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Abstract

Predicting hotel booking cancellations is crucial for revenue management, as can-
cellations can lead to revenue loss and inefficient resource allocation. Traditional
machine learning methods have been widely applied to this problem, with feature
engineering improving predictive performance. However, feature engineering may
also introduce redundancy and noise. Less attention has been given to the role of
feature learning and dimensionality reduction techniques. This thesis explores the
predictive performance of models trained on features learned with autoencoders,
compared to statistical dimensionality reduction techniques, and models trained
on the original feature set. The dimensionality reduction techniques applied were
principal component analysis (PCA), multiple correspondence analysis (MCA), and
autoencoders. Their performance was evaluated with three classifiers: random for-
est, XGBoost, and a multilayer perceptron (MLP). Across the models evaluated,
XGBoost achieved the strongest overall performance (F1 = 0.84) when trained di-
rectly on the original features. For the ensemble models, neither PCA nor autoen-
coder features improved performance. In contrast, the MLP benefited substantially
from the autoencoder-derived features, improving from an F1 score of 0.68 on the
original data to 0.78 with an autoencoder bottleneck of 32. Overall, the findings
demonstrate that dimensionality reduction is unnecessary for tree-based models,
which can already handle sparse, high-dimensional inputs effectively. However, it
can make neural networks more competitive. For practical applications, XGBoost
trained on the original features remains the most efficient and reliable approach for
predicting hotel booking cancellations.

Keywords— Hotel booking cancellations, Revenue management, Machine learning,
Tabular data, Dimensionality reduction, PCA, Autoencoders, Feature learning
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Chapter 1

Introduction

The concept of hospitality dates back thousands of years, with early evidence found
in ancient civilizations such as Mesopotamia and Egypt. Taverns along trade routes
provided basic shelter and refreshment for merchants and pilgrims, introducing the
earliest examples of organized lodging [32]. As human societies grew and developed,
the hospitality industry changed alongside, constantly adapting to new cultures
and technologies. While the fundamental idea of offering a place to rest remains
unchanged, the modern hospitality sector has grown into a profit-oriented domain.

According to data insights of Statista [33], the US hotel industry is forecasted
to reach $443.07 billion in revenue in 2025 with an annual growth rate of 3.68%.
Despite this growth, high booking cancellation rates remain a challenge for the
sector. A 2024 report by D-Edge [34] estimates that cancellation rates range from
18% to 42% annually. Major contributors to increased cancellations were the rise
of online booking platforms and dynamic pricing, which have made it easier for
travelers to reserve multiple accommodations simultaneously and cancel last minute
once better deals are found [37]. Beyond leaving rooms unoccupied, cancellations
also result in significant revenue losses, reduced operational efficiency, and decreased
visibility on Online Travel Agencies (OTA) platforms [55]. Therefore, accurately
predicting which bookings are likely to be canceled can reduce uncertainty and
increase revenue [6] by enabling more informed decision making, such as sending
reminder messages to guests or offering up-selling options.

Due to the limited availability of real hotel data, most research on cancella-
tion prediction relies on data from the aviation industry [8]. Hoteliers who use
data-driven approaches to produce accurate revenue forecasts rely on methods that
are more extensively researched, such as demand forecasting [54, 61], which will
be further discussed in Chapter 2. While these strategies are widely used in rev-
enue management, they often rely on assumptions, and decisions are usually made
manually.

As more industries pursue smart data utilization, the hotel industry is also ex-
ploring how to make better use of its data [54]. Booking data stored in the Property
Management System (PMS) often contains hidden patterns relevant to cancella-
tion prediction. According to Domingos (2012) [23], the most important element
in modeling is the features used. However, sometimes the patterns in the raw data
are insufficient for learning, and more features have to be derived for an accurate
prediction.

As seen in previous studies [6, 7], feature engineering often results in many ad-
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CHAPTER 1. INTRODUCTION

ditional features, and while it can significantly enhance model performance, it also
introduces redundancy and noise [23]. Studies have shown that dimensionality re-
duction can improve model performance, reduce overfitting, and enhance training
efficiency in classification tasks [5, 19, 23]. This motivates the use of dimensionality
reduction in the feature space, such as principal component analysis (PCA) [43],
to only retain informative features. Although PCA is a well-known and widely
used technique, its linear property limits its ability to capture complex relation-
ships. Moreover, it only works on numeric features and is not suitable for a dataset
containing categorical features.

With the rise of deep learning, manual feature engineering is no longer necessary.
However, deep neural networks are often considered black-box models, making them
less suitable when working with sensitive booking data due to concerns around
transparency and accountability. Moreover, hotel booking datasets are tabular and
small, which are both underdeveloped domains in the deep learning field that do
not outperform traditional methods [49]. Autoencoders offer a middle ground: while
they do not fully overcome the transparency characteristics of neural networks, they
are well-suited for handling high-dimensional, noisy data [3, 10]. Their architecture
compresses input data into a lower-dimensional space through a bottleneck layer,
effectively learning a compact representation, though this comes at the expense of
less interpretability. This latent representation can then be used for purposes such
as data compression, feature extraction, or denoising.

While most existing research applies traditional machine learning techniques
such as decision trees, support vector machines, or PCA, the use of dimensionality
reduction with deep learning for cancellation prediction remains unexplored. This
reveals a gap in the application of more advanced, deep learning-based methods for
dimensionality reduction. Therefore, the objective of this research is to determine
whether using autoencoders for dimensionality reduction in the feature space can
improve the prediction of hotel booking cancellations. This thesis compares the pre-
dictive performance of models trained on latent features learned by an autoencoder,
models using traditional dimensionality reduction techniques, and models using raw
features. The research question becomes: How do performance metrics (e.g.,
F1 score) compare when predicting hotel booking cancellations using fea-
tures learned with autoencoders, compared to traditional dimensionality
reduction methods and models without any dimensionality reduction?

To help answer the research question, the following subquestions are formed:

1. What type of autoencoder architecture (e.g., basic, denoising, variational)
yields the best features for cancellation prediction?

2. How does the size of the latent space impact the predictive performance when
using autoencoders?

3. Can the learned latent space reveal meaningful patterns related to booking
cancellations?

The remainder of this thesis is organized as follows: Chapter 2 reviews the rele-
vant literature on cancellation prediction and dimensionality reduction techniques.
Chapter 3 details the dataset and the preprocessing steps undertaken. Chapter 4
describes the methods employed for this thesis. Chapter 5 and Chapter 6 present
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CHAPTER 1. INTRODUCTION

the experimental setup and results, respectively. Chapter 7 offers a discussion of the
findings and provides recommendations. Finally, Chapter 8 summarizes the main
conclusions of the study.
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Chapter 2

Literature review

In this chapter, the literature is discussed. Section 2.1 discusses key drivers of cancel-
lations and current methods to mitigate them. Section 2.2 reviews prior research on
cancellation prediction. Sections 2.3 and 2.4 review dimensionality reduction tech-
niques, including both statistical and deep learning methods. Finally, Section 2.5
concludes with a summary of key insights.

2.1 Cancellation behavior in the hospitality in-

dustry

Tourism is an extremely dynamic and reactive industry, influenced by global events,
economic situations, and traveler preferences. In the hospitality industry, cancella-
tions are a common problem, affecting revenue, occupancy planning, and customer
experience [55]. Despite growing access to data, many hoteliers still rely primarily on
business rules or personal intuition rather than predictive models [35]. Therefore,
understanding the factors leading to booking cancellations is crucial for effective
revenue management.

Several factors contribute to cancellations. The paper by Hajibaba et al. (2016) [31]
investigates possible responses to large-scale disruptions, such as political instability,
natural disasters, or terrorism. In these situations, the preferred response is often
to relocate tourists to alternative accommodations farther from the affected area to
maintain guest satisfaction and safety.

While such extreme cases are rare, they do highlight the vulnerability of the
industry. Day-to-day cancellations are far more common, and although each cancel-
lation is driven by different reasons, they can typically be placed in the categories
‘hotel’, ‘customer’, ‘booking’, or ‘external’ factors. Antonio et al. (2019) [7] pro-
vided an overview of factors related to cancellation. They stated that hotel-related
factors include the variety of facilities, star category, location, and brand recogni-
tion. Customer factors typically include age group, customer type, market segment,
distribution channel, gender, and country of origin. Booking factors include price,
length of stay, lead time, party size, time of the year, day of the week, events,
and cancellation policy. External factors could include recommendations by a third
party (e.g., travel agent, company, or family), social reputation, competitors’ prices,
special events, and weather. Understanding these influential features is required for
developing accurate predictive strategies.
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CHAPTER 2. LITERATURE REVIEW

Hoteliers currently use methods such as demand forecasting [54, 61], overbooking
predictions [6, 44], or dynamic pricing [2, 27] to produce accurate revenue forecasts
and have also been the focus of extensive academic research. In the following para-
graphs, a small overview of the three methods is given.

2.1.1 Demand forecasting

Demand forecasting methods are used in multiple industries. Not only limited to
where booking-based applications are used, but also in the supply chain industry
to forecast the number of orders. Demand forecasting mostly consists of traditional
forecasting methods that are statistic-based regression methods, such as time series,
ARIMA, winter, or Holt regression [61]. Another example is the thesis of Van
Leeuwen (2024) [54], where he used cubic smoothing splines in combination with
linear programming to model demand. In more recent years, Mediavilla et al. (2022)
[40] stated that research has shifted towards machine learning models (e.g., decision
trees), either as standalone approaches or in combination with statistical methods.

2.1.2 Overbooking

Overbooking and no-show prediction are closely related practices. To mitigate po-
tential revenue losses, hotels often accept more bookings than their actual capacity,
anticipating that the made reservations will have no-shows, last-minute cancella-
tions, or modifications. However, this approach requires careful planning to deter-
mine the optimal overbooking level. Phumchusri and Maneesophon (2014) [44] used
a mathematical approach to determine the optimal number of rooms to overbook
when a hotel offers two different room types. However, the challenge with this ap-
proach is that hotels typically offer a wide variety of room types (such as suites,
double, single, etc.), which makes it difficult to model this mathematically.

Note that overbooking strategies are primarily focused on capacity and rely on
historical demand trends, assuming that a certain proportion of bookings will cancel
or result in no-shows. In contrast, cancellation prediction seeks to identify which
specific bookings are likely to be canceled, relying more on guest characteristics and
booking context.

2.1.3 Dynamic Pricing

Dynamic pricing is a revenue management strategy that allows hotels to adjust room
rates in response to real-time fluctuations in demand and occupancy levels to maxi-
mize Revenue per Available Room (RevPAR) [27]. This approach is widely used in
industries with perishable inventory and fluctuating demand, such as airlines, sports
events [30], and the energy sector [24]. As a result, prices can vary significantly for
the same booking details, such as stay period or room type, depending on the timing
of the reservation. Hotels leverage a variety of factors to adjust prices, including
tangible attributes (e.g., room size, the presence of spas or business facilities), rep-
utational attributes (e.g., star ratings, guest reviews), and contextual factors (e.g.,
booking time, competitive pricing) [2]. Research has shown that booking time plays
a crucial role in price adjustments, helping hotels distinguish between leisure and
business travelers and set prices accordingly.

12



CHAPTER 2. LITERATURE REVIEW

2.2 Previous research on cancellation prediction

Discussions with various hotels revealed that, due to limited resources, cancella-
tion prediction models or other data science techniques are often not implemented.
Smaller hotels, in particular, may lack the means to maintain high-quality data
or the expertise to develop and manage predictive models. As a result, managers
often rely on intuition rather than data when making overbooking or pricing deci-
sions. Nevertheless, some researchers have explored how far machine learning can
go in forecasting cancellations, mostly using traditional machine learning techniques.

In the study by Antonio et al. (2019) [7], PMS data with additional external
data sources were used for cancellation prediction on eight different hotels. A total
of 37 variables were used, coming from a PMS, weather forecasts, national and local
holidays, and social reputation from online views. The final dataset had 12 features
directly usable from the data sources and 25 engineered features. The rationale be-
hind including external data sources is the idea that these features might positively
contribute to the accuracy [23]. Four XGBoost models, each with different input
features, were created to assess performance. Models 1 and 2 were trained solely
on PMS data, but on different time periods: from January 2016 to November 2017
and from August 2016 to November 2017, respectively, to determine the model per-
formance on a reduced number of observations. Model 3 incorporated all available
data sources (PMS, weather, holidays, and social reputation) over the full time pe-
riod, and Model 4 was specifically trained and tailored for two individual hotels and
is therefore not considered in this thesis. The results showed that Model 2, which
only used PMS data, achieved an average accuracy of 0.8268, slightly outperforming
Model 3 with an average accuracy of 0.8256, which did include external sources.
The precision was much lower than the accuracy, with an average of 0.45 across all
models. This suggests that incorporating external data is not necessarily beneficial
and that high-quality feature engineering using PMS data alone may be more valu-
able. Furthermore, in the feature importance analysis, it was found that only 13
to 15 features were actively used by the models, depending on the hotel. Notably,
all of these features originated from the PMS system, while external data sources
were ignored. Although the importance scores varied across models, features such
as lead time, country, deposit (yes/no), week stay (yes/no), distribution channel,
and booking changes (integer) were generally deemed most important.

Interestingly, earlier work by the same authors had already demonstrated that
high accuracy could be achieved using PMS data alone, without incorporating any
external sources. The study by Antonio et al. (2017) [6] used booking data from four
hotels located in the region of the Algarve, Portugal. The data were extracted from
their PMS and consisted of basic variables such as arrival date, room type, guest
characteristics, and length of stay. The researchers conducted minimal feature en-
gineering and used a total of 32 features. The authors used a boosted decision tree,
decision forest, decision jungle, locally deep support vector machine, and a neural
network to predict cancellations. Unfortunately, the paper does not further specify
the models, e.g., the architecture of the neural network. The boosted decision tree
and Decision Forest performed best with accuracies above 0.90 for each hotel. The
models had larger variability in the F1 score, ranging between 0.639 and 0.927. The
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CHAPTER 2. LITERATURE REVIEW

results showed that features extracted from PMS are proficient at predicting can-
cellations with high accuracy. Interestingly, not every feature had the same order
of importance or contribution to the cancellation prediction for each hotel. For ex-
ample, the nationality of guests was important across all hotels, but its importance
varied, and the feature required parking space was only important for hotels 1 and
4. In general, hotel location, services, facilities, nationality of guests, markets, and
distribution channels were deemed important.

Building on this idea, Sánchez-Medina and C-Sánchez (2020) [48] aimed to create
a more interpretable model on booking cancellations by using only 13 commonly
available PMS features (e.g., number of adults, advance payment (yes/no), number
of nights, source of booking, check-in date, average price). The advantage of using
a reduced number of features is the possibility to understand why and what type of
customers cancel. Four models were compared: C5.0, random forest, support vector
machine (SVM), and an artificial neural network (ANN) that was optimized using
a genetic algorithm. The results show that the ANN performed best, followed by
Random Forest and C5.0, which had similar performance, while the SVM performed
the worst. Their respective accuracies were 0.980, 0.804, 0.790, and 0.753. The same
order was observed for the F1 score and precision, whereas recall and AUC showed
greater variation between C5.0 and Random Forest. Unfortunately, no analysis of
feature importance or model details was provided.

Together, these studies suggest that well-structured PMS data, even without ex-
ternal variables, can provide sufficient predictive power for hotel cancellation fore-
casting.

In contrast to the studies discussed above, which focus on binary cancellation
prediction using PMS data, the work by Morales and Wang (2010) [41] takes a dif-
ferent approach by forecasting cancellation rates throughout the booking horizon t.
14 variables, of which 11 are nominal (e.g., channel, company, day, market, month,
rate code, refundable, room type), and three numeric features (length of stay, time
booking, and price) are used. The models evaluated include average cancellation
rate (AVG), seasonally averaged rate (SAVG), logistic regression (LR), decision tree
(DT), minimum squared expected error tree, random forest (RF), SVM, and kernel
logistic regression. Since the objective was to forecast the cancellation rate (i.e., con-
tinuous target), model performance was assessed using Total Absolute Error (TAE).
The results showed that the best-performing model and features vary depending on
the booking horizon t (i.e., time-dependent). Overall, SVM, kernel LR, and RF
achieved the lowest TAE values (719.9, 733.9, and 723.3, respectively), while SAVG
performed the worst with a TAE of 937.6.

