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Introduction

Davenport et al.[3] use as one of their premises the fact that data-based decisions
help managers act in real-time and make better decisions which reduce bias, are
cost-efficient, and easy to replicate. In addition to this, data can be modeled to
predict future situations based on past events.

A challenge for a retailer/producer/wholesaler is to know when and how to
adapt to the needs of clients. Thus, by using the knowledge extracted from
datasets, managers can make informed decisions about the product placement,
pricing, promotion, and profitability(Loraine Charlet et al.[4]).

Data are being collected and accumulated at a dramatic pace nowadays
across a variety of fields(Fayyad et al.[1], Shaw et al.[2], Davenport et al.[3]). In
addition to this, businesses try to develop intelligent ways of acquiring this cus-
tomer data into large databases. According to Shaw et al.[2], useful marketing
insights are sometimes hidden and undiscovered in these databases which can
be translated into customer characteristics based on their purchase patterns.
Using data mining algorithms and techniques, knowledge can be extracted and
used for gaining competitive advantage. This knowledge can critically influence
the marketing decisions and can improve business relationships.

Background and/or business context of the prob-
lem

One of the most compelling services of the KPMG platform represents Loca-
tion Aware Services(LAS). LAS enables performing analysis on collected data
and delivering business insights. This represents a novel method of gathering
important customer data.

The business potential value of LAS will be studied on the Chep conference
datasets, which are explained below and a dataset which will come from con-
trolled experiments. These datasets contain WiFi data extracted through the
mobile antenna signals. These data refer to the calculated location of people
that were present at the conference at different time moments and locations.

The two main datasets were recorded at the Chep conference at the Beurs
van Berlage (Amsterdam) in October 2013. The space of the conference was
a large area where the people could walk and where they were not forced to
choose certain paths for visiting, because the actual hall did not have a shape
or walls. There were approximately 500 people visiting this conference and the
recordings come from three different days.

The controlled experiments will be designed and implemented at the KPMG
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headquarters and will be used for further understanding how the devices perform
and whether some potential insight can be added to the one extracted from the
main datasets.

Anticipated added value of the placement for the
host organization/department

The motivation for the KPMG WiFi-efforts is to have a show-case that is able
to demonstrate the following to the potential clients:

• Proving that tracking can technically be done

• Proving that this can be done while respecting privacy regulations

• Testing/calibrating the setup

• Developing analyses

• Showing the added value(the purpose of this research)

• Understanding the procedures w.r.t. privacy regulations a company needs
to go through to get this working

The purpose and intended output (deliverables);
success criteria

There are two algorithms developed by KPMG Big data & Analytics team for
determining the location. The performance of these algorithms has not been
tested before. One of the research questions that this thesis will try to answer
is whether these algorithms are performing well and whether they provide accu-
rate, reliable data given the conditions of the recording. In addition to this, we
will try to explore whether there exist any business benefits for any potential
clients and what are the potential use-cases of this system.

Thus, the main goals will be the following:

• Find according to the literature the most important user-requirements for
a location-aware system

• Discover what are the most important parameters and conditions that
need to be taken into consideration for the analysis

• Identify the challenges of building this system from both theoretical and
practical perspectives

• Analyze the performance of the two developed algorithms and detect which
one performs better and in which situation

• Design and implement controlled experiments that assess the performance
of the drones

• Determine the limitations of the entire project

• Identify how this type of system can be used for potential clients and what
are the potential implications of its use
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Problem statement, including any formal precon-
ditions

At this moment, there is no certitude of how well the system performs and how
accurate the system is. This issue will be also tackled by analysing the recorded
data and the stored logs during the conference.

It may be the case that the system would have to be configured for specific
situations depending on the actual area of analysis. For example, what would
be interesting to find out is whether the actual models for calculating the lo-
cations are performing well. Thus, controlled experiments will be designed and
implemented in order to understand how good the devices perform. In the end,
it is important to know whether the drones are properly configured and whether
they record data in a timely manner, data which is accurate and can be used
for extracting insight.

The problem, as stated before, represents a mixture between technical and
business perspectives. From a technical perspective, we need to solve and im-
plement the following elements:

• The accuracy of the recorded data of the customer/client/visitor/device

Limitations:

– The different capabilities of the mobile devices, such as: mobile an-
tenna(signal strength), (supported) communication protocols, etc.

– Lack of sufficient data of some recorded devices due to inactivity of
the device in the chep data

• The meaning of the absence of data between the time of two consecutive
recordings which represents one of the challenging issues, e.g.:

– Dwelling time

– Walking time

– Missing data + dwelling time

– Missing data + dwelling time+ walking time

This can be interpreted as:

– Is someone present, but not detected?

– Is someone absent?

Limitations:

– Insufficient reference data

• For the data visualization, we will focus on two directions:

– Data visualization for a single MAC address - important for
measuring the accuracy of the recordings of the system and of the
models, which will be performed on a specified time interval. In
addition to this, we will create:

∗ Animations of the path the MAC address follows

6



∗ Generated histograms of x and y coordinates for detecting the
resolution

– Data visualization for multiple MAC addresses - important
for understanding the behavior of customer/clients/visitors on an
aggregated level, which will be performed:

∗ On a specified time interval(due to the large number of records)

∗ On a specified day level

∗ Generated histograms of the difference between the time of two
recordings

– Comparison between the two developed algorithms based on data
visualization module

– Focus on the analytics that can be derived, such as:

∗ Number of detected, missing, arrived, and departed devices

∗ The areas of interest and the average dwelling time for them

∗ Typical behaviors of customers/clients/visitors/devices

– Design and implement controlled experiments for getting more in-
sight

– Build a solution for describing the behavior of the customers/clients/vis-
itors/devices within two consecutive detections(e.g. ”presence prob-
ability”).

Tools

The programming language that is used for implementing these analysis is
Python with its libraries: Matplotlib, NumPy, sciPy, Pandas, Pymongo.
The database in which the data is MongoDb, which is NoSQL database.
It does not have a typical table format as SQL, but instead it has a BSON
format(dynamic JSON documents).

Structure of the thesis

The thesis is structured in several chapters. Chapter 2 contains the com-
parison between the KPMG algorithms and assesses their performance.
Chapter 3 proposes two models for calculating the probability of detect-
ing mobile devices. Chapter 4 presents the experiments for extracting
insight in how the mobile devices communicate with the routers in dif-
ferent situations. Chapter 5 refers to identification of the limitations and
improvements of the Fitter algorithm. Chapter 6 includes the analysis of
the system based on a framework from the literature. In the end, chap-
ter 7 presents the limitations, conclusions, and the contributions to the
literature.
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Chapter 1

Literature review

1.1 Location aware systems

A smart-phone is an appropriate device to infer user context, because the
data on the frequent interactions between users and their devices can be
collected using various kinds of embedded sensors. For example, smart-
phones can generate data through Internet connectivity which can be used
for the location detection. This location information forms a core context
in the pervasive computing environment[20].

According to Gu et al.[45], an indoor location aware system or indoor
positioning system(IPS) considers only indoor environments such as inside
a building. The author defines an IPS as a system that continuously and
in real-time can determine the position of something or someone in a
physical space such as in a hospital, a gymnasium, a school etc. An IPS
should work all the time unless the user turns off the system, offer updated
position information of the target, estimate positions within a maximum
time delay, and cover the expected area the users require to use an IPS.

The position location of a smart-phone can be used for different scenar-
ios. On one hand, one advantage could be public safety issues[19]. On
the other hand, it can be used for social-context information. For exam-
ple, a company scouting for locations to display its advertisements can
obtain useful information on various places frequented by its customers in
a certain time interval[8].

Several approaches are used to determine user location. According to
Prasithsangaree et al.[19], these approaches are either by using a special
infrastructure for positioning such as the global positioning system(GPS)
or by enhancing communication infrastructures to determine the location
of users.

GPS is, however, a common solution in open, outdoor environments. Pr-
asithsangaree et al.([19]) state that GPS is not suitable for indoor areas,
because of the lack of coverage. In addition to this, according to the same
authors, it represents an expensive solution in terms of the costs of labor
and capital for implementing a specialized infrastructure for detecting the
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position indoor. In addition to this, previous research([18]) shows that
a GPS signal is available only 4.5% percent of the time during a typical
user’s day. This suggests that average users spend much of their time
indoors, where GPS service is normally restricted.

The WiFi positioning system is an effective alternative to GPS for indoor
environments. An approach for detecting indoor position represents the
wireless communication infrastructure to determine the location of users
within the network. However, by comparing them with the outdoor, the
indoor environments are more complex. In this case, there are various
obstacles, for example, walls, equipment, human beings, influencing the
propagation of electromagnetic waves, which lead to multi-path effects.
Some interference and noise sources from other wired and wireless net-
works degrade the accuracy of positioning. The building geometry, the
mobility of people and the atmospheric conditions result in multi-path
and environmental effects( Gu et al.[45]).

According to Koyuncu and Yang[40], indoor positioning systems locate
and track objects within the buildings and closed environments. These
systems use wireless concepts, optical trackings or ultrasonic techniques.
In addition to this, Gu et al.[45] identify other technology options for the
design of the location aware systems such as infrared (IR), ultrasound,
radio-frequency identification(RFID), Bluetooth, sensor networks, ultra-
wideband (UWB), magnetic signals, vision analysis and audible sound.

Pahlavan et al.[44] describe how a wireless geolocation system should look
like, which can be found in Figure 1.1. The main elements of this sys-
tem, according to them, are a number of location sensing devices that
measure metrics related to the relative position of a mobile terminal(MT)
with respect to a known reference point (RP), a positioning algorithm
that processes metrics reported by location sensing elements to estimate
the location coordinates of MT, and a display system that illustrates the
location of the MT to users. The location metrics may indicate the approx-
imate arrival direction of the signal or the approximate distance between
the MT and RP. The angle of arrival (AOA) is the common metric used in
direction-based systems. The received signal strength(RSS), carrier signal
phase of arrival (POA), and time of arrival(TOA) of the received signal
are the metrics used for estimation of distance. As the measurements of
metrics become less reliable, the complexity of the position algorithm in-
creases. The display system can simply show the coordinates of the MT,
or it may identify the relative location of the MT in the layout of an area.
This display system could be software residing in a private PC or a mobile
locating unit, locally accessible software in a local area network (LAN),
or a universally accessible service on the Web. Obviously, as the horizon
of accessibility of the information increases, design of the display system
becomes more complex.

