compared with other models; a Support Vector Machine, k-

Nearest Neighbors, Decision Trees, Random Forest, Gradient Boosting Decision Trees,

Fully Connected Deep Neural Network, and a Long Short Term Memory network. XGBoost

shows the best performance according to multiple performance measures, as well as being

able to better predict traffic intensity during days that have different traffic patterns, such

as during holidays or extreme weather conditions.

In (37), a hybrid model that combines XGBoost and Harris Hawk optimization is proposed

for a multi-step prediction model. The paper concludes that this model has high accuracy

and stability when applied to a dataset.

2.3 Neural Networks

Various types of neural networks can be used for traffic intensity forecasting. In this liter-

ature review, two types, namely graph neural networks and transformers will be discussed.

2.3.1 Graph Neural Networks

Graph neural networks (GNNs) are used in traffic intensity prediction because they can

leverage the spatial information provided by the locations of sensors on the road network,

which can increase the forecasting capabilities of these networks compared to other types

of neural networks. Most Graph Neural Networks consist of multiple layers, one of which is

a graph neural network, the other layers are other types of neural networks, often recurrent

neural networks (5, 11, 23) or convolutional neural networks (8, 17, 33) are used in the

network architecture as well. Often, a multilayer perceptron is used as the final layer to

output the predictions.

For instance, in (28) a so-called spatial temporal graph neural network (STGNN) is pro-

posed to predict the future traffic flow. The network consists of a spatial graph neural

network layer to model the spatial dependencies in the data, a layer incorporating gated

recurrent units to model the short-term temporal dependencies, a transformer layer to

model long-term temporal dependencies, and a multi-layer feed-forward network as the fi-

nal layer for outputting predictions. To incorporate the spatial information into the graph

neural network, the pair-wise relations between sensors are modeled using a relation ma-

trix based on latent positional representations of the sensors. This STGNN outperforms

the baseline models on two well-known traffic datasets, the METR-LA dataset, and the

PEMS-BAY dataset.

6



2.3 Neural Networks

In another study, (36) proposes a Spatio-Temporal Graph Convolutional Network (STGCN)

which consists of two spatio-temporal convolutional blocks (ST-Conv blocks) and a multi-

layer perceptron as the output layer. These ST-Conv blocks contain temporal gated con-

volution layers that derive the most useful temporal features from the data and a spatial

graph convolution layer to obtain spatial features. In this paper, the spatial information

is modeled using a weighted adjacency matrix, based on the distance between sensors in

the network.

A model called Graph WaveNet is proposed in (34) a, which is inspired by WaveNet

(24). The authors utilize stacked dilated convolutions from WaveNet, allowing the Graph

WaveNet to efficiently process long temporal sequences. Additionally, they introduce a

self-adaptive adjacency matrix, which is better at representing spatial data compared to

a static adjacency matrix. Based on this paper, (25) proposes modifications to Graph

WaveNet to enhance its performance.

2.3.2 Transformers

Transformer models are well-known for their successful application in Natural Language

Processing. Due to their ability to process sequential data, they can also be applied to

time series data.

In (3), a Traffic Transformer is proposed. This model utilizes a new type of positional

encoding to capture the temporal dependencies in time series data. Both the encoder and

decoder of the Traffic Transformer include a graph convolutional network (GCN) block to

model spatial dependencies in the data.

In (15) trafficBERT is proposed, this model is based on the BERT ( bidirectional encoder

representations from transformers) language model. Instead of using NLP embeddings,

trafficBERT incorporates a weekday embedding. The model is pre-trained using are large

dataset to enhance its predictive abilities for traffic flows. The study demonstrates that

trafficBERT outperforms baseline models, like ARIMA on benchmark datasets METR-LA,

PeMS-L, and PeMS-Bay. This study not only highlights the effectiveness of transformer

models for predicting traffic intensity but also shows the benefits of transfer learning in

improving the forecasting ability of a model.

7
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2.4 Hybrid Models

There is a wide range of papers discussing different types of hybrid models, (2, 12, 27, 32),

A few notable examples are highlighted in this section.

In (21) NN-ARIMA is proposed, in which a Multi-Layer Perceptron (MLP) is used to

identify the pattern of the traffic flow and ARIMA is used to process the residuals of the

MLP to identify location-specific traffic features.

Another hybrid approach is used by (35), where an ARIMA-BPNN (Back Propagation

Neural Network) optimized using Simulated Annealing (SA) is proposed. This model

improves traffic prediction accuracy by leveraging the linearity of ARIMA and the non-

linearity of the BPNN.

Statistical methods and transformers can also be combined into a single model. An exam-

ple of this is ETSformer: Exponential Smoothing Transformers for Time-series Forecasting

(31), which builds upon the basic transformer model by incorporating exponential smooth-

ing attention (ESA) and frequency attention (FA) instead of the self-attention mechanism

used in the original transformer model.

8



3

Case Study

3.1 Road Maintenance

In May of 2021, Rijkswaterstaat scheduled maintenance on the A4 Highway between in-

terchanges ’De Hoek’ and ’Burgerveen’, the location can be seen in Figure 3.1. This

maintenance was part of ’Groot variabel onderhoud 2021’ in the region West Nederland

Noord. As part of the maintenance the top layer of asphalt, and in some areas also the

intermediate layer, will be replaced. Other maintenance activities are repairing the crash

barriers, vehicle detection loops, and the road verge.

The maintenance is divided into two phases, which will be explained in Section 3.1.1 and

3.1.2 below. Phase 1 took place during the weekend, starting on Friday the 7th of May

21:00 and ending on Monday the 10th of May 05:00. Phase 2 took place after that, starting

when phase 1 ended and lasted until Monday the 31st of May 05:00.

3.1.1 Phase 1

During Phase 1 of the maintenance project, a 2-0 system is applied to interchange Burg-

erveen, which means that in one direction of the highway 2 lanes are open, and in the other

direction no lanes are open. In this case, no lanes will be open on the A4 starting from

the interchange Burgerveen in the direction of Den Haag/Rotterdam. The traffic going in

this direction will be directed to the A44 where advisory routes are indicated. For traffic

coming from Den Haag/Rotterdam, 2 lanes are open, but they will be redirected from the

main carriageway left (HRL) to the main carriageway right (HRR) and back to the HRL

after interchange Burgerveen. This is shown in Figure 3.2.

9



3. CASE STUDY

Figure 3.1: Map showing the location of Phase 1 and Phase 2 of the maintenance.

Phase 1 is split into two sub-phases, Phase 1a and Phase 1b. Phase 1a lasts for the

duration of Phase 1, except for the night of Saturday May 8th 21:00 until Sunday May 9th

09:00, when Phase 1b is in effect. During Phase 1a the situation is as described above and

traffic on the A44 from Den Haag/Wassenaar can continue as normal onto the A4 HRR to

Amsterdam and the same holds for traffic entering the highway using the on-ramp (toerit

Nieuw Vennep) at the interchange, this is shown in Figure 3.2a. During Phase 1b, shown

in Figure 3.2b, the situation is again as described above, however, now the traffic coming

from the A44 from Den Haag/Wassenaar and traffic wanting to enter the A4 using the

on-ramp (toerit Nieuw Vennep) at the interchange cannot go onto the A4, they have to

use a detour instead, which is shown in Figure A.1 in Appendix A.

3.1.2 Phase 2

During Phase 2, a 6-2 system is applied between interchanges Burgerveen and de Hoek. On

the HRR, towards Den Haag, four lanes are open to traffic that normally drives on the HRR

towards HRR, but two lanes will be used for traffic going in the opposite direction towards

Amsterdam. On the other carriageway, the HRL towards Amsterdam, two lanes will be

open to traffic during the day. The other lanes on the HRL are closed for maintenance.

10



3.1 Road Maintenance

(a) Phase 1a

(b) Phase 1b

Figure 3.2: 2-0 system during Phase 1 of the maintenance.

However, at night, only one lane will be open for traffic. During phase 2 detours are not

necessary, but there are advisory routes traffic can follow using the A2, A12, and A20.

Because the HRR consists of five lanes and now has to facilitate six lanes, four of the

lanes are smaller than usual and no freight traffic is allowed on those. Freight traffic going

towards Den Haag have to use the two rightmost (slowest) lanes on the HRR and freight

traffic going towards Amsterdam has to use the two lanes that are open on the other

carriageway, the HRL. The maximum speed for all lanes is decreased from 100 km/h to 70

km/h.

Phase 2 also has two sub-phases, however no specific dates were given for these phases.

There is a minor difference between Phase 2a and Phase 2b, which is a change of the open

lanes on the HRL. In phase 2a, traffic is directed towards the two leftmost lanes, and in

phase 2b, traffic is directed to the two rightmost lanes to facilitate the maintenance of

different parts of the carriageway. Phase 2a and Phase 2b are shown in Figure 3.3, where

the arrow in Figure 3.3b indicates the change in open lanes.

11
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(a) Phase 2a

(b) Phase 2b

Figure 3.3: 6-2 system during Phase 2 of the maintenance.

3.2 Data Analysis

3.2.1 Data Acquisition

The data concerning the traffic intensity of Dutch roads and highways can be downloaded

from the Dexter application1 by Nationaal Dataportaal Wegverkeer (NDW)2. Sensors are

used to measure the traffic intensity and other traffic information. From Dexter, sensor

locations can be selected for which the traffic data can be downloaded.

For this case study, 52 sensor locations were chosen along the A4, A44, and A5 because

the roadworks took place on the A4, and the A44 and A5 are directly connected to the

A4 highway. And 15 locations were chosen along the N205, N207, N208, and A9 as these

roads were used in a detour during Phase 1 of the maintenance.

3.2.2 Technical Exclusions

Of these 67 locations, multiple locations were marked as exclusions in the dataset due to

anomalies in the measurements. One sensor is excluded because it’s a deviating location

since it is in the middle of a ’weefvak’3. Another is located on a hard shoulder (vluchtstrook,

in Dutch) and has deviating traffic patterns because this part of the road is only opened

when there’s a lot of traffic on the road (usually during rush hour), that’s why this location

is removed from the dataset as well. Three more locations were excluded because of
1https://dexter.ndwcloud.nu/
2https://www.ndw.nu/
3https://nl.wikipedia.org/wiki/Weefvak
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3.2 Data Analysis

damages to the sensors after roadworks, which left the sensors with no measurements for

the intensity and speed.

3.2.3 Data Description

The dataset contains multiple features which are either characteristics of the sensor, or

measurements made by the sensor. Table 3.1 shows the features that were used in this case

study. Of these features, the most important ones are ’start_meetperiode’, ’gem_intensiteit ’,

’voertuigcategorie’, ’start_locatie_latitude’, and ’start_locatie_longitude’. These will be

discussed more in-depth.

Table 3.1: Features from the dataset used for the analysis in this case study.

Column Name Description

id_meetlocatie ID of the sensor
start_meetperiode Start time of measurements
eind_meetperiode End time of measurements
incomplete_waarnemingen_intensiteit Number of incomplete intensity measurements
incomplete_waarnemingen_snelheid Number of incomplete speed measurements
waarnemingen_intensiteit Number of intensity observations (vehicles)
waarnemingen_snelheid Number of vehicles speed was observed for
data_error_snelheid Indicator of error in speed measurement
data_error_intensiteit Indicator of error in intensity measurement
gem_intensiteit Average intensity
gem_snelheid Average speed
totaal_aantal_rijstroken Total number of lanes
nauwkeurigheid Accuracy of sensor measurements
voertuigcategorie Vehicle category
start_locatie_latitude Latitude of sensor location
start_locatie_longitude Longitude of sensor location
naam_meetlocatie Description of sensor location

(including road name and mile marker)

The most important feature is gem_intensiteit because this will be used as explanatory

variable in the forecasting models. gem_intensiteit is the measured traffic intensity, ex-

pressed in vehicles per hour. gem_snelheid is the average speed that the vehicles were

driving. start_meetperiode indicates the date and time that a measurement was taken,

and because the granularity of the dataset is 5 minutes, eind_meetperiode is always 5 min-
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utes later than start_meetperiode. Another important feature is voertuigcategorie, which

indicates the vehicle category the measurements were taken for. The vehicle category dif-

fers per sensor, some sensors measured only three different vehicle types, which are shown

in Table 3.2, while others measured five different vehicle types, shown in Table 3.3. The

two features start_locatie_latitude and start_locatie_longitude indicate the latitude and

longitude of the sensor location, which are important features for the GNN to create a

graph out of the sensor locations.

Table 3.2: Three different vehicle categories used by sensors.

Vehicle Category

1 length ≤ 5.6

2 5.6 < length ≤ 12.2

3 length > 12.2

Table 3.3: Five different vehicle categories used by sensors.

Vehicle Category

1 1.85 < length ≤ 2.4

2 2.4 < length ≤ 5.6

3 5.6 < length ≤ 11.5

4 11.5 < length ≤ 12.2

5 length > 12.2

3.2.4 Missing Data

For this project, it is important that the sensors measure the traffic intensity separately

for different vehicle categories so that the impact of the roadworks on freight traffic and

passenger traffic can be analysed. However, it was found that for some sensors no vehicle

categories were recorded. Because of this, these sensors were removed from the dataset.

From visual inspection, it was found that two sensors had a considerable period of time

when no intensity was measured, Since these dates are important for the analysis, these

two sensors were removed from the dataset as well.