Beyond the hospitality sector, cancellation prediction has also been explored
outside the hotel industry. For instance, Huang et al. (2013) [35] used a feedfor-
ward neural network trained with backpropagation (BPN) and general regression
neural networks (GRNN) to study reservation cancellations in the restaurant sec-
tor. Reservation data from 1,400 customers was collected from a Western restaurant
chain in Taiwan in 2011. Of these reservations, 251 were canceled (17.93%). The
dataset included 12 features, grouped into temporal features (e.g., month), guest
characteristics (e.g., age, income), and historical behavior (cancellation record and
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cumulative number of cancellations). The BPN achieved higher AUC (74.86%) and
sensitivity (80.87%), while the GRNN performed better on specificity (87.14%).

In summary, a variety of machine learning models, feature sets, and applica-
tion domains have been explored by previous research on cancellation prediction.
While some studies incorporated externally sourced features, evidence shows that
relying only on variables available from internal systems like Property Management
Systems (PMS) can be equally effective, suggesting that the quality and relevance
of input features may be more important than data volume or model complexity
alone. Furthermore, studies conducted in related fields (e.g., restaurants) demon-
strate how applicable cancellation prediction methods are to a variety of industries.
Across hotel and restaurant datasets, models such as decision trees, random forests,
support vector machines, and neural networks have all shown promise. These stud-
ies demonstrate the importance of data quality, feature selection, and contextual
understanding in building effective and practical predictive models for reservation
cancellations.

While feature engineering can improve accuracy [23], incorporating multiple
sources of information or performing extensive feature engineering can substantially
increase the number of variables, leading to high-dimensional datasets. This creates
additional modeling challenges that can be addressed through dimensionality reduc-
tion techniques. The next section discusses commonly used statistical methods for
reducing dimensionality while preserving the most relevant information.

2.3 Statistical approaches for dimensionality re-

duction

One of the main challenges in high-dimensional datasets is the curse of dimen-
sionality, a term introduced by Bellman in 1961 [11], which describes how general-
ization in models becomes exponentially harder as the dimensionality of the input
space (i.e., the number of variables used in prediction) increases. In high dimensions,
data points become sparse, distance measures lose their meaning, and the amount
of data required to train a model effectively grows exponentially. As a result, many
algorithms that perform well in low-dimensional spaces struggle or become com-
putationally infeasible in higher dimensions. To reduce this effect, dimensionality
reduction techniques can be used to transform the dataset into a lower-dimensional
representation that seeks to preserve as much relevant information as possible. The
following sections review some commonly used statistical methods for dimensionality
reduction on numerical and categorical data.

2.3.1 Numerical data

Common approaches for dimension reduction on numerical data include linear tech-
niques such as Principal Component Analysis (PCA), as well as nonlinear extensions
like Kernel PCA (KPCA). A comprehensive review of dimensionality reduction tech-
niques and the mathematical principles underlying them is provided in the study
by Sorzano et al. (2014) [52]. Although their citation analysis covered studies from
2003 to 2012, the survey remains relevant since techniques like PCA, KPCA, and
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manifold learning continue to be applied in modern applications. Their analysis
revealed a clear increase in the popularity of manifold learning approaches, such as
ISOMAP, Locally Linear Embedding, and Laplacian Eigenmaps, due to their ability
to model nonlinear relationships and adapt to local data structure. This growth has
partially come at the expense of earlier nonlinear PCA variants and Self-Organizing
Maps. Nevertheless, component-based methods, particularly PCA and its variants
(e.g., KPCA), remain among the most widely applied techniques because of their
simplicity, interpretability, and computational efficiency.

While Sorzano et al. (2014) [52] summarizes trends in method usage, Cao et al.
(2003) [19] empirically compared the performance of PCA, ICA, and KPCA across
three different time series benchmark datasets (sunspot time series, Santa Fe, finan-
cial time series) using an SVM regressor. For each experiment, four SVM models
were trained: one using the original data without dimensionality reduction, and
three using features extracted via PCA, ICA, and KPCA. Model performance was
evaluated using the normalized mean square error (NMSE). Across all three exper-
iments, SVM models trained on features extracted from dimensionality reduction
techniques outperformed those trained on the original input data, suggesting that
dimensionality reduction increases the model’s ability to capture complex patterns
in the data. In particular, KPCA and ICA consistently performed better than PCA,
likely due to their ability to extract nonlinear features, in contrast to the linear trans-
formations of PCA.

As the field progressed, researchers began comparing a broader range of dimen-
sionality reduction techniques. The study by van der Maaten et al. (2007) [53]
compared several nonlinear dimensionality reduction techniques, including manifold
learning and multilayer autoencoders, with PCA. They discussed 12 techniques:
(1) Multidimensional scaling, (2) Isomap, (3) Maximum Variance Unfolding, (4)
Kernel PCA, (5) Diffusion maps, (6) Multilayer autoencoders, (7) Locally Linear
Embedding, (8) Laplacian Eigenmaps, (9) Hessian LLE, (10) Local Tangent Space
Analysis, (11) Locally Linear Coordination, and (12) Manifold charting. The meth-
ods were compared by evaluating the generalization errors in classification tasks, and
experiments were conducted on five real-world standard, publicly available datasets:
MNIST, COIL20, NiSIS, ORL, and HIVA. Unfortunately, these datasets were not
traditional tabular data, but rather image datasets that have been converted into
numerical format using pixel values, except for the HIVA dataset, which is a drug
discovery dataset consisting of 3,845 samples with 1,617 features and two target
classes. The results showed that PCA outperformed all nonlinear techniques on
three of the five datasets, suggesting that nonlinear approaches have not yet con-
sistently surpassed traditional PCA for dimensionality reduction. Kernel PCA and
autoencoders showed strong performance across most datasets, leading the authors
to anticipate further development of these methods as a promising balance between
performance and computational feasibility. However, as this study was conducted
in 2007, the evaluation of autoencoders reflects the capabilities of that period, when
deep learning architectures, optimizers, loss functions, and regularization techniques
were far less advanced than today. Thus, the reported performance of autoencoders
in this study likely underestimates their potential with modern implementations.
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A more recent analysis by Chang (2025) [20] emphasizes that the most suitable
dimensionality reduction technique depends on dataset characteristics, the need for
interpretability, computational constraints, and the specific objectives of the anal-
ysis. Despite the limitations in capturing non-linear structures, PCA remains a
strong choice for tabular data due to the simplicity, interpretability, and compu-
tational efficiency. Earlier work by Cao et al. (2003) [19] and Van der Maaten et
al. (2007) [53] provided empirical evidence for this perspective, by demonstrating
that PCA often performed comparably to, and in some cases outperformed, more
complex nonlinear dimensionality reduction techniques. Given the structure of the
dataset in this thesis and the objective of developing transparent and scalable mod-
els, PCA is therefore selected as the preferred statistical dimensionality reduction
technique.

2.3.2 Categorical data

In addition to numerical features, many tabular datasets also contain categorical
variables that cannot be directly processed by techniques like PCA. A common ap-
proach to reduce the dimensionality of categorical data is Multiple Correspondence
Analysis (MCA), an extension of Correspondence Analysis (CA), which itself is used
to analyze relationships between two categorical variables [1]. Similar to PCA, MCA
identifies latent dimensions that aim to explain as much variability in the data as
possible, but it does so using a chi-square metric and is based on an indicator matrix
created from one-hot encoding [28]. While MCA is beneficial for its interpretability,
it can be sensitive to rare categories and noise.

The study by Bera et al. (2023) [12] presented a comprehensive evaluation of 13
categorical dimensionality reduction techniques, including one-hot encoding, feature
hashing, Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), PCA,
MCA, and variational autoencoders. These methods were assessed on seven bench-
mark clustering datasets, including text corpora (e.g., NIPS papers, Enron Emails,
NYTimes articles), Gisette handwriting dataset, and a biological dataset of mouse
brain cells. These datasets had extremely high dimensionality, ranging from 5,000
to 1.3 million features, and different levels of sparsity (0.07% to 30%). The findings
showed that MCA offers a trade-off between efficiency and interpretability and is
substantially faster than the majority of the other techniques, particularly compared
to one-hot encoding. Although more complex methods, such as variational autoen-
coders, achieved higher accuracy, they tend to be most successful in settings with
extremely high dimensions. In contrast, booking datasets, such as those discussed
in Section 2.2, have a considerably lower dimensionality.

Another technique for dimensionality reduction is Factor Analysis of Mixed Data
(FAMD), which combines both PCA and MCA into a single analysis. It applies PCA
to the numerical features and MCA to the categorical features simultaneously, en-
suring that both types contribute equally to the resulting components. The study
by Visbal-Cadavid et al. (2020) [56] applied FAMD in an educational context where
the main objective is to derive clusters based on the resulting principal components.
The study focused on the interpretation of the clusters by examining how variables
contributed to their formation. For example, the authors analyzed which variables
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were most important for each cluster and related these to university performance,
noting that institutions with greater resource availability tend to rank higher. Al-
though this provides qualitative insights, it limits the ability to objectively assess
the effectiveness of the dimensionality reduction or clustering.

While the studies above used purely statistical methods, Guo and Berkhahn
(2016) [29] proposed using embeddings for categorical variables. They argued that
the continuous nature of neural networks makes them poorly suited for categorical
inputs, particularly when categories are represented as integers. To address this, the
authors introduced learning vector representations (i.e, embeddings) of categorical
variables directly within the neural network. Rather than relying on one-hot or
integer encodings, each category was mapped to a trainable vector of real numbers
optimized during supervised training, allowing categories with similar effects on the
outcome to be closer together in the embedding space. Their method was applied
to the Rossmann Store Sales dataset from Kaggle, which includes seven categorical
features with a total number of 1,017,210 records. By mapping categories into a
continuous embedding space, similar values are placed closer together, capturing
latent relationships between them. This approach not only reduces memory usage
and training time compared to one-hot encoding but also improves generalization,
especially in sparse datasets or when statistical assumptions are weak. Moreover,
when these learned embeddings are used as input features for other models, such
as k-nearest neighbors, random forests, and gradient boosted trees, they signifi-
cantly improve predictive performance. For instance, mean absolute percentage
error (MAPE) for random forests improved from 0.167 to 0.089, and for gradient
boosted trees from 0.122 to 0.071, while neural networks maintained a MAPE of
0.070 with and without embeddings.

Each of these approaches have their own strengths. Entity embeddings are par-
ticularly powerful for large-scale datasets with many high-cardinality features, while
FAMD is well-suited for mixed-type data where both numerical and categorical fea-
tures are prominent. However, given the moderate dimensionality and limited car-
dinality of the current dataset, MCA offers a practical and interpretable solution for
categorical dimensionality reduction in this research.

2.4 Autoencoders for dimensionality reduction

While Section 2.3 reviewed statistical methods for dimensionality reduction, such as
PCA and MCA, deep learning-based approaches are increasingly explored. Although
alternatives such as Restricted Boltzmann Machines [58] or specialized architectures
like EVNet [62] have been proposed, autoencoders remain the dominant deep learn-
ing approach for dimensionality reduction. They are frequently included in studies,
such as Bera et al. (2023) [12] and Van der Maaten et al. (2007) [53], which were
already discussed in the previous section, as comparison against other methods.
Therefore, this thesis will focus on autoencoders as a deep learning-based technique
for dimensionality reduction.

Autoencoders have gained significant attention due to their ability to learn non-
linear, hierarchical representations directly from the data [3, 10]. Unlike linear
techniques such as PCA, autoencoders use neural networks designed to learn effi-
cient, compressed representations of input data by minimizing reconstruction error.
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This makes them particularly useful for high-dimensional datasets in which patterns
may not be linearly separable. This ability has led to their growing use, particu-
larly in domains involving unstructured data such as computer vision and natural
language processing [10, 59]. However, it remains uncertain whether this success
translates to other data types, specifically tabular data, since deep neural networks
have struggled to consistently outperform traditional machine learning techniques
for prediction on such structured data [49]. The remainder of this section reviews
some studies that use autoencoders for dimensionality reduction with tabular data.

The study by Bank et al. (2021) [10] provides a review of different architectures
and applications of autoencoders. A notable experiment was the standard (vanilla)
autoencoder used to generate compressed representations, which was subsequently
used as input to a clustering algorithm (e.g., K-means). Since clustering algorithms
often suffer from the curse of dimensionality, the low-dimensional latent representa-
tion produced by autoencoders is preferred. As noted in the paper, a limitation of
using vanilla autoencoders for clustering is that “the embeddings are trained solely
for reconstruction and not for the clustering application” [10], meaning the latent
representations are not explicitly optimized to enhance cluster separation.

While Bank et al. (2021) [10] provides a broad overview of autoencoder archi-
tectures and their potential for unsupervised learning, the work by Alkhayrat et al.
(2020) [5] compared the effectiveness of two dimensionality reduction approaches:
PCA and autoencoders, to improve customer segmentation on an extensive telecom
customer dataset. Although PCA was included as a baseline, the main contribution
lay in applying autoencoders for dimensionality reduction. The dataset consisted
of 220 behavioral, service, and demographic features from 100,000 customers. With
such a large feature space, there is a greater chance that columns will be correlated
to each other and therefore be redundant. To address this curse of dimensionality,
the authors compared the effectiveness of two dimensionality reduction approaches
before applying k-means clustering for customer segmentation. PCA was tested with
10, 20, 30, and 50 components, and it was found that 20 components explain 90% of
the variance. The authors implemented a symmetric encoder-decoder autoencoder,
with mean squared error as the loss function, Adam optimizer with learning rate
0.001, and ReLU activations throughout. Several autoencoder architectures were
tested with bottleneck dimensions of 20, 30, and 50. After obtaining a reduced
space, the authors conducted k-means clustering with varying numbers of clusters
and compared the quality using the silhouette score. Results showed that both PCA
and autoencoders improved clustering quality compared to the original dataset, with
the autoencoder achieving the best silhouette score of 0.682 (3 clusters) compared to
0.581 for the original data and 0.476 for PCA. The comparison with PCA illustrates
how autoencoders can outperform traditional techniques.

Apart from the use of autoencoders for unsupervised learning in clustering, their
utility can also be tested in a supervised classification setting. The study by Volovăt,
et al. (2024) [57] forecasted tumor recurrence following Gamma Knife radiosurgery
for patients with brain metastases with autoencoder-derived features. The dataset
consisted of 77 patients and 13 variables covering socio-demographic, clinical, treat-
ment, and radiosurgery factors, with the target variable indicating either tumor
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regression (cured) or tumor progression (not cured). The dataset was notably small
and imbalanced, with only six cases in the not-cured class, and to address this, the
authors applied SMOTE to generate a more balanced dataset. Two types of au-
toencoders were designed: one without compression (meaning the bottleneck layer
retained the same number of neurons as the input), and one with compression (re-
ducing the latent space to half the number of features). Both architectures had
symmetric encoder-decoder structures, batch normalization, and LeakyReLU ac-
tivations. These learned features were then used as input to various classifiers,
including Logistic Regression, SVM, KNN, Random Forest, Extra Trees, and XG-
Boost. Results showed that compressed autoencoder features generally improved
classification performance compared to both the original data and non-compressed
representations, particularly for SVM and Logistic Regression, where the accuracies
increased from 0.85 to 0.96 and from 0.91 to 0.94, respectively. XGBoost performed
consistently well across all feature sets with an accuracy of 0.94, while Extra Trees
showed overfitting with both accuracy and F1 score being 1. The findings sug-
gest that models trained on compressed autoencoder features generally outperform
the original feature set and the non-compressed latent representations. However,
the small sample size and number of variables are major limitations and should be
considered when interpreting these findings.

In conclusion, these studies demonstrate that learning compressed representa-
tions that retain essential information (i.e., autoencoders for dimensionality reduc-
tion) can enhance downstream performance across various tasks and domains.

2.5 Concluding remarks

This chapter reviewed prior research on cancellation prediction and dimensional-
ity reduction techniques. Ensemble methods, particularly XGBoost, consistently
demonstrate high performance in cancellation prediction tasks and are valuable for
uncovering the drivers behind cancellations [41] due to their interpretability. More-
over, recent studies by Shwartz-Ziv and Armon (2021) [49] and Borisov et al. (2024)
[14] showed that ensemble methods are often preferred over deep neural networks for
tabular data, and often outperform them in terms of generalization and robustness.