1.1.1 Positioning principle

Koyuncu and Yang[40] mention that the developed solutions for the indoor
or outdoor position of objects are based on triangulation, trilateration,
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Figure 1.1: The diagram of a wireless geolocation system, according to Pahlavan
et al.[44]

and multi-lateration methods using light[42], ultrasound, or radio signals,
which provide positional information. However, Nuaimi and Kamel[12] ar-
gue that the main positioning techniques are: triangulation, scene analysis
and proximity, and trilateration, which will be briefly described.

Triangulation is the process of determining the location of a point by
measuring angles to it from known points at either end of a fixed baseline,
rather than measuring distances to the point directly(trilateration). The
point can then be fixed as the third point of a triangle with one known side
and two known angles. According to Thomas and Ros[36], triangulation is
a common operation not only in robot localization, but also in kinematics,
aeronautics, crystallography, and computer graphics.

Scene analysis is another principle of positioning in which fingerprint
is used(Nuaimi and Kamel[12]). The authors define a fingerprint as the
unique characteristic or collection of characteristics of the scene, which
works by collecting information from the scene and compare it with the
existing database match for each scene.

Proximity principle is mainly used in Radio Frequency based systems,
where a grid of antennas with fixed locations within the building are used.
When a person carrying a mobile device is detected, the closest antenna
represents the one taken into consideration when the objects’ location is
calculated. If more than one antenna detects the same mobile device, then
the antenna that receives the strongest signal is used when determining
the object’s location(Nuaimi and Kamel[12]).

The main measuring technique used for the determination of coordinates
in this thesis represents trilateration, which is a method to determine
the position of an object based on simultaneous range measurements from
three stations located at known sites(Thomas and Ros[36]).

In two-dimensional geometry, it is known that if a point lies on two circles,
then the circle centers and the two radii provide sufficient information to
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narrow the possible locations down to two. Additional information may
narrow the possibilities down to one unique location[37].

In three-dimensional geometry, when it is known that a point lies on the
surfaces of three spheres, then the centers of the three spheres along with
their radii provide sufficient information to narrow the possible locations
down to no more than two (unless the centers lie on a straight line). A
method for determining the intersections of three sphere surfaces given the
centers and radii of the three spheres is described and the entire derivation
can be found in the appendix chapter based on the information explained
in[37].

1.1.2 Applications

Sayed et al.[43] identified the main applications of location based systems.
According to these authors, the forecasted business potential of these sys-
tems is tremendous world-wide as the number of users that own a cell-
phone increases. Thus, they believe that the most important applications
are the following:

– Emergency services, because a high percentage of calls to these
services represent calls made by using a cell-phone.

– Mobile advertising, as mentioned before it can be used for tracking
and attracting customers.

– Asset tracking, as it can be used for security services for locating
a lost child, patient, pets, or assets.

– Fleet management, because it can help police forces identify cars,
taxi companies, etc.

– Location-based wireless access security for avoiding the inter-
ception of digital information.

– Location sensitive billing which uses the location information of
wireless users to offer variable-rate call plans or services based on the
caller location.

– Indoor navigation for identifying places of interest

Pahlavan et al.[44] mention another important application in the public
safety and military applications, where indoor geolocation systems may
be important for tracking inmates in prisons, navigating policemen, fire
fighters, and soldiers who need to complete their missions inside buildings.
In addition to this, Gu et al.[45] write about various other scenarios such
as fitness case and conference scenarios.

Zeimpekis et al.[13] affirm that the wireless tracking systems promise to
enable the development of advanced mobile location systems in both the
business-to-consumer(B2C) and business to business markets. The au-
thors state that wireless positioning techniques have attracted much in-
terest and research recently since they represent a core enabling technology
for a continuously increasing number of mobile business applications.
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1.2 Security and privacy requirements

The security of a system is the extent of protection against some unwanted
occurrence such as the invasion of privacy, theft, and the corruption of in-
formation or physical damage. The quality or state of being protected
from unauthorized access or uncontrolled losses or effects should be given
to potential LAS clients. Safety is a property of a device or process which
limits the risk of accident below some specified acceptable level. In addi-
tion, several aspects of privacy, such as approval by the user need to be
considered[34].

The level of privacy influences the approval by the user:

1. How comfortable are users with their data (e.g., trajectory) being
stored by another party?

2. Do users have legal concerns about their privacy?

3. If so, can private users be motivated to provide personal data?

Approval also includes the requirements for the system to allow certifica-
tion by authorities, e.g., if there is a need for admissibility in court, the
requirements for the system to deliver evidence should be given. Insurance
companies should point out their policies concerning approval.

Kapadia et al. [23] study intensively the security challenges that arise from
the location detection of the devices. The authors propose the following
methodology with respect to the security challenges such as privacy, in-
tegrity, and availability, which should be individually tackled. In addition
to this, Harris et al.[25] propose three basic privacy groups in which a
participant can have one of the following profiles:

– fundamentalist - people that have very high privacy concern

– pragmatism - people that belong to a middle group with balanced
privacy attitudes

– unconcerned - people that have little to no concern about con-
sumer privacy issues

According to Mautz[34], the data privacy issue can be tackled from the
perspective that users will want to control who may access to the informa-
tion about themselves. Consolvo et al.[24] believe that the most important
factors for participants to share their location are the following:

– who requests the information?

– why does this person request this information?

– what will be useful to this person?

Other important factors that influence whether participants want to dis-
close information of their location, which may not be important for this
analysis, but play a key role in social media represent activity & mood.
According to Consolvo et al.[24], participants were more willing to disclose
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their location when they were “depressed” and they disclosed least when
they were “angry”.

On one hand, in the same study, 56% of the participants were concerned
with the privacy and security linkage of information from the location-
enhanced applications for social relations. In addition to this, some of the
participants were worried of a third party or unintended individual spying
on their information or getting hold of their actual device.

On the other hand, Sadeh et al.[26] prove that people tend to be con-
servative about disclosures at first, but tend to relax their policies over
time as they become more comfortable with mobile applications, in their
case called Peoplefinder, and with how others are using it to find their
location. In the end, the authors state that “this finding suggests that
systems should help people stay in their comfort zones while also helping
them evolve their policies over time”.

Even though the literature states that over time people stop being con-
cerned of the privacy issues, the press does not support that. Forbes[28],
one of the most important business newspapers, presented the story of
a coffee shop which had to stop using the WiFi location aware systems,
due to the privacy concern of its customers even though the tracking was
transparent and there was also an opt-out feature built.

1.3 Projects in the literature

The literature is rich in articles that include projects related to location
aware systems. However, these systems are small, pilot projects that
record and analyze data for a small amount of time and these projects
can be compared with the KPMG LAS system which is built to provide
useful location-based insight for both users and clients.

Chon et al.[8] implemented a system called ”LifeMap” which represents a
smart-phone-based context provider and a cost-efficient technology used
for collecting indoor user context data. LifeMap uses inertial sensors in
the smartphone to provide indoor location information. The information
is combined with GPS and WiFi positioning systems to generate user
context in daily life. The authors emphasize that there is need for such
systems in order to improve the quality of services. The authors use as
example finding the locations of a store most frequently visited.

Rekimoto et al.[5] developed a personal location-logging system called
“LifeTag” that is based on the PlaceEngine location platform. The user
of this system carries a small WiFi sensing device that periodically records
surrounding WiFi fingerprint information (WiFi access point IDs and re-
ceived signal strength). Later, this recorded information is converted
into actual location logs by accessing the PlaceEngine’s WiFi location
database.

Another interesting study was performed by Jiang et al.[7] who designed
a remote pest monitoring system based on wireless communication tech-
nology. This system automatically reports environmental conditions and
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traps pest in real-time. The acquired data was integrated into a database
for census and further analysis.

Another interesting project is AnonySense, a privacy-aware architecture
developed by Cornelius et al[22] for realizing pervasive applications based
on collaborative, opportunistic sensing by personal mobile devices. Ap-
plications are allowed by AnonySense to submit sensing tasks that will
be distributed across anonymous participating mobile devices. Later sen-
sor data reports are received back from the field that are verified and
anonymous. Their prototype is evaluated through experiments and two
applications(a WiFi rogue access point and a lost-object finder).

1.4 Market research

There is an entire industry of location aware systems focused on WiFi
tracking. Several companies have been identified as main players in the
market. These companies will be briefly described based on the services
they promise to offer, their target and main clients, and other interesting
aspects that were available on the internet. The positioning techniques
that the companies use are not disclosed.

A lead developer of such technologies represents Euclid Analytics[29].
Their office is located in San Francisco. According to their website, they
translate anonymous device data into customer intelligence. Euclid looks
at the visitor behavior based on WiFi data, shopping patterns of customer
data, and calculates performance metrics. They target several industries,
such as: executive, marketing, operations, IT. In addition to this, they
offer calculations related to the most important KPIs: storefront conver-
sion, average shop time, engagement rate, bounce rate, loyality, sales per
day, conversion rate, sales transactions, average sales per week, outside
opportunity, window performance, shopper engagement, store hours op-
timization, cross-shopping. On their website, they do not disclose any
information related to their clients.

Another competitor represents PurpleWiFi, which targets its services to
the following sectors: retail and leisure, hospitality, health and educa-
tion, travel an transport, telecoms, marketing, public sector and commer-
cial, and, lastly, but not the least, the event management. The com-
pany is located in Manchester, UK. According to its website[30], there
are several business case studies where the company implemented the
WiFi tracking and statistics: the Caesar Entertainment UK(casino in-
dustry), Orchards Shopping center(in West Sussex, UK), the Canterbury
Cathedral(visitors tracking), Alhambra shopping center, Crystal Ski Holi-
days(implementation of WiFi tracking for ski resorts in France, Italy, and
Austria), etc.

RetailNext is another in-store analytics company which combines the data
from various sources such as: WiFi & Bluetooth devices, video cameras,
point of sales data, staffing systems, weather, promotional calendars, pay-
ment cards and offers a web dashboard with custom reports combined with
mobile apps based on which predictive analytics can be done. According
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to their website[31], their customers are the following: Bloomingdales,
Pepsico, Americal Apparel, P&G, and various other shops. The company
started in 2007 with their headquarters in San Jose, California, but it also
has a Dutch partner called WiFiProfs that offers the same services. The
company has received last year many awards for being one of the most
innovative companies.