Some values for speed and intensity were missing as well for other sensors, but as these

missing values were just incidental occurrences, the values were interpolated using a linear

interpolation method.
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3.2.5 Data Aggregation

The dataset contains different types of sensors, some sensors measure multiple lanes, but

others only measure one lane so there are multiple sensors in one location. The measure-

ments from these multiple sensors at one location are added together, resulting in a total

of 46 sensors. The locations of these sensors are shown in Figure 3.4.

Figure 3.4: Map showing the locations of the 46 sensors.

Because the focus of this paper is on the impact of maintenance on freight traffic, the

different vehicle categories have to be aggregated in a way that there will be two categories:

freight and passenger traffic. As shown before in Tables 3.2 and 3.3, there were multiple

vehicle categories that the sensors measured. To simplify these multiple vehicle categories

into two categories, it was decided to put vehicles that measured less than or equal to 5.6
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meters into the passenger category, and vehicles that are longer than 5.6 meters into the

freight category.

3.2.6 Data Preparation

To prepare the dataset for training and testing the performance of different models, it was

split into a training, validation, and test set. 70% of the data was used for training, 10% for

validation, and 20% was used for testing. The dates and times that are included in these

splits are shown in Table 3.4. From this table we can see that Phase 1 of the maintenance

is included in the training set, as well as four days of Phase 2. This means that the models

are able to learn from regular traffic patterns in April 2021, as well as from changes in

traffic intensity during maintenance.

Table 3.4: Overview the dates and times that are included in the training, validation, and
test set.

Start date and time End date and time

Training set 01-04-2021 00:00 13-05-2021 16:45
Validation set 13-05-2021 16:50 19-05-2021 19:05
Test set 19-05-2021 19:10 31-05-2021 23:55

3.3 Impact of Road Maintenance

3.3.1 Analysis of Traffic Intensity

To analyse the impact that the maintenance on the A4 had on the traffic intensity, sensors

at some key points were selected. These are sensors 5, 8, 20, 27, and 38. These were selected

because sensor 5 is on the HRL near interchange De Hoek where Phase 2 took place, sensor

8 is on interchange Burgerveen where Phase 1 took place, sensor 20 is located on the A4

south of interchange Burgerveen, sensor 27 is located on the A44 further southwest from

sensor 18, and sensor 38 is located on the N208 at the start of the detour that was used

during Phase 1b. These locations are highlighted in Figure A.3 in Appendix A. For these

sensors, we will look at the traffic intensity in April and May of 2021, and we will also

examine the distribution of freight and passenger traffic during these months.

First we will look at the traffic intensity for sensor 5. This is shown in Figure 3.5a, where

the blue line shows the traffic intensity for passenger traffic and the orange line shows that

of freight traffic. The grey lines indicate the start of a week, starting on a Monday, and the
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red dotted lines are located at the start and end of Phase 1. The traffic intensity to the

right of the rightmost red dotted line is measured during Phase 2. For freight traffic there

does not seem to be a change in traffic intensity during Phase 1, however, it does look like

the traffic intensity decreases during the first week of Phase 2. For passenger traffic, it does

look like there is a slight increase in traffic intensity during Phase 1, and similar to freight

traffic, there seems to be a slight decrease in traffic intensity during Phase 2. From Figure

3.5b we can see that the traffic intensity does not appear to change during maintenance as

compared to the distribution before maintenance.

(a) Traffic intensity at sensor 5.

(b) Distribution of traffic at sensor 5.

Figure 3.5: Traffic intensity and distribution of traffic at sensor 5.

For sensor 8, shown in Figure 3.6 we can see a clear decrease in traffic intensity during

Phase 1, especially for passenger traffic. We can also see this change in the distribution of

traffic, comparatively, passenger traffic decreases more than freight traffic. This decrease in
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traffic makes a lot of sense because sensor 8 is located on interchange Burgerveen, where less

traffic can pass through during Phase 1. During Phase 2, it seems that the traffic intensity

increases during Phase 2, but there does not appear to be a change in distribution during

this phase.

(a) Traffic intensity at sensor 8.

(b) Distribution of traffic at sensor 8.

Figure 3.6: Traffic intensity and distribution of traffic at sensor 8.

Similar to sensor 8, sensor 20 shows a clear decrease in traffic intensity during Phase 1,

this can be seen in Figure 3.7a. This makes sense because it is located on the A4 south

of interchange Burgerveen, where traffic coming from the A4 cannot go. Also similar to

sensor 8, there is a shift in the distribution of traffic during Phase 1, which can be seen in

Figure 3.7b. Comparatively, passenger traffic decreases more than freight traffic. During

Phase 2, it looks like there is a slight decrease in traffic intensity during the first two weeks,

but in the third week of Phase 2, it seems to go back to the level it was before maintenance,
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even with some peaks for passenger traffic.

(a) Traffic intensity at sensor 20.

(b) Distribution of traffic at sensor 20.

Figure 3.7: Traffic intensity and distribution of traffic at sensor 20.

During Phase 1, sensor 27 shows an increase in both passenger and freight traffic, this

is shown in Figure 3.8a. This increase is expected because traffic from the A4 going

southbound towards Den Haag is redirected onto the A44, where sensor 27 is located.

During Phase 2, there does not seem to be a big difference between traffic then and before

maintenance. The distribution of traffic also does not change noticeably during Phase 1

nor during Phase 2, which can be seen in Figure 3.8b.
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(a) Traffic intensity at sensor 27.

(b) Distribution of traffic at sensor 27.

Figure 3.8: Traffic intensity and distribution of traffic at sensor 27.

Finally, we will look at sensor 38, which is located on the detour that is in place during

Phase 1b. Figure 3.9a shows that for passenger traffic, there does not seem to be a change

in traffic intensity during Phase 1, but for freight traffic, there seems to be a slight increase

in traffic. During Phase 2, it seems that there might be a decrease in traffic intensity for

both passenger and freight traffic. The distribution of traffic, shown in Figure 3.9b also

does not seem to change for sensor 38 when comparing the distribution before and during

maintenance.
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(a) Traffic intensity at sensor 38.

(b) Distribution of traffic at sensor 38.

Figure 3.9: Traffic intensity and distribution of traffic at sensor 38.

3.3.2 Hypothesis Testing

To test whether the road maintenance had any impact on traffic intensity, hypothesis

testing will be performed. Because the traffic intensity does not have a normal distribution,

the Mann-Whitney U (MWU) test will be used to compare the traffic intensity before and

during road maintenance. The MWU test assumes that sample (X1, ..., Xn) comes from

distribution X and that sample Y1, ..., Ym comes from distribution Y .

Another test that will be performed is the two-sample t-test, which compares the mean of

two samples. This test can be used as the means of the two samples should follow normal

distributions. In large samples, this is true due to the central limit theorem, despite the

samples not having a normal distribution themselves (19). The significance level for both
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tests will be set to α = 0.05.

For these hypothesis tests, two sets of hypotheses will be used. The hypothesis set that

is used for testing the hypothesis that there is less traffic during maintenance than before

maintenance is shown in (H1) and the hypothesis set for testing the hypothesis that there

is more traffic during maintenance is shown in (H2).

(H1)
H0,MWU : X ≥ Y , H1,MWU : X < Y
H0,t-test : X̄ ≥ Ȳ , H1,t-test : X̄ < Ȳ

(H2)
H0,MWU : X ≤ Y , H1,MWU : X > Y
H0,t-test : X̄ ≤ Ȳ , H1,t-test : X̄ > Ȳ

Phase 1

To test the impact of maintenance during Phase 1, the traffic intensity of the weekends in

April 2021 will be compared to the traffic intensity during Phase 1. So in the hypotheses,

X is the distribution of the traffic intensity during the weekends before Phase 1 with

mean X̄, and Y is the distribution of traffic intensity during Phase 1 with mean Ȳ . For

the sensors in the detour during Phase 1b (sensor 35-46), X is the distribution of traffic

intensity during the weekends from Saturday 21:00 until Sunday 09:00, and Y is the traffic

intensity during Phase 1b, and X̄ and Ȳ are their respective means.

Hypothesis set (H1) is used for sensors 5, 6, 7, 8, 19, 20, 21, and 22 to test the hypothesis

that these sensors measured less traffic during Phase 1 than before Phase 1. These sensors

are shown in Appendix A in Figure A.4a and are indicated with a blue dot. The reasons

these hypotheses are chosen for the sensors are listed below:

• Sensors 5 and 6: because there are only two lanes going onto the A4 during phase

1, possibly leading to a lower traffic intensity at these two sensors further down the

A4.

• Sensors 7, 8: because they are located on interchange Burgerveen.

• Sensor 19: because it is on the HRL, which is closed.

• Sensors 20, 21, and 22: because all traffic from interchange Burgerveen in that di-

rection was redirected to the A44, likely causing lower traffic intensity at these three

sensors.
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Hypothesis set (H2) is used for sensors 18, 27-31, and 35-46. These sensors are shown in

Appendix A in Figure A.4a and are indicated with a red dot. The reasoning for choosing

the hypothesis that there is more traffic at these locations during Phase 1 than before is

listed below:

• Sensors 18: because it is located on the road connecting the A4 and A44, where all

cars going in the direction of Den Haag are redirected to.

• 27-31: because they are located on the A44 where cars going in the direction of Den

Haag are redirected to.

• Sensors 35-46: because they are located on the detour which is used at night when

the A4 at interchange Burgerveen is closed entirely.

In this analysis, we will only consider the sensors that have rejected the null hypothesis

for both tests, as this is a clear indication that the traffic intensity differs before and

during maintenance. From Table A.1 in Appendix A, we can see that the null hypothesis

is rejected in favour of the alternative hypothesis, mean that there is indeed less traffic

during Phase 1 at sensor 7 for freight traffic, an at sensors 8, 19, 20, 21, and 22 for both

types of traffic. And there is more traffic at sensors 18, 27-31, 38-45 for both types of

traffic, and at sensors 35, 37, and 46 for passenger traffic. Figure A.4b in Appendix A

visualises these results.

Phase 2

For Phase 2, we will compare the distribution of the traffic intensity from April 1st 00:00

until May 7th 21:00, X, to the traffic intensity during Phase 2, Y . Again, we will use the

two hypothesis sets as specified in (H1) and (H2).

For sensors 5, 6, 7, and 8 the hypothesis is that there will be less traffic during Phase 2

than there was before maintenance because these sensors 5 and 6 are located on the HRL

where only two lanes are open. Hypothesis set (H1) will be used to test this hypothesis

for these sensors and they are shown in Appendix A in Figure A.5a with a blue dot.

The other sensors that hypothesis testing was performed for during Phase 2 were sensors

17, 18, 19, 23-31, 35, 36, and 37. For these sensors, hypothesis set (H2) was used to test

whether there was more traffic during Phase 2 than before maintenance. These sensors

were chosen because sensors 17, 18, and 19 are on the HRR where now more lanes are

open than usual, thus it is likely that more traffic will be measured there. Sensors 23-31
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were chosen because they are located on the A44, which is part of the advisory route

during Phase 2 and sensors 35-37 are also on this advisory route. The sensors are shown

in Appendix A in Figure A.5a with red dots.

From Table A.2 in Appendix A, we can see that the null hypothesis is rejected in favour

of the alternative hypothesis for sensors 7, 8, 23, and 35-37 for both types of traffic, for

sensors 5, 24-28, 30, and 31 for freight traffic, and for sensors 17, 18, and 19 for passenger

traffic. This means that there is less traffic at sensor 5 for freight traffic and at sensors 7

and 8 for both types of traffic during Phase 2. There is more passenger traffic at sensors

17, 18, and 19 but not more freight traffic. However, sensors 24-28, 30, and 31 measure

more freight traffic, but not more passenger traffic. This could indicate that freight traffic

does make use of advisory routes, while passenger traffic does not as sensors 24-28, 30, and

31 are located on the advisory route. Figure A.5b in Appendix A visualises these results.
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Methodology

4.1 Seasonal Naive

For the baseline model, a seasonal naive model is used. This model uses the value of the

previous season as a forecast for the current time point (13). The forecast for time t (ŷt)

is given by the following equation:

ŷt = yt−m, (4.1)

where yt−m is the actual value at time t−m and m is the number of time steps in a season.

4.2 Holt-Winters Exponential Smoothing

Holt-Winters Exponential Smoothing, also called triple exponential smoothing, is a type of

exponential smoothing which includes a seasonal component (30). Since there are different

types of trends, this model has two variations; one with an additive and another with a

multiplicative seasonal component. The additive model is best applied when the seasonal

component remains more or less constant over time, meaning that the amplitude of the

seasonal fluctuations stays constant, while the multiplicative model is better for times

series that have a seasonal component which varies over time (13).

The equations for the additive model are shown in Equations 4.2-4.5 below.

ŷt+h = ℓt + hbt + st+h−m (4.2)

ℓt = α(yt − st−m) + (1− α)(ℓt−1 + bt−1) (4.3)
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bt = β(ℓt − ℓt−1) + (1− β)bt−1 (4.4)

st = γ(yt − ℓt−1 − bt−1) + (1− γ)st−m. (4.5)

Equations 4.6-4.9 show the equations that are used for the multiplicative model.

ŷt+h = (ℓt + hbt)st+h−m (4.6)

ℓt = α
yt

st−m
+ (1− α)(ℓt−1 + bt−1) (4.7)

bt = β(ℓt − ℓt−1) + (1− β)bt−1 (4.8)

st = γ
yt

ℓt−1 + bt−1
+ (1− γ)st−m. (4.9)

For both the additive and the multiplicative model m is the number of time steps in a

season, h is the number of time steps that the forecast lies in the future, and α, β, and γ

are smoothing constants. Equations 4.2 and 4.6 are the forecast and ℓt, bt, and st represent

the level, trend, and seasonal component of the forecast, respectively.