Traditional dimensionality reduction techniques such as PCA and MCA are
widely used due to their simplicity, transparency, and computational efficiency. How-
ever, their linear nature limits their ability to capture complex, nonlinear patterns
in the data. Autoencoders address this limitation by their ability to learn nonlin-
ear representations, and previous studies have shown that their latent spaces can
improve performance in both clustering [5, 10] and classification [57] tasks. How-
ever, autoencoders introduce additional model complexity, reduce interpretability,
and often require more computational resources. Their benefits are most evident in
high-dimensional or highly nonlinear datasets.

In summary, while linear techniques like PCA and MCA offer interpretability
and speed, autoencoders present a promising alternative for capturing more complex
structures in the data. Given the moderate dimensionality and mixed feature types
of the booking dataset used in this research, directly comparing these approaches
is valuable to assess whether the added complexity of nonlinear methods translates
into performance improvements.

20



CHAPTER 2. LITERATURE REVIEW

Technique Category Strengths Limitations

PCA Statistical Simple implementation,
fast, interpretable, useful
for visualization

Only numeric data, as-
sumes linear relationships

MCA Statistical Suitable for categorical
data, interpretable, useful
in survey or questionnaire
analysis

Sensitive to rare or sparse
categories

Autoencoder Deep learn-
ing

Captures complex and non-
linear patterns, suitable
for high-dimensional data,
flexible architectures (deep,
sparse, variational, etc.)

Requires tuning, less in-
terpretable, computation-
ally intensive, performance
varies with dataset size and
noise

Table 2.1: Summary of dimensionality reduction techniques reviewed in literature
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Study Data
Descrip-
tion

Features Models
Used

Key Findings

Task: binary cancellation prediction

Antonio
et al.
(2017)[6]

PMS data
from four
hotels in
Algarve,
Portugal

32 (demo-
graphics,
booking
details)

Boosted
Decision
Tree,
Decision
Forest,
Decision
Jungle,
LD-SVM,
NN

Performance: Boosted DT and
Decision Forest performed best.
Feature insights: varying impor-
tance across hotels.

Antonio
et al.
(2019)[7]

PMS
data from
eight Por-
tuguese
hotels +
external
data

37 (book-
ing de-
tails,
engi-
neered
booking
features,
weather,
holidays,
social rep-
utation)

XGBoost
(4 vari-
ants)

Performance: External data
didn’t improve performance; PMS-
only model with engineered features
performed best. Feature insights:
top features were lead time, coun-
try, deposit (yes/no), week stay
(yes/no), distribution channel, and
booking changes (int).

Sanchez-
Medina
et al.
(2020)[48]

PMS data
from a
hotel in
Gran
Canaria

13 (demo-
graphics,
pay-
ment and
booking
details)

RF, C5.0,
SVM,
ANN (op-
timized
with GA)

Performance: ANN achieved
highest accuracy, followed by RF
and C5.0, while SVM performed the
worst. Feature insights: N/A.

Huang
et al.
(2013)[35]

Restaurant
reserva-
tions from
Taiwan

12 (demo-
graphics,
reser-
vation
details)

BPN,
GRNN

Performance: BPN outperformed
GRNN on AUC and sensitivity;
GRNN better on specificity. Fea-
ture insights: N/A.

Task: time-specific cancellation rates

Romero
Morales
& Wang
(2010)[41]

personal
name
records
(PNR)
data

14 (only
booking
details)

AVG,
SAVG,
LR, DT,
minimum
squared
expected
error tree,
RF, SVM,
kernel LR

Performance: Best-performing
model varied over time t. Overall,
SVM and RF showed strong per-
formance. Feature insights: rela-
tive importance of variables is time-
dependent.

Table 2.2: Overview of prior studies on cancellation prediction. Note that the study
by Morales and Wang (2010) [41] is on cancellation rates and not binary cancellation
prediction. Sánchez-Medina and C-Sánchez (2020) [48] and Huang et al. (2013) [35]
did not analyze the variables.
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Data

This chapter provides an overview of the dataset used in this thesis. The dataset
is obtained from a Kaggle competition that has been active for over two years and
was initiated in response to the growing number of hotel reservations being canceled
or that result in no-shows. The objective is to develop a predictive model that
can forecast whether a guest will cancel their reservation. Section 3.1 describes
the dataset at a high level, Section 3.2 outlines the feature engineering steps, and
Section 3.3 presents the exploratory data analysis.

3.1 Data description

This thesis utilizes booking records from a hotel’s Property Management System
(PMS) found on Kaggle 1, which is inspired by the data presented in a study on hotel
booking demand by Antonio et al. (2019) [8]. The Kaggle dataset differs in several
aspects: it does not include all variables from the original study. Additionally, while
Antonio et al. (2019) [8] stated that their data originated from two Portuguese
hotels, the Kaggle dataset provides no information about the specific hotel or its
location. Furthermore, the study mentions that the data ranges from 2015 to 2017,
while the Kaggle dataset covers the period from 2017 to 2018. Therefore, the exact
relationship between the two datasets cannot be verified.

The dataset consists of 36,275 unique bookings and contains 19 variables covering
the period from July 1, 2017, to December 31, 2018. The dataset was already
cleaned, and no missing values or outliers were found in the data. Table 3.1 presents
the features with explanations, and Table 3.2 describes the categorical variables.

32

3.2 Feature engineering

To enrich the dataset, several new features are engineered based on booking and stay
characteristics. Prior work by Antonio et al. (2017) [6], Antonio et al. (2019) [7],
Morales and Wang (2010) [41], and Van Leeuwen (2024) [54] provides the inspiration
for these features, while also giving evidence of their predictive value.

From the three original arrival date columns, the exact arrival date in YYYY-
MM-DD format and the corresponding day of the week are computed. Van Leeuwen

1https://www.kaggle.com/datasets/ahsan81/hotel-reservations-classification-dataset/data
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Feature Type Description

BookingID String Unique identifier of each booking

Number of adults Numeric Number of guests

Number of children Numeric Number of children

Number of weekend nights Numeric Amount of weekend nights the guest
booked to stay at the hotel

Number of week nights Numeric Amount of week nights (Monday to Fri-
day) the guest booked to stay at the ho-
tel

Type of meal plan Category Type of meal plan booked by the guest

Required car parking space Boolean Does the customer require a car parking
space?

Room type reserved Category Type of room reserved by the guest

Lead time Numeric Number of days between the date of
booking and the arrival date

Year of arrival Numeric Year of arrival date

Month of arrival Numeric Month of arrival date

Date of arrival Numeric Date of arrival date

Market segment type Category Market segment designation

Repeated guest Boolean Is the customer a repeated guest?

Number of previous cancellations Numeric Number of previous bookings that were
canceled by the guest prior to the cur-
rent booking

Number of previous bookings not
canceled

Numeric Number of previous bookings not can-
celed by the guest prior to the current
booking

Average price per room Numeric Average price per day of the reservation;
prices of the rooms are dynamic. (in
euros)

Number of special requests Numeric Total number of special requests made
by the customer (e.g., high floor, view
from the room, etc.)

Booking status (target) Boolean Flag indicating if the booking was can-
celed (1) or not (0)

Table 3.1: Overview of features in the dataset.
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Categorical variable Descriptions

Meal plan Not Selected – No meal plan selected
Meal Plan 1 – Breakfast
Meal Plan 2 – Half board (breakfast and one other meal)
Meal Plan 3 – Full board (breakfast, lunch, and dinner)

Market segment type Aviation – Person in the aviation industry (e.g., pilot or air
hostess)
Complementary – Complimentary stay
Offline – Booking done in person (private booking)
Online – Booking done online (private booking)
Corporate – Booking via a corporate forum or platform

Room type reserved Values range from 1 to 7, encoded by INN Hotels to refer to
room categories (e.g., suite, deluxe, economy)

Table 3.2: Descriptions of categorical variables in the dataset.

(2024) [54] showed that guest type often varies by day of arrival, with business guests
typically arriving and departing during weekdays (Monday–Thursday) and leisure
guests arriving on weekends (Friday–Sunday). Similarly, Antonio et al. (2017) [6]
and Morales and Wang (2010) [41] found that temporal variables such as month
and day of the week, while sometimes modest in individual importance, can become
more predictive when combined with other variables.

Additional variables are constructed to capture stay characteristics, such as
length of stay, total number of guests, and two binary indicators: includes week-
end and travel with kids. Van Leeuwen (2024) [54] reported that weekend stays and
the presence of children are associated with different amenity usage patterns and
booking behaviors, while Antonio et al. (2019) [7] found that the number of children
was a consistently useful predictor across models.

Bookings were categorized into one night stay, short stay, and long stay following
the thresholds used by Van Leeuwen (2024) [54], corresponding to stays of 1 night,
2–3 nights, and more than 3 nights, respectively. Likewise, from booking lead time,
two categorical indicators are created to flag last-minute bookers (less than 3 days
in advance) and early bird bookers (more than 45 days in advance). Bookings made
between these timeframes are considered “regular” and are not assigned a specific
category. Van Leeuwen (2024) [54] notes that the categorization can provide the
model with additional context useful for prediction.

Two revenue-related features, total spend and spend per guest, are added to cap-
ture booking value. Van Leeuwen (2024) [54] noted that spending patterns could
be used to distinguish between guest segments, which in turn may influence can-
cellation behavior. Finally, an interaction term between lead time and stay length
is introduced to capture potential nonlinear relationships between the timing of a
booking and the duration of stay.

The engineered features and their derivations are summarized in Table 3.3, and
the enriched dataset is then used for further analysis.
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Feature Type Description

Day of the week String Name of the weekday corresponding to the arrival date

Length of stay Numeric Total number of nights stayed (weekend + week
nights)

Number of guests Numeric Total number of guests (adults + children)

Includes weekend Binary Indicator of whether the stay includes a weekend night

Room night stay Binary Bookings for single-night stays

Short stay Binary Bookings for short stays (2–3 nights)

Long stay Binary Bookings for long stays (> 3 nights)

Last-minute booker Binary Bookings made < 3 days in advance

Early-bird booker Binary Bookings made > 45 days in advance

Travel with kids Binary Bookings with at least one child

Total spend Numeric Total estimated revenue per booking (nights × aver-
age room price)

Spend per guest Numeric Estimated cost per guest for the full stay (total spend
/ number of guests)

Lead time per night Numeric Interaction term (lead time × number of nights)

Table 3.3: Overview of engineered features added to the dataset. These derived
variables were constructed to capture booking patterns (e.g., stay duration, spending
behavior).

3.3 Data exploration

After the feature engineering, the dataset consists of 32 variables. An exploratory
data analysis (EDA) is performed to gain insights into the distribution of variables,
identify patterns, and understand characteristics that may influence booking can-
cellations.

The dataset includes at least one booking for each day within the date range.
However, 37 entries contain an invalid date (February 29, 2018), which does not
exist. In addition, 78 entries have zero guests, with the average room price also
being equal to zero. A further 139 entries have no adults in the booking but do
include children. Given that most hotels do not allow minors to rent rooms without
an adult and that the number of guests should not be zero, these entries, along with
those containing invalid dates, are assumed to be errors and are removed from the
dataset. Theoretically, they could represent add-ons to another booking containing
adults, as noted in the study that provided this dataset [8]. However, the dataset
does not provide a way to verify this, as each booking has a unique identifier and
there is no mechanism to link records. Therefore, it is unclear whether these are
supplementary bookings or data entry errors. The final dataframe consists of 36,021
rows.

Categorical variables. The three categorical variables are shown in Figure 3.1,
and additionally, the categorical variables room type and market segment type are
summarized in Table 3.4. For market segment type, the majority of bookings are
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made directly by guests, either online or offline, accounting for more than 93% of all
reservations. The remaining segments (Corporate, Complementary, and Aviation)
together make up less than 10%. Room type 1 is by far the most booked, followed
by Room Type 4, Room Type 6, and Room Type 2. Room types 3, 5, and 7 make
up slightly more than 1% of all bookings. Particularly interesting is Room Type
3, which is only booked seven times. The second least common room type, Type
7, is mostly booked for complementary guests. The aviation category is booked
exclusively in Room Types 1 and 4. Meal Plan 1, which includes only breakfast, is
the most popular option. Meal Plan 3 is chosen in less than 1% of the bookings.

Market segment type

Aviation Complementary Corporate Offline Online Total

Room Type 1 60 (<1) 236 (<1) 1828 (5.07) 9,738 (27.03) 16,176 (44.91) 28,038 (77.84)

Room Type 2 0 16 (<0.1) 2 (<0.01) 57 (<1) 482 (1.34) 557 (1.54)

Room Type 3 0 2 (<0.01) 1 (<0.01) 2 (<0.01) 2 (<0.01) 7 (<0.1)

Room Type 4 65 (<1) 49 (<1) 99 (<1) 612 (1.70) 5,215 (14.48) 6,040 (16.78)

Room Type 5 0 17 (<0.1) 73 (<1) 80 (<1) 93 (<1) 263 (<1)

Room Type 6 0 14 (<0.1) 3 (<0.01) 23 (<0.1) 920 (2.55) 960 (2.67)

Room Type 7 0 39 (<1) 5 (<0.1) 5 (<0.1) 107 (<1) 156 (<1)

Total 125 (<1) 373 (1.04) 2011 (5.58) 10,517 (29.20) 22,995 (63.84) 36,021 (100)

Table 3.4: Contingency table room type vs. market segment type. Percentages (in
brackets) are normalized by the total number of bookings in the dataset.

Figure 3.1: The ratio of the categorical variables room type, meal plan, and market
segment type.

Length of stay. Figure 3.2 shows the distribution of length of stay per market seg-
ment, with clear differences observed between segments. For example, the corporate
segment, which is likely to consist of business travelers, tends to have shorter stays
and low variability. The complementary segment also has relatively short stays,
possibly indicating promotional or influencer stays. Aviation-related bookings tend
to span only a few days with few outliers, which is consistent with the short layover
durations typical for pilots and flight attendants. The two most traditional booking
channels, online and offline bookings, which are private bookings, show different
patterns as well. Offline bookings tend to have a shorter average length of stay and
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less variability compared to online bookings. Furthermore, online bookings have
many more outliers than offline bookings.

Figure 3.2: Distribution of length of stay for each segment.

Lead time. Figure 3.3 shows the distribution of lead time, defined as the number
of days between the booking date and the arrival date. The histogram reveals a
right-skewed distribution, indicating that the majority of bookings are made close
to the arrival date. Approximately 66.9% of all bookings are made within 100 days
of arrival, and there is a particularly steep increase in bookings within the final 50
days. The last bin, representing same-day or short-term bookings (up to 15 days),
contains the highest count with over 8,000 bookings. On the other hand, bookings
made more than 200 days in advance are rare. This booking behavior is important
when assessing cancellation risks and designing overbooking strategies.

Figure 3.3: Distribution of the lead time. Note: a booking horizon of 0 means last
last-minute booking.
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Seasonality. The dataset covers approximately 1.5 years of data. Figure 3.4 shows
the number of bookings per month and day of the week, revealing strong seasonality.
Reservations are relatively low in January, but they steadily increase until April.
Bookings peak in June before dropping in July again. For both 2017 and 2018, the
bookings increase from July to October, indicating a clear summer trend, before
decreasing afterwards. Interestingly, the number of bookings in 2017 is consistently
lower than in 2018, which may be due to increased demand.

The day-of-week seasonality in Figure 3.4b remains constant over the weekdays.
Sunday has a slight increase, while Thursday has the fewest arrivals.

(a) Number of arrivals per month (b) Number of arrivals per day of the week

Figure 3.4: Seasonality in the dataset.

Average spending. Figure 3.5 presents the distribution of the average nightly
room price per room type. The pricing appears to follow dynamic pricing strategies,
with wide ranges and outliers in most room types. Room Type 1, the most booked
room type, as shown in Table 3.4, contains a notable outlier exceeding €500 per
night. In contrast, Room Type 7 has the lowest first quartile price of €0, indicating
that 25% of its bookings are made at no cost. Despite this, it has a relatively high
median price, which may suggest the use of promotional offers or price variability
across different booking periods. This is consistent with Table 3.4, which shows that
Room Type 7 is more frequently booked by the Complementary segment. A quick
data examination reveals that the Complementary segment can have associated
costs, possibly due to a meal plan or making specific requests. Overall, the average
price tends to increase with the room types, except for Types 3 and 7, implying an
ordering in room type. Room Type 3 does not follow the trend, but it is selected
only seven times in the dataset and is therefore not representative, whereas Type
7 is often complementary, explaining the deviation. This could provide additional
booking context, for example, Room Type 4 may show lower cancellation rates due
to the link with the aviation industry, and for Room Type 7, due to complementary
offers or higher costs.
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Figure 3.5: Average price per night for each room.