Another Dutch group that offers a mixture between analytics and track-
ing technologies represents the Moreless group. Bluetrace is one of the
companies that belong to the Moreless group umbrella that offers WiFi
tracking solutions, which started in 2005. The company targets compa-
nies, public institutions, and governments and they offer a platform for
customer loyalty and online marketing combined with tracking data. The
main clients of Bluetrace are: Citroen, Bas Group, Febo, Seidensticker,
Galleria Boromea, Ryanair, municipality of Haarlem etc. This company
was in the news for not appropriately handling data privacy, they did not
inform the visitors of the store that they were being tracked[56].

Polestar[27] represents a French company which offers indoor/outdoor po-
sitioning solutions with offices both in Toulouse, France and Palo Alto, US.
The company was founded in 2002. Their technology is a mix between
GPS, WiFi, Bluetooth Low Energy, and motion sensors that adopt to
different environments and existing networks. In addition to this, they
developed the NAO campus mobile application for improving the location
based services. Their market solutions are split in four main categories:
shopping malls& large retailers, transportation, museum and theme parks,
and convention centers. For the large shopping malls, they offer both the
mobile application for the customers, which can use the NAO Campus
mobile app for finding out where their favorite shops are located, and the
tools for extracting information about customer patterns, paths, and dwell
time for the retailers. In the transportation area, their client is the Paris
Charles de Gaulle Airport for which they used the same type of mobile
application. They also work with two internationally renowned museums
devoted to the promotion of science and technology and based in Paris,
La Cité de la Sciences and La Palais de la Découverte.

Another European company that offers indoor location analytics is the
German company Infsoft[32]. This is performed by combining multiple
mobile sensors, such as: GSM, 3G/4G(LTE), WiFi, magnetic fields, com-
pass, air pressure, barometer, accelerometer, gyroscope, Bluetooth and
GPS and they promise an accuracy of 1meter. In addition to this, the
company offers interactive 2D and 3D maps.
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Chapter 2

Comparison between the
two developed algorithms

2.1 Description of the algorithms

Two algorithms were developed by KPMG for determining the location
of devices based on WiFi radio signals. The two algorithms use different
methods to determine the location of the packet source. In this chap-
ter, the algorithms will be briefly described below and their performance
will be compared from multiple perspectives: the resolution of calculated
coordinates, the number of detected mobile devices, etc.

The algorithms are called the Fitter and the Trilaturator. Both take as
input the same information: the source MAC address(sourceMAC), the
id string of the routers(drone id), the raw WiFi signals that have been
captured(signal strength), and the time of the measurement(measurementT imestamp).
The dataset that contains all this information will denoted for simplicity
the raw dataset. This information is recorded by the routers which com-
municate with the mobile devices and send the input information for the
algorithms to the Kismet server. The entire process can be visualized in
figure2.1. Then, the information is stored on the storm cluster using SSH.
The algorithms run on the Storm cluster, which sends the output(e.g.
sourceMAC, timestamp, and coordinates, Section 2.1.3) to MongoDB for
storing.
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Figure 2.1: The algorithms

One of the assumptions the algorithms use is the existence of an inverse
relationship between distance and signal strength. Hence, the higher the
signal strength the shorter the distance and the lower the signal strength
the farther the mobile device is from the routers.

2.1.1 The Fitter algorithm

The Fitter creates buffers of 10 seconds where it holds the data packets
that come from different routers, then, these packets are sorted by time
and by drone. Next, the algorithm tries to fit the values of the signal
strengths of each 10 seconds bin using the weighted least squares technique
due to the non-linear relationship between the signal and the distance.
Then, by employing the Newton-Raphson method, an optimized curve
is obtained for the given data. If the algorithm is able to fit the curve
and to compute the coordinates, the status flag is FITTED, otherwise
it is UNKNOWN or FAILED, where the algorithm cannot provide
coordinates. The reasons may be because it cannot converge after 100
iterations or that it does not have sufficient records or at least four different
measurements from 4 different routers. More information can be found in
the PhD thesis of Jan Amoraal[55].

2.1.2 The Trilaterator algorithm

In this algorithm, the raw data obtained from the drones is sorted by MAC
address and by time. Then, for each MAC address, a buffer is created,
which holds all the data records detected within a 10 second time frame.
The next step consists of making combinations of 3 data packets each
having different drone ids. Then, the signal strength is required to have
sufficient power( Signal strength ∈ [-90,0]). Thus, all packets with low
signal strengths are dropped, which, for example, come from devices that
are outside the area of interest.

Then, the signal strengths of the packets measured in dBms are translated
into a distance estimate. By applying the trilateration technique, the x, y,
and z coordinates are determined for each combination of 3 data packets.
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If the number of combinations reaches 1.000(this threshold is introduced
to reduce the computation time), the algorithm stops and computes the
average values of the x, y, and z coordinates. Besides these values, the
uncertainties of both x and y coordinates are also calculated and are equal
to the standard deviation of all the computed combinations. These values
will represent a record in the dataset that is being used for the analysis.

2.1.3 Dataset format of the algorithms

The datasets that we will do the analysis are the result of the trilateration
process, which contain the following fields:

– measurementTimestamp - represents the date and time when the
measurement was performed

– sourceMac - represents the hashed MAC address of a device

– coordinates - the calculated coordinates

∗ x - represents the calculated x coordinate by the algorithm

∗ y - represents the calculated y coordinate by the algorithm

– error - the error of the algorithms(the standard deviation of the
algorithms)

∗ errorx - is the calculated error for the x coordinate of the algorithm(σx)

∗ errory - is the calculated error for the y coordinate of the algorithm(σy)

In addition to this, a new variable was introduced to the dataset which is
called ∆time. The ∆time represents the difference between two consecu-
tive timestamps tij of a hashed MAC addresses.

∆timeij = tij − ti(j−1)
,

where i corresponds to a certain MAC address and the j represents the
index of the interval time of the detection. In addition to this, the first
detection of a hashed MAC addresses is always initialized with 0. This
variable is useful, because it can give us an indication of how long it takes
between two consecutive detections of the same MAC address. The ∆time
is calculated in minutes and the reason why this measurement unit was
chosen was because it was easier to work with it.

Another two variables are introduced which are the residuals for the x
and y coordinates. The residuals can only be calculated, if the actual
coordinates are known, by using the following relationships:

residualx = x− x̃

residualy = y − ỹ

where x̃ and ỹ represent the actual value of the coordinates, which can
come from actual measurements or test cases, while the x and y represent
the determined coordinates.
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2.2 Comparison between the performance of
the algorithms

The performance of the algorithms will be evaluated on the dataset from
the CHEP conference by looking at the resolution for the x and y coor-
dinates and the number of detected devices, which both depend on the
device type as well as the time of the day. Therefore, an analysis will be
performed by looking at how different types of devices behave, what is the
resolution of the x and y coordinates, as well as the impact that the time
of the day may have on the number of detected devices.

2.2.1 The resolution

The analysis of the resolution is based on the raw CHEP data. The logs
contain an experiment where an iPad device was at a fixed position(x =
33.2m and y = 18.6m) for an hour and half. This experiment gives an
indication of how often this device could ideally be detected if it was not
moved and what the accuracy of the determined positions is compared
to the known position. Moreover, we can discover whether the actual
coordinates can be used for further analysis.

The resolution analysis is performed by comparing two different histograms:
the residuals versus the errors of the algorithms for both x and y coordi-
nates and the pull distributions for both coordinates.

The residuals versus the errors of the algorithms

The histogram of the residuals versus the uncertainties of the algorithms
of each of the coordinates gives information about how large the measure-
ment errors are and whether there is a bias. The residuals were obtained
by taking the difference between the coordinates calculated by the algo-
rithms and the actual coordinates of the iPad device. In this sense, both
algorithms will be compared by looking at their average x and y coordi-
nates and the shapes of their residuals’ versus errors’ distributions.

On one hand, as it can be seen in the case of the x and y coordinates
of the Fitter algorithm(Figure 2.2a and Figure 2.3a), the distributions of
the residuals follow a standard normal distribution slightly shifted to the
left side and slightly shifted to the right side, respectively. The mean is
not centered around zero, as expected. For the x coordinate, it has an
approximate value of −1m, while for the y coordinate, it has an approx-
imate value of 1m. Thus, both means are biased. When looking at the
uncertainties of the coordinates, it can be observed that the uncertainties
on the coordinates are approximately ±5m for both x and y.

On the other hand, the distribution of the x coordinate in the case of
the Trilaterator algorithm does not follow the normal distribution(Figure
2.2b and Figure 2.3b). However, the distribution of the residuals for the
y coordinate has the shape of a Gaussian distribution.
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For further insight about the measurement errors, these plots should be
interpreted together with the second plot of the Pull distribution, which
gives much more information about the measurement errors.

(a) Fitter algorithm

(b) Trilaterator algorithm

Figure 2.2: The residuals versus the error of both algorithms for the x coordinate
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(a) Fitter algorithm

(b) Trilaterator algorithm

Figure 2.3: The residuals versus the error of both algorithms for the y coordinate

The Pull distribution of the x or y coordinate

Another method for analyzing the resolution of the calculated coordinates
represents the pull distribution, which has the following formula:

pullx(i) =
(xi − actualx(i))

σx(i)

pully(i) =
(yi − actualy(i))

σy(i)
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where the xi and yi represent the determined coordinates, the actualx(i)
and actualy(i) are the actual measurements of a MAC address, and the
σx(i) and σy(i) are the errors of the algorithms.

In Figures 2.4a and 2.4b and 2.5a and 2.5b, the Pull distributions of the
both x and y coordinates are shown. The width of the Pull distributions
gives more information about the measurement error. In the case of the
Fitter algorithm, the center of the distribution for the x coordinate lies
around −1m. Normally, this distribution should be centered around 0,
however in this case it can be observed that the entire distribution is
shifted to left which means that the mean is biased.

In the case of the y coordinate, the Fitter algorithms also has its mean not
centered at 0m, but shifted to the right side with a value of approximately
1m. However, the Trilaterator algorithm has its mean centered around 0m.

In the end, almost all three mentioned distributions resemble the stan-
dard normal distribution, except for the Trilaterator distribution of the x
coordinate.
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(a) Fitter algorithm

(b) Trilaterator algorithm

Figure 2.4: The Pull distribution of x coordinate of both algorithms
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(a) Fitter algorithm

(b) Trilaterator algorithm

Figure 2.5: The Pull distribution of y coordinate of both algorithms

The animation of the reconstructed coordinates path in time

The animation of the reconstructed coordinates path in time is useful for
looking at the path a device follows. This is performed from one detection
to another. The plots from Figures 2.6a and 2.6b represent the positions
of the detected coordinates of the iPad experiment, where this device was
placed for one hour and a half without being moved. The labels of the
points represent the values between two consecutive detections(∆time).
The initial value of the ∆time is 0 seconds.