4.3 XGBoost

XGBoost stands for eXtreme Gradient Boosting, and it is a tree boosting system which

combines multiple regression trees into one algorithm. This combination is called a tree

ensemble model, and it has as advantage that multiple models that perform average by

themselves can have great performance when their forecasts are combined.

The objective of XGBoost is to minimize the following equation (6).

L(t) =

n∑
i=1

l(yi, ŷ
t−1
i + ft(xi)) + Ω(ft)

where Ω(f) = γT +
1

2
λ∥w∥2

(4.10)

Here ŷ
(t)
i is the prediction of the ith instance at the tth iteration and l is a loss function

that calculates the error between prediction ŷi and actual value yi. Ω is a regularisation

function that penalises the complexity of a single regression tree model, denoted by ft. In

Equation 4.10, the regression tree ft that most improves the model is greedily added to it.
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GNN GNN GNN

GRU GRU GRUGNN GNN ...

...

Transformer Layers

Prediction Layer

...

...

Xt Xt+1

Xt+s+1, ..., Xt+s+s'

Xt+s

Positional Encoding Positional Encoding Positional Encoding

Figure 4.1: Spatial Temporal Graph Neural Network framework, adapted from Wang et al.
(28)

4.3.1 SHapley Additive exPlanations (SHAP)

SHAP is a framework for interpreting predictions made by complex models (20). This

framework introduces so-called SHAP values to measure feature importance for a model.

4.4 Graph Neural Network

As discussed in Section 2.3.1, there are many different types of graph neural networks.

The GNN that will be implemented for this paper, is called a Spatial Temporal Graph

Neural Network (STGNN) (28). The framework for this STGNN consists of 4 layers, a

spatial graph neural network layer to capture spatial information, a Gated Recurrent Unit

(GRU) layer to capture local temporal dependencies, a transformer layer to capture global

temporal dependencies, and as final layer a multi-layer feedforward network to output

predictions. This framework is shown in Figure 4.1.

For the STGNN, the road network must be modelled using a directed graph G, which can

be defined in the following way: G = (V,E), where V = {v1, ..., vN} is the set of nodes,

which represent the N sensors which are chosen to be analysed, and E = {e1, ..., eM} is

the set of edges, which represent the roads that connect the different sensors. There will
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only be an edge between two sensors if they are direct neighbours of each other.

4.4.1 Graph Neural Network Layer

The GNN layer (16) tries to capture the spatial information from the directed graph G, it

does so by using the input matrix Xt ∈ RN×din in Equation 4.11, where N is the number

of sensors in G and din is the number of features used in the model.

GNN(Xt) = Xout,t = ReLU(D̃−1/2ÃD̃−1/2XtW )

with Ã = A+ IN

D̃ii =
∑
j

Ãij

D̃ij = 0 if i ̸= j

(4.11)

Here, A is the adjacency matrix, which can be constructed in multiple ways as shown in

Section 4.4.5, and IN is the identity matrix of size N .

4.4.2 Gated Recurrent Unit Layer

The output of the GNN layer is used as input for a Gated Recurrent Unit layer to model

the local temporal dependency. This layer applies the GRU (7) to each of the inputs,

obtained from the GNN layer, separately. The GRU operation at time t for node vi can

be seen in Equation 4.12 below.

zt = σz(WzX̃out,t[i, :] + UzH̃t−1[i, :] + bz),

rt = σr(WrX̃out,t[i, :] + UrH̃t−1[i, :] + br),

Ĥt[i, :] = tanh
(
WhX̃out,t[i, :] + Uh(rt ⊙ UhH̃t−1[i, :]) + bh

)
,

Ht[i, :] = (1− zt)⊙ H̃t−1[i, :] + zt ⊙ H̃t[i, ; ]

H̃t = GNN(Ht)

(4.12)

where σ is the sigmoid function, ⊙ is the element-wise multiplication, and the matrices

Wz,Wr,Wh, Uz, Ur, Uh are the parameters to be learned. Ht[i, :] is the hidden representa-

tion of the current time step and is also the output of the GRU layer.

4.4.3 Transformer Layer

The transformer layer models the global temporal dependency. This layer is applied to

the output sequence (H1[i, :], ...,HT [i, :]) from the GRU layer. The details of a transformer

model are explained in Section 4.5.
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in Equation 4.11 Because the transformer layer needs input which is arranged in se-

quences per sensor/node, the output of the GRU layer needs to be transformed. To do

this, the output of the GRU layer will be stacked row-wise, such that Hvi = (H1[i, :

], ...,HT [i, :]) ∈ RT×din . The positional encoding et will then be added to matrices Hvi ,

such that H ′vi
t [i, :] = Hvi

t [i, :] + et. This matrix H ′vi can then be used as input for the

transformer layer. The output of the transformer layer is Hvi
out ∈ RT×d.

4.4.4 Prediction Layer

To make the final predictions, a multi-layer feed-forward network is used. This network

uses the output {Hvi
out|vi ∈ V } of the transformer layer to make these forecasts.

4.4.5 Adjacency matrix

4.4.5.1 Physical distance with neighbours

A very intuitive way to model the adjacency matrix is by using a distance-based matrix,

namely a weighted adjacency matrix. The closer two sensors are to each other, the bigger

their connection is in the adjacency matrix (36). The entries for the weighted adjacency

matrix can be determined by Equation 4.13.

Aij =

{
exp(−d2ij

σ2 ), if i ̸= j and exp(−d2ij
σ2 ) ≥ ϵ

0, otherwise
(4.13)

dij represents the distance between sensor i and sensor j, and σ2 and ϵ are thresholds to

be set.

4.4.5.2 Correlation matrix

Another way to model the adjacency matrix is by using a similarity-based matrix (14).

This adjacency matrix uses the Pearson correlation between two sensors, and its entries

can be calculated as shown in Equation 4.14.

Aij = corr(vi, vj)

with corr(vi, vj) =
∑T

t=1(vi,t − v̄i)(vj,t − v̄j)√∑∑T
t=1(vi,t − v̄i)2

∑∑T
t=1(vj,t − v̄j)2

(4.14)

where vi,t is a measurement for sensor i at time t, and v̄i is the mean of the measurements

for sensor i.
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4.5 Transformer

A transformer (26) consists of an encoder and a decoder. The encoder receives a sequence

(x1, ..., xn) as an input and maps it to a continuous representation z = (z1, ..., zn). The

decoder uses the sequence z to generate an output (y1, ..., ym) elementwise.

4.5.1 Encoder and Decoder

The encoder consists of a stack of M layers that are identical. Each of these layers contain a

multi-head self-attention sublayer and a fully connected feed-forward network as a sublayer.

Both of these sublayers have a residual connection from the input before the sublayer to a

layer normalization, which means the output for each sublayer is a normalized version of

the output of the sublayer and the residual added together.

in Equation 4.11The decoder consists of a stack of M identical layers as well. The

decoder layer uses the same sublayers as the encoder layer, however, the decoder has

another sublayer added before the other two sublayers. This new sublayer uses a masked

multi-head attention mechanism on the output of the encoder stack. This masking ensures

sure that the predictions of the model for a certain input position cannot depend on

information after this input. The decoder also uses residual connections from the input

before the sublayer to a layer normalization in the same way that is used for the encoder.

4.5.2 Multi-Head Attention

The multi-head attention layer uses queries, keys, and values. The keys have dimension

dk, and the values have dimension dv. Then the attention function is defined as

Attention(Q,K, V ) = softmax
(
QKT

√
dk

V

)
(4.15)

where Q,K ∈ RT×dk and V ∈ RT×dv are the queries, keys, and values for all the nodes,

respectively.

MultiHead(Q,K, V ) = Concat(head1, ..., headS)W
O;

heads = Attentions(QWQ
s ,KWK

s , V W V
s )

(4.16)

where WQ
s , WK

s , W V
s , and WO are matrices to be learned.
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4.5.3 Positional Encoding

Because the transformer does not utilise recurrence or convolution, it has to obtain in-

formation about the order of the sequence in another manner. This is done by using

positional encoding and adding it to the input embeddings. These positional encodings

can be determined as shown in Equation 4.17.

et =

{
sin(t/100002i/dmodel), if t = 0, 2, 4, ...

cos(t/100002i/dmodel), otherwise,
(4.17)

where dmodel is the dimension of the output of the transformer model.

4.6 Error Measures

In this paper, two error measures will be used to compare the performance of the different

algorithms.

4.6.1 Root Mean Square Error)

The Root Mean Square Error (RMSE) can be calculated using the following equation,

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
. (4.18)

The RMSE will be more affected by predictions which are much worse than others since

the difference between the forecast and the actual value is squared.

4.6.2 Mean Absolute Error

The Mean Absolute Error (MAE) uses the absolute value of the difference between the

forecast and the actual value to determine the error, this is shown in Equation 4.19

MAE =

∑n
i=1 |ŷi − yi|

n
(4.19)

31



4. METHODOLOGY

32



5

Implementation Details

5.1 Seasonal Naive

For the seasonal naive model, the seasonal period was chosen to be 24 hours for both

the 5 minutes ahead forecast and the hour ahead forecast. This means that the forecast

for a certain time point would be the value of the traffic intensity 24 hours before that

time point. Since the dataset has an aggregation level of 5 minutes, the seasonal value

is m = 12 ∗ 24 = 288, filling this in in Equation 4.1 gives the following equation for the

seasonal naive model:

ŷt = yt−288. (5.1)

5.2 Holt-Winters

Just like for the seasonal naive model, the seasonal period was chosen to be 24 hours, so

m = 288 and since the time series has a seasonal component that is more or less constant,

the additive model is used for both the 5-minute and the hour-ahead forecast. The model

is occasionally updated with data from past times that a forecast was made for, to increase

the forecasting accuracy.

5.2.1 5-Minute Forecast

The 5-minute forecast is a 1-step ahead forecast, this means that in Equations 4.2-4.5, h will

be equal to 1, and as mentioned in Section 5.1, m = 288, and the values for the smoothing

constants are shown in Table B.1 for freight traffic and in Table B.2 for passenger traffic.
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5. IMPLEMENTATION DETAILS

5.2.2 Hour-Ahead Forecast

The hour-ahead forecast is 12 time steps ahead, this means that in Equations 4.2-4.5, h will

be equal to 12, and equal to the 5-minute forecast, m = 288 and the smoothing constants

are shown in Table B.1 and B.2 for freight and passenger traffic, respectively, as well since

the values of the smoothing constants are the same for both the 5 minute and the hour

ahead forecast.

5.3 XGBoost

The standard hyperparameters for the XGBoost model were used, but different combina-

tions of features were tested.

5.3.1 Features

The same types of features were created for the 5 minute and the hour ahead forecasts.

There are three types of features that were created, namely time features, moving average

features and average intensity features.

The time features are the same for the 5 minute and the hour ahead forecasts. They are

derived from the date and time that the intensity measurement was taken on, and they

are ’hour’, ’day of week’, and ’day of month’.

5.3.2 5-Minute Forecast

The moving average features are based on a simple moving average of a specified number

of intensity measurements. These features can be determined using Equation 5.2 for a

forecast for time t+ 1.

SMAk =

∑k
i=1 xt
k

(5.2)

where xt is the value of the traffic intensity at time t. These moving average features were

created for times up to an hour before t+ 1, so for k = 1, ..., 12.

The average intensity features are just the average intensity, but then from previous time

periods. If the intensity for time t is xt, then the average intensity features that were

created were xt−1, ..., xt−12, i.e. the intensities from 5 minutes before t, up to an hour

before t.
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5.3.3 Hour-Ahead Forecast

The moving average features for the hour-ahead forecast are defined in the same way as

for the 5-minute forecast, only now the forecast is made for time t + 12. These moving

average features were created for times going from one hour up to two hours before t, so

for k = 1, ..., 12.

The average intensity features are defined in the same manner as for the 5-minute forecast.

For the forecast at time t + 12, the average intensity features that were created were

xt, ..., xt−12, i.e. the intensities from time t, up to an hour before t.

5.3.4 Final XGBoost Models

Using the SHAP values, the best features were selected from an XGBoost model that

contained all features. Then, to find the best model, six different models were created.

Starting with a model with only the best feature, up to a model containing the top six

features.

The features that were used for the 5-minute forecasts are shown in Table B.3, and Table

B.4 for freight and passenger traffic, respectively. And the features that were used for

the hour-ahead forecasts are shown in Table B.5, and Table B.6 for freight and passenger

traffic, respectively.

5.4 GNN

5.4.1 Features

For the implementation of the STGNN, the features that were chosen are the hour, weekday,

and month of the start of the measuring period, the average intensity, and the average

speed. The hour, weekday, and month were transformed into cyclical features using the

following equations:

xsin = sin
(

2πx
max(x)

)
xcos = cos

(
2πx

max(x)

)
,

(5.3)

where x represents the vector that contains the cyclical feature. In total eight features were

used, and the number of sensors that were used as input is 46, which means the feature

matrices are Xt ∈ R46×8. For the transformer layer, dmodel = 8 is used, the number of

features in the model.
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The different learning rates that were tried for the STGNN were 0.01, 0.001, 0.0001, and

0.00001. Together with trying out two different types of adjacency matrices, there were 8

different setups for both the 5-minute and the hour-ahead forecasts.