Booking status. The target variable in this study is the booking status, which
indicates whether a reservation is canceled or not. Table 3.5 displays the distribution
of canceled and non-canceled bookings across three categories: guest type, booking
type, and stay type. Guest type distinguishes between new and repeated guests.
Booking type includes early bird bookers (those who reserve more than 45 days in
advance) and last-minute bookers (who book within 3 days of arrival). Stay type is
categorized based on the duration of the booking: one-night stays (1 night), short
stays (2–3 nights), and long stays (more than 3 nights). The formal definitions are
also provided in Table 3.3. Overall, the dataset consists of 24,189 total bookings
that are not canceled and 11,832 bookings that are canceled. Nearly all bookings
are made by new guests, with the total number of repeated guests being less than
1000. A guest is marked as repeated if the booking was linked to an existing profile
created prior to the booking date [8]. Most bookings are made more than 45 days
in advance. This is consistent with what was observed in Figure 3.3. Regarding the
stay type, short stays are the most common in the dataset.

Figure 3.6 shows the distribution of canceled and non-canceled bookings across
guest type, booking type, and stay type. Approximately two-thirds of bookings
are not canceled, indicating a moderately imbalanced dataset, though not extreme.
Across the categories, the ratio of canceled to non-canceled bookings is relatively
similar, indicating that these features may not strongly influence cancellation be-
havior. One clear exception is repeated guests, who rarely cancel. Although the
overall number of repeated guests is low, it is intuitively plausible that returning
customers are more loyal to their bookings.
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Category Subcategory Not canceled Canceled

Total 24,189 (67.2%) 11,832 (32.8%)

Guest type
Repeated guest 907 (2.5%) 15 (< 0.1%)
New guest 23,282 (64.6%) 11,817 (32.8%)

Booking type
Last minute booker 2,036 (5.7%) 930 (2.6%)
Early bird booker 13,438 (37.3%) 6,585 (18.3%)

Stay type
One night 4,385 (12.2%) 2,148 (6.0%)
Short stay 12,269 (34.1%) 6,047 (16.8%)
Long stay 7,370 (20.5%) 3,548 (9.9%)

Table 3.5: Absolute number of canceled and not canceled bookings across multiple
categories. Percentages (in parentheses) are normalized by the total number of
bookings in each category. Note that guest type and stay type categories sum to
100%, while booking type does not, as it excludes bookings with a lead time between
3 and 45 days.

Figure 3.6: Ratio of canceled vs. not canceled bookings in the dataset for total
bookings and for the categories guest type, booking type, and stay type. Red
indicates canceled bookings, and green indicates not canceled.

The cancellation policy (e.g., penalties) is unknown, as neither the original pa-
per [8] nor the Kaggle competition provides details. However, prior research suggests
that cancellation policies can substantially impact both revenue and customer be-
havior [37]. Hotels often offer two rate types: a free cancellation rate, which provides
the guest flexibility at a higher price, and a non-refundable rate, which offers a lower
price in exchange for a booking commitment. Both cancellation options can be bene-
ficial; free cancellation increases profit through upselling, while non-refundable rates
reduce last-minute cancellations and help secure revenue through penalties.
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Methods

In this chapter, the different methods used in this thesis are discussed. Section 4.1
covers the dimensionality reduction techniques: Principal Component Analysis,
Multiple Correspondence Analysis, and autoencoders. Section 4.2 discusses the
models: random forest, XGBoost, and a multilayer perceptron. Furthermore, Bayesian
optimization for hyperparameter optimization is briefly introduced in Section 4.3.

4.1 Dimensionality reduction methods

This thesis compares statistical and deep learning approaches to dimensionality
reduction. Two statistical techniques are applied: Principal Component Analysis
(PCA) (Section 4.1.1) and Multiple Correspondence Analysis (MCA) (Section 4.1.2),
which reduce numerical and categorical feature spaces, respectively. In addition,
autoencoders are employed as a deep learning method to reduce both numerical and
categorical feature spaces (Section 4.1.3).

4.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most commonly used techniques
for dimensionality reduction and was introduced by Karl Pearson in 1901 [43]. The
idea behind PCA is that features with higher variance are assumed to carry more
information, while low-variance features may reflect noise or redundancy [47]. PCA
transforms a set of potentially correlated variables into a new set of uncorrelated
variables called principal components (PCs), through linear combinations of the
original variables. These components are ordered in such a way that the first few re-
tain most of the variation present in the original variables. For example, if a dataset
consists of n variables, PCA will produce n principal components, with the first
capturing the largest possible variance, the second capturing the next largest (while
being orthogonal to the first), and so on. This enables dimensionality reduction
while preserving the dataset’s most significant patterns.

Within this thesis, PCA is applied as a dimensionality reduction technique for
continuous variables. Because it relies on variance as Euclidean distance, it is only
suitable for continuous variables, and applying it to categorical variables (even when
numerically encoded) may lead to misleading results. Its ability to capture the
majority of variance in fewer components helps reduce noise and potential multi-
collinearity in the input space. As supported by earlier studies reviewed in Sec-
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tion 2.3, it serves as a strong baseline for comparison with more complex non-linear
methods such as autoencoders. Below a short explanation of PCA is given.

PCA begins by standardizing the variables Z = X−µ
σ

so that each feature con-
tributes equally to the analysis, independent of its original scale (e.g., height in
cm, salary in euros). From this standardized data, a covariance matrix C is com-
puted to capture how variables relate to one another. When two features are highly
correlated, they may introduce redundancy by providing similar information.

PCA then finds new orthogonal directions in the data, called principal compo-
nents, that maximize variance. In practice, this means that PCA is seeking direc-
tions in which the data points show the greatest spread, under the assumption that
directions with high variance capture the underlying structure of the data. Mathe-
matically, these directions correspond to the eigenvectors of the covariance matrix,
and the amount of variance captured along each direction is given by the associated
eigenvalue. This corresponds to solving the eigenvalue equation:

Cv = λv (4.1)

where v is a principal component and λ is its explained variance (i.e., the eigen-
value).

The eigenvectors are ranked by their eigenvalues, with the first principal com-
ponent capturing the most variance, the second capturing the next largest amount
of variance (while being orthogonal to the first), and so forth. By selecting the top
p components (which are often those explaining a chosen percentage of the total
variance), the original dataset is projected into a lower-dimensional space, where
p < n. For additional mathematical details, see Appendix A.1.

X1

X2

PC1PC2

variance

variance

Figure 4.1: Illustration of PCA. The original coordinate system is transformed into
new orthogonal axes (PC1, PC2), which are rotated to capture directions of maxi-
mum variance in the data. The scattered points represent the distribution of obser-
vations, with variance along each principal component indicated by red braces. PC1

captures the largest share of variance, while PC2 captures the smaller variance.
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4.1.2 Multiple Correspondence Analysis

Multiple Correspondence Analysis (MCA) is a dimensionality reduction technique
specifically designed for categorical data. It generalizes Correspondence Analysis
(CA) to handle multiple categorical variables simultaneously, uncovering patterns
and associations between them. Conceptually, MCA serves a similar role for cate-
gorical data as PCA does for continuous data, by producing orthogonal components
with associated eigenvalues and percentages of explained variance [17]. As discussed
in Section 2.3, MCA has proven effective in revealing latent structures in categor-
ical data, making it the preferred dimensionality reduction method for categorical
features in this thesis.

Before applying MCA, the categorical data is transformed into a numerical for-
mat suitable for matrix operations. Each category level is converted into a binary
indicator variable through one-hot encoding, resulting in an indicator matrix (or
complete disjunctive table) where each column corresponds to a category level and
each row to an observation.

Figure 4.2: Illustration of the indicator matrix, which is the same as one-hot encod-
ing.

This indicator matrix is then converted into a correspondence matrix by dividing
each entry by the total counts, producing relative frequencies. The row and column
sums of this matrix give the marginal distributions, which are used to center and
normalize the data. This step removes the influence of expected frequencies under
the assumption of independence and ensures equal contribution of all categories,
preventing domination by those with large marginal frequencies. From the centered
and normalized data, MCA identifies principal components by applying Singular
Value Decomposition (SVD):

S = P∆QT (4.2)

Here, ∆ is a diagonal matrix containing the singular values δ, and the squared
singular values δ2 correspond to eigenvalues that indicate the proportion of iner-
tia (analogous to variance in PCA) explained by each component. The SVD also
provides coordinates for both observations and categories in the reduced compo-
nent space. These coordinates allow for the interpretation of relationships between
observations and categorical variables in fewer dimensions.

MCA uses the χ2 distance to measure dissimilarities between observations and
between categories. This metric reflects the extent to which an observation or cate-
gory deviates from the average profile, taking into account the frequency distribution
of the data. By incorporating both observed and expected frequencies, the χ2 dis-
tance is sensitive to associations involving both rare and common categories, making
MCA particularly effective at uncovering subtle relationships in categorical data.
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Component selection

For PCA and MCA, a critical step is deciding how many components to retain.
According to the study by Brown (2009) [16], researchers generally rely on five
methods for component selection in PCA. Two approaches are Kaiser’s stopping rule,
which retains only components with eigenvalues greater than 1, and the cumulative
percentage of explained variance, where a threshold (e.g., 80-95%; with n features,
n principal components account for 100% of the variance) is chosen to determine
how many components to retain. However, as Brown notes, there is no universally
accepted cut-off point, and the choice often depends on the context and objectives
of the analysis.

MCA differs from PCA in that it rarely produces a small set of dominant compo-
nents, since categorical variables are transformed into a sparse indicator matrix. As
a result, the total variance is spread thinly across many dummy variables, meaning
that each component explains only a small fraction of the variance. By default,
MCA eigenvalues are ≤ 1 (since they are derived from normalized χ2 distances),
further limiting the variance explained by individual components. Intuitively, this
is expected, since categorical features do not provide strong continuous directions
of variation in the same way as numerical features [1]. In practice, researchers often
apply the same selection criteria as for PCA (e.g., explained variance thresholds or
scree plots) [17].

4.1.3 Autoencoders

Autoencoders are a type of neural network specifically designed for unsupervised
representation learning and are often used for dimensionality reduction. Before
discussing autoencoders in detail, a short introduction to the neural network archi-
tecture is provided.

Introduction to the neural network architecture. An artificial neural net-
work (ANN) is a machine learning model inspired by the structure of the human
brain. The most common ANN is the multilayer perceptron (MLP), which was de-
signed by Rosenblatt in 1958 [46]. An ANN typically consists of an input layer that
receives raw features, followed by one or more hidden layers that perform feature
transformations, and an output layer. In each neuron, the inputs are combined
through a weighted sum and then transformed using a non-linear activation func-
tion, after which the result is passed to the next layer. Activation functions allow
the network to capture non-linear patterns. They can differ per layer, but typically
hidden layers use a ReLU (Rectified Linear Unit) function A(x) = max(0, x) due
to its benefits in avoiding vanishing gradients and encouraging sparse activations.
The depth (i.e., number of layers) and width (i.e., number of neurons per layer)
determine the model’s capacity. Deeper networks can learn complex patterns but
are also more prone to overfitting. Formally, a neural network layer can be written
as:

h(l) = ϕ(W(l)h(l−1) + b(l)) (4.3)

where h(l) is the output of layer l with h(0) being the input vector x ∈ R, W and
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b are trainable weights and biases, and ϕ(·) is a nonlinear activation function (e.g.,
ReLU, tanh).
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Figure 4.3: Illustration of a multilayer perceptron (MLP) with three input neurons,
two hidden layers, and one output neuron. Each neuron computes a weighted sum
of the outputs from the previous layer, adds a bias term, and applies a nonlinear
activation function as defined in Equation 4.3.

The role of the output layer depends on the task at hand: in supervised learning,
it produces a classification or regression output, while in autoencoders, it generates
a reconstruction of the original input. Weights W and biases b are trained using
backpropagation, which computes the gradients of a loss function L numerically
using the chain rule, with respect to each parameter. Then, at each iteration t, the
weights are updated according to:

Wt+1 ←Wt − η
∂L

∂Wt

bt+1 ← bt − η
∂L

∂bt

(4.4)

where η is the learning rate controlling the step size. If η is too high, training may
diverge or oscillate, while if too low, training may converge slowly or get stuck in a
suboptimal minimum.

Autoencoders. Building on the general neural network framework, an autoen-
coder is a specific type of neural network trained not to predict labels, but to recon-
struct the input. Their architecture consists of two main parts: an encoder, which
converts the input data into a lower-dimensional latent space (also called a bottle-
neck), and a decoder, which reconstructs the original input from this compressed
representation. The bottleneck thus provides a way to perform dimensionality re-
duction. Unlike PCA and MCA, autoencoders can capture more complex patterns
from the data due to the use of the non-linear activation functions. The architecture
of an autoencoder is shown in Figure 4.4.

Following Bank et al. (2021) [10], the learning process of an autoencoder can
be expressed as learning two functions, the encoder A : Rn → Rp and the decoder
B : Rp → Rn, such that the reconstruction error is minimized:

argmin
A,B

EX [∆(X, (B ◦ A)(X))] (4.5)

where X ∈ Rm×n represents the input data with m observations and n features and
∆ is the reconstruction loss function measuring the difference between the original

36



CHAPTER 4. METHODS

input and the reconstructed output of the decoder. Common choices for the loss
function include the mean squared error (MSE) for continuous data and binary cross-
entropy (BCE) for data scaled between 0 and 1. The latter loss function aligns well
with binary inputs, by treating each value as the probability of an “on” or “off”
state [22]. In combination with the BCE loss, the decoder typically uses the sigmoid
activation function σ = 1

1+e−x to bound the output to [0, 1]. Since the features in
this dataset vary in scale, they are standardized to the range [0, 1], and therefore
the model is trained to minimize the binary cross-entropy loss:

L = − 1

m

m∑
i=1

[xi log x̂i + (1− xi) log(1− x̂i)] (4.6)

with m being the number of observations, xi is the input value, and x̂i is the recon-
struction of the ith observation.

Theoretically, any type of autoencoder (e.g., sparse, denoising, or variational
autoencoder) can be used for dimensionality reduction since the reduction takes
place in the bottleneck layer, where the latent space has fewer dimensions than the
original input [10]. However, depending on the use case, some variants may be
more suitable. For instance, denoising autoencoders are trained by corrupting the
input with random noise and learn to reconstruct the original clean input. This
is particularly useful for image data or signal denoising tasks, where the autoen-
coder can remove noise from unseen corrupted input samples. Another example are
variational autoencoders, which is a probabilistic generative model that learns the
underlying distribution to create entirely new samples that resemble the training
data. However, in most studies applying autoencoders purely for dimensionality
reduction [5, 53, 57], the specific architecture is often not explicitly stated (see Sec-
tion 2.4). Given the relatively small size and moderate complexity of the dataset
in this thesis, a standard (“vanilla”) autoencoder is deemed sufficient for extracting
compressed representations. Therefore, the remainder of this thesis focuses exclu-
sively on the vanilla autoencoder. The following subsections describe each of the
autoencoder components in more detail.

Figure 4.4: Autoencoder architecture. The bottleneck layer is called “Code”.
Source: Paper.
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Encoder. The encoder is designed to transform the input x ∈ Rn to a latent
representation z ∈ Rp, where typically p ≪ n. As illustrated in Figure 4.4, the
input passes through one or more hidden layers (green and purple layers) that apply
affine transformations followed by non-linear activation functions (e.g., ReLU or
tanh). These transformations capture the underlying structure in the data while
reducing the dimensionality. For structured tabular data, the encoder can operate
directly on numerical features and on transformed categorical variables (e.g., one-hot
encodings). Note that when only linear activation functions are used, the encoder
behaves similarly to PCA [10, 53].

Latent space (Bottleneck). The bottleneck layer or latent space z = A(X),
contains the most compact representation of the input data. By constraining this
layer to have a lower dimensionality than the input, the autoencoder enforces an
“information bottleneck”, encouraging the network to retain only the most relevant
patterns while discarding noise and redundancy. The size of this layer directly
influences the balance between compression and reconstruction quality. Beyond
dimensionality reduction, the latent representation can also be used for tasks such
as anomaly detection and clustering [10].