It can be seen that the values of the Fitter algorithm are centered around
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the actual point, which had the coordinates x = 33.2m and y = 18.6m.
However, it can be seen that there are also some points which deviate far
from the values of the actual coordinates. A similar situation occurs also
when using the Trilaterator algorithm. By comparing the performance of
this algorithm with the one of the Trilaterator, it can seen that the points
are better centered than the ones calculated by the latter, which has a
larger spread around the centers of interest. This corresponds with the
observations made with the residuals and Pull distributions. Thus, the
Fitter algorithm behaves better than the Trilaterator algorithm.

Another interesting aspect may be the number of points that were recorded
for the iPad devices, which can be seen in Table 2.1. The Fitter algorithm
has detected more points for the iPad device than the Trilaterator algo-
rithm which has 212 points, 32 fewer points than the first algorithm. In
addition to this, the average value of the coordinate x is 30.7m in the
case of the Fitter algorithm, which has a much higher value than the Tri-
laterator algorithm with x = 26.8m. However, the actual value of the x
coordinate was x = 33.2. This means that for this coordinate the Fit-
ter algorithm performed better than the Trilaterator, but still with some
deviation from the actual value.

In addition to this, the same situation can be seen for the y coordinate for
the Trilaterator algorithm which has the average value of the y coordinate
equal to 15.4m, which is less than the Fitter algorithm with an average
value of the y = 18.3m coordinate close to the actual value of the y
coordinate y = 18.6m.

The root mean squared error will also be used for the comparison between
the two algorithms, which constitutes a measure of the differences between
values predicted by a model or an estimator and the values actually ob-
served. According to Wikipedia[41], the RMSE represents a good measure
of the accuracy, but which can used only to compare errors of different
models for a particular variable.

On one hand, the results for the x coordinate show that on average the de-
viation from the actual value is 7.8m for the Fitter algorithm, which is less
than the RMSE obtained by using the Trilaterator algorithm, which has
a RMSE of 9.8m. On the other hand, in the case of the y coordinate the
results show that the Trilaterator performs better than the Fitter with a
RMSE of 5.7m compared to 6.4m. As it can be seen, the calculated coordi-
nates of both algorithms seem to be less and seem to have deviations from
the actual coordinates. A possible explanation may be that the calculated
coordinates are not reliable and that the models need improvement and
much more testing. The large root mean squared error can be explained
by the possibility that the actual coordinates were not very well recorded
in the logs.
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Element Fitter algorithm Trilaterator algorithm

The number of points 244 212
Averagex(m) 30.7 26.8
Averagey(m) 18.3 15.5
RMSEx(m) 7.8 9.8
RMSEy(m) 6.4 5.7

Table 2.1: Statistics

(a) Fitter algorithm

(b) Trilaterator algorithm

Figure 2.6: The animation of the detected coordinates of the iPad
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2.2.2 Device dependency

In this section, two different devices are analyzed with respect to two
different quantities: the number of detections, but also how long it takes
between two consecutive detections. These devices were recorded as tests
during the CHEP conference. One of these devices was the iPad, while
the other one represented a cell-phone which did a lot of streaming. The
intention was to check whether the cell-phones behave differently.

By looking at plots of the iPad of both algorithms in Figures 2.8a and
2.8b, it can be observed that in most of the cases the device is being
recorded quite often in time intervals less than one minute. However, in
both pictures, it can be seen that there exists a large time gap between
approximately 13 : 20 and 13 : 30, were the detections took more than
two minutes with a maximum less than 10minutes. Because it is known
that the iPad was not moved, it cannot be inferred that the device actually
switched off. This situation can be either a technical problem or it may be
due to an insufficient number of points based on which the trilateration
technique can be applied and, thus, the algorithm could not provide a
solution.
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(a) Fitter algorithm

(b) Trilaterator algorithm

Figure 2.7: The delta time(’time differences’) and detections with respect to the
moment in time and algorithm
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(a) Fitter algorithm

(b) Trilaterator algorithm

Figure 2.8: The delta time(’time differences’) and detections with respect to the
moment in time and algorithm

In the case of the second device, which represents a cell-phone with stream-
ing data that was constantly moving, the time of the recording for this
device was spread over an entire day and the detections can be observed
starting from 07 : 00 until 17 : 00.

According to Figure 2.8b, the Trilaterator algorithm was able to calculate
many more points with coordinates. For example, in total the Fitter
algorithm has 1.098 records but only for 275 records the fitted coordinates
were provided(the percentage of the fitted coordinates is approximately
25%). However, the Trilaterator algorithm was able to fit the coordinates
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for 901 records. In the end, a positive aspect that can be drawn from both
plots is that they have the same shape, even though the number of fitted
points is very different from each other.

Another interesting aspect can be seen that starting from 13 : 00 o’clock,
there is a very large gap of 45 minutes for the Fitter algorithm, while for
the Trilaterator algorithm it was only of approximately 33 minutes. It can
be the case that the Fitter algorithm did not have enough information to
actually calculate the coordinates for that particular detection. Another
potential explanation for this large time gap between detections may be
that the device may have moved away from the area where the location
aware system was installed which is in accordance with the logs of the
company for this specific device.

Due to the absence of reference points, the resolution of these detections
cannot be determined. Moreover, it is not possible to determine whether
the actual information provided by the coordinates extracted from the
algorithms is relevant and can be used. This issue is tackled Chapter 4
and Chapter 3, where controlled experiments are performed.

2.2.3 Number of devices in time

In this subsection, we will analyze how the algorithms perform on an
aggregated level and how many devices are actually recorded during the
time of the day if this behavior is spread around on a day level between
07 : 00 until 21 : 00. It provides information related to the number
of devices that are recorded during this period within a time interval of
5 minutes. This means that each value contains the number of unique
devices seen every 5 minutes.

First of all, the figures of plots 2.9a and 2.9b have consistent shapes.
It seems that the Fitter algorithm has detected more devices than the
Trilaterator algorithm. In this plot(Figure 2.9a), there was no cut made
such that, for example, devices which are detected less than 3 times are
avoided. This means that all the seen devices are taken into consideration.

As it can be seen in the Figures 2.9a and 2.9b, there are four different peaks
in the data, followed by dramatic decreases. These peaks and decreases
last around one hour each and have almost the same number of detected
devices.

Based on the schedule of the conference, the first peak corresponds to a
dramatic increase which can be explained as the number of people arriving
at the conference. The start time of the conference was 09 : 00. The
decrease after the first peak corresponds to the fact that people stopped
using their cell-phones or devices. Thus, this may mean that they attended
the conferences and their devices became idle or they were turned off or
they just left the area where the location systems were installed.

The second peak may be explained by the fact that after attending the
conferences, people started checking their devices more often or streaming
data. This increased activity produced thus more data. In addition to this,
it may also indicate a coffee break taken after the first set of presentations.
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The third peak corresponds to the lunch time, where people also come to
the area which was recorded by the location aware systems. In addition
to this, the third decrease may mean people attending presentations or
people that are actually leaving the conference. An interesting aspect is
that the number of detected devices during the first three peaks does not
change significantly, which denotes that once people arrive their number
does not actually change or if it does it is not significant.

The last peak does not have the same number of devices as the previous
three. As mentioned before, there can be the situation that people left the
conference and did not come back anymore. However, not all of them left
yet. After this last peak, one can see a dramatic decrease of the number
of detected devices which corresponds to the number of people leaving the
conference for good.
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(a) Fitter algorithm

(b) Trilaterator algorithm

Figure 2.9: The number of detected devices during a day for both algorithms

2.2.4 Histograms of the time difference between de-
tections

As previously mentioned, the ∆time represents a measurement for the
time difference between two consecutive detections. In Figures 2.10a and
2.10b, the histograms of the ∆time can be visualized. In the case of
both algorithms, the devices communicate in less than two minutes. An
interesting difference that we can see between the two of them is that there
seem to be more devices that have the delta time higher than 5 minutes
in the case of the Fitter algorithm than for the Trilaterator algorithm. A
potential explanation can be that the Trilaterator algorithm sometimes
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calculates more data points than the Fitter algorithm, because the latter
algorithm needs much more information. Hence, it has a smaller ∆time.

The value of the ∆time = 5 will be the threshold for the next chapter,
where we will try to differentiate the devices that either are present(∆time <
5 minutes) or have left(∆time ≥ 5 minutes), even though they are present
in the area with the mounted devices. This information will be also used
for the controlled experiments, as it is important to understand in which
situation we may draw the conclusion that a device is gone or missing.

(a) Fitter algorithm

(b) Trilaterator algorithm

Figure 2.10: The histogram of the delta time between for both algorithms
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2.2.5 Number of detections per device

Ideally, a device can be detected every 10 seconds within the time interval
between the moment it appears and disappears from the area where the
location aware system is installed. However, this is not actually achieved
due to the unknown state of the device which can either be idle or switched
off, etc. In addition to this, the location aware systems record also devices
which are close to the area under detection or devices of people walking
outside. These devices usually have less than 5 detections with a very
large ∆time between two consecutive detections.

What we would like to find is a potential threshold with respect to the
number of records a device should have such that the dataset is cleaned
of unwanted data. After several selected values of the threshold, the value
which stood out was 5 records as it was the cut-off of the histogram with
the number of detections per device. In order to increase visibility of
the number of detections, we decided to split that histogram into two
parts: less than 5 records and more than 5 records. In Figures 2.11a,
2.11b, 2.12a, and 2.12b, it can be observed that the histograms of the
two algorithms look similar for both less and more than 5 records. This
constitutes an interesting result as this seemed unexpected given the other
discovered differences between the algorithms, such as: number of detected
devices and the different number of detections per device(iPad animation).
Moreover, the highest number of records for a device can be seen for MAC
addresses which are detected only once. These MAC addresses should be
eliminated.
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(a) Fitter algorithm

(b) Trilaterator algorithm

Figure 2.11: The histograms of the detected devices with less than 5 records for
both algorithms
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(a) Fitter algorithm

(b) Trilaterator algorithm

Figure 2.12: The histograms of the detected devices with more than 5 records
for both algorithms

2.3 Conclusion

In this chapter, we performed the comparison between the Fitter and
Trilaterator algorithms. The two have similar performance with re-
spect to their resolution and efficiency. Nevertheless, the Fitter performs
slightly better from a resolution perspective and, therefore, the rest of
the analyses and models will be performed on the datasets obtained by
applying the Fitter algorithm.