5.4.2 5-Minute Forecast

The input to the GNN for the 5-minute forecast will have a window size of 6 time steps

(half an hour) for freight traffic and a window size of 12 time steps (an hour) for passenger

traffic to predict the next time step. As adjacency matrix, the distance-based matrix was

used for freight traffic, and the correlation matrix was used for passenger traffic. The

learning rates that were used were 0.00001 and 0.0001 for freight and passenger traffic,

respectively.

5.4.3 Hour-Ahead Forecast

The input to the GNN for the hour-ahead forecast has a window size of 12, meaning that

the traffic intensities xt, ..., xt−11 will be used to create a forecast for time t+12. For both

freight and passenger traffic, the correlation matrix was used as adjacency matrix and both

use a learning rate of 0.0001.

5.5 Transformer

For the transformer model, it was decided to use M = 8 for the encoder and decoder

stacks. For the positional encoding, dmodel = 512 like in the original paper (26). For the

encoder sequence lengths, multiple values were tried out, namely 1, 3, 6, 9, 12, 24, 288. And

the learning rates that were tried were 0.01, 0.001, 0.0001, and 0.00001.

5.5.1 5-Minute Forecast

For the 5-minute forecast, the decoder (output) sequence length was set to 1. The param-

eters that were chosen for each sensor for freight traffic are shown in Table B.7, and those

that were chosen for passenger traffic are shown in Table B.8.

5.5.2 Hour-Ahead Forecast

The decoder sequence length for the hour-ahead forecast was set to 12. The parameters

that were chosen for freight traffic are shown in Table B.9, and those that were used for

passenger traffic are shown in Table B.10.

36



6

Results

The mean errors for each of the models are shown in Table 6.1 and Table 6.2 for the 5-

minute forecast and the hour-ahead forecast, respectively. From these tables, we can see

that the model with the lowest error for freight traffic is XGBoost for both the 5-minute

and the hour-ahead forecast, however, the GNN is a close second for the 5-minute forecast.

For passenger traffic, the best model is the GNN for the 5-minute forecast and XGBoost

for the hour-ahead forecast. The full tables showing the errors per sensor are shown in

Appendix C in Tables C.1-C.8 and Figures C.1-C.8 visualise these errors for each of the

sensors.

Table 6.1: Overview of the mean of the errors for the 5-minute forecasts.

Baseline Holt-Winters XGBoost GNN Transformer
Metric

Freight RMSE 5.0097 6.5639 2.5015 2.5228 4.8510
MAE 3.2346 4.8537 1.7162 1.7237 4.1466

Passenger RMSE 19.8530 46.1597 9.9588 9.2536 28.7138
MAE 11.7526 37.5546 6.6968 6.2266 24.8073
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Table 6.2: Overview of the mean of the errors for the hour-ahead forecasts.

Baseline Holt-Winters XGBoost GNN Transformer
Metric

Freight RMSE 5.4061 6.5064 2.7721 3.2765 3.2443
MAE 3.5984 4.7952 1.8815 2.2411 2.5253

Passenger RMSE 24.4048 45.7531 12.8267 14.1388 27.9945
MAE 16.1847 37.0973 8.6306 9.4969 24.2121

6.1 Final Model

In Appendix C we can see that each sensor has a different model which works best for

freight and passenger traffic, and for the 5-minute and hour-ahead forecasts. However,

since it is most useful to have only one model make forecasts for all of the sensors, the

model that had the best overall performance was chosen as the final model that will be

applied to all sensors. This model is XGBoost because it had the lowest mean errors for

freight for the 5-minute forecasts and for freight and passenger traffic for the hour-ahead

forecasts, so for three out of four scenarios.

6.2 Visualisations

To create some more insight into the results, some visualisations will be made for the

sensors that were selected in Section 3.3, sensors 5, 8, 20, 27, and 38. The locations of

these sensors are shown in Figure A.3 in Appendix A. For these sensors, we will compare

the forecasts that XGBoost made to the real traffic intensity and we will look at the

uncertainty of the forecasts.

6.2.1 Real vs. Forecasted Traffic Intensity

6.2.1.1 5-minute Forecast

For sensor 5, the forecasted and real traffic intensity for passenger and freight traffic are

shown in Figure 6.1. From this figure we can see that the 5-minute forecast follows the

actual traffic intensity quit well, especially for passenger traffic. For freight traffic, when

the traffic intensity oscillates, the forecast seems to stay in the middle of these fluctuations.
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Figure 6.1: Real vs. 5-minute forecast of traffic intensity for sensor 5.

Figure 6.2 shows the 5-minute forecast of the traffic intensity for sensor 8, where we can see

that the forecasted traffic intensity follows the general pattern of the real traffic intensity

quite well. But for passenger traffic, the model is not able to predict the highest peaks and

for freight traffic, again, the forecasts stay in the middle when the traffic pattern fluctuates.

Figure 6.2: Real vs. 5-minute forecast of traffic intensity for sensor 8.

The 5-minute forecasts for sensor 20, shown in Figure 6.3, shows the same patterns as

the forecasts for sensor 5 and 8. The forecast for passenger traffic follows the general

traffic pattern nicely, except for a few peaks, where the forecast is not as high as the real

traffic intensity. For freight traffic, the same pattern shows as well, when the actual traffic

intensity fluctuates a lot, the forecasts stays in the middle of these fluctuations, but the

forecast does follow the general traffic pattern.
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Figure 6.3: Real vs. 5-minute forecast of traffic intensity for sensor 20.

For sensors 27 and 38, which can be seen in Figures 6.4 and 6.5, the forecasts show the

same patterns as for the other sensors. The forecasts follow the traffic pattern, but have

some difficulty with peaks. And when the traffic pattern fluctuates, the forecasts stay in

the middle of these fluctuations.

Figure 6.4: Real vs. 5-minute forecast of traffic intensity for sensor 27.
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Figure 6.5: Real vs. 5-minute forecast of traffic intensity for sensor 38.

6.2.1.2 Hour-Ahead Forecast

For the hour-ahead forecasts, we can see the same patterns in the forecasts for all the

selected sensors. This can be seen in Figures 6.6, 6.7, 6.8, 6.9 and 6.10 for sensors 5, 8,

20, 27, and 38, respectively. First we will look at the forecasts for passenger traffic. As

for the 5-minute forecasts, the hour-ahead forecasts for passenger traffic follow the general

traffic pattern quite well, but the model has some trouble forecasting when there are high

peaks in traffic intensity. For freight traffic, the forecasts are actually leading on the actual

traffic intensity. Unlike the 5-minute forecasts, the hour-ahead forecasts seem to be able to

better capture the fluctuations in the traffic patterns. Similar to the hour-ahead forecasts

of passenger traffic, the model has some difficulty forecasting sudden increases in traffic

intensity, and the forecasts are lower than the actual peaks in traffic intensity.
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Figure 6.6: Real vs. hour-ahead forecast of traffic intensity for sensor 5.

Figure 6.7: Real vs. hour-ahead forecast of traffic intensity for sensor 8.
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Figure 6.8: Real vs. hour-ahead forecast of traffic intensity for sensor 20.

Figure 6.9: Real vs. hour-ahead forecast of traffic intensity for sensor 27.
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Figure 6.10: Real vs. hour-ahead forecast of traffic intensity for sensor 38.

6.2.2 Uncertainty of Forecasts

To determine the uncertainty of the forecasts that the model makes, an XGBoost model

was trained 5 times for each of the sensors, with a different random seed, so that each

model makes different forecasts for the same point in time. Using the mean and standard

deviation of these forecasts, we can gain some insight into the uncertainty of the forecasts.

Figures 6.11, 6.12, 6.13, 6.14, and 6.15 show the forecasting uncertainty for sensors 5, 8,

20, 27, and 38, respectively. In the top figure (a) the mean and standard deviation of

the 5-minute forecasts are shown, and in (b) those of the hour-ahead forecast are shown.

The standard deviation, the shaded area, around the mean shows how certain or uncertain

the model is about forecasts at a time. From these figures, we can see that the 5-minute

forecast shows a smaller spread for the standard deviation than that of the hour-ahead

forecast for both passenger and freight traffic. Another thing that stands out is that the

model is more uncertain of the forecasts when the forecast is fluctuating more or when a

peak is forecasted. The uncertainty during fluctuations is especially noticeable for freight

traffic, and the uncertainty of peaks is more noticeable for passenger traffic.
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(a) Uncertainty of the 5-minute forecasts of traffic intensity for sensor 5.

(b) Uncertainty of the hour-ahead forecasts of traffic intensity for sensor 5.

Figure 6.11: Uncertainty of the forecasts of traffic intensity for sensor 5.
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(a) Uncertainty of the 5-minute forecasts of traffic intensity for sensor 8.

(b) Uncertainty of the hour-ahead forecasts of traffic intensity for sensor 8.

Figure 6.12: Uncertainty of the forecasts of traffic intensity for sensor 8.
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(a) Uncertainty of the 5-minute forecasts of traffic intensity for sensor 20.

(b) Uncertainty of the hour-ahead forecasts of traffic intensity for sensor 20.

Figure 6.13: Uncertainty of the forecasts of traffic intensity for sensor 20.
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(a) Uncertainty of the 5-minute forecasts of traffic intensity for sensor 27.

(b) Uncertainty of the hour-ahead forecasts of traffic intensity for sensor 27.

Figure 6.14: Uncertainty of the forecasts of traffic intensity for sensor 27.
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(a) Uncertainty of the 5-minute forecasts of traffic intensity for sensor 38.

(b) Uncertainty of the hour-ahead forecasts of traffic intensity for sensor 38.

Figure 6.15: Uncertainty of the forecasts of traffic intensity for sensor 38.

49



6. RESULTS

50



7

Discussion

7.1 Impact of Maintenance

In Section 3.3 the impact of maintenance was studied by inspecting the traffic intensity

before and during maintenance by using hypothesis tests. From the traffic intensity in-

spection, we could see that for sensors where the traffic intensity decreased during Phase

1, this happened more for passenger traffic than for freight traffic. This could be because

freight traffic has to continue, even if it will be hindered by road maintenance, while pas-

senger traffic could more easily be rescheduled, especially during weekends. We also saw

that for other sensors, those on the A44 and the detours, the traffic intensity increased. So

logically, maintenance impacts the quantity of traffic, not only at the maintenance location

itself but also on the detours and advisory routes.

The hypothesis tests that were performed also showed some interesting findings. It showed

that during Phase 1b, the traffic intensity on the detour was indeed higher than before

maintenance. This means that significantly more traffic used the roads on this detour,

despite Phase 1b being planned during the night. Rijkswaterstaat should take this into

account when planning detours when roads are closed to prevent traffic nuisance to people

living next to those detours, especially if detours go through more residential areas,t like the

N208 going through a residential area in Sassenheim. Another interesting finding was that

during Phase 2, the A44 - part of the advisory route - still had a higher traffic intensity for

freight traffic than before maintenance, despite the A4 being open for traffic. This was not

the case for passenger traffic. This could indicate that freight traffic does follow advisory

routes, and passenger traffic does not. This finding is interesting for Rijkswaterstaat, as
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this can help them plan these advisory routes better in ways that will facilitate freight

traffic.

7.2 Model Performance

From the visualisation of the forecasts in Section 6.2.1, we can see that the models follow the

real traffic intensity quite nicely. The models do not seem to have any trouble forecasting

the intensity, despite there being changes in the traffic flow due to maintenance. An

interesting observation is that for the hour-ahead forecast for freight traffic, the forecast

actually is leading to the actual value of the traffic intensity. One possible reason for that

is that freight traffic has a very strong weekly pattern, and it seems that the model has

learnt this historic pattern very well and takes more recent traffic intensity values less

into account. This forecast could be improved by somehow forcing the model to put more

emphasis on more recent values of traffic intensity.

7.3 Graph Neural Network

In Section 6 we saw that for the 5-minute forecast for passenger traffic, the GNN had the

lowest mean error, and for freight traffic, its errors were very close to that of XGBoost.

For the hour-ahead forecast, the GNN had worse errors than that of XGBoost. This

means that the GNN, despite having more information available than XGBoost, does not

necessarily have better forecasts than XGBoost. But the GNN does have lower errors than

the Baseline model, Holt-Winters and the Transformer. The results also show that the

GNN might be better at very short-term forecasts than more long-term forecasts.

7.4 Future Research

For future research, it could be interesting to have a more in-depth look into the capabilities

of the GNN and the transformer to predict multiple time steps at once, as both of these

models are capable of making multi-step ahead predictions. Using these multi-step ahead

predictions, it would not be necessary to have two separate models to predict a 5-minute

forecast and an hour-ahead forecast. A challenge in this would be to find optimal hyperpa-

rameters for the models to accurately forecast the different time steps. Another interesting

topic for future research is to study road maintenance that took place on different roads,

to investigate whether the forecasting models have similar performance when applied to a

new case study.
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Conclusion

The goal of this research was to study the impact of maintenance on traffic, specifically

freight traffic, and whether traffic intensity can still accurately be forecasted, despite the

impact maintenance might have. Another goal was to implement a model that incorporates

a graph neural network which utilises data from multiple sensors at once to forecast the

traffic intensity. The research questions there were developed to study these goals were:

• Does road maintenance have a significant impact on the intensity of freight traffic?