Decoder. The decoder takes the latent representation z and attempts to recon-
struct the original input X̂ = B(z). The decoder architecture typically mirrors that
of the encoder, but in reverse, gradually expanding the dimensions until they match
the original input size. The reconstructed output X̂ is then compared to the original
X using the chosen reconstruction loss function, and the resulting error is propa-
gated backward through the network. As in other neural networks, the weights of
both the encoder and decoder are updated jointly via gradient descent to minimize
this loss, enabling the model to learn a latent representation that captures the most
informative features.

4.2 Model selection

The performance of the dimensionality reduction techniques is tested on three dif-
ferent models. Two ensemble models, random forest and XGBoost, are chosen due
to their high performance in cancellation prediction [7, 48] and strong performance
against deep models [14, 49]. To ensure a fair comparison of dimensionality reduc-
tion techniques, in addition to ensemble models, a multilayer perceptron (MLP) or
feedforward neural network is included.

4.2.1 Random forest

Random forest (RF) [15] is an ensemble learning method that combines multiple
decision trees to perform classification or regression tasks. Each individual decision
tree consists of a sequence of decision rules that recursively split the feature space
based on threshold conditions, resulting in interpretable tree structures. However,
single decision trees are prone to overfitting, especially when they grow deep and
memorize training data [15]. Random forests try to avoid this by averaging the
predictions of multiple (deep) decision trees, each trained on different bootstrap
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samples of the training set, to reduce variance and improve generalization. They do
this by introducing two types of bagging:

1. Random sampling with replacement
Given a training set X = x1, . . . , xm with corresponding labels Y = y1, . . . , ym,
multiple bootstrap samples B are drawn with replacement. Each sampleXb, Yb

is used to train a separate tree fb. Since each tree is trained on a different
subset of the data, this introduces variability across the ensemble.

2. Feature bagging
At each split of the tree, a random subset of features is considered rather than
evaluating all possible features. This encourages diversity among the trees and
reduces correlation between them.

The final prediction of the ensemble is typically obtained through majority voting
for classification tasks, or averaging for regression tasks. An illustration of the
random forest algorithm is shown in Figure 4.5.

Figure 4.5: Illustration of the random forest algorithm. Each tree is trained on a
bootstrap sample and selects a random subset of features at each split.

Random forests are particularly well-suited for structured tabular data, are ro-
bust to outliers and noise, and require minimal preprocessing. Their performance
can be fine-tuned through several hyperparameters, which will be discussed in the
next section.

Parameters

Although the default parameters of RF often perform reasonably well, it is worth-
while to tune certain parameters to improve performance [45].

The number of trees (n estimators) determines how many trees are grown in
the forest. Increasing the number of trees generally leads to better performance by
reducing variance. However, for larger datasets, the performance tends to converge,
and a relatively low number of trees (around 128) may already be sufficient [42].

The number of features considered at each split (max features) influences the
correlation between trees. Using fewer features reduces the correlation, which can
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improve overall stability. Moreover, the likelihood of the model repeatedly picking
the same variables with a stronger relationship to the response variable reduces,
allowing weaker predictors that may carry information for specific subgroups. On
the contrary, choosing weaker variables could lead to less informative splits, lowering
the average performance of the trees. The default value is

√
n, where n is the total

number of features.

The three parameters (max depth), (min samples split), and (min samples leaf)
are often tuned alongside each other. The max depth determines the maximum
depth permitted for each decision tree. By default, trees grow until all leaves are
pure, no further splits are possible because too few samples remain (set by pa-
rameter min samples split), or no variables are left to split on. Limiting depth
lowers model complexity but may also cause underfitting. On the other hand,
overly deep trees risk memorizing the training data and thus overfit. Increasing
min samples split (by default set to 2) forces the tree to have more samples be-
fore forming a new branch, which generally results in shallower trees and helps
reduce overfitting. Note that both parameters reduce tree depth, but in differ-
ent ways. The minimum number of samples required to form a leaf node is set
by min samples leaf. A higher number can reduce overfitting by preventing the
creation of overly small, potentially noisy leaves, leading to simpler and more gen-
eralizable trees. By default, this value is 1, meaning that leaves can be formed from
single samples.

4.2.2 XGBoost

eXtreme Gradient Boosting (XGBoost) [21] is an ensemble technique based on gradi-
ent boosting. Unlike random forest, which builds trees independently and combines
the predictions through bagging, gradient boosting builds trees sequentially, with
each tree attempting to correct the prediction errors of the ensemble built so far.

Given a training set X = x1, . . . , xm with corresponding labels Y = y1, . . . , ym,
XGBoost starts from an initial prediction ŷ(0) and adds a new decision tree ft at each
iteration t to minimize a given loss function. The model update can be expressed
as:

ŷ(t) = ŷ(t−1) + ft(x) (4.7)

where ŷ(t−1) is the prediction from the previous iteration and ft(x) is the output of
the tth tree. The final prediction is given by:

ŷ =
∑
K

fk(x), fk ∈ F (4.8)

where F = {f(x) = wq(x)} is the space of the trees, q(x) maps the input x to a leaf
index, and wq(x) is the weight associated with that leaf. K is the total number of
trees in the ensemble. The model parameters are learned by minimizing a regularized
objective function:
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L(t) =
m∑
i=1

l(yi, ŷi
(t)) +

T∑
t=1

Ω(ft)

with Ω(f) = γT +
1

2

∑
T

∥w∥2
(4.9)

where l is a differentiable loss function (e.g., binary cross-entropy for classification,
see Section 4.1.3 for a discussion on loss functions) and Ω(f) is a regularization
term which penalizes model complexity. T is the number of leaves in the tree,
wj the weight of leaf j, γ controlling the penalty for adding more leaves, and λ
controlling L2 regularization on leaf weights.

As with neural networks (see Section 4.1.3), XGBoost optimizes the loss by
calculating the errors between the predicted and actual values, and each new tree
attempts to correct the errors made by the previous trees. It uses gradient-based
optimization with a second-order approximation via the Newton–Raphson method,
making use of both the first derivative (gradient) and second derivative (Hessian)
of the loss function for each training instance. This allows for more accurate and
efficient updates compared to first-order methods.

While Random Forest aims to reduce variance through randomness and aver-
aging, XGBoost usually achieves better performance by reducing both bias and
variance through sequentially correcting errors and directly optimizing a loss func-
tion.

Parameters

XGBoost has many parameters to tune, some of which overlap with those in random
forest. According to Budholiya et al. (2022) [18], Chen and Guestrin (2016) [21],
and Sommer et al. (2019) [51] the following parameters are most often tuned:

The number of trees (n estimators) represents the number of boosting itera-
tions. More trees increase the risk of overfitting, while too few may lead to underfit-
ting. A high number of trees combined with a low learning rate typically gives the
best results.

The learning rate (learning rate) or shrinkage controls the step size η for each
boosting step. After each iteration, new trees are added to correct the errors of the
previous ones, and the learning rate shrinks the contribution of each new tree by a
factor η to avoid overfitting. Lower values (e.g., 0.01-0.1) slow down learning but
generally improve generalization, while larger values (e.g., 0.2 or more) speed up
learning but may lead to suboptimal convergence.

The parameters max depth, subsample, colsample bytree, and min child weight

are similar to those in random forest. The maximum tree depth typically ranges
from 3 to 10. For subsampling, all data is used for every tree by default, but values
ranging from 0.5 to 0.8 are common to help generalization by introducing random-
ness and preventing overfitting. Column subsampling (colsample bytree), similar
to feature bagging in random forest, with typical values ranging from 0.3 to 0.8.
The minimum child weight (min child weight) represents the minimum number of
samples required in a node to split.

The regularization parameters (lambda, alpha) refer to L2 and L1 penalties,
respectively, applied to the leaf weights (wq(x)) of the trees. lambda (default 1)
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reduces the influence of large weights to improve generalization, and alpha (default
0) encourages sparsity by shrinking some weights to zero, effectively performing
feature selection. Non-zero values for alpha are useful for high-dimensional data
when only a subset of features is expected to be important.

4.2.3 Multilayer perceptron

A multilayer perceptron (MLP) is a feedforward neural network architecture com-
monly used for supervised learning tasks. Its structure follows the general neural
network architecture described in Section 4.1.3 and Figure 4.3 illustrates a typical
MLP architecture.

The MLP is applied here as a supervised model for binary classification. The
output layer uses the sigmoid activation function to produce probabilities in [0, 1].
As previously described for autoencoders in Section 4.1.3, training proceeds by back-
propagation, which computes the gradients of L with respect to each parameter. In
contrast to autoencoders, where the objective is to reconstruct the input, the MLP
is trained to classify the inputs correctly. Nonetheless, the binary cross-entropy loss
from Equation 4.6 can still be used, by reflecting the difference between predicted
outcome and true class label.

Parameters

The architecture and training setup (activation function, loss function, etc.) have
been described in the previous section (Section 4.1.3). Here, the focus is on hyper-
parameters that can be tuned to improve performance.

The MLP architecture is defined by the number of layers (n layers) and the
number of neurons in each layer (n units). For simpler tasks, typically 1 to 3 hidden
layers are used, and for more complex tasks, deeper models are often required. There
is no clear rule of thumb for choosing the architecture, and performance depends on
the task at hand. Both can be tuned alongside regularization parameters to ensure
the model still generalizes.

Neural networks minimize the loss function by updating the weights through
gradient descent with an optimizer. Common choices include Stochastic Gradient
Descent (SGD), Adam, and RMSprop. Adam is widely used because it adapts
learning rates per parameter and often converges quickly with default settings. The
choice of optimizer often introduces sub-hyperparameters, such as a learning rate
(discussed below), momentum (for SGD, typically around 0.9), and decay rates β1,
β2 for Adam (usually left at their defaults, 0.9 and 0.999).

The learning rate is arguably the most important hyperparameter for tuning
and controls the step size in gradient descent. For Adam, a common default is 1e−3,
but values ranging from 1e−4 to 1e−2 are often explored. As noted by Smith (2018)
[50], for a shallow 3-layer network, a learning rate of 0.01 is already considered large.
For SGD, typical values range from 1e−2 to 0.1.

Regularization hyperparameters include dropout, L2 weight decay, and early

stopping. Dropout randomly disables a fraction of neurons during training, with
common values in the range of 0.2 and 0.5 for hidden layers. L2 weight decay penal-
izes large weights and encourages simpler models. It often interacts with the learning
rate, where higher learning rates often require stronger regularization. Shallow ar-
chitectures benefit from more aggressive regularization, with recommended values
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in the range of 1e−3 to 1e−5 [50]. Another method to combat overfitting is early
stopping, which refers to training the model until a certain stopping criterion is met.
For example, the model performance can be monitored by splitting the dataset into
a training and validation set, and when the error on the validation set starts to
increase, training can stop, ensuring model generalization.

4.3 Bayesian hyperoptimization

Bayesian optimization is a global optimization technique suited for optimizing ex-
pensive and black-box models [26]. It has become increasingly popular for hyper-
parameter tuning in machine learning, especially for deep neural networks, where
evaluating a single configuration is expensive. Unlike traditional search strategies
such as manual search, random search, or grid search, which evaluate each hyper-
parameter independently, Bayesian optimization models the relationship between
hyperparameter configurations and performance using a probabilistic model. For-
mally, the goal is to solve:

max
λ∈H

f(λ), (4.10)

where f(λ) is the objective function, λ denotes a set of hyperparameters, and H
is the hyperparameter search space defined by specifying ranges of values for each
hyperparameter (e.g., learning rate ∈ [10−5, 10−1], number of layers ∈ [1, 2, 3]). In
this thesis, f(λ) corresponds to the validation AUC, which is preferred over accuracy
due to the class imbalance in the dataset (more details are provided in Section 5.4).

This thesis makes use of Optuna [4], which applies the Tree-structured Parzen
Estimator (TPE) to guide the search and is scalable for high-dimensional and mixed
discrete–continuous search spaces [13]. At each iteration, the algorithm suggests a
new hyperparameter configuration λt+1 to evaluate, updates its model with the
result, and continues until a stopping criterion is reached (such as a maximum
number of trials or limited improvement). This approach allows efficient exploration
of the hyperparameter space while keeping computational cost manageable.
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Experimental setup

This chapter discusses the experimental design and setup, building on the methods
described in the previous chapter. In Section 5.1, a brief recap of the data prepara-
tion is provided together with additional processing steps. Section 5.2 discusses the
setup of three dimensionality techniques. Section 5.3 outlines the model training and
marks the hyperparameters that are tuned for each model. Finally, in Section 5.4,
the evaluation metrics used are discussed.

5.1 Data preparation

The preprocessing steps have been extensively discussed in Section 3.3. In summary,
254 entries were removed due to invalid dates, bookings with zero guests, or reserva-
tions consisting only of children, resulting in a final dataset of 36,021 observations.
The dataset contains 32 variables, as listed in Tables 3.1 and 3.3. Two variables,
booking ID and arrival date, were dropped as they carried no predictive information.
However, the day of the week was derived by combining the arrival year, month,
and date.

5.1.1 Feature preprocessing

Features were grouped based on their type and preprocessing requirements:

• Numerical features: continuous variables such as average price per room
and number of special requests were normalized to the [0, 1] range using a
MinMax scaler. Normalization was applied for methods sensitive to feature
scaling (i.e., PCA, MCA, autoencoders, and MLP). For the tree-based models
(RF, XGBoost), unscaled numerical features were used. The scaler was always
fitted on the training set only and subsequently applied to the validation and
test sets to prevent data leakage.

• Binary category features: variables that were already encoded as binary
indicators, such as required car parking space, repeated guest, includes weekend,
short stay, long stay, last minute booker, early bird booker, and travel with kids
were retained without modification.

• Nominal categorical features: variables with multiple categories (type of
meal plan, room type reserved, arrival year, arrival month, market segment
type, day of week arrival) were transformed using one-hot encoding.
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This preprocessing step resulted in a total of 61 features: 46 one-hot encoded
categorical features, 14 numerical features, and one target feature.

5.1.2 Train-test split

The dataset was split into training and testing sets using an 80/20 ratio. As pre-
viously shown in Figure 3.6 and Table 3.5, the target variable booking status has a
moderate imbalance, with approximately 66% of the bookings not canceled while
34% are canceled. Therefore, a stratified split on the target variable was applied to
ensure the models are trained and tested with enough samples of both classes and
support generalization. The use of a synthetic data generation method like SMOTE
was not used, since for strong classifiers (e.g., XGBoost), SMOTE shows very little
improvement [25].

During autoencoder training, an additional 80/20 stratified validation split was
created from the training set. This validation data was used for early stopping
and to monitor overfitting during training. To ensure a fair comparison, the same
train-test split was used across all models and dimensionality reduction strategies.
Importantly, all dimensionality reduction techniques were fitted solely on the train-
ing set, and the resulting transformations were applied to the validation and test
sets to prevent data leakage.

5.2 Experimental setup

In this thesis, dimensionality reduction was treated as a preprocessing step that
transforms the input space into new feature representations, which were later used
to train downstream classifiers. In summary, the effectiveness of dimensionality
reduction methods was examined by three different approaches:

1. No dimensionality reduction: The entire dataset, consisting of 60 features
(46 one-hot encoded categorical and 14 numerical), was directly used to train
the models.

2. Statistical dimensionality reduction: The dataset features were divided
into numerical and categorical. PCA was applied to the numerical features,
while MCA was applied to the categorical ones.

3. Deep learning based dimensionality reduction: An autoencoder was
trained on the full feature set (i.e., 60 features) to compress it into a lower-
dimensional representation through a bottleneck layer. The size of the latent
space was tested with different dimensionalities of 4, 8, 16, and 32 to examine
the effect of dimensionality reduction on information retention.

In the next chapter, Section 6.1.1 discusses the component selection, and Sec-
tion 6.1.2 discusses the architecture of autoencoders.

5.3 Model Training

Once the feature representations were obtained, they were used as input for down-
stream classifiers. To ensure comparability across methods, the same downstream
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classifiers, random forest, XGBoost, and an MLP neural network, were used. A base-
line model was also included by classifying all instances as belonging to the majority
class (i.e., not canceled). The structure of the experimental design is illustrated in
Figure 5.1.

Figure 5.1: Experimental setup of this study. Three approaches are compared: no
dimensionality reduction, statistical reduction (PCA + MCA), and deep learning-
based reduction (autoencoder). Each representation is evaluated using the same
downstream models: RF, XGBoost, and MLP.