36



Chapter 3

Modeling the time
dependency of detecting
WiFi devices

In this chapter, we propose two models that calculate the probability of
detecting a mobile device over time based on the Fitter dataset obtained
from the CHEP conference. These two models are called the Basic model
and the Cut-off model. The cut-off model uses the same principle of the
basic model, but makes two additional assumptions:

– If somebody is not detected for more than 5 minutes, then that person
left the area of analysis.

– A mobile device should have at least 5 detections.

These two thresholds of 5 minutes and records, respectively, were selected
based on the results of Chapter 2 from the histogram of the delta time
and the histograms of the detected devices.

The models also represent an attempt to identify in which state a device
is during a time interval ∆time. It is a challenge to determine in which
state a device is, because the data recorded at the CHEP conference does
not contain information on the state of the WiFi devices. The state of a
mobile device may be: “active”(it communicates with the routers and it is
in the area of the analysis), “gone”(left the area of analysis), “missing”(in
the area of analysis, but not detected because of technical issues or the
device is idle/switched off).

3.1 Basic model

Let there be a time period within the interval [timestart, timestop] which
can be either a day, half a day, or any other desired interval time. Both
timestart and timestop have the following structure: “yyyy-mm-dd HH:MM:SS”,
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where y stands for year, m for month, d is for day, H for hour, M for
minute, S for second.

The time interval represents the time interval for which we zoom-into
the selected period ([timestart , timestop ]). The time interval is expressed
either on a second or minute level. In this section, we zoom-into the
[timestart, timestop] on a 5 minute level, because we would like to get a
first impression regarding the CHEP data.

Let an Arrival represent the first time a WiFi device MAC address is
detected within a selected period of time. This means that before this
detection there was no previous information related to this MAC address.
A Departure is defined as the last time a MAC address is detected. Hence,
one cannot find any later record in the database besides this one and we
say that “it has left the system”.

Figure 3.1 illustrates the times of arrival and departure within a time
period [timestart, timestop]. This pattern is similar for most WiFi devices.
An exception constitutes the MAC addresses with a single record which
have the time of arrival equal to the time of departure.

Figure 3.1: The diagram with the time of arrival, departure within a time period

A “Missing” MAC address represents a MAC address which has anArrival,
but it does not have a Departure. However, this MAC address is not be-
ing detected within certain time intervals. This situation can occur, due
to several reasons: the drones do not function, the drones are busy, the
device is not in the area of detection, or the device is idle.

Two arrays are defined with the size equal to the number of unique MAC
addresses extracted from the dataset, Arr and Dep. For each MAC ad-
dress i ∈ [0, n − 1], where n represents the number of unique MAC ad-
dresses, we compute the interval time between its arrival(Arri) and its
departure(Depi) within the selected time period.

Arri = time arrivali ∈ [t, t+ time interval]

Depi = time departurei ∈ [t, t+ time interval]

where t ∈ [timestart, timestop] and time interval represents the user se-
lected time interval for which the analysis is made(e.g., 10 seconds, 5
minutes, etc.).

The next step is to introduce the number of arrivals and departures within
a time interval denoted asArrivals[t,t+time interval] andDepartures[t,t+time interval].
These two quantities can be determined by aggregating and counting the
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MAC addresses an arrival or departure, respectively within that time in-
terval, which is written as follows:

Arrivals[t,t+time interval] =
∑

Arri ∈ [t, t+ time interval]

Departures[t,t+time interval] =
∑

Depi ∈ [t, t+ time interval]

Besides the Arrivals andDepartures, the total number of unique detected
devices within [t, t+ time interval] can be computed, which we denote as
Total detected[t,t+time interval]. The following relationship holds:

Total detected[t,t+time interval] = Arrivals[t,t+time interval]+Departures[t,t+time interval]

+Active[t,t+time interval] − In out[t,t+time interval]

where the Active[t,t+time interval] represent the MAC addresses that ar-
rived in previous time intervals, but have not departed yet, and they are
currently detected within the time interval of [t, t + time interval]. The
In out[t,t+time interval] represents the number of unique MAC addresses
that arrive and depart in the current time interval [t, t + time interval].
The reason why we need to correct with the In out[t,t+time interval] is that
we add these MAC addresses twice: first for their arrival and second for
their departure, but actually, they represent the same MAC addresses.
Hence, they should be taken into consideration only once.

In Figure 3.2, the Arrivals and Departures are plotted together with
the Total detected for the CHEP data on which the Fitter algorithm was
applied. The time interval was selected to be 5 minutes and the time
period is from 07 : 00 until 21 : 00 of the October 15th2013, because we
wanted to get a first impression on the CHEP data on a busy day. It can
be observed that the highest number of arrivals are at the beginning of
the day at 09 : 00 o’clock, before the actual conference starts. Two other
spikes can be seen at around 11 : 00 and 13 : 00. However, for the rest of
the day, there seems to be a constant behavior of the arrivals.
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Figure 3.2: The total detections, arrivals, and departures for a 5 minute selected
time interval from 07 : 00 to 21 : 00

The departures seem to have an opposite behavior, as expected. In the
beginning, the number of departures is small, but different than zero. The
reason is that other devices that pass by or access points are detected by
the routers during the night. At the end of the day, some spikes for the
departures can be observed which indicate that people leave the confer-
ence.

Next, we would like to determine the probability of detecting a device for
a time period. Intuitively, the total number of devices(Total detected)
seems to be a good choice to be included in the calculation of this prob-
ability. However, it does not entirely reflect the correct number of MAC
addresses that are present in the system for several reasons: the devices
are in different states, the devices may not be seen by the drones due
to technical problems. Thus, we introduce the ideal number of detected
MAC addresses(Ideal) that represents the number of detected devices at
a certain time interval that should be detected by the system. Mathemat-
ically, the Ideal can be computed as the difference between the number
of arrivals minus the departures up to time interval [t, t + time interval]
as follows:

Ideal[t,t+time interval] =

[t,t+time interval]∑
i=[timestart,timestart+time interval]

(Arrivalsi −Departuresi)
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The probability of detecting a device reflects the portion of detected MAC
addresses which arrived in previous time intervals, but which have not left
yet( Active) from the total number of MAC addresses which should have
ideally been detected(Ideal). The probability of detecting a device is
computed as follows:

Pdetected devices[t,t+time interval] =
Active[t,t+time interval]

Ideal[t,t+time interval]

whileActive[t,t+time interval] can be calculated based on the Total detections
formula:

Active[t,t+time interval] = Total detected[t,t+time interval]−Arrivals[t,t+time interval]
−Departures[t,t+time interval] + In out[t,t+time interval]

In the next plot(Figure 3.3), the ideal number of detected devices versus
the Active is visualized. As it can be seen, the shown number of active
MAC addresses has a similar shape as the Total detected: it has four
spikes as in Figure 3.2. The Ideal has a cumulative shape like a bell.
It can be observed that the decrease of the Ideal also corresponds to a
decrease in the number of MAC addresses of the Active. This seems an
interesting result, because it indicates that this decrease corresponds to
people that leave the conference, which can be seen for both Active and
Ideal number of MAC addresses.
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Figure 3.3: The ideal number versus the number of detected devices for a 5
minute selected time interval from 07 : 00 to 21 : 00

As mentioned before, the probability of detecting a device within a 5
minute time interval is calculated by dividing the Active by the Ideal.
The result of this division is shown in Figure 3.4. As it can be seen,
the shape of the probability is similar to that of the Total detected and
Active macs with approximately four different peaks during the day that
may indicate a time dependency. On average, this probability seems to be
around 0.25± 0.09.
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Figure 3.4: The probability of detecting a device within a 5 minute selected
time interval from 07 : 00 to 21 : 00

In the end, the Basic model represents a first approach for computing the
probability of detecting a device. Its advantages are that it is simple and
intuitive. This Basic model uses a 5 minutes time interval to compute
all the quantities. This time interval is quite large. Hence, it is quite
difficult to give any explanation regarding the devices that left the area of
analysis and are expected to come back or that are still in there, but not
detected. A solution to this challenge is to zoom in from a minute level to
a second level, because we would like to identify how the Fitter algorithm
computes coordinates for a MAC address every time interval. Besides
this, the probability of detection may be underestimated, because the the
Ideal is overestimated as no assumption was made regarding the fact that
people may have left for some time the area under analysis. Thus, in the
next section, we introduce a new algorithm that we expect to overcome
these mentioned limitations.

3.2 Cut-off model

In this section, we present an alternative model to compute all the defined
quantities from the Basic model. As discussed in the Chapter 2, the Fitter
and Trilaturator algorithms use a 10 seconds buffer for computing the
coordinates of a mobile device. Thus, the lowest time interval in which
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we can zoom into the dataset is 10 seconds. Besides this, we will perform
the computations also on a 30 and 60 seconds level in order to evaluate
the differences compared to 10 seconds.

A threshold on the number of missing intervals for a MAC address is
introduced in this model, because the Ideal may be overestimated due
to the fact that no assumption was made related to the people that may
have left for a certain amount of time the area under analysis at the CHEP
conference. Thus, we correct the Ideal and this corrected Ideal will be
denoted as Corr Ideal. Moreover, this means that every time a MAC
address is missing more than the threshold number of intervals then we
assume that that particular MAC address is gone within that delta time
and we correct this disappearance from the Ideal within that time interval.

Corr Ideal[t,t+time interval] = Ideal[t,t+time interval]−Correction[t,t+time interval]

where Correction represents a correction for the underestimation of the
value of the detected devices. The corrected probability of detecting a
mobile device is then:

P corrected[t,t+time interval] =
Active[t,t+time interval]

Corr ideal[t,t+time interval]

The behavior of a MAC address represents a compressed way to describe
how a MAC address has been or not detected, which contains information
about the time period expressed as the number of consecutive detected in-
tervals followed by the number of consecutive missing intervals between its
arrival and departure. This compressed way of describing a MAC address
is efficient when calculating the statistics for very small time intervals as
10, 30, or 60 seconds. The reason is that within a day there are large
numbers of 10 seconds time intervals and unique MAC addresses. It may
be inefficient to go through every time interval for each MAC address.
Thus, using the behavior overcomes this challenge.