• Can models accurately forecast the traffic intensity during maintenance?

• Can a model that incorporates a graph neural network and utilises data from multiple

sensors at once forecast traffic intensity better than other models that use data from

only one sensor?

To answer the first question, the traffic intensity was visualised and hypothesis tests were

performed. It was found that there were indeed significant changes in the traffic intensity

for freight traffic, especially on the detour and advisory route. Rijkswaterstaat can use

this information to plan detours and advisory routes in such a way as to facilitate freight

traffic and decrease nuisance for residential areas.

The second question can be answered by looking at the forecasts of the XGBoost models

and comparing them to the real traffic intensity. The visualisations of the forecasts showed

that the models can accurately predict traffic intensity, even during maintenance. So it

can be concluded that the XGBoost model is quite robust to changes in traffic flow that

were caused by maintenance.
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To answer the final question, the errors of the different methods were compared. These

showed that the GNN is better than the baseline model, Holt-Winters exponential smooth-

ing, and the Transformer for the 5-minute and the hour-ahead forecasts for both types of

traffic. However, the GNN was only better than XGBoost at the 5-minute forecast for

passenger traffic. For the 5-minute forecasts for freight traffic, the errors were very close to

that of XGBoost, but were slightly higher. This indicates that the GNN is good at making

short-term forecasts, like the 5-minute forecast.

In conclusion, this research found that there is a significant change in traffic intensity during

maintenance, especially for freight traffic. During maintenance, XGBoost can accurately

forecast the traffic intensity, better than the GNN. So the advice to Rijkswaterstaat is to

implement XGBoost models if they want to predict traffic intensity.
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Appendix A

Case Study

Figure A.1: Map showing the detour used during Phase 1b for traffic coming from the A44
Den Haag/Wassenaar going towards Amsterdam.
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A. CASE STUDY

Figure A.2: Map showing the advisory routes during Phase 2.
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Figure A.3: Map showing the locations of the sensors selected for analysis.
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A. CASE STUDY

(a) Selected sensors and their hypothesis.

(b) Results of hypothesis testing.

Figure A.4: Sensors selected for hypothesis testing for Phase 1.
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(a) Selected sensors and their hypothesis.

(b) Results of hypothesis testing.

Figure A.5: Sensors selected for hypothesis testing for Phase 2.
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A. CASE STUDY

Table A.1: p-value sensor for the Mann–Whitney U test and the t-test to compare traffic
intensity before and during Phase 1 of the maintenance.

Freight traffic Passenger traffic

p-value MWU test p-value t-test p-value MWU test p-value t-test
sensor

5 0.4771 0.2324 0.3006 0.28
6 0.379 0.1907 0.6149 0.4972
7 <0.01 <0.01 0.2158 <0.01
8 <0.01 <0.01 <0.01 <0.01
18 <0.01 <0.01 <0.01 <0.01
19 <0.01 <0.01 <0.01 <0.01
20 <0.01 <0.01 <0.01 <0.01
21 <0.01 <0.01 <0.01 <0.01
22 <0.01 <0.01 <0.01 <0.01
27 <0.01 <0.01 <0.01 <0.01
28 <0.01 <0.01 <0.01 <0.01
29 <0.01 <0.01 <0.01 <0.01
30 <0.01 <0.01 <0.01 <0.01
31 <0.01 <0.01 <0.01 <0.01
35 0.576 0.6317 <0.01 <0.01
36 <0.01 <0.01 <0.01 <0.01
37 0.856 0.5959 <0.01 <0.01
38 <0.01 <0.01 <0.01 <0.01
39 <0.01 <0.01 <0.01 <0.01
40 <0.01 <0.01 <0.01 <0.01
41 <0.01 <0.01 <0.01 <0.01
42 <0.01 <0.01 <0.01 <0.01
43 <0.01 <0.01 <0.01 <0.01
44 <0.01 <0.01 <0.01 <0.01
45 <0.01 <0.01 <0.01 <0.01
46 0.1556 0.1667 <0.01 <0.01

Table A.2: p-value sensor for the Mann–Whitney U test and the t-test to compare traffic
intensity before and during Phase 2 of the maintenance.

Freight traffic Passenger traffic
p-value MWU test p-value t-test p-value MWU test p-value t-test

sensor

5 <0.01 <0.01 0.0929 0.5608
6 0.6911 0.5089 <0.01 0.1076

Continued on next page
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Table A.2: p-value sensor for the Mann–Whitney U test and the t-test to compare traffic
intensity before and during Phase 2 of the maintenance.

Freight traffic Passenger traffic
p-value MWU test p-value t-test p-value MWU test p-value t-test

sensor

7 <0.01 <0.01 <0.01 <0.01
8 <0.01 <0.01 <0.01 <0.01
17 0.9519 0.7612 <0.01 <0.01
18 0.0625 <0.01 <0.01 0.0116
19 0.4332 0.6973 <0.01 <0.01
23 <0.01 <0.01 0.0251 <0.01
24 <0.01 <0.01 0.1509 <0.01
25 <0.01 <0.01 0.423 <0.01
26 <0.01 <0.01 0.0532 <0.01
27 <0.01 <0.01 0.0664 0.6829
28 <0.01 <0.01 0.2936 0.335
29 0.0627 <0.01 0.0289 0.9408
30 <0.01 <0.01 0.2914 0.3768
31 0.012 0.0231 0.6147 0.1484
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A. CASE STUDY
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Appendix B

Implementation Details

B.1 Holt-Winters

Table B.1: Parameters used by the Holt-Winters method for freight traffic.

initial α initial β α β γ
sensor

1 1.1972 0.0000 0.0588 0.0000 0.0001
2 0.9032 0.0000 0.0635 0.0000 0.0000
3 10.2227 0.0205 0.2849 0.0020 0.0538
4 1.3483 0.0001 0.0719 0.0000 0.0001
5 6.8738 0.0004 0.1222 0.0000 0.0000
6 2.3069 0.0000 0.1005 0.0000 0.0016
7 1.0835 0.0000 0.0969 0.0000 0.0008
8 2.7323 0.0001 0.1168 0.0001 0.0022
9 2.1390 0.0001 0.0989 0.0000 0.0050
10 1.3397 0.0000 0.0970 0.0000 0.0003
11 26.3092 0.1443 0.3140 0.0106 0.0491
12 13.0883 0.0030 0.1968 0.0026 0.0553
13 57.0143 0.3599 0.3950 0.0148 0.0927
14 12.7726 0.0031 0.2463 0.0004 0.0509
15 1.2771 0.0001 0.0601 0.0000 0.0002
16 0.3963 0.0000 0.0980 0.0000 0.0000
17 2.0702 0.0000 0.0884 0.0000 0.0000
18 1.4799 0.0000 0.0837 0.0000 0.0023
19 4.1871 -0.0000 0.1373 0.0002 0.0089
20 1.3224 0.0000 0.0840 0.0000 0.0001
21 1.4128 0.0000 0.0874 0.0000 0.0006

Continued on next page
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B. IMPLEMENTATION DETAILS

Table B.1: Parameters used by the Holt-Winters method for freight traffic.

initial α initial β α β γ
sensor

22 2.2892 0.0000 0.1022 0.0000 0.0018
23 10.6214 0.0006 0.1491 0.0002 0.0034
24 6.8618 0.0000 0.1446 0.0004 0.0178
25 7.9209 -0.0001 0.1503 0.0000 0.0001
26 7.2917 0.0000 0.1338 0.0000 0.0000
27 8.3651 -0.0012 0.1630 0.0003 0.0016
28 7.8401 0.0041 0.1480 0.0005 0.0085
29 8.3269 -0.0008 0.1529 0.0004 0.0433
30 3.9537 0.0011 0.1565 0.0007 0.0210
31 0.8587 0.0000 0.0797 0.0000 0.0000
32 6.1680 0.0002 0.1328 0.0003 0.0065
33 1.0407 0.0000 0.1237 0.0000 0.0000
34 5.1494 -0.0002 0.1133 0.0004 0.0104
35 1.4435 0.0000 0.0863 0.0000 0.0002
36 9.5605 -0.0052 0.1646 0.0019 0.0002
37 4.1692 -0.0000 0.1566 0.0001 0.0044
38 2.1162 0.0000 0.1049 0.0000 0.0010
39 3.0755 0.0000 0.1112 0.0000 0.0022
40 2.4781 0.0001 0.0959 0.0000 0.0023
41 1.7285 0.0000 0.0946 0.0000 0.0002
42 1.4641 0.0000 0.1043 0.0000 0.0001
43 1.5895 0.0001 0.0914 0.0000 0.0008
44 1.4719 0.0000 0.0877 0.0000 0.0010
45 2.5649 0.0001 0.1050 0.0000 0.0006
46 3.3268 0.0000 0.1147 0.0001 0.0026

Table B.2: Parameters used by the Holt-Winters method for passenger traffic.

initial α initial β α β γ
sensor

1 1.1972 0.0000 0.0588 0.0000 0.0001
2 0.9032 0.0000 0.0635 0.0000 0.0000
3 10.2227 0.0205 0.2849 0.0020 0.0538
4 1.3483 0.0001 0.0719 0.0000 0.0001
5 6.8738 0.0004 0.1222 0.0000 0.0000
6 2.3069 0.0000 0.1005 0.0000 0.0016
7 1.0835 0.0000 0.0969 0.0000 0.0008
8 2.7323 0.0001 0.1168 0.0001 0.0022

Continued on next page
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B.2 XGBoost

Table B.2: Parameters used by the Holt-Winters method for passenger traffic.

initial α initial β α β γ
sensor

9 2.1390 0.0001 0.0989 0.0000 0.0050
10 1.3397 0.0000 0.0970 0.0000 0.0003
11 26.3092 0.1443 0.3140 0.0106 0.0491
12 13.0883 0.0030 0.1968 0.0026 0.0553
13 57.0143 0.3599 0.3950 0.0148 0.0927
14 12.7726 0.0031 0.2463 0.0004 0.0509
15 1.2771 0.0001 0.0601 0.0000 0.0002
16 0.3963 0.0000 0.0980 0.0000 0.0000
17 2.0702 0.0000 0.0884 0.0000 0.0000
18 1.4799 0.0000 0.0837 0.0000 0.0023
19 4.1871 -0.0000 0.1373 0.0002 0.0089
20 1.3224 0.0000 0.0840 0.0000 0.0001
21 1.4128 0.0000 0.0874 0.0000 0.0006
22 2.2892 0.0000 0.1022 0.0000 0.0018
23 10.6214 0.0006 0.1491 0.0002 0.0034
24 6.8618 0.0000 0.1446 0.0004 0.0178
25 7.9209 -0.0001 0.1503 0.0000 0.0001
26 7.2917 0.0000 0.1338 0.0000 0.0000
27 8.3651 -0.0012 0.1630 0.0003 0.0016
28 7.8401 0.0041 0.1480 0.0005 0.0085
29 8.3269 -0.0008 0.1529 0.0004 0.0433
30 3.9537 0.0011 0.1565 0.0007 0.0210
31 0.8587 0.0000 0.0797 0.0000 0.0000
32 6.1680 0.0002 0.1328 0.0003 0.0065
33 1.0407 0.0000 0.1237 0.0000 0.0000
34 5.1494 -0.0002 0.1133 0.0004 0.0104
35 1.4435 0.0000 0.0863 0.0000 0.0002
36 9.5605 -0.0052 0.1646 0.0019 0.0002
37 4.1692 -0.0000 0.1566 0.0001 0.0044
38 2.1162 0.0000 0.1049 0.0000 0.0010
39 3.0755 0.0000 0.1112 0.0000 0.0022
40 2.4781 0.0001 0.0959 0.0000 0.0023
41 1.7285 0.0000 0.0946 0.0000 0.0002
42 1.4641 0.0000 0.1043 0.0000 0.0001
43 1.5895 0.0001 0.0914 0.0000 0.0008
44 1.4719 0.0000 0.0877 0.0000 0.0010
45 2.5649 0.0001 0.1050 0.0000 0.0006
46 3.3268 0.0000 0.1147 0.0001 0.0026

B.2 XGBoost
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B. IMPLEMENTATION DETAILS

Table B.3: Features used by the XGBoost models for the 5-minute forecast for freight traffic.

Model features
sensor

1 [SMA_12]
2 [SMA_11]
3 [SMA_4]
4 [hour, SMA_12]
5 [SMA_5]
6 [SMA_9]
7 [SMA_11]
8 [SMA_7]
9 [SMA_10]
10 [SMA_9]
11 [SMA_2]
12 [SMA_5]
13 [SMA_2]
14 [SMA_4]
15 [SMA_12]
16 [SMA_12]
17 [SMA_10]
18 [SMA_6]
19 [SMA_5]
20 [SMA_9]
21 [SMA_10]
22 [SMA_6]
23 [SMA_4]
24 [SMA_4]
25 [SMA_4]
26 [SMA_9]
27 [SMA_4]
28 [SMA_4]
29 [SMA_4]
30 [SMA_5]
31 [SMA_9, hour]
32 [SMA_5]
33 [SMA_6]
34 [SMA_8, hour, SMA_7, SMA_2, SMA_6, SMA_12]
35 [SMA_11]
36 [SMA_6]
37 [SMA_6]
38 [SMA_6]
39 [SMA_6]

Continued on next page
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B.2 XGBoost

Table B.3: Features used by the XGBoost models for the 5-minute forecast for freight traffic.