5.3.1 Hyperparameter optimization

The models were optimized through hyperparameter optimization using Bayesian
optimization from the Optuna package [4]. To improve performance, a stratified
5-fold cross-validation on the training set was used to validate performance while
maintaining class balance. Optimization was performed with respect to the Area
Under the ROC Curve (AUC), which is a metric that balances the trade-off between
the true positive rate and the false positive rate. A detailed description of all
evaluation metrics is provided in Section 5.4. The number of trials was set to 50,
meaning that 50 different combinations of the parameter values are evaluated.

During MLP optimization, in addition to dropout and L2 regularization, early
stopping was included. Early stopping helps to reduce overfitting and simultaneously
reduces training time. It was implemented using the built-in Keras function that
monitors the validation AUC. If after five consecutive epochs the validation AUC
did not improve by at least 1e − 4, training was stopped. A tolerance of five was
chosen to permit slight variations in AUC while still avoiding overfitting, while the
delta threshold ensured that only meaningful improvements were considered.
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Model Tuned parameters Search space

Random forest 1 n estimators
max depth
min samples split
min samples leaf
max features

int [100, 1000]
int [5, 20]
int [2, 20]
int [2, 10]
cat [sqrt, log, 0.2, 0.5, 0.8]

XGBoost 2,3,4 n estimators
max depth
learning rate
subsample
colsample bytree
min child weight
alpha
lambda

int [200, 1000]
int [3, 10]
float [0.01, 0.3] (log)
float [0.5, 0.9]
float [0.3, 0.8]
int [1, 10]
float [0.0, 1.0]
float [1.0, 5.0]

Multilayer perceptron 5 n layers
n units
optimizer
learning rate
dropout rate
L2 reg

int [1, 3]
cat [8, 16, 32, 64, 128]
cat [adam, sgd, rmsprop]
float [0.0001, 0.1] (log)
float [0.0, 0.6]
float [1e-6, 0.01]

Table 5.1: Hyperparameter tuning details and search spaces for each model. The
choice of search ranges is based on prior studies: 1 Probst et al. [45]; 2 Budholiya
et al. [18]; 3 Chen and Guestrin [21]; 4 Sommer et al. [51]; 5 Smith [50]. A detailed
discussion of these hyperparameters and their role in model performance is provided
in Section 4.2 (Model selection).

5.4 Evaluation

To evaluate the performance of classification models, an evaluation or objective
function is necessary [23]. In the context of cancellation prediction, the task is a
binary classification problem where the model predicts either a 0 (not canceled) or
a 1 (canceled). Each prediction falls into one of four categories:

• True Positive (TP): correctly predicted canceled booking,
• True Negative (TN): correctly predicted non-canceled booking,
• False Positive (FP): incorrectly predicted canceled booking (actually not can-
celed),

• False Negative (FN): incorrectly predicted non-canceled booking (actually can-
celed).

These four outcomes are useful for the evaluation functions. A confusion ma-
trix 5.2 is used to summarize the four outcomes:
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Predicted
Not canceled Canceled

A
ct
u
al Not canceled TN FP

Canceled FN TP

Table 5.2: Confusion matrix

Common metrics used in cancellation prediction literature include accuracy, pre-
cision, recall, the F1 score, and the AUC [6, 7, 48]. They are explained below.

Accuracy. The most common evaluation metric for classification is the accuracy,
which measures the proportion of correct predictions over the total number of ob-
servations.

accuracy =
correct classifications

total classifications
=

TP + TN

TP + TN + FP + FN

Recall. Recall (also known as sensitivity or true positive rate) measures the pro-
portion of actual canceled bookings that were correctly identified. High recall indi-
cates that most cancellations are correctly detected, which is important in avoiding
revenue loss from unanticipated no-shows.

recall =
correctly classified actual positives

all actual positives
=

TP

TP + FN

Precision. Precision measures the proportion of bookings predicted as canceled
that actually were canceled. Precision reflects how confident the model is that a
predicted cancellation truly represents a canceled booking.

precision =
correctly classified actual positives

everything classified as positives
=

TP

TP + FP

F1 score. The F1 score is the harmonic mean of precision and recall, providing a
balanced measure that accounts for both false positives and false negatives. There-
fore, it is more suitable for an imbalanced dataset, where the accuracy may be
misleading in measuring the models’ performance.

F1 score =
2× precision× recall

precision + recall
=

2
1

recall
+ 1

precision

AUC-ROC. The Area Under the Receiver Operating Characteristic Curve (AUC-
ROC) evaluates the ability of a model to distinguish between two classes using the
probability estimates produced by the model. Instead of making predictions with a
fixed threshold, the ROC curve is generated by varying the classification threshold
over the full range of predicted possibilities. For each threshold, the true positive
rate (TPR, or recall) and false positive rate (FPR, where FPR = FP

FP+TN
) are com-

puted and plotted. The AUC represents the area under this curve: a value of 0.5
indicates random guessing, while 1.0 corresponds to a perfect classifier. Because
it summarizes performance across all possible probability thresholds, it effectively
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ranks instances by their likelihood of belonging to the positive class. Therefore,
AUC represents the ability of the model to assign higher predicted probabilities to
positive outcomes (class 1) than to negative outcomes (class 0). It is especially useful
in imbalanced datasets, though it can be overly optimistic if true negatives dominate.

As discussed previously, non-canceled bookings dominate in the dataset, and al-
though accuracy is widely used, solely relying on accuracy is not desired in imbal-
anced datasets. In such cases, a model could achieve high accuracy by predominantly
predicting the majority class (i.e., “not canceled”), leading to biased results. More-
over, there might be different costs for misclassifications. A false positive (predicting
a cancellation that does not occur) could lead to overbooking, harming the hotel’s
credibility, while a false negative (failing to predict a cancellation) might prevent
proactive retention strategies. Additionally, Antonio et al. (2017) [6] highlighted the
importance of minimizing false positives because they can cause unnecessary costs,
since the hotel might invest effort or money (e.g., offering discounts) to retain book-
ings that would not have been canceled anyway. Thus, both errors are undesirable,
but false positives can be particularly costly in operational contexts [6, 7]. Nonethe-
less, no specific cost weights are incorporated in the training procedure to adjust
for different misclassification costs. Incorporating such weights requires input from
domain experts or stakeholders to correctly quantify the operational costs associated
with false positives and false negatives. Since this thesis does not involve an actual
case study, the emphasis is instead placed on analyzing model performance through
relevant metrics (e.g., precision and recall) and discussing their implications based
on general domain knowledge.

To balance these considerations, the AUC is used for hyperparameter optimiza-
tion, since it assesses model performance across all classification thresholds. The
final evaluation is then performed with the F1 score, to provide a trade-off between
precision and recall by penalizing false positives and false negatives equally.

5.5 Implementation details

All experiments were conducted on a MacBook Pro with the following hardware
specifications:

• Processor: 2.3 GHz 8-Core Intel Core i9
• Graphics: AMD Radeon Pro 5500M (8 GB) and Intel UHD Graphics 630
(1536 MB)

• Memory: 32 GB 2667 MHz DDR4

The models were implemented in Python using TensorFlow/Keras and scikit-learn,
and optimization was performed with Optuna.
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Results

In this chapter, the results of the downstream classifiers trained on different fea-
ture representations are presented. First, Section 6.1 discusses the obtained feature
representations of statistical and autoencoder dimensionality reduction. Section 6.2
provides the main results of all the models and dimensionality reduction techniques.
Section 6.3 will discuss the best results in more detail, by providing multiple evalu-
ation metrics. Section 6.4 details the important variables for cancellation prediction
using SHAP values. Section 6.5 investigates the effect of dimensionality reduction.
Last, Section 6.6 compares the latent space of the best two autoencoder architec-
tures. Note that all results are given on the test set, unless stated otherwise.

6.1 Dimensionality reduction results

This section reports the results of the dimensionality reduction analyses. For the
statistical methods (PCA/MCA), the number of retained components is determined
based on explained variance, while for autoencoders, different bottleneck sizes are
compared to assess reconstruction quality. Section 6.1.1 first presents the component
selection for PCA/MCA, and Section 6.1.2 presents the evaluation of bottleneck sizes
for autoencoders.

6.1.1 Component selection for statistical methods

For statistical dimensionality reduction, numerical and categorical features were
treated separately. PCA was applied to the numerical features, while MCA was
applied to the categorical ones.

Following the cumulative percentage of explained variance criterion introduced in
Section 4.1, an 80% threshold was adopted. This approach is consistent with Alkhayrat
et al. (2020) [5], who also determined the number of dimensions by examining the
variance drop-off point in scree plots. The scree plots for both PCA and MCA
(Figures 6.1a and 6.1b) confirm that beyond the 80% threshold, little additional
information is gained. Especially in MCA, the first component explains just over
5%, and the curve quickly levels off, suggesting that many categorical variables con-
tribute little incremental variance. This aligns with Section 4.1, where it was noted
that MCA often does not produce a small set of dominant components. Using the
80% threshold, 26 components were retained, and while this reduction is modest, it
still lowered the dimensionality from 46 to 26. For PCA, this resulted in retaining
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six principal components, which is broadly consistent with Kaiser’s criterion. A
complete summary of the eigenvalues and explained variance for PCA and MCA is
provided in Appendix B.1 in Table B.1 and B.2. With this technique, the dimen-
sionality was reduced from 14 to 6 numerical features and from 46 to 26 categorical
features, resulting in a total feature dimension of 32.

(a) PCA (6 components) (b) MCA (26 components)

Figure 6.1: Percentage of explained variance of PCA and MCA. The red bar indi-
cates that 80% cumulative explained variance is achieved.

Because the explained variance in MCA is spread across many components with-
out an apparent dominant component, more detailed insights were obtained from
PCA. Figure 6.2 displays the contribution of the original features to the principal
components. Since the data was standardized, values fall within [−1, 1].

Figure 6.2: Heatmap column coordinates ∈ [−1, 1] from PCA, displaying the con-
tribution of each feature to each component. An absolute value closer to 1 indicates
a stronger relationship with the component, while the sign reflects the direction of
the association.

The first component primarily describes variables related to length of stay (e.g.,
number of week nights and weekend nights, total spend), while the second compo-
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nent captures guest characteristics such as the number of adults and children. It
further illustrates redundancy among variables in the dataset. For instance, the vari-
ables “no of previous cancellations” and “no of previous bookings not canceled” both
have a high contribution to PC4, suggesting that they capture similar information.

6.1.2 Autoencoder architecture

The autoencoder architectures used in this thesis were inspired by prior work on
dimensionality reduction for tabular data [5, 57]. The reconstruction layer used a
sigmoid activation function with binary cross-entropy loss, since the inputs were
scaled to a [0, 1] range (see Chapter 4 for further motivation). Following Alkhayrat
et al. (2020) [5] and Volovăt, et al. (2024) [57], ReLU activation functions are applied
between hidden layers, and training was performed with the Adam optimizer at a
learning rate of 1e − 3. Given the moderate dataset size, a batch size of 32 was
chosen to avoid overly large batches while maintaining stable gradients. Prior work
also suggests that smaller batch sizes can improve generalization [36]. A maximum
of 100 epochs was specified; however, training duration was controlled through early
stopping on the validation loss (patience of 10, minimum delta of 1e− 5), ensuring
that the autoencoder did not overfit.

Seven different autoencoder architectures were tested, varying in both depth and
bottleneck size. Since the dataset was relatively small and not highly complex, shal-
low networks were chosen. To account for stochasticity during training (e.g., random
initialization of weights), each architecture was trained five times with different ran-
dom seeds. For each architecture, reconstruction loss was summarized as the mean
and standard deviation across these runs (Table 6.1), along with the number of pa-
rameters and bottleneck size. Figure 6.3 displays the validation loss curves for all
five runs of each autoencoder, demonstrating stable convergence around 30 epochs
for most models. For bottleneck sizes 16 and 32, convergence occurred even earlier,
within 10 epochs.

Loss (mean ± SD)

Architecture Bottleneck Params Train Validation

60–40–32–40–60 32 5,732 0.0610 ± 0.0002 0.0613 ± 0.0002

60–40–20–16–20–40–60 16 6,736 0.0617 ± 0.0001 0.0623 ± 0.0002

60–40–16–40–60 16 4,116 0.0623 ± 0.0003 0.0630 ± 0.0005

60–40–20–8–20–40–60 8 6,248 0.0674 ± 0.0005 0.0683 ± 0.0006

60–40–8–40–60 8 3,308 0.1051 ± 0.0034 0.1054 ± 0.0036

60–40–20–4–20–40–60 4 6,004 0.1162 ± 0.0029 0.1179 ± 0.0029

60–40–4–40–60 4 2,904 0.1936 ± 0.0010 0.1933 ± 0.0013

Table 6.1: Comparison of autoencoder architectures. Mean and standard deviation
(SD) of binary cross-entropy (BCE) reconstruction loss are calculated over five ran-
dom seeds.

Table 6.1 and Figure 6.3 show that architectures [60 − 40 − 32 − 40 − 60],
[60 − 40 − 16 − 40 − 60], and [60 − 40 − 20 − 16 − 20 − 40 − 60] achieved the
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Figure 6.3: Validation loss per epoch
for each autoencoder. Mean and SD are
calculated from five runs per architec-
ture.

Figure 6.4: Average validation recon-
struction loss by bottleneck size (4, 8,
16, 32) for two-layer networks. Bars
show the standard deviation. Perfor-
mance improves markedly from 4 → 8
→ 16, then plateaus between 16 and 32.

lowest reconstruction losses, while models with bottleneck size 4 performed sub-
stantially worse, even when depth was increased. Architectures with eight nodes in
the bottleneck layer also yielded higher losses, though performance improved when
an additional encoder layer was added. Interestingly, the two architectures with bot-
tleneck size 16 performed almost identically, indicating that additional depth does
not provide benefits at this dimensionality. In general, simpler models are preferred,
as they require fewer parameters and are therefore more computationally efficient
(i.e., lower training time) [23].

The barplot in Figure 6.4 shows the trade-off between compression and recon-
struction error for architectures with two encoder layers. Models with bottleneck
sizes of 4 and 8 performed noticeably worse than those with 16 and 32. Beyond 16,
the improvement flattened, indicating diminishing returns.

Overall, shrinking the latent space too aggressively (e.g., to 4 nodes) resulted
in substantial information loss and poor reconstruction, while very large bottleneck
sizes diminished the benefits of dimensionality reduction. The results suggest that a
bottleneck of size 16 provides the best balance between compression and accuracy,
with 32 included as a slightly larger latent space to test whether additional capacity
improves downstream performance. Therefore, two architectures [60−40−i−40−60]
with i = 16, 32 were chosen for further modeling, and are hereafter denoted as AE-16
and AE-32.

6.2 Main findings

The F1 scores across the three models and four dimensionality reduction (DR) con-
figurations are presented in Table 6.2. As a baseline, classifying all instances to
the majority class (i.e., not canceled) achieved an F1 score of 0.0 and accuracy of
0.671. XGBoost consistently achieved the highest F1 score for each DR technique,
confirming its strong performance for tabular data. Random forest also performed
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competitively, although slightly below XGBoost, except when no DR was used.
However, note that this difference was only 0.002. For both RF and XGBoost,
performance declined in the order: original feature set, statistical DR, AE-32, and
AE-16. The MLP initially performed considerably worse when trained directly on
the raw feature set; however, its performance improved substantially when trained
on features derived from autoencoders. These findings align with the expectation
that neural networks are better suited to dense, numerical inputs rather than sparse,
one-hot encoded data, as noted in Section 4.2 by Guo and Berkhahn (2016) [29].

Random forest XGBoost MLP

No DR 0.84622 0.84479 0.68402

Statistical 0.81253 0.81593 0.69866

AE-32 0.79510 0.80510 0.77704

AE-16 0.78770 0.79586 0.74747

Table 6.2: F1 score for all models and dimensionality reduction configurations. Best
performance for each DR technique is in bold.

Figure 6.5 further compares training time and predictive performance. Here,
training time refers to the full hyperparameter optimization process (Section 6.5.1),
i.e., the cumulative cost of finding the best model. This reflects the trade-off be-
tween performance and model development efficiency. Ideally, a low training time,
combined with a high F1 score, is desired. XGBoost achieved both high F1 scores
and the lowest training time, making it the most efficient model compared to the
RF and MLP. Although RF is also an ensemble method, it had considerably higher
training times, except when trained on the original feature set. For MLP, DR not
only improved predictive performance but also reduced training time, particularly
with autoencoder-derived feature representations.