For example, a behavior of a device can be observed in Figure 3.5, where
we can see that the interval between [Arrival, Departure] covers 18
time intervals. Its Arrival is within the 7th interval(the notation of the
interval starts from 0) and its Departure is within the 24th time interval
of time interval size.
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Figure 3.5: The behavior of a MAC address within a time period between
timestart and timestop split into multiple time intervals

Hence, we define the behavior of this MAC address as the collection of cal-
culated consecutive and missing intervals between the time of arrival until
the time of departure. We remind the reader that the number consecu-
tive missing intervals(′m′) constitutes the number of consecutive intervals
with no detections of the MAC address under analysis, while the number
of consecutive detection intervals(′d′) suggests the number of consecutive
intervals that have at least one detection within every interval. Hence, for
the device in Figure 3.5, its behavior will be:

Behavior = {′d′ :3,′m′ :2,′ d′ :4,′m′ :3,′ d′ :1,′m′ :3,′ d′ :2}.
By construction, this collection always ends with a detection(that of the
departure). In addition to this, we retain the interval numbers of the
arrival and the departure(7th and 24th).

The algorithm behind the cut-off model has two parts:

1. The computation of the behavior of all MAC addresses based on the
dataset of the Fitter algorithm

2. The calculation of the main quantities:

(a) The total number of detected devices, the arrivals, and depar-
tures for every time interval

(b) The active MAC addresses and the corrected ideal

(c) The corrected probability of detecting a mobile device for every
time interval

The first part deals with computing the behavior of all unique MAC ad-
dresses that can be found in the dataset. Thus, for each MAC address
i ∈ [0, n − 1] in the dataset, which has more than 5 detections, the al-
gorithm starts from its arrival and computes alternatively the number of
consecutive time intervals with detections(consecutive)and the number of
consecutive intervals with missing detections(missing) until the depar-
ture.
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For each detection j of a MAC address i, if the time of that detection is
within the time interval [t, t + time interval], then the number of detec-
tions within [t, t + time interval] is calculated. Otherwise, if the time of
a detection is not within [t, t + time interval], then the number of time
intervals with missing detections are calculated, denoted as missing. The
missing is equal to the difference between the time of the current detec-
tion and the lower bound of the current time interval t divided by the
time interval size. In this case, there are two situations:

– If the missing number of time intervals is greater than 1, then it
means that the next detection is located at missing time intervals
distance from [t, t + time interval]. If consecutive is greater than
zero, then this number of consecutive intervals with detections is
appended into the list of behaviors and the consecutive is initialized
with 1. After the consecutive, the missing is also appended to the
list of behaviors. The current time interval t becomes t+missing×
time interval.

– Otherwise, if missing is equal to 1, then the next detection is lo-
cated within the next time interval. Thus, if the number of detec-
tions within this time interval is greater than 0, then the number of
consecutive time intervals is incremented. The current time interval
t becomes t+ time interval.

As it can be seen, the algorithm goes only through the time intervals
with detections of MAC address i, which increases the performance of the
algorithm, because the intervals with no detections of that particular MAC
are avoided. In addition to this, using lists as main data structures makes
the computations faster and easier to deal with. The entire algorithm can
be visualized in Section 1 parts 1 and 2. Besides the matrix of behaviors,
the function also returns the list of the location of each analyzed MAC
addresses, because their location in the dataset is not clearly determined
and there is no simpler way of actually determining it.

The second part of the algorithm deals with calculating the corrections of
the Ideal by considering “gone” the MAC addresses that have the ∆time

between two detections greater the threshold. These corrections of the
Ideal need to be made for the entire time interval in which the MAC
address is missing, at the exact position where the MAC address is not
present anymore until it actually comes back. In order to calculate these
corrections in an efficient way, the following elements are needed:

1. List of all behaviors, which contains the behaviors of all unique MAC
addresses in the dataset.

2. List of arrivals, which contains for each MAC address i the number
of time intervals after which its arrival occurs. Its size is equal to the
total number of unique MAC addresses n.

3. List of departures, which contains for each MAC address i the number
of time intervals after which its departure occurs. Its size is equal to
the total number of unique MAC addresses n.
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Algorithm 1: The computation of the behavior of all MAC
addresses-Part 1

[1] Data: dataset[’mac’,’time’]
Input: time interval, threshold records, timestart, timestop
list missing=[];
list detected=[];
list all=[];
list macs=[];
list arrivals=[];
list departures=[];
Calculate index= the array with first positions in the dataset of a
mac(Arr);
Calculate the n unique number mac addresses;
for i in n-1 do

if Arr[i+1]- Arr[i] ≥threshold recordsthen
list macs.append(dataset[’mac’][i]);
t=round(Arr[i]);
list arrivals.append((Arr[i]-timestart).seconds/(time interval));
list departure.append((Dep[i]-timestart).seconds/(time interval));
missing=0;
already=0;
consecutive=1;
c=0;
list all=[];
for j in range(index[i], index[i+1]) do

if t ≤ raw data[′time′][j] ≤ (t+ time interval)then
c+=1;

myalg

4. intervals - represents the total number of time intervals of user se-
lected size between the timestart and timestop and the formula is:

intervals =
(timestart − timestop)

(time interval)

The difference between timestart and timestop is expressed in seconds in
Python. If we want to determine the number of intervals expressed in
minutes, we divide by 60× time interval.
The algorithm performs the following steps. For each MAC address i,
the arrival and departure are extracted from their corresponding list. A
variable pos retains the starting position of the consecutive intervals with
detections, which initially is equal to the arrival of that particular MAC
address. In addition to this, the length of the list with the behavior
of MAC address i is calculated. Then the iteration over the list of the
behavior of the MAC address i begins. A new variable k records the
position of a detection as long as we have not reached the position of
a missing interval and the Total detected is updated. Next, if we have
not reached the last position in the list of behavior for a particular MAC
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Algorithm 2: The computation of the behavior of all MAC addresses-Part
2

[1] myalg else if then
missing=(dataset[’time’][j]-t).seconds/interval;
if missing>1 then

if consecutive>0 then
list all.append((’d’,consecutive));
consecutive=1;

end
list all.append((’m’, missing-1));
t=t+missing × time interval;
c=1;

else if missing==1 then
if c>0 then

consecutive+=1;
end
t=t+time interval;
c=1;

end
if consecutive>0 then

list all.append((’d’, consecutive));
end
list all states.append(list all);
end
end
return list all states, list mac, list arrivals, list departures, list index

address(last ′d′ with the last consecutive intervals with detections), the
variable pos is updated with value of the starting interval of the missing
plus the number of missing intervals. The variable pos refers now to
the next number of consecutive intervals(next d in the list of behavior
of a MAC). Then, we check whether that particular number of missing
intervals is greater than the threshold given by the analyst. The threshold
is used, because we make an assumption that if someone actually left
the area where the location aware system is installed for more than the
threshold time intervals, then he or she is gone. Thus, for that particular
number of missing intervals, the Ideal needs to be corrected, and this
correction is made by extracting this person/device from the counting.
Next, the count cutoff is updated for every time interval in the range
of missing and we jump only to the intervals with consecutive detections.
Otherwise, in case we reached the last element of the list of behavior
for that particular MAC address, we do not correct anymore the position,
because the last element does not contain any other number of consecutive
missing intervals(′m′). The entire algorithm can be visualized part 3.
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Algorithm 3: The calculation the total detections and correction

[1] Input: list all, list arrivals, list departures, max distance, threshold
n=size(list all);
Total detected=array(max distance);
count cutoff=array(max distance);
for i in range(n) do

arr=list arrivals[i];
dep=list departures[i];
pos=arr;
m=len(list all[i]);
j=0;
while (j<m) do

k=pos;
while k ≤ (pos+list all[i][j][1]-1) do

Total detected[k]=Total detected[k]+1;
k+=1;

end
if j < m-1 then

pos=k+list all[i][j+1][1];
if list all[i][j+1][1] ≥ threshold then

t=k;
while t ≤ (list all[i][j+1][1]+k-1) do

count cutoff[t]+=1;
t=t+1;

end
j=j+2;

end

else if j==m-1 then
pos=k;
j=j+1;

end

end
return Total detected, count cutoff
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3.2.1 Results

In this section, the results of the cut-off model for three different user
time intervals of 10, 30, and 60 seconds and their probability of detection
are presented.

As we mentioned in the description of the cut-off algorithm, certain pa-
rameters need to be selected for this algorithm such as the threshold of
records for a certain MAC address, the threshold of missing intervals, and
the period of time. These decisions were made made based on the results
from Chapter 2, where the comparison between the two algorithm was
discussed.

Firstly, the threshold records was set to 5. According to Figures 2.11b
and 2.12a, it can be observed that there is a dramatic decrease of the
number of devices with more records than 5. The idea behind selecting
this threshold is that the dataset needs to be cleaned from MAC addresses
which do not have sufficient detections and may damage the analysis and
the model. In addition to this, this quality cut-off removed all the In out
MAC addresses which had the arrival and departure within the same time
interval. Secondly, based on the results of the histogram of the delta in
Figure 2.10a, the decision of selecting the threshold of missing intervals to
5 minutes was made. In the case of 10, 30, and 60 seconds time interval,
the threshold will be 30, 10, and 5 missing intervals, which all represent
5 minutes and which were obtained by dividing 5×60s

time interval . Lastly, the
period of time was chosen to be October 15th2013 from 07 : 00 to 21 : 00.
This period was chosen as a regular day of the conference, which can be
split in 5, 040 intervals of 10 seconds intervals, 1, 680 intervals of 30 seconds
intervals, and 840 intervals of 60 seconds intervals, respectively.

The results of the cut-off model can be visualized in Figures 3.6a, 3.7a,
and 3.8a. As it can be observed, the plots show the ideal, the corrected,
the total detections, and the active. The probability of detection is based
on the corrected probability of detection.

Statistics 10 seconds 30 seconds 60 seconds

Average probability 0.337 0.542 0.713
Standard deviation 0.131 0.122 0.109
Number intervals 5, 040 1, 680 840
Threshold missing 30 10 5

Table 3.1: Statistics

As it can be seen in Table 3.1, the average probability increases as we
increase the size of the time interval. This was expected, because the
probability of having detections in a larger interval is higher than having
detections in a smaller interval. In addition to this, it can be observed
that the probability of detecting someone has a flatter shape now than
in the basic model(Figure 3.4). However, the variations can still be seen
with respect to the time period. Moreover, the original form of four major
peaks is still present. This structure with four different peaks becomes less
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evident if a higher time interval is chosen, for example 30 in Figure 3.7b.
In the case of the 60 seconds time interval, the shape of the probability
becomes flatter and the structure of the variations is less evident(Figure
3.8b). The reason between this change is that with a higher selected
time interval, the results are more aggregated and fewer computations are
performed with more data.