Model features
sensor

40 [SMA_10]
41 [SMA_9]
42 [SMA_6]
43 [SMA_8]
44 [SMA_8]
45 [SMA_7]
46 [SMA_6]

Table B.4: Features used by the XGBoost models for the 5-minute forecast for passenger
traffic.

Model features
sensor

1 [SMA_3]
2 [SMA_3]
3 [SMA_2]
4 [SMA_3]
5 [SMA_4, SMA_3, SMA_5, SMA_2, SMA_6, hour]
6 [SMA_5]
7 [SMA_5]
8 [SMA_3]
9 [SMA_6]
10 [SMA_6]
11 [SMA_2]
12 [SMA_4]
13 [SMA_2]
14 [SMA_2, SMA_3, SMA_4, gem_intensiteit_1, hour, gem_intensiteit_12]
15 [SMA_4]
16 [SMA_8, SMA_11]
17 [SMA_4]
18 [SMA_5]
19 [SMA_4]
20 [SMA_4]
21 [SMA_6]
22 [SMA_4]
23 [SMA_4, SMA_5, SMA_2, SMA_6, SMA_3, hour]
24 [SMA_3, SMA_4, SMA_2, hour, SMA_6, gem_intensiteit_1]
25 [SMA_2]

Continued on next page
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B. IMPLEMENTATION DETAILS

Table B.4: Features used by the XGBoost models for the 5-minute forecast for passenger
traffic.

Model features
sensor

26 [SMA_2]
27 [SMA_2]
28 [SMA_4]
29 [SMA_4, SMA_2, SMA_3, SMA_5, hour, gem_intensiteit_1]
30 [SMA_3, SMA_5, SMA_4, SMA_2, SMA_6, hour]
31 [SMA_4]
32 [SMA_2, SMA_3, hour, SMA_5, gem_intensiteit_1, SMA_6]
33 [SMA_2]
34 [SMA_2, SMA_3, hour, gem_intensiteit_1, gem_intensiteit_10, SMA_5]
35 [SMA_3, SMA_4, SMA_2, gem_intensiteit_1, hour, SMA_5]
36 [SMA_3, SMA_2, SMA_5, hour, SMA_6, SMA_4]
37 [SMA_2]
38 [SMA_3]
39 [SMA_4]
40 [SMA_3]
41 [SMA_4]
42 [SMA_4]
43 [SMA_4]
44 [SMA_4]
45 [SMA_4]
46 [SMA_6]

Table B.5: Features used by the XGBoost models for the hour-ahead forecast for freight
traffic.

Model features
sensor

1 [hour, SMA_12]
2 [hour, SMA_12]
3 [gem_intensiteit, hour]
4 [SMA_11]
5 [SMA_7, hour]
6 [SMA_5, hour]
7 [SMA_8]
8 [SMA_5, hour]
9 [SMA_4, hour]
10 [SMA_7, hour]

Continued on next page
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B.2 XGBoost

Table B.5: Features used by the XGBoost models for the hour-ahead forecast for freight
traffic.

Model features
sensor

11 [hour, SMA_2, SMA_3, gem_intensiteit, dayofweek, SMA_12]
12 [hour, SMA_3]
13 [SMA_2, gem_intensiteit, hour, SMA_3, SMA_12, gem_intensiteit_7]
14 [SMA_2, hour, SMA_3, SMA_5, dayofweek, SMA_12]
15 [hour, SMA_9]
16 [hour, SMA_12]
17 [SMA_7, hour]
18 [SMA_8, hour]
19 [SMA_5, hour]
20 [SMA_5, hour]
21 [hour, SMA_6]
22 [SMA_5, hour]
23 [hour, SMA_5]
24 [SMA_2, hour]
25 [SMA_2, hour]
26 [SMA_4, hour]
27 [SMA_3, hour]
28 [SMA_4, hour]
29 [SMA_3, hour]
30 [SMA_3, hour]
31 [hour, SMA_6]
32 [SMA_4, hour, SMA_5, SMA_11, SMA_9, SMA_10]
33 [hour, SMA_7]
34 [SMA_3]
35 [SMA_8]
36 [hour, SMA_5]
37 [SMA_4, hour, SMA_5, dayofweek, SMA_3, SMA_12]
38 [SMA_6, hour]
39 [SMA_6, hour]
40 [SMA_6, hour]
41 [SMA_5, hour]
42 [SMA_4, hour]
43 [SMA_5, hour]
44 [hour, SMA_6]
45 [hour, SMA_7]
46 [SMA_5, hour]
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B. IMPLEMENTATION DETAILS

Table B.6: Features used by the XGBoost models for the hour-ahead forecast for passenger
traffic.

Model features
sensor

1 [hour]
2 [hour, SMA_4]
3 [gem_intensiteit, hour, SMA_2, SMA_3, dayofweek, SMA_12]
4 [hour, SMA_2]
5 [hour, SMA_5, SMA_6, SMA_12, SMA_2, dayofweek]
6 [hour, SMA_3, SMA_2, SMA_4, SMA_5, dayofweek]
7 [SMA_3, hour]
8 [SMA_2, hour, SMA_3, SMA_4, dayofweek]
9 [hour, SMA_3]
10 [SMA_6, hour]
11 [SMA_2, hour, SMA_3, gem_intensiteit, dayofweek, SMA_8]
12 [hour, SMA_3]
13 [gem_intensiteit, hour, SMA_2, SMA_3, gem_intensiteit_2, dayofweek]
14 [SMA_2, hour, gem_intensiteit, SMA_3, gem_intensiteit_1, dayofweek]
15 [SMA_4, hour, SMA_12, SMA_10, SMA_2, SMA_3]
16 [SMA_9]
17 [hour, SMA_3]
18 [SMA_5, hour]
19 [SMA_2, hour, SMA_4, gem_intensiteit, SMA_5, dayofweek]
20 [SMA_8, hour, SMA_3, SMA_2, SMA_5, dayofweek]
21 [hour, SMA_3]
22 [hour, SMA_3]
23 [hour, SMA_3, SMA_4, SMA_2, gem_intensiteit, SMA_12]
24 [SMA_2, hour, SMA_3, gem_intensiteit, SMA_6, SMA_4]
25 [gem_intensiteit, hour, SMA_2, SMA_3, dayofweek, gem_intensiteit_2]
26 [gem_intensiteit, SMA_2, hour, SMA_3, dayofweek, gem_intensiteit_9]
27 [SMA_2, hour, SMA_3, gem_intensiteit, SMA_5, gem_intensiteit_12]
28 [SMA_3, hour, SMA_2, SMA_4, SMA_5, gem_intensiteit]
29 [SMA_3, hour, SMA_2, SMA_5, gem_intensiteit, SMA_10]
30 [SMA_2, SMA_3, hour, SMA_4, gem_intensiteit]
31 [hour, SMA_2, SMA_4, SMA_3, SMA_5, gem_intensiteit]
32 [gem_intensiteit, hour, SMA_2, dayofweek, SMA_3, SMA_8]
33 [SMA_2]
34 [SMA_2, hour, gem_intensiteit, dayofweek]
35 [hour, SMA_2, SMA_3, gem_intensiteit, SMA_12, SMA_4]
36 [SMA_2, hour, gem_intensiteit, SMA_3, gem_intensiteit_1, dayofweek]
37 [SMA_2, hour, gem_intensiteit, SMA_3, dayofweek]
38 [SMA_2, hour, SMA_4, gem_intensiteit, SMA_6]

Continued on next page

74



B.3 GNN

Table B.6: Features used by the XGBoost models for the hour-ahead forecast for passenger
traffic.

Model features
sensor

39 [SMA_2, hour, SMA_4, SMA_3, gem_intensiteit, gem_intensiteit_12]
40 [SMA_2, hour, SMA_3, gem_intensiteit, SMA_12, SMA_5]
41 [SMA_2, hour]
42 [SMA_2, hour, SMA_3, gem_intensiteit, SMA_4, dayofweek]
43 [SMA_2, hour, SMA_5, SMA_3, gem_intensiteit_6, SMA_12]
44 [SMA_2, hour]
45 [SMA_2, hour, SMA_6, SMA_3, SMA_9, SMA_5]
46 [SMA_3, hour, SMA_2, SMA_4, gem_intensiteit, SMA_5]

B.3 GNN

B.4 Transformer

Table B.7: Parameters used for the 5-minute forecast by the transformer model for freight
traffic.

lr encoder sequence
sensor length

1 0.0001 6
2 0.0001 1
3 0.0001 6
4 0.0001 6
5 0.0001 3
6 0.0001 6
7 0.0010 6
8 0.0001 6
9 0.0001 6
10 0.0100 1
11 0.0100 6
12 0.0001 6
13 0.0010 3
14 0.0010 6
15 0.0001 6
16 0.0001 1
17 0.0001 1
18 0.0001 6

Continued on next page
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B. IMPLEMENTATION DETAILS

Table B.7: Parameters used for the 5-minute forecast by the transformer model for freight
traffic.

lr encoder sequence
sensor length

19 0.0001 6
20 0.0100 6
21 0.0001 6
22 0.0001 6
23 0.0001 6
24 0.0001 6
25 0.0001 6
26 0.0001 6
27 0.0001 6
28 0.0001 6
29 0.0001 6
30 0.0001 6
31 0.0100 3
32 0.0001 3
33 0.0001 6
34 0.0010 6
35 0.0001 6
36 0.0001 3
37 0.0001 6
38 0.0001 6
39 0.0001 6
40 0.0001 6
41 0.0100 3
42 0.0001 6
43 0.0001 6
44 0.0100 1
45 0.0001 6
46 0.0001 6

Table B.8: Parameters used for the 5-minute forecast by the transformer model for passenger
traffic.

lr encoder sequence
sensor length

1 0.0001 6
2 0.0001 6
3 0.0100 6

Continued on next page
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B.4 Transformer

Table B.8: Parameters used for the 5-minute forecast by the transformer model for passenger
traffic.

lr encoder sequence
sensor length

4 0.0100 6
5 0.0100 3
6 0.0100 6
7 0.0001 6
8 0.0001 6
9 0.0100 6
10 0.0001 6
11 0.0100 3
12 0.0001 6
13 0.0100 6
14 0.0100 6
15 0.0001 6
16 0.0100 1
17 0.0001 6
18 0.0100 1
19 0.0001 12
20 0.0001 6
21 0.0001 12
22 0.0001 12
23 0.0100 12
24 0.0100 24
25 0.0100 24
26 0.0100 6
27 0.0100 6
28 0.0100 1
29 0.0100 1
30 0.0100 1
31 0.0001 6
32 0.0100 3
33 0.0100 1
34 0.0100 6
35 0.0100 24
36 0.0100 12
37 0.0001 6
38 0.0001 6
39 0.0001 1
40 0.0001 12
41 0.0001 12
42 0.0001 12
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B. IMPLEMENTATION DETAILS

Table B.8: Parameters used for the 5-minute forecast by the transformer model for passenger
traffic.

lr encoder sequence
sensor length

43 0.0001 12
44 0.0001 6
45 0.0001 12
46 0.0001 1

Table B.9: Parameters used for the hour-ahead forecast by the transformer model for freight
traffic.

lr encoder sequence
sensor length

1 0.0010 3
2 0.0001 24
3 0.0001 1
4 0.0010 3
5 0.0001 6
6 0.0001 6
7 0.0001 3
8 0.0010 12
9 0.0001 12
10 0.0100 1
11 0.0001 12
12 0.0001 24
13 0.0001 3
14 0.0010 24
15 0.0010 24
16 0.0100 1
17 0.0100 1
18 0.0001 12
19 0.0100 1
20 0.0010 1
21 0.0001 12
22 0.0010 24
23 0.0001 12
24 0.0001 6
25 0.0001 12
26 0.0001 3
27 0.0001 12
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B.4 Transformer

Table B.9: Parameters used for the hour-ahead forecast by the transformer model for freight
traffic.

lr encoder sequence
sensor length

28 0.0001 12
29 0.0001 6
30 0.0001 12
31 0.0001 6
32 0.0001 6
33 0.0001 6
34 0.0100 12
35 0.0100 1
36 0.0100 24
37 0.0010 12
38 0.0001 6
39 0.0001 6
40 0.0001 3
41 0.0001 6
42 0.0100 1
43 0.0100 24
44 0.0100 12
45 0.0001 6
46 0.0001 6

Table B.10: Parameters used for the hour-ahead forecast by the transformer model for
passenger traffic.

lr encoder sequence
sensor length

1 0.0001 3
2 0.0001 12
3 0.0100 6
4 0.0001 3
5 0.0001 1
6 0.0001 3
7 0.0001 6
8 0.0001 3
9 0.0001 3
10 0.0001 6
11 0.0100 1
12 0.0001 288
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B. IMPLEMENTATION DETAILS

Table B.10: Parameters used for the hour-ahead forecast by the transformer model for
passenger traffic.

lr encoder sequence
sensor length

13 0.0100 24
14 0.0100 24
15 0.0001 6
16 0.0001 6
17 0.0001 6
18 0.0001 1
19 0.0001 6
20 0.0001 3
21 0.0001 3
22 0.0001 3
23 0.0100 1
24 0.0100 12
25 0.0100 24
26 0.0100 288
27 0.0100 12
28 0.0100 12
29 0.0100 24
30 0.0100 288
31 0.0001 1
32 0.0100 24
33 0.0001 12
34 0.0100 24
35 0.0100 24
36 0.0100 6
37 0.0100 24
38 0.0001 1
39 0.0001 1
40 0.0001 1
41 0.0001 3
42 0.0001 6
43 0.0001 1
44 0.0001 1
45 0.0001 1
46 0.0001 1
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Appendix C