Figure 6.5: The F1 score and training time for all models and dimensionality reduc-
tion configurations. Reported times reflect the hyperparameter tuning of the clas-
sifiers only. The additional training time for autoencoders was substantial, whereas
PCA/MCA added a negligible training time.
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Taken together, these results suggest that DR is not necessary for tree-based meth-
ods, which already perform well on the original feature set. However, autoencoder
representations provide clear value for neural networks, substantially improving both
their F1 score and efficiency. The overall best performing model remains XGBoost
without DR, which is consistent with prior findings that boosting methods often
outperform deep learning on tabular data [49].

6.2.1 Statistical comparison of configurations

Following Volovăt, et al. (2024) [57], statistical testing was conducted to assess
whether differences in model performance were significant (p < 0.05). Pairwise
McNemar’s tests were applied across all model–configuration combinations, and the
results are shown in Figure 6.6.

McNemar’s test is specifically designed for paired nominal data (e.g., binary out-
comes) and is often used to compare multiple classifiers on the same dataset [60].
It evaluates whether two classifiers significantly differ in their error rates. However,
since twelve models were compared,

(
12
2

)
= 66 pairwise comparisons were performed,

and conducting multiple tests increases the risk of Type I errors (i.e., false positives).
To mitigate this, the Benjamini-Hochberg (BH) correction was applied, which con-
trols the false discovery rate and is often preferred to more conservative approaches
such as Bonferroni [39].

Most pairwise comparisons showed significant differences, with nine exceptions.
Performance for the MLP trained with statistical features did not differ significantly
from the MLP trained on the original dataset. For RF models, the AE-32 and AE-16
features produced similar results. Similarly, XGBoost with AE-32 features did not
show a statistically significant difference from the statistical feature set. Within the
ensemble models, RF and XGBoost did not differ significantly when trained on the
original dataset, nor when trained with statistical DR, AE-16, or AE-32 features,
indicating that the performance of the two models is comparable. The full table of
p-values of all pairwise comparisons is provided in Appendix B.3.

Figure 6.6: Pairwise McNemar test with BH correction across all configurations.
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6.3 Best performance for each model

The precision, recall, F1 score, AUC, and accuracy for the best configuration of each
model are presented in Table 6.3. The ensemble models (RF and XGBoost) achieved
the highest overall accuracy (≈ 0.90) and very similar F1 scores when trained with-
out DR. The MLP performed less strongly overall, but benefited substantially from
the autoencoder features (AE-32). Across all models, the “not canceled” class con-
sistently achieved higher scores, reflecting the class imbalance in the data. Addi-
tionally, the models performed better than the baseline model, which achieved an
accuracy of 0.671.

Model DR Class Precision Recall F1 score AUC Accuracy

Random forest None
Not canceled 0.9139 0.9434 0.9284

0.9555 0.9023
Canceled 0.8761 0.8183 0.8462

XGBoost None
Not canceled 0.9117 0.9454 0.9283

0.8791 0.9019
Canceled 0.8793 0.8128 0.8448

MLP AE-32
Not canceled 0.8777 0.9212 0.8990

0.8294 0.8609
Canceled 0.8209 0.7376 0.7770

Table 6.3: Precision, recall, F1 score, AUC, and accuracy for the best configuration
of each model. For random forest and XGBoost, performance was highest without
dimensionality reduction. For the MLP, the best performance was obtained using
autoencoder features with a bottleneck size of 32. Metrics are reported separately
for the two classes (“Canceled” and “Not canceled”).

An AUC of 0.95 for random forest indicates that it better separates positive and
negative classes than the other models. The F1 score provided more insights into
the two classes. For the “Canceled” class, recall was consistently lower (0.74–0.82)
than precision (0.82–0.88), indicating that the models tend to miss cancellations
(false negatives), which reduced F1. The discrepancy between high AUC and lower
F1 shows that, while the models rank bookings well, the default decision threshold
(0.5) is suboptimal. Adjusting the threshold (e.g., using cost-sensitive criteria) could
improve cancellation prediction without affecting AUC.

In terms of error trade-offs, precision exceeded recall for the “Canceled” class,
indicating that the models were more accurately identifying cancellations (fewer
false positives) but at the expense of missing true cancellations (more false nega-
tives). Random forest attained slightly higher recall, producing fewer false negatives,
whereas XGBoost achieved higher precision, creating fewer false positives. Since
false positives are operationally more costly for hotels (see Section 5.4), XGBoost
is slightly more favorable, despite the small numerical difference between the two
models.

6.4 Key variables

The most important variables for the best model (i.e., XGBoost without DR) were
examined using the SHAP values in Figure 6.7, which shows how each feature affects
the model’s predictions. Marcilio and Eler (2020) [38] describe SHAP values as
a particularly effective tool for interpreting model decisions, since they assign a
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contribution value to each feature for every data point, which can then be combined
to calculate the feature importance.

The features were ranked by their overall contribution across all predictions,
meaning that the number of special requests, lead time, and the average price per
room are the top three drivers of cancellations. The SHAP value for the number of
special requests indicated that guests with more requests were less likely to cancel.
Conversely, few or no special requests pushed the prediction towards cancellation.
The lead time suggested that long lead times increased the likelihood of canceling,
while short lead times reduced it; however, there was some variability in short lead
times. Average price per room followed a similar trend; higher room prices were
associated with an increased likelihood of cancellation.

Figure 6.7: SHAP values for the XGBoost model on the original dataset. Positive
values indicate a push toward predicting “canceled”, while negative values push
toward “not canceled”. The distance from zero reflects the strength of the impact.
Colors represent the feature value (red = high, blue = low). The vertical spread
of the points illustrates variability, with wider spreads indicating that the feature
has very different effects across samples, and narrower spreads indicating a more
consistent effect.

Several other noteworthy observations were made. For example, the feature “re-
quired car parking space”, exhibited that bookings that required a parking space
were less likely to be canceled. Seasonal effects were also apparent, with certain
months (e.g., December and January) showing a higher tendency toward not can-
celing. Finally, when comparing the market segments, online bookings were more
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strongly associated with cancellations, whereas offline bookings tended to be more
retained.

6.5 The effect of dimensionality reduction

Figure 6.8 presents the confusion matrices for the three models trained without
dimensionality reduction and with AE-32, respectively. These results are consistent
with the metrics in Table 6.3. The other confusion matrices of the statistical DR
and AE-16 are provided in Appendix B.3.

(a) Without dimensionality reduction.

(b) Dimensionality reduction with autoencoder and bottleneck size of 32.

Figure 6.8: Confusion matrices illustrating the trade-off between false positives and
false negatives for the three models.

The MLP benefited significantly from the autoencoder features, with performance
improving substantially compared to training on the original data with one-hot
encoded features, which is consistent with the observations in Section 6.2. However,
both confusion matrices still show more false positives and false negatives compared
to the ensemble models.

In the comparison of ensemble methods, the features derived from the autoen-
coder further highlight the advantage of XGBoost. While XGBoost produced some-
what more false positives than random forest, it achieved a higher number of true
positives. Moreover, the gap between false positives and false negatives is smaller
in XGBoost (188) than in random forest (394) and MLP (240), indicating a more
balanced error distribution.
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6.5.1 Hyperparameter analysis

The optimal hyperparameter settings for each model across the four DR techniques
are reported in Table 6.4. For RF, the number of estimators steadily increased when
DR was applied, while the number of features considered at each split decreased.
This suggests that compressed features are less diverse, but the trees may have more
difficulty with dense numeric features.

For XGBoost, the opposite trend was observed: fewer estimators were required
when DR is applied, with the learning rate remaining stable across setups (0.02-
0.04). Both alpha and lambda increased with DR-derived features, particularly
for autoencoders (e.g., lambda = 4.44 with AE-32 vs. lambda ≈ 1 with no DR),
suggesting that autoencoder features may introduce stronger feature interactions
that require more regularization.

The architecture of the MLP varied considerably depending on the DR setup.
Without DR, a single hidden layer with 128 units performed best, while statistical
DR required a three-layer architecture. With autoencoder features, the network
used two layers with fewer units, suggesting that autoencoders compress information
into more compact representations, thereby reducing the need for deeper networks.
Dropout rates are often close to zero, while L2 regularization increased substantially
under AE-16, indicating that larger weights were penalized more. This penalization
can also be caused by the use of stochastic gradient descent as an optimizer, which
has the problem of exploding gradients with large weights.

Dimensionality reduction technique

Model Parameters None Statistical AE-32 AE-16

Random forest

n estimators 265 399 735 983
max depth 20 16 19 17
min samples split 4 4 6 2
min samples leaf 2 3 3 3
max features 0.8 0.5 0.2 sqrt

XGBoost

n estimators 961 960 719 513
max depth 9 8 8 10
learning rate 0.0246 0.0476 0.0294 0.0297
subsample 0.8820 0.8696 0.8806 0.8345
colsample bytree 0.5859 0.7228 0.7965 0.7484
min child weight 1 5 1 2
alpha 0.0023 0.5074 0.6393 0.5674
lambda 1.0023 1.9202 4.4430 2.7708

Multilayer perceptron

n layers 1 3 2 2
n units 128 128, 64, 16 64, 32 64, 64
optimizer adam sgd adam sgd
learning rate 0.00045 0.0275 0.0023 0.00092
dropout rate 0.1507 0.0854 0.0512 0.1351
L2 reg 5.91e-06 5.17e-06 2.03e-06 3.77e-04

Table 6.4: Optimal hyperparameters per model across dimensionality reduction se-
tups.
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6.6 Comparison between AE-32 and AE-16

Predictive performance for AE-16 and AE-32 was very similar across all models
(Table 6.2), suggesting that once the latent space was sufficiently large to capture
the main structure of the data, further increasing its size provided limited addi-
tional benefit. Among the downstream classifiers, only the MLP benefited from DR
through autoencoders, while the ensemble models performed slightly worse, although
the differences were minor.

To further examine the learned representations, Figure 6.9 shows a two-dimensional
projection of the AE-32 and AE-16 latent spaces using t-SNE (t-distributed Stochas-
tic Neighbor Embedding). t-SNE is a nonlinear dimensionality reduction method
commonly used for visualization, aiming to preserve local neighborhoods, i.e., points
that are close in the original high-dimensional latent space remain close in the 2D
projection.

Figure 6.9: t-SNE projections on the test set of the AE-32 latent space (left) and
the AE-16 latent space (right).

Both plots show that the two classes were largely mixed, indicating that the la-
tent space did not linearly separate canceled from non-canceled bookings. Some
areas were dominated by a single class, suggesting that the autoencoder successfully
grouped similar bookings and captured latent patterns. However, a classifier was
still required to learn the decision boundaries. This outcome is expected, since can-
cellations depend on multiple interacting factors (Figure 6.7) that cannot be isolated
by compression alone.

When comparing AE-32 with AE-16, no apparent differences in cluster structure
were observed. Both latent spaces captured important patterns, but neither pro-
duced a representation with substantially better class separation. This reinforces
the earlier finding that once the latent space is sufficiently large (in this case, 16
dimensions), further increasing dimensionality provides limited additional benefit in
predictive performance.
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Discussion

This thesis researched the question: How do performance metrics (e.g., F1 score)
compare when predicting hotel booking cancellations using features learned with au-
toencoders, compared to traditional dimensionality reduction methods and models
without any dimensionality reduction? The objective was to test three dimensional-
ity reduction techniques (i) no dimensionality reduction, (ii) statistical dimensional-
ity reduction through PCA and MCA, and (iii) deep learning based dimensionality
reduction through autoencoders, and evaluate them with three downstream classi-
fiers: random forest, XGBoost, and multilayer perceptron.

This discussion first addresses the research question by answering the three sub-
questions in Section 7.1. Afterwards, in Section 7.2, the results are compared to the
related literature. Finally, the limitations of this research and recommendations for
future work are provided in Sections 7.3 and 7.4, respectively.

7.1 Autoencoder design and latent space

Autoencoder design (RQ1 and RQ2)

What type of autoencoder architecture (e.g., basic, denoising, variational) yields the
best features for cancellation prediction?

Prior work has revealed that for structured tabular data, vanilla autoencoders
have generally shown stronger performance than specialized variants such as denois-
ing or sparse autoencoders [5, 10, 57]. Therefore, this thesis used shallow vanilla
autoencoders for dimensionality reduction.

How does the size of the latent space impact the predictive performance when using
autoencoders?

The findings show that the bottleneck sizes of 16 and 32 yielded the most effec-
tive feature representations for this dataset. Very small bottlenecks (8 or 4 units)
resulted in substantially higher reconstruction loss (Table 6.1), indicating that too
much information was discarded. As a result, these representations were excluded
for downstream classification, since poor reconstructions would likely translate into
weak predictive performance, and combined with the high training times, further
evaluation was not considered worthwhile. In contrast, both AE-16 and AE-32
provided stable and comparable results, suggesting that once the latent space is
sufficiently large to capture the main structure of the data, further increasing the
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dimensionality offers little additional benefit (i.e., diminishing returns). The limited
complexity of the dataset likely explains the finding that relatively shallow autoen-
coders were sufficient. With only 60 input features, most of which are categorical
variables transformed into one-hot encodings, deep architectures are unnecessary.

The latent space (RQ3)

Can the learned latent space reveal meaningful patterns related to booking cancella-
tions?

The latent space itself also provides insights. The t-SNE projections of AE-16
and AE-32 in Figure 6.9 showed that the two outcome classes (canceled vs. not can-
celed) were largely overlapping, with only some regions where one class was more
prevalent. This indicates that while the autoencoder learns compact and meaning-
ful representations, they do not linearly separate cancellation outcomes. Therefore,
a downstream classifier is necessary to exploit the nonlinear patterns embedded in
the latent features. This outcome is expected, as the SHAP analysis revealed that
cancellations depend on multiple interacting factors such as lead time, room price,
booking channel, and special requests. Since no single factor dominates, the latent
space alone cannot cluster canceled and non-canceled bookings into clearly distinct
groups. Instead, the autoencoder serves to denoise and compress the input, produc-
ing features that are more suitable for neural networks but add little to no benefit to
ensemble methods, which are already robust to sparse and high-dimensional inputs.
This is supported by the results of statistical DR, which also reduced the input
space to 32 features, and performance did not differ significantly from the original
features for the ensemble models. Therefore, the main added value of AEs was not
in the interpretability of the latent space, but in producing denser inputs that neural
networks could exploit.

7.2 Comparison of the results with prior work

The results of this thesis show that XGBoost achieved the strongest overall perfor-
mance, with an accuracy of 0.90, F1 score of 0.84, precision of 0.88, and AUC of
0.88. These findings can be compared to prior work on hotel booking cancellation
prediction by Antonio et al. (2017) [6], Antonio et al. (2019) [7], and Sánchez-Medina
and C-Sánchez (2020) [48].

Compared to Antonio et al. (2019) [7], the models in this thesis achieved higher
accuracy and precision. Their study reported an average test accuracy of 0.827 and
an AUC of 0.78, with precision scores below 0.77. A consistent trend in their results
was that performance declined from training to validation to test, particularly in
terms of precision, suggesting possible overfitting. Antonio et al. (2017) [6] reported
similar accuracies around 0.90. Their reported precision and AUC values were also
comparable, though recall and F1 scores varied more widely across hotels. However,
it should be noted that both studies used data from multiple hotels, which may have
introduced more diversity in the dataset. Finally, Sánchez-Medina and C-Sánchez
(2020) [48] also confirmed the strong performance of ensemble models, but in direct
comparison, the tuned XGBoost and Random Forest in this thesis achieved higher
accuracy, precision, recall, F1, and AUC.
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When comparing feature importance with previous studies, several similarities in
predictors of cancellation can be observed. Both this thesis and prior work highlight
lead time as one of the strongest predictors of cancellation [6, 7]. In addition to
lead time, this thesis found that special requests and parking availability reduce the
likelihood of cancellation, which is consistent with Antonio et al. (2017) [6]. Other
overlapping findings include temporal features, where specific months or holiday
periods decrease the likelihood of cancellation, which is consistent with the results
of Sánchez-Medina and C-Sánchez (2020) [48]. Furthermore, this thesis found that
higher room prices are associated with an increased likelihood of cancellation, align-
ing with Antonio et al. (2017) [6], who identified room type as an influential factor.
Finally, differences between market segments observed here reflect the importance
of market segment type reported by Antonio et al. (2019) [7], though the specific
segments were not explicitly specified.