In the case of the 10 seconds time interval, the average probability is
0.337, which means that a device is detected on average 33.7% of the
times between its time of its arrival and departure, while the standard
deviation is 0.131. The same interpretation can be given for the 30second
and 60 second time interval, which have an average probability of detection
of 0.542 and 0.713, respectively. In the end, the results obtained with the
correction are better than the results obtained from the basic model, which
had a value of a 0.25± 0.09.

Another interesting aspect that can be observed in the plots of Figures
3.6a, 3.7a, and 3.8a is that the corrected ideal and the active number of
detected devices have similar shapes across all three plots. The difference
between them is of binning only. This represents a good result, because it
reveals that the results are consistent over time, no matter the selection
of the time interval. In addition to this, it can be observed in the same
plots that for the the active MAC addresses and the total detected MAC
addresses seem to overlap with each other, because the number of arrivals
and departures per time interval is too small compared to the total detec-
tions and the number of In out MAC addresses is zero due to the 5 record
threshold.

The plots show that during the day there was a failure in the beginning
of the day which lasted more than 5 minutes. There were no detections
during that time period and the MAC addresses were corrected. However,
the ideal number of MAC addresses was not influenced by this failure, as
it depends mainly on arrivals and departures. Due to the fact that the
corrected ideal and the active MAC addresses were both equal to zero
within that period, the probability was set to be equal to 1. Hence, these
plots bring insight not only on what happens on a day level, but they
also reveal information regarding possible failures of the WiFi tracking.
In order to actually interpret correctly the probability of detecting mobile
devices, one would also need to take into consideration the plots of the
counts over day.
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(a) The total detections, the ideal, the corrected ideal, and the active MAC addresses
per 10 seconds time interval

(b) The probability of detecting a mobile device per 10 time interval
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(a) The total detections, the ideal, the corrected ideal, and the active MAC addresses
per 30 seconds time interval

(b) The probability of detecting a mobile device per 30 time interval
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(a) The total detections, the ideal, the corrected ideal, and the active MAC addresses
per 60 seconds time interval

(b) The probability of detecting a mobile device per 60 time interval

54



3.3 Conclusions

In this chapter, two models were proposed for calculating the probabil-
ity of detecting the mobile devices: the “Basic model” and the “Cut-off
model”. The basic model represents an intuitive model that calculates the
probability of detecting mobile devices without making any assumptions.
The results showed that the probability of detecting a mobile devices is
approximately 0.25± 0.09.

Compared to the basic model, the cut-off model cleans the dataset from
MAC addresses with the number of records less than a specified threshold.
It also introduces an assumption that all MAC addresses that have a
∆time ≥ 5 minutes are gone and it zooms-into the dataset on a 10, 30, or
60 second level instead of 5 minutes as the Basic model.

The results of this model show that the probability of detecting a mo-
bile device increases considerably and the higher the time interval is, the
higher the probability of detection is.
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Chapter 4

Controlled table top
experiments

4.1 Introduction

In this chapter, controlled table top experiments are implemented which
reveal insight in how mobile devices communicate with the routers. In
addition to this, the Fitter algorithm is run on the raw datasets obtained
from the experiments, as we would like to measure how accurate and
frequent the detections are given the known coordinates and behaviors
of the mobile devices. Furthermore, we would like to verify whether the
Fitter algorithm is able to detect these devices in different circumstances.

We would like to also understand what are the most important factors
that influence the detection process. According to the literature (Prasith-
sangaree et al.[19], Mautz[34], etc.), the most important factors that may
influence the RSS(signal strength) of the Wi-Fi device as measured by the
drones represent the following:

1. The state of the device, which can be found according to the lit-
erature in different phases like: idle, sleep, battery low, power saving
mode, wireless turned on, but not connected to a network, busy using
an app, streaming data, browsing, screen on and interacting with the
cell-phone, screen off etc.

2. The position of the device that may be lied down on a table, in
a pocket, in a bag, jacket, purse etc.

3. State of the owner of the device, which can stand still or walk.
The walk can be either on a fast or slow pace and either in a circle
or zig-zag.

4. The configuration of the drones with respect to the device that
may be either on a line, triangle, etc.

5. The packet type which represents the type the packet the cell-
phone sends. The packet types can be the following: probe, manage-
ment, streaming, etc. In this situation, the probe packets are more
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to be trusted than the management packets, because they are always
present when the Wi-Fi is enabled.

6. The time interval of the day constitutes an important aspect as
the presence or absence of devices may influence the RSS([19]). Thus,
the devices may behave differently during busy times(morning, lunch,
etc.) and less crowded time periods(after-hours,etc.).

7. Device type may also have a different behavior of sending packets.
This can differ on the device model(different brands or operating
systems), but also on the device type such as laptops, cell-phones,
tablets.

8. Environment which can contain surrounding materials that can
attenuate the signal strength, which can be found in Table 4.1

Material Signal attenuation
Glass window 2db
Wooden door 3db

Cubicle 3− 5db
Plasterboard wall 3db

Dry wall 4db
Cinderblock 5db

Marble 5db
Glass wall with metal frame 6db

Brick wall 8db
Concrete wall 10− 15db

Table 4.1: Signal attenuation by material

4.2 Experiments

Given the time constraints, we decided to implement the following four
experiments with different states of the device. Three of them have a
similar setup with mobile devices found in different positions placed on
the table and in different states like: active and with Wi-Fi enabled, but
not connected to the internet, active using a mobile application, and idle.
These states are the most frequent ones in which mobile devices are found.
In addition to this, we wanted to have a first impression regarding the
performance of the Fitter algorithm with respect to these factors. Another
experiment was performed in order to test the assumption the algorithms
use that there exists a non-linear relationship between signal strength
and distance. The summary of the design and implementation of the
experiments is found in Table 4.2.
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Experiment Experiment 1 Experiment 2 Experiment 3 Experiment 4
Device state Wi-Fi enabled,

not connected to
the network

Wi-Fi enabled Active, using a
mobile applica-
tion

Idle

Main packet
types

probe packets probe packets data manage-
ment

probe packets

Configuration Charlie, Echo,
Delta, Foxtrot

Charlie, Echo Beta, Charlie,
Delta, Echo

Beta, Charlie,
Delta, Echo

Mobile
device

iPhone HTC desire HTC Desire &
iPhone

HTC Desire &
iPhone

Device posi-
tion

laid down on the
table

in the hand,
horizontally

laid down on the
table

laid down on the
table

Environment controlled hallway controlled controlled
Tests 4 3 4 2

Table 4.2: Summary of the experiments

4.2.1 Experiment 1

For this experiment, four different drones were mounted in a room. These
drones were positioned at the corners of a table which had the following
measurements: length = 2.68m and width = 1.10m. The iPhone cell-
phone was positioned in the center of the table. The location of this
center was defined with the following coordinates:(0, 0), while the corners,
where the drones were positioned, were defined with following coordinates:
(−1.34m, 0.55m), (−1.34m, −0.55m), (1.34m, −0.55m), (1.34m, 0.55m).
For simplicity, the drones are named as follows: Charlie, Echo, Foxtrot,
Delta. Besides these four drones, another drone was present which was
named Alpha. Alpha was not placed in the controlled environment, but in
the vicinity of the room at around 5 meters distance, because we wanted
to see how Alpha detects the mobile device when it is further than the
area of analysis.

Experiment 1 consists of four different tests where the iPhone was placed
in four different positions, because we want to discover whether the cell-
phone has a directional antenna. It may the case the signal strength may
be attenuated or accentuated if the antenna is located in the direction of
the drones. In addition to this, we would like to check whether the drones
have an individual “bias” and and whether the signal strength is constant
over time given the identical position of the mobile device. Identifying this
individual bias is quite important, because the coordinates are calculated
based on the measured signal strength by the drones. If there is a bias
of the drone, then it should be eliminated, because the accuracy of the
detections will decrease. In our case, the signal strength that is received by
Charlie should ideally be equal to the one received by Echo. This should
also be the case for Foxtrot and Delta.
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(a) Test 1 the cell-phone is on the table
turned to the Foxtrot and Delta drones

(b) Test 2 the cell-phone is on the table
turned to the Echo and Delta drones

(c) Test 3 the cell-phone is on the table
turned to the Echo and Charlie drones

(d) Test 4 the cell-phone is on the ta-
ble turned to the Charlie and Foxtrot
drones

Figure 4.1: The tests of experiment 1, the iPhone is placed in the center of the
table, while the Charlie, Echo, Delta, and Foxtrot drones are located at the
corners of the table

Note that in this experiment:

– The drones are positioned not at the same height as the mobile de-
vice(the height is approximately 20cm)

– The cell-phone is directly placed on a wooden table and this may
attenuate the signal strength

– The drones are placed relatively close to each other(typically the
drones are placed several tens of meters apart from each other)

– The Foxtrot and Delta drones are placed close to the window

For all four tests, we performed the same type of analysis. On one hand,
we looked at the raw dataset, which contained the signal strengths, the
drone names, the timestamps, the packet types and subtypes, out of which
we only selected the probe packets which have type = 0 and subtype = 4.
These types of packets represent the most reliable ones, because they will
always be present when a device has Wi-Fi enabled. On the other hand,
we also looked at the datasets that contain the reconstructed location of
the devices. For each test, we will describe the results of both the raw
dataset with the detected signal strength of each drone and the detected
coordinates of the Fitter algorithm.

On an aggregated level, the number of records detected within these four
experiments by each drone is visualized in Figure 4.2. It can be observed
that Charlie, Delta, and Echo have the same number of records detected
within all four experiments, which shows that these drones record in a
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similar manner the devices. However, the Foxtrot drone has a smaller
number of detections, which may indicate technical issues. In addition to
this, the Alpha drone seems to have detected less records compared to the
rest of the drones. An explanation for this result may be that it was in
the vicinity of the room.