Results

Table C.1: RMSE per sensor for each model for 5-minute forecasts for freight traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

1 1.9107 1.6705 1.2923 1.3443 1.2563
2 1.4779 1.2419 1.0184 1.207 0.996
3 13.9972 17.9189 5.3058 5.0729 14.5434
4 2.1312 1.8268 1.575 1.4551 1.7374
5 4.3507 4.4637 2.292 2.4153 3.9085
6 2.8152 2.8225 1.6764 1.7244 2.3704
7 1.8253 1.7974 1.1626 1.3212 1.0748
8 4.1068 4.0057 2.128 2.1191 1.9719
9 2.5770 2.6462 1.5512 1.7175 2.2433
10 2.2311 2.0751 1.4678 1.4208 1.2843
11 18.1279 35.1563 8.6874 7.6776 26.3645
12 7.8423 15.2511 4.9897 4.5944 5.3653
13 30.9534 60.9886 11.3023 10.0308 46.6572
14 13.2040 16.0733 4.9166 4.7696 13.5588
15 1.9923 1.7982 1.4144 1.4528 1.4436
16 0.9393 0.7840 0.6598 1.1206 0.6679
17 2.5436 2.6435 1.5202 1.9117 1.468
18 2.2353 2.2711 1.3951 1.6149 1.8757
19 4.4487 4.9650 2.3311 2.4185 2.2084
20 2.0636 1.9044 1.2864 1.3954 1.2235
21 2.0601 1.9383 1.2707 1.4518 1.1352
22 2.6209 2.4981 1.5581 1.6235 1.4457
23 7.3741 8.5882 3.6168 3.8096 7.1222
24 6.0660 6.7180 2.944 3.0075 5.7804
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C. RESULTS

Table C.1: RMSE per sensor for each model for 5-minute forecasts for freight traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

25 6.0722 6.8206 2.8597 2.8823 5.9495
26 5.3261 5.7806 2.5761 2.7245 5.161
27 7.1045 8.1983 3.2712 3.2796 7.2868
28 6.9379 7.5179 3.1528 3.321 6.6446
29 7.4037 8.6631 3.412 3.6104 7.6089
30 6.1631 6.8542 2.9856 3.045 6.2329
31 1.4835 1.3918 1.0028 1.2331 0.8861
32 5.4696 5.7264 2.9939 2.9725 5.0848
33 1.4898 1.8287 0.9926 1.2767 1.1013
34 4.3005 5.1144 2.7973 2.89 3.9494
35 2.1014 2.0887 1.4125 1.4261 1.6832
36 7.4395 9.0729 3.6177 3.4043 8.1397
37 4.4395 5.4438 2.4038 2.3012 2.319
38 2.8975 3.0502 1.6766 1.7625 1.5101
39 3.2168 3.5252 1.8029 1.9191 1.9819
40 2.7237 2.8243 1.5775 1.656 1.4432
41 2.4494 2.3986 1.4419 1.459 1.2776
42 2.3032 2.1437 1.295 1.3567 1.113
43 2.2725 2.2385 1.3427 1.3901 1.2019
44 2.1832 2.0930 1.3421 1.3392 1.1481
45 3.0806 3.0565 1.7411 1.7437 1.5595
46 3.6946 4.0616 2.011 2.3785 2.1624

Table C.2: MAE per sensor for each model for 5-minute forecasts for freight traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

1 1.3422 1.2601 0.9616 0.9806 0.983
2 0.9991 0.9307 0.7835 0.8985 0.8081
3 8.9972 12.7927 3.5153 3.4004 12.8017
4 1.5262 1.3458 1.137 1.0617 1.3618
5 2.8803 3.1419 1.6058 1.6557 3.2919
6 1.8209 1.9675 1.13 1.1359 1.9297
7 1.1468 1.2738 0.7928 0.9186 0.838
8 2.6955 2.8107 1.4135 1.3981 1.4561
9 1.6836 1.8916 1.0878 1.1669 1.8747
10 1.3187 1.3976 0.9257 0.9563 0.9411
11 11.6165 27.7871 6.247 5.4086 23.5355
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Table C.2: MAE per sensor for each model for 5-minute forecasts for freight traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

12 5.5716 12.4262 3.6601 3.3118 3.9617
13 18.9051 47.9373 7.8495 6.78 41.8591
14 8.3357 11.3777 3.2925 3.218 11.8982
15 1.4058 1.3224 1.0396 1.0658 1.1005
16 0.4683 0.4334 0.3773 0.7979 0.4798
17 1.6434 1.9176 1.0744 1.3418 1.1355
18 1.3909 1.5901 0.9279 1.0051 1.5259
19 2.9109 3.4378 1.5441 1.6266 1.6024
20 1.2962 1.3381 0.883 0.9486 0.851
21 1.2610 1.3400 0.8338 0.9921 0.8332
22 1.7038 1.7693 1.0775 1.1068 1.0323
23 4.8200 6.2330 2.3983 2.5713 6.1735
24 4.1520 4.9309 2.0976 2.1129 4.9935
25 4.0889 5.0201 2.0417 2.0599 5.1823
26 3.6559 4.2679 1.8436 1.9469 4.4778
27 4.7770 5.7412 2.2726 2.293 6.5228
28 4.7055 5.2411 2.1189 2.2607 5.966
29 4.9797 6.1317 2.3696 2.4599 6.7507
30 4.2022 4.8759 2.0634 2.127 5.5455
31 0.8330 0.8937 0.6017 0.8273 0.5965
32 3.6200 4.1763 2.0381 2.0291 4.315
33 0.8527 1.2144 0.6407 0.8546 0.8749
34 2.9530 3.6730 1.9957 1.9931 3.3796
35 1.3064 1.4634 0.9289 0.9264 1.3029
36 4.7998 6.6866 2.4115 2.3113 7.0655
37 2.7701 3.7158 1.5652 1.491 1.7119
38 1.8357 2.1468 1.119 1.1594 1.1019
39 2.0582 2.4982 1.2432 1.2801 1.4846
40 1.7143 1.9826 1.0703 1.11 1.0741
41 1.5139 1.6163 0.9459 0.9676 0.9231
42 1.3508 1.4229 0.8111 0.9005 0.7655
43 1.3808 1.5156 0.8789 0.9206 0.8622
44 1.3062 1.4174 0.8526 0.887 0.8315
45 1.8977 2.0956 1.1409 1.1282 1.1647
46 2.2977 2.8222 1.3342 1.4958 1.5788
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C. RESULTS

Table C.3: RMSE per sensor for each model for 5-minute forecasts for passenger traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

1 11.0442 24.4552 7.9398 7.078 9.1408
2 5.6642 10.5863 3.9162 4.4294 3.9197
3 59.0431 164.6680 25.3162 21.0954 120.0764
4 9.0765 18.4620 5.9819 5.7453 13.9778
5 10.9340 20.2694 6.4064 6.2438 14.8382
6 14.0140 29.4487 8.2078 7.2687 22.3746
7 6.1899 10.4566 3.8132 4.5776 3.6703
8 13.0234 23.3870 6.9342 6.1797 8.1125
9 7.6171 13.8282 4.6985 4.6598 9.7875
10 6.9871 10.0659 4.699 4.0726 4.1304
11 18.0962 40.1318 10.0416 8.9537 29.3644
12 6.8352 12.5582 4.8289 4.5538 5.0094
13 44.4368 127.4040 18.9797 16.2896 92.2563
14 59.9679 171.3426 24.5361 21.7453 124.4363
15 8.0501 16.7470 5.7243 5.5184 6.3327
16 3.1019 2.9896 2.4237 2.2247 2.6115
17 8.8263 17.9221 5.863 6.0067 7.1156
18 9.1920 15.4468 6.0158 5.9721 12.1212
19 12.2167 22.3857 6.7029 5.9937 7.43
20 7.2841 13.8739 4.779 4.4177 5.0976
21 5.2443 9.5664 3.5179 4.386 3.632
22 7.8746 16.6447 5.2425 5.1726 5.14
23 34.1078 81.4901 17.3726 15.6591 56.9224
24 26.3696 65.6758 13.1124 11.443 46.1288
25 28.1064 75.2202 12.4186 11.393 53.473
26 24.6657 63.5910 10.9592 10.2872 44.2965
27 32.9025 84.8826 15.3182 14.667 64.1597
28 35.8264 66.6888 16.2362 14.643 51.4973
29 32.0327 79.0474 16.6226 15.2371 60.3862
30 27.1488 64.4771 13.7988 12.606 48.8847
31 16.7140 32.6119 9.2283 8.9036 9.7434
32 42.7697 94.8555 18.5508 16.7173 68.4237
33 23.4574 49.7520 8.4488 9.5724 23.7275
34 38.3650 92.4856 16.6644 17.2625 56.0056
35 51.5072 109.3221 23.3126 19.3507 81.3718
36 33.5904 74.5241 16.1209 13.7177 54.772
37 22.5798 55.8717 12.1311 10.0985 21.7614
38 13.0119 31.2034 7.4868 7.6614 8.3101
39 13.9192 33.7765 7.9014 7.6383 10.0487
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Table C.3: RMSE per sensor for each model for 5-minute forecasts for passenger traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

40 11.7661 27.4683 6.6685 6.7004 7.0592
41 9.9686 21.4792 5.8253 5.8475 5.9297
42 14.5324 22.2506 5.9278 5.8864 5.6644
43 9.0826 19.4221 5.5413 5.6182 5.7351
44 9.0388 19.5073 5.3515 5.5506 5.7386
45 11.7415 26.9415 6.8489 7.1698 8.2468
46 15.3147 38.1624 9.6893 9.4495 11.9711

Table C.4: MAE per sensor for each model for 5-minute forecasts for passenger traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

1 7.7988 20.0938 5.7908 5.1682 6.7749
2 3.6993 7.9832 2.718 3.0732 2.7750
3 34.0074 133.8372 16.9942 14.0305 109.1041
4 6.5480 15.4193 4.3251 4.102 12.0257
5 6.6657 15.8403 4.4549 4.403 12.0780
6 8.6124 23.7716 5.5591 5.1234 19.3270
7 4.1537 8.6803 2.7083 3.1193 2.7314
8 8.0154 18.2801 4.67 4.2178 5.5103
9 4.6924 10.7235 3.1746 3.2869 8.2898
10 4.1479 8.0077 2.8791 2.8126 2.8800
11 11.7022 32.7849 7.3725 6.5019 25.1000
12 4.5078 10.0722 3.4685 3.3043 3.6879
13 26.2464 106.0320 13.0876 11.171 79.8679
14 34.7753 141.8373 16.2945 14.3026 108.5122
15 5.8675 13.4598 4.2059 4.0532 4.7789
16 1.8573 2.0444 1.4667 1.5646 2.0997
17 5.9760 14.9934 4.1637 4.3118 5.1293
18 5.9159 12.1563 4.018 4.0286 10.2995
19 7.2737 17.5881 4.4359 4.0932 5.2690
20 4.4183 10.7241 3.0161 2.9986 3.7065
21 3.5557 7.8347 2.5487 3.0002 2.7809
22 5.1510 13.6707 3.5075 3.563 3.7889
23 19.0550 66.6392 10.9223 9.5053 51.1067
24 15.1693 53.9843 8.8303 7.7638 41.4096
25 16.1466 62.1337 8.764 8.0902 48.1971
26 14.1225 52.0775 7.8127 7.2943 39.3000
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C. RESULTS

Table C.4: MAE per sensor for each model for 5-minute forecasts for passenger traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

27 19.2355 69.6475 10.2544 9.5007 56.5620
28 20.2853 54.5417 9.9549 8.8669 45.5989
29 18.6939 65.1191 10.7027 9.5993 53.6770
30 15.2251 53.0687 8.8904 8.2496 43.6677
31 9.3472 24.7899 5.8041 5.5757 6.7574
32 23.5172 77.9571 12.7413 11.3068 61.6508
33 13.3256 36.8701 5.5963 5.9954 20.6060
34 23.9552 76.1985 11.7609 11.7461 49.7125
35 27.7045 87.9573 14.4804 12.0987 73.2669
36 18.5890 60.1718 10.9155 9.4801 47.8725
37 13.1733 44.6238 8.0037 6.9837 15.2112
38 8.0872 25.6015 5.0726 5.2089 5.9068
39 8.5783 27.7894 5.404 5.3468 7.3344
40 7.2292 22.4585 4.5867 4.6646 5.0981
41 6.1988 17.3466 4.0051 4.0775 4.3736
42 8.9003 17.5579 3.888 3.9877 4.1114
43 5.6400 15.5523 3.7857 3.853 4.2125
44 5.6343 15.8963 3.7435 3.855 4.0749
45 7.4247 22.2921 4.8007 4.9322 6.2049
46 9.7940 31.4005 6.4735 6.2099 8.7054

Table C.5: RMSE per sensor for each model for hour-ahead forecasts for freight traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