Statistical dimensionality reduction methods remain a competitive baseline, in ac-
cordance with comparative reviews on dimensionality reduction methods [20, 52,
53]. However, as suggested in the literature on deep learning for tabular data [49],
neural networks benefited the most from autoencoder-derived features, whereas en-
sembles did not. Taken together, these findings emphasize that the effectiveness
of dimensionality reduction relies not solely on the method itself, but also on the
interaction with the downstream classifier and the complexity of the dataset.

7.3 Limitations

Several limitations of this thesis should be acknowledged. First, the dataset con-
sisted of slightly over 36,000 records, which is relatively small by deep learning
standards. The feature space was also modest in size (60 features, mostly categori-
cal), which may limit the benefits of dimensionality reduction compared to studies
with richer or more complex feature spaces such as Alkhayrat et al. (2020) [5]. This
likely contributed to the strong performance of ensemble methods without dimen-
sionality reduction, since neural networks typically require larger and more complex
datasets to show their advantages. Second, the analysis was conducted on a single
dataset, with the characteristics of the hotel remaining unknown. Prior work [7, 8]
has shown that cancellation drivers and model performance can vary substantially
between hotels. As a result, the present findings may be less generalizable; thus,
replication across multiple hotels would be required to confirm broader applicability.
Finally, no cost weighting was applied to false positives and false negatives due to the
lack of stakeholders, as previously discussed in Section 5.4. Therefore, the models
penalized both types of misclassifications equally, despite their different operational
consequences. This may bias results, as shown in Section 6.3. Incorporating cost-
sensitive evaluation would likely provide more representative performance estimates.

7.4 Recommendations for future work

The findings of this thesis suggest new opportunities for further research in can-
cellation prediction and dimensionality reduction. First, exploring cost-weighting
approaches, such as threshold tuning or weighted loss functions, would be valuable,
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as they may better reflect the costs of misclassifications in hotel operations. Second,
validating the findings on larger and more diverse datasets would allow assessing the
generalizability of the models across different hotels. Third, this thesis evaluated
feature representations extracted from autoencoders with bottlenecks of size 16 and
32 on downstream models. Although bottlenecks of 8 and 4 were tested initially,
their reconstruction quality was poor, and due to high training times, it was im-
practical to include them. Further exploration of different compression levels could
provide insights into the trade-off between dimensionality reduction and predictive
performance. Finally, future work could explore specialized neural network archi-
tectures designed for tabular data, such as TabNet [9], to determine whether they
provide richer feature representations and outperform the approaches studied in this
thesis.
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Conclusion

This thesis examined how predictive performance differs when hotel booking cancel-
lations are modeled using features learned with autoencoders, compared to statisti-
cal dimensionality reduction techniques and models trained without dimensionality
reduction. The feature sets were evaluated using three models: random forest, XG-
Boost, and a multilayer perceptron.

The results demonstrate that dimensionality reduction was not necessary for en-
semble models. Both random forest and XGBoost performed best on the original fea-
ture set, with only minor differences when PCA or autoencoder features were used.
XGBoost in particular achieved high predictive performance while also requiring the
lowest training time, making it the preferred approach for this type of structured
tabular data. For hoteliers, this implies that investing in complex feature learning
pipelines is not worthwhile, as a well-tuned XGBoost already achieves strong and
explainable performance. In contrast, autoencoder-derived features were very ben-
eficial to neural networks. Compared to the original data, which contained sparse
one-hot encoded features, training on compressed, dense representations improved
both predictive performance and efficiency. However, despite these improvements,
the neural network’s performance still did not surpass that of the ensemble models.
This demonstrates that the added value of autoencoders depends strongly on the
task and the downstream model: they can make neural networks viable, but do not
improve methods that already handle sparse, high-dimensional input effectively.

Overall, the findings suggest that autoencoders are not a universal solution for
tabular data, particularly for cancellation prediction. While they provide mean-
ingful improvements for neural networks, autoencoders do not outperform simpler
baselines such as PCA for ensemble models, and the differences are small, making
dimensionality reduction generally unnecessary. For the dataset analyzed here, XG-
Boost trained directly on the original feature set remains the most effective and
efficient solution.

Future work should further validate these findings on larger and more diverse
datasets, where the benefits of representation learning may become more pronounced.
Systematic testing of smaller bottlenecks (e.g., 8 or 4) could also clarify the trade-off
between compression and predictive performance.
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Methods

A.1 Principal Component Analysis

Consider datasetX withm instances (rows) and n variables (columns), i.e., a matrix
of size m×n. PCA aims to reduce the number of variables while preserving as much
of the data’s variability (i.e., information) as possible. The main steps are as follows:

Step 1: Standardizing the variables
Since the variables may be measured on different scales (e.g., height in cm
vs. salary in euros), each variable must be standardized so that each variable
contributes equally to the analysis:

Zij =
Xij − µj

σj

(A.1)

where Xij denotes the value of feature j for instance i (j = 1, . . . , n, i =
1, . . . ,m), and µj and σj are the mean and standard deviation of feature j, re-
spectively. The resulting standardized matrix Z ∈ Rm×n is used for subsequent
steps.

Step 2: Computing the covariance matrix
To understand how variables relate to one another, a covariance matrix C ∈
Rn×n is computed from the standardized data matrix. This matrix captures
the pairwise relationships between variables. When two features are highly
correlated, they introduce redundancy by adding the same information twice.
If the covariance is positive, two variables increase or decrease together, mean-
ing they are correlated. When the covariance is negative, one variable increases
when the other decreases, meaning they are inversely correlated.

The covariance between features j and k is defined as:

Cov(xj, xk) =
1

m

m∑
i=1

(Xij − µj)(Xik − µk) (A.2)

Where Xij is the value of feature j for instance i, µj is the mean of feature
j, and m is the number of instances (rows). This results in a symmetric
covariance matrix:
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
Cov(x1, x1) Cov(x1, x2) . . . Cov(x1, xn)
Cov(x2, x1) Cov(x2, x2) . . . Cov(x2, xn)

...
...

. . .
...

Cov(xn, x1) Cov(xn, x2) . . . Cov(xn, xn)



Note that Cov(xj, xk) = Cov(xk, xj), making the matrix symmetric. The
diagonal entries correspond to the variance of each feature: Cov(xj, xj) =
Var(xj).

Step 3: Find the principal components
The goal of PCA is to find new orthogonal directions in feature space (called
principal components) that capture the maximum variance in the data. These
directions are derived from the eigenvectors of the covariance matrixC ∈ Rn×n.

To compute them, the characteristic equation to obtain the eigenvalues λ is
solved:

det(C− λI) = 0 (A.3)

Each solution λ is then substituted into the eigenvalue equation to find the
corresponding eigenvector v by satisfying:

Cv = λv (A.4)

where:

• v ∈ Rn is an eigenvector (i.e., the direction of a principal component)
• λ ∈ R is the corresponding eigenvalue (i.e., the amount of variance cap-
tured along v)

Each eigenvector v defines a new axis in the transformed feature space, and the
associated eigenvalue λ quantifies how much of the total variance is explained
in that direction. Since the covariance matrix is symmetric and positive semi-
definite, all eigenvalues are real and non-negative, and the eigenvectors form
an orthonormal basis.

A property of this transformation is that multiplying C by an eigenvector
v results in a scaled version of v, without changing its direction. This is
what makes eigenvectors suitable as the new axes in PCA. The image below
illustrates this concept visually:
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Figure A.1: Geometric interpretation of an eigenvector: direction is unchanged, only
scaled by λ.

Step 4: Picking top directions
The eigenvectors are sorted in descending order of their corresponding eigen-
values. The first principal component corresponds to the eigenvector with the
largest eigenvalue and captures the maximum variance in the data; the second
component captures the next highest amount of variance (orthogonal to the
first), and so on.

By selecting the top p principal components (e.g., those explaining 80% of
the total variance), the original dataset is projected onto a lower-dimensional
space. This results in a new dataset of size m× p, where p < n.

A.2 Multiple Correspondence Analysis

Suppose we have a dataset with m observations and K categorical variables. Let
each variable k have Jk distinct levels (categories), with J =

∑K
k=1 Jk being the

total number of category levels across all variables. The resulting indicator matrix
X ∈ Rm×J contains binary entries, whereXij = 1 if observation i belongs to category
j, and 0 otherwise. The steps of MCA can be outlined as follows:

Step 1: Compute the indicator matrix
Each categorical variable is transformed via one-hot encoding, producing an
indicator matrix X ∈ Rm×J . Each row corresponds to an observation, and
each column to a unique category level. The entries of X are binary, such that
Xij = 1 if observation i belongs to category level j, and 0 otherwise.

Step 2: Compute the correspondence matrix

The indicator matrix is converted into a correspondence matrix by normalizing
each element by the total number of all entries. Since each observation selects
one level per categorical variable, the total number of ones in X is N =∑m

i=1

∑J
j=1 Xij. A normalized matrix Z is made by converting the absolute

counts into relative frequencies:

Z =
1

N
X (A.5)

69



APPENDIX A. METHODS

Step 3: Compute row and column marginals
The marginal distributions (i.e., relative frequencies) of the rows and columns
of the correspondence matrix are computed as:

r = Z1 and c = ZT1 (A.6)

Where r ∈ Rm×1 contains the row sums (marginal frequencies of observations)
and c ∈ RJ×1 contains the column sums (marginal frequencies of category
levels)

Let Dr = diag(r) and Dc = diag(c) denote the diagonal matrices formed
from the row and column marginals, respectively. These will be used for
normalization in the next step.

Step 4: Centering and normalization
The influence of expected frequencies under independence are removed by
centering the correspondence matrix Z.

Z− rcT (A.7)

Here, rcT represents the matrix of expected frequencies under the assumption
that rows and columns are independent. Next, the centered matrix is scaled
by the inverse square roots of the row and column marginal frequencies to
normalize the contribution of each cell. This yields the standardized residual
matrix:

S = D−1/2
r (Z− rcT )D−1/2

c (A.8)

This transformation ensures that all categories and observations are weighted
equally, preventing categories with large marginal frequencies from dominating
the analysis.

Step 5: Singular Value Decomposition (SVD)
The principal components found by decomposing the standardized residual
matrix S using singular value decomposition (SVD):

S = P∆QT (A.9)

where, P contains the left singular vectors (associated with the rows), Q con-
tains the right singular vectors (associated with the columns), and ∆ is a
diagonal matrix of singular values δ1, δ2, . . . .

The squared singular values, δ2i , represent the eigenvalues of the matrix STS,
and indicate the proportion of inertia (similar to variance in PCA) explained
by each principal component.

Step 6: Compute coordinates

The coordinates of the rows and columns in the new reduced space are com-
puted using the singular vectors and singular values obtained from the SVD.

70



APPENDIX A. METHODS

These coordinates define the projection of observations and categories onto
the principal components.

F = D−1/2
r P∆ and G = D−1/2

c Q∆ (A.10)

Where F contains the coordinates of them observations (rows), G contains the
coordinates of the J category levels (columns), P and Q are the left and right
singular vectors from the decomposition of S, and ∆ is the diagonal matrix of
singular values.

These coordinates are used to interpret the relationships between observations
and categorical variables in the lower-dimensional space.

Step 7: Distance measure
MCA uses the χ2 distance to quantify dissimilarities between observations
(rows) and between categories (columns). This distance metric reflects how
much an observation or category deviates from the average profile, taking into
account the frequency distribution of the data.

In the reduced component space, the squared distances of observations and
categories from the centroid can be approximated by:

dr = diag{FF T} and dc = diag{GGT} (A.11)

where F and G are the coordinate matrices of the observations and category
levels, respectively.

The χ2 distance incorporates both observed and expected frequencies, mak-
ing it sensitive to associations between rare and common categories. As a
result, MCA is particularly well-suited to uncovering subtle relationships in
categorical data.
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Results

B.1 PCA and MCA component summary table

component eigenvalue % of variance % of variance (cumulative)

1 4.125 29.46 29.46%
2 2.497 17.84 47.30%
3 1.701 12.15 59.45%
4 1.424 10.17 69.62%
5 1.029 7.35 76.97%
6 0.881 6.3 83.27%
7 0.824 5.89 89.16%
8 0.745 5.32 94.48%
9 0.521 3.72 98.20%
10 0.126 0.9 99.10%
11 0.074 0.53 99.62%
12 0.053 0.38 100.00%
13 0.000 0.0 100.00%
14 0.000 0.0 100.00%

Table B.1: Eigenvalues and explained variance of the principal components in PCA.

Table B.2: Eigenvalues and explained variance of the principal components in MCA.

Component Eigenvalue % of variance % of variance (cumulative)

1 0.236 5.21% 5.21%
2 0.226 4.99% 10.19%
3 0.177 3.90% 14.09%
4 0.163 3.60% 17.69%
5 0.160 3.53% 21.23%
6 0.146 3.23% 24.46%
7 0.144 3.19% 27.65%
8 0.137 3.03% 30.68%

Continued on next page
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Table B.2 – continued from previous page

Component Eigenvalue % of variance % of variance (cumulative)

9 0.136 3.00% 33.68%
10 0.134 2.95% 36.63%
11 0.132 2.92% 39.55%
12 0.130 2.87% 42.42%
13 0.127 2.80% 45.21%
14 0.124 2.75% 47.96%
15 0.123 2.71% 50.68%
16 0.123 2.71% 53.38%
17 0.122 2.69% 56.08%
18 0.120 2.65% 58.73%
19 0.120 2.64% 61.37%
20 0.118 2.61% 63.97%
21 0.116 2.57% 66.54%
22 0.116 2.56% 69.10%
23 0.115 2.54% 71.65%
24 0.114 2.51% 74.16%
25 0.112 2.47% 76.63%
26 0.109 2.40% 79.03%
27 0.106 2.34% 81.36%
28 0.103 2.28% 83.64%
29 0.100 2.22% 85.86%
30 0.096 2.12% 87.98%
31 0.090 1.98% 89.97%
32 0.088 1.95% 91.92%
33 0.081 1.80% 93.72%
34 0.066 1.47% 95.18%
35 0.061 1.34% 96.52%
36 0.057 1.26% 97.78%
37 0.048 1.06% 98.85%
38 0.034 0.74% 99.59%
39 0.019 0.41% 100.00%
40 0.000 0.00% 100.00%
41 0.000 0.00% 100.00%
42 0.000 0.00% 100.00%
43 0.000 0.00% 100.00%
44 0.000 0.00% 100.00%
45 0.000 0.00% 100.00%

B.2 McNemar statistical test
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B.3 Confusion matrices of all configurations

(a) Without dimensionality reduction.

(b) Statistical dimensionality reduction.

(c) Dimensionality reduction with autoencoder and bottleneck size of 16.

(d) Dimensionality reduction with autoencoder and bottleneck size of 32.

Figure B.1: Confusion matrices illustrating the trade-off between false positives and
false negatives for the three models.
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B.4 Hyperparameter in-depth analysis

To illustrate the optimization process in more detail, Figures B.2 and B.3 present
the hyperparameter importance and slice plots provided by Optuna for two repre-
sentative cases: XGBoost without DR and the MLP with AE-32. For XGBoost,
max depth emerges as the dominant hyperparameter, with shallow trees performing
poorly and deeper trees stabilizing quickly (Figure B.3a). For colsample bytree,
which controls the number of features considered in each tree, the objective values
remain stable across the tested range, indicating that model performance does not
systematically improve or worsen with higher values. This is consistent with the low
importance score.

For the MLP with AE-32, Figure B.2b shows that dropout rate, learning rate,
and the number of hidden units are the most influential parameters. Upon investi-
gating Figure B.3b, performance is best with very low dropout rates, while increasing
dropout quickly reduces the objective.

(a) XGBoost without dimensionality reduc-
tion.

(b) MLP with autoencoder features (bot-
tleneck size 32).

Figure B.2: Relative hyperparameter importance obtained through Optuna.

(a) XGBoost without dimensionality reduc-
tion.

(b) MLP with autoencoder features (bot-
tleneck size 32).

Figure B.3: Optuna slice plots of the three most influential hyperparameters for each
model. Each point represents one of the 50 optimization trials and its corresponding
hyperparameter setting.
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