1 1.9488 1.6616 1.3279 1.8497 1.5054
2 1.5209 1.2432 1.0327 1.8401 0.9634
3 15.1570 17.7744 6.8217 7.8141 5.0854
4 2.2173 1.8163 1.5419 2.1186 1.7486
5 4.5654 4.4112 2.3546 3.0335 2.0809
6 2.9397 2.8082 1.7238 2.2683 1.5302
7 1.8927 1.7908 1.2421 1.8937 1.0713
8 4.2687 3.9721 2.4206 2.7356 3.5598
9 2.6734 2.6235 1.6113 2.3198 1.4234
10 2.4170 2.0572 1.5081 1.9614 1.8662
11 20.8401 34.8489 10.5835 9.6049 10.3876
12 9.2496 15.1571 6.6947 6.7431 5.8445
13 35.6100 60.4034 13.179 14.0132 23.2854
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Table C.5: RMSE per sensor for each model for hour-ahead forecasts for freight traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

14 14.1411 15.9123 5.4554 6.2119 13.6091
15 2.0800 1.7814 1.5004 2.0304 1.7163
16 0.9621 0.7811 0.7184 1.7745 0.6672
17 2.6279 2.6237 1.5462 2.2205 2.2089
18 2.3197 2.2529 1.4529 2.0455 1.2626
19 4.6908 4.9269 2.4814 2.883 4.1893
20 2.1097 1.8857 1.3136 1.9301 1.6496
21 2.1573 1.9246 1.3017 1.9168 1.1414
22 2.6791 2.4780 1.626 2.2492 2.1469
23 7.6953 8.5011 3.8535 4.1282 3.1857
24 6.2995 6.6419 3.0959 3.4727 2.7343
25 6.3776 6.7448 2.992 3.3225 2.6513
26 5.5755 5.7160 2.7303 3.2028 2.539
27 7.5847 8.1320 3.4726 3.9022 2.9675
28 7.2898 7.4417 3.4203 3.988 2.864
29 7.8381 8.5806 3.6404 4.1832 3.1049
30 6.4786 6.7850 3.3886 3.8539 2.743
31 1.5773 1.3945 1.0449 1.8445 0.8875
32 5.7652 5.6706 3.1434 3.5364 2.5791
33 1.5056 1.8258 1.1278 1.8609 0.8702
34 4.5036 5.0632 3.098 3.4338 3.9707
35 2.1266 2.0809 1.4934 1.9348 1.6914
36 8.1462 8.9861 4.0957 4.2437 8.1042
37 4.8910 5.4109 2.8655 2.8814 4.4971
38 3.0738 3.0232 1.7499 2.2717 1.5467
39 3.4254 3.4971 1.8645 2.4307 1.6854
40 2.8558 2.8041 1.5864 2.139 1.4468
41 2.5541 2.3814 1.4718 1.9792 1.27
42 2.3632 2.1243 1.3609 1.9503 1.8512
43 2.3457 2.2247 1.4088 1.9631 1.9238
44 2.2449 2.0751 1.3261 1.9177 1.8315
45 3.1989 3.0301 1.8047 2.2862 1.5393
46 3.8971 4.0235 2.044 2.5341 1.8109
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C. RESULTS

Table C.6: MAE per sensor for each model for hour-ahead forecasts for freight traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

1 1.3770 1.2550 0.9813 1.3406 1.214
2 1.0381 0.9341 0.7838 1.3175 0.7785
3 9.9945 12.6459 4.3812 4.8396 3.7233
4 1.6060 1.3317 1.1293 1.5199 1.363
5 3.0701 3.0950 1.6193 2.1065 1.5825
6 1.9147 1.9537 1.1528 1.5395 1.1419
7 1.1786 1.2651 0.8662 1.3147 0.8126
8 2.8432 2.7870 1.5538 1.8122 2.9056
9 1.7810 1.8750 1.1213 1.6004 1.0533
10 1.4459 1.3843 0.9384 1.3383 1.4477
11 14.1058 27.4288 7.4599 6.7318 7.4995
12 6.7072 12.3216 4.7348 4.8087 4.3152
13 23.7186 47.2011 9.1339 9.5097 17.3337
14 9.2871 11.2089 3.6325 4.0091 11.9999
15 1.4897 1.3087 1.0835 1.4606 1.3086
16 0.4923 0.4327 0.4032 1.2189 0.4895
17 1.7389 1.8936 1.0663 1.531 1.7986
18 1.4592 1.5687 0.9503 1.3935 0.9323
19 3.1016 3.4049 1.6362 1.973 3.4771
20 1.3367 1.3204 0.8996 1.3244 1.2869
21 1.3358 1.3286 0.8575 1.3106 0.8343
22 1.7451 1.7530 1.1008 1.5261 1.7287
23 5.1841 6.1644 2.5659 2.8145 2.3721
24 4.3909 4.8694 2.2079 2.4806 2.0989
25 4.4129 4.9588 2.1403 2.3956 2.0387
26 3.9007 4.2119 1.9458 2.3179 1.9565
27 5.1594 5.6855 2.3956 2.7157 2.2387
28 4.9925 5.1842 2.285 2.725 2.0737
29 5.3287 6.0536 2.5138 2.8686 2.3283
30 4.4608 4.8098 2.2628 2.6965 2.0659
31 0.8891 0.8939 0.637 1.2311 0.6043
32 3.9195 4.1319 2.1473 2.4305 1.9686
33 0.8765 1.2103 0.7093 1.2616 0.6482
34 3.1182 3.6298 2.2226 2.4061 3.3896
35 1.3445 1.4526 1.0095 1.3156 1.276
36 5.3542 6.5959 2.6749 2.8482 7.063
37 3.0836 3.6829 1.7957 1.9162 3.7417
38 1.9666 2.1215 1.1534 1.5295 1.1159
39 2.2300 2.4742 1.2582 1.6507 1.2496
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Table C.6: MAE per sensor for each model for hour-ahead forecasts for freight traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

40 1.8263 1.9686 1.0647 1.461 1.0758
41 1.5877 1.6025 0.9645 1.34 0.9198
42 1.4064 1.4063 0.8575 1.3072 1.4957
43 1.4522 1.5050 0.9119 1.3275 1.516
44 1.3746 1.4021 0.8487 1.2927 1.4434
45 2.0133 2.0774 1.146 1.5386 1.1288
46 2.4844 2.7881 1.3451 1.6927 1.3274

Table C.7: RMSE per sensor for each model for hour-ahead forecasts for passenger traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

1 15.3329 24.1964 11.4396 9.7982 8.5229
2 7.8425 10.5462 4.5909 7.2333 3.8845
3 76.1459 163.2609 41.1001 35.1775 119.8272
4 11.1812 18.3133 7.8055 11.3859 6.3414
5 13.7297 20.1545 6.5312 9.1783 6.4203
6 16.7635 29.1989 8.6702 9.301 10.7435
7 7.0356 10.3574 5.8987 8.4475 3.6891
8 16.0049 23.2095 10.0688 9.3226 7.8548
9 8.8954 13.7538 5.1085 7.2902 4.6678
10 8.1112 9.9655 5.2213 6.7405 4.0924
11 22.3102 39.7757 13.2329 16.3978 29.4505
12 8.8444 12.5132 6.299 11.8849 5.2598
13 58.5615 126.1086 25.6116 28.2865 92.8055
14 79.0482 169.6340 34.0845 35.9921 125.1627
15 9.8699 16.5949 7.195 8.6994 5.8739
16 2.8550 2.9754 2.2859 4.3663 1.9334
17 10.5620 17.7492 6.8422 8.3274 5.8849
18 10.6199 15.3223 6.8606 7.7132 6.0095
19 15.9899 22.2159 9.294 8.7484 7.1775
20 8.6231 13.7530 5.5786 7.2739 4.4908
21 6.0952 9.4845 3.8073 6.6287 3.6772
22 9.3383 16.4720 6.1027 7.2917 5.0268
23 39.6765 80.7429 21.4325 22.0291 56.6955
24 31.1774 65.0800 16.2824 16.8818 45.8621
25 34.1409 74.5161 16.4238 16.9014 53.4882
26 30.9426 62.9888 13.5663 15.3077 44.4207
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C. RESULTS

Table C.7: RMSE per sensor for each model for hour-ahead forecasts for passenger traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

27 41.4196 84.2454 18.8866 23.1376 63.8996
28 43.6828 66.0628 20.207 21.6912 51.2665
29 40.3233 78.2863 19.812 22.7418 60.4375
30 35.5048 63.8352 19.0323 19.399 48.9246
31 20.8525 32.3938 10.9463 12.1882 9.2476
32 51.3978 94.1291 22.592 23.9096 68.7791
33 22.5204 49.5574 16.0364 16.9062 13.2104
34 42.1245 91.7987 24.5235 27.263 56.4713
35 62.7322 108.4368 29.1804 28.7773 81.3517
36 41.4778 73.9862 18.5883 20.1659 54.6054
37 31.4542 55.4255 14.8856 15.6147 42.6068
38 15.6886 30.8983 9.3262 10.2938 7.7588
39 16.9427 33.4109 9.4089 10.4645 8.5752
40 14.7183 27.1820 7.7494 8.6839 6.7888
41 12.1295 21.2505 6.5867 7.5795 5.7996
42 15.2701 22.0339 7.8387 8.3378 7.8329
43 11.0745 19.2246 6.4953 7.4528 5.3448
44 11.1397 19.2918 6.3789 7.316 5.3487
45 14.1275 26.5988 8.6326 9.6903 6.8612
46 18.3438 37.7136 11.5878 12.1672 13.3756

Table C.8: MAE per sensor for each model for hour-ahead forecasts for passenger traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

1 11.4248 19.7903 8.3556 7.0021 6.2802
2 5.2800 7.9355 3.0013 4.894 2.8017
3 51.4023 132.1711 26.1821 22.9198 109.032
4 8.1613 15.2486 5.6068 7.482 4.7222
5 9.1136 15.6791 4.5584 6.5477 4.6451
6 11.3788 23.4958 6.032 6.5593 8.0656
7 4.8577 8.5797 3.7424 5.3253 2.7612
8 10.5757 18.1051 6.3938 6.1698 5.3596
9 5.7561 10.6278 3.3771 4.9636 3.264
10 4.9897 7.8992 3.1641 4.5752 2.8311
11 15.8791 32.4039 9.4151 11.4029 25.1804
12 6.1958 10.0166 4.1932 7.1864 4.0629
13 39.9200 104.6565 17.5121 19.2837 81.0443

Continued on next page
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Table C.8: MAE per sensor for each model for hour-ahead forecasts for passenger traffic.

Baseline Holt-Winters XGBoost GNN Transformer
sensor

14 53.5864 139.9524 23.2283 24.5336 110.0472
15 7.3995 13.2815 5.3015 6.3415 4.4279
16 1.8946 2.0211 1.4892 2.9171 1.4435
17 7.5591 14.7930 4.7974 6.0224 4.3384
18 7.0560 12.0201 4.5397 5.2963 4.1753
19 10.0121 17.4022 5.5984 5.8386 4.9942
20 5.3130 10.5865 3.5394 4.9205 3.2239
21 4.2556 7.7354 2.7361 4.4775 2.7877
22 6.4273 13.4418 4.017 5.0115 3.6699
23 25.8824 65.8669 14.114 14.311 50.8678
24 20.6108 53.4510 11.2208 11.6842 41.1602
25 22.6576 61.4103 11.5449 11.9372 48.196
26 20.5590 51.4802 9.3762 10.8279 39.3657
27 27.5645 69.0129 12.7151 15.1458 56.4626
28 27.5835 53.8345 12.9864 13.7758 45.4849
29 26.6114 64.2396 13.1773 14.795 53.9381
30 22.8362 52.3942 12.1373 12.695 43.6814
31 13.0167 24.5275 7.0202 7.7173 6.1991
32 33.0327 77.0920 15.6111 16.8512 61.994
33 13.5520 36.5428 10.723 9.7788 9.9579
34 27.8523 75.3923 17.4701 18.732 50.2431
35 40.2539 86.8209 18.9478 19.0686 73.2901
36 26.0979 59.4526 12.8178 13.8748 47.701
37 20.5805 44.0882 9.8397 10.4193 36.2593
38 10.4190 25.2645 6.4371 6.9006 5.5525
39 11.3618 27.3762 6.503 7.0601 6.2902
40 9.9256 22.1187 5.3934 5.9541 4.9272
41 8.2489 17.1188 4.5136 5.2357 4.244
42 10.1062 17.3150 5.1201 5.4991 5.8087
43 7.4495 15.3313 4.4092 5.1579 3.8352
44 7.5203 15.6593 4.3885 5.0461 3.9443
45 9.7017 21.9541 5.9084 6.5663 5.0661
46 12.6314 30.8872 7.851 8.1549 10.1269
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C. RESULTS

Figure C.1: RMSE of the 5-minute forecasts for freight traffic per sensor for each of the
methods.
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Figure C.2: MAE of the 5-minute forecasts for freight traffic per sensor for each of the
methods.
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C. RESULTS

Figure C.3: RMSE of the 5-minute forecasts for passenger traffic per sensor for each of the
methods.
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Figure C.4: MAE of the 5-minute forecasts for passenger traffic per sensor for each of the
methods.
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C. RESULTS

Figure C.5: RMSE of the hour-ahead forecasts for freight traffic per sensor for each of the
methods.
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Figure C.6: MAE of the hour-ahead forecasts for freight traffic per sensor for each of the
methods.
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C. RESULTS

Figure C.7: RMSE of the hour-ahead forecasts for passenger traffic per sensor for each of
the methods.

98



Figure C.8: MAE of the hour-ahead forecasts for passenger traffic per sensor for each of the
methods.
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