Figure 4.2: The bar plot of the number of detections per drone from all four
experiments

We determined the average signal strength per drone per test. The results
of these computations are found in Table 4.3 for drones Charlie, Delta,
Echo, and Foxtrot drones. As it can be observed, the Foxtrot drone per-
forms poorly and it seems to have a significantly higher average signal
strength compared to the rest of the drones in all tests. The most in-
teresting result is in Test 3, where Foxtrot has a high signal strength of
30.8 ± 3.7 compared to Delta and Echo which have the average signal
strength of 46.1 ± 1.6 and 54.2 ± 2.4, respectively. Similar results were
also obtained for Test 2 and Test 4. We did not analyze the Alpha drone,
as it was outside the area of analysis(the room of the experiment).

Drone Test 1 Test 2 Test 3 Test 4
Charlie(dBm) −44.5± 9.7 −55.9± 5.2 −60.3± 3.1 −49.5± 2.8
Delta(dBm) −52.1± 6.5 −48.6± 2.1 −46.1± 1.6 −49.4± 1.8
Echo(dBm) −44.0± 9.4 −55.0± 5.2 −54.2± 2.4 −51.8± 2.8

Foxtrot(dBm) −43.3± 9.0 −40.4± 5.8 −30.8± 3.7 −40.6± 5.7

Table 4.3: Average signal strength per drone and experiment

Besides the raw dataset, we also computed some average statistics for
the coordinates detected by the Fitter algorithm, which can be found in
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the Table 4.4. In total for all the recorded tests, there were 157 records
calculated. The average values of the x coordinate are below zero for
Tests 1 and 4, while for Tests 2 and 3 they are greater than zero. The
average y coordinate are greater than zero for Tests 1, 3, and 4, except for
Test 2 which has an average y coordinate below zero. In the end, these
seem good since the average coordinates are between [−1, 1], while their
uncertainties are also on average below a meter.

Statistics iPhone test1 iPhone test2 iPhone test3 iPhone test4
Records Fitter 96 39 2 20

Records packets 2,390 816 1,205 466
µx(m) -0.9 0.4 0.4 -0.2
µy(m) 0.0 -0.1 0.3 0.0
σx(m) 0.6 1.0 0.7 0.8
σy(m) 0.3 0.7 0.2 0.8

Table 4.4: Statistics of experiment 1 iPhone

Test 1

The first test can be visualized in Figure 4.1a. As it can be seen, the
iPhone device was placed with its ”Home” button towards the Charlie
and Echo drones. This test started at 14 : 55 and ended at 15 : 14. The
history of the performed actions during this test can be found in Table
A.1.

In Figure 4.3, the signal strength of the five drones in the first performed
test of experiment 1 is plotted. It can be observed that the signal strengths
of both Charlie and Echo seem to match each other, while the Delta drone
is following them with a smaller signal strength. In addition to this, the
Foxtrot drone has a smaller number of records compared to the other
four drones, but it sometimes detects higher values compared to the other
drones. As expected, the Alpha signal strength was weaker than the one
received by the other drones, because it was far away from the room where
the experiment was performed.
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Figure 4.3: The signal strength of the five drones during the Test 1

By looking at the distribution of the signal strength, which can be found in
Figure 4.4, we can observe that the distributions of Alpha, Charlie, Delta,
and Echo have the same shape. However, the Foxtrot drone does not seem
to follow the same distribution, which may indicate once again that this
drone has some technical issues. Another interesting aspect constitutes
the fact that the shapes of Charlie and Echo drones match very well. We
remind the reader that these two drones were located on the same side of
the table. In addition to this, according to Table 4.3, the average value
of the signal strength for Charlie drone is −44.5, versus −44.0, which
was computed for Echo. For the Delta drone, it can be observed that
the average value of the signal strength is shifted to the left side, with a
calculated value of −52.1.
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Figure 4.4: The distribution of signal strength for each of the five drones during
the Test 1

When looking at the plot of the coordinates with respect to the room size
and table size(Figure 4.5), the following coordinates were calculated for the
position of the cell-phone. The red rectangle represents the approximate
area of the room, while the green rectangle is the size of the table. In
addition to this, the red dot represents the center of the table, which we
defined as the point of reference, with x = 0 and y = 0. It can be seen
that most of the points are centered on the table, which form a cluster.
However, this cluster seems to be in the middle between the Echo and
Charlie drones and the actual position of the iPhone. Another interesting
aspect is that the y values of these determined coordinates are close to 0,
but the x coordinates are shifted to the left side. In addition to this, there
are also points which are not found on the table, but still in the room
which indicate that the Fitter algorithm has a limited resolution. Even if
the exact position cannot be determined precisely due to various reasons,
it is still possible to detect a device within a defined space for example a
room or a section of a store.
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Figure 4.5: The determined coordinates by the Fitter algorithm after Test 1

The rest of the results of tests 2, 3, and 4 and their interpretation can be
found in the Apendix sectionA.5, subsectionA.5.1.

Conclusions of experiment 1

After the four performed tests, we draw the following conclusions:

– The Fitter algorithm may detect the cell-phone device position in the
vicinity of its actual position

– The drones behave differently when recording the signal strength

– The drones do record different signal strengths given the position of
a mobile device

– No pattern could not be found with respect to the directional antenna
based on the recorded signal strengths

4.2.2 Experiment 2 - testing the relationship between
signal and distance

Experiment 2 was performed three times in a hallway. For this experi-
ment, an HTC mobile device and only two drones were used: Charlie and
Echo, which were mounted next to each other. The configuration of this
experiment is visualized in Figure 4.6. The mobile device was set to the
active mode in all three tests and there was no need to press the home but-
ton anymore like it was the case in experiment 1. For each performed test,
the value of the signal strength was measured for one minute at different
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distances: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 meters. The only exception
was test 1 where the measurements for 30 meters were not performed by
accident.

Figure 4.6: The configuration of the experiment 2

The starting and ending times of the three tests is visualized in Table A.5.

The purpose of this experiment is that it tests one of the assumptions
that both algorithms developed by KPMG use, which is based on the
Friis transmission equation[17], that there exists an inverse relationship
between distance and the signal strength.

Signal strength = constant+ 20× log10

C

4dfπ

where f represents the frequency(fixed to 2.4GHz) and C represents the
speed of light(set constant to 2.99792458units), while d represents the
distance measured in meters. Given this relationship, the distance can be
calculated based on which the coordinates of the position of a cell-phone
can be derived using trilateration.

Thus, this experiment tries to determine whether this relationship holds
the assumed one by performing three different tests which measure the
signal strength for one minute at each 3 meter step. These tests contain
on one hand the plots of the measurements for each 3meter interval and the
detected signal strength, the chi-square minimization fit for the average
of them.

The limitations of experiment 2 are the following:

– The shape of the hallway is not straight and it contains elements(furniture,
walls, metal drawers, etc.) that may attenuate the signal strength

– There were people passing by that may have influenced the way the
signal strength was detected

– The measurements were taken every 3 meters

The measurements and the results of the tests 1 and 3 can be found in the
Apendix subsection A.5.2. Nevertheless, we present the results of Test 2.
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Measurements of the signal strength versus distance-Test 2

By looking at the measurements performed in Test 2 with the results in
Figure 4.7a and Figure 4.7b, it can be seen again that the signal strength
decreases the further a cell-phone device is, but this is not the case all
the time. If the Charlie and Echo measurements are compared with each
other, the shape of their measurements resembles, except for the 3 meter
distance. In addition to this, the average value of the measurements de-
creases up to the 9 meters distance and then it starts increasing in both
cases at the 12 meter distance. Then, on one hand, in case of the Char-
lie drone the average continues to decrease up to 27 meters and then it
increases for the 30 meters. On the other hand, this situation does not
actually happen for the Echo drone, where the average signal strength
increases at the 18 meter distance, followed by another increase but less
intense at 27 meters. This seems surprising as we would expect the power
of the signal to decrease continuously. One possible reason for this may
be the shape of the hallway, the walls, and the metal drawers which may
attenuate or may increase the signal strength at different locations.
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(a) Measurements of Test 2 taken by drone Charlie

(b) Measurements of Test 1 taken by drone Echo

Figure 4.7: Measurements of Test 2 from experiment 2

After recording the measurements for the mobile device, the chi-square
minimization technique was used for estimating the parameters of the
relationship between the signal and the distance of each performed test.
Thus, the following linear relationship will be considered:

Signal strength = a− 20× b× log10 distance

where we will try to estimate a and b. The reason why 20 is included is be-
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cause we would like to check the assumptions the algorithms use that the
signal strengths can be fit by using a similar version to the Friis transmis-
sion equation[17]. In addition to this, we computed the uncertainties(σi)
associated with each measurement of the signal strength.

According to Press et al.[45], if the measurement errors are normally dis-
tributed, then the chi-square merit function will give the maximum likeli-
hood parameter estimations of a and b, which has the following formula:

χ2(a, b) =
N∑
i=1

(
yi − a− bxi

σi
)
2

This equation is minimized in order to determine a and b. At its minimum,
the derivatives of χ2(a, b) with respect to a and b will vanish. Thus, in
order to perform the chi-square minimization, the curve fit function of
the scipy.optimize packet of Python was used for estimating both a and
b parameters. This function takes as parameters:

1. the function type: in this case Signal strength = a − 20 × b ×
log10 distance

2. the x coordinate vector: in this case the distance vector

3. the y coordinate vector: in this case the average signal strength
per 3meter step

4. the starting values of both a and b: in this case the [-20, 1]

5. the measurement errors vector: in this case the standard devi-
ation of the measurements

The results of the chi-square minimization can be visualized in Table 4.5
for Charlie and in Table 4.6. The obtained optimal parameters seem to
have similar values for both a and b. We expect the a to be greater than
−20dBm and b to be close to 1, because we would like this model to
resemble the Friis transmission equation[17]. As it can be observed, the
a parameter is significantly smaller than −20dBm in all cases, while the
b parameter seems to be close to 1, especially in Test 3 of both drones.
After determining the optimal parameters of both a and b, the χ2 was

calculated for each individual test, as well as χ2

dof , where dof represents
the number of degrees of freedom. For each test, the number of the degrees
of freedom is equal to 8, because it is the difference between the length
of the distance vector(10) and the number of parameters(2, a and b). In
addition to this, we computed the probability that a sample will be larger

than χ2

dof . All the obtained probabilities are large for both drones, which
may indicate the fact that the measurement errors may not follow a normal
distribution as it was assumed. Moreover, even though this assumption
may not hold, the model still seems to fit the data, as it can be seen in
the next subsubsection.
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Test Charlie

â εa b̂ εb χ2 χ2

dof p-value

Test1 n.d. n.d. n.d. n.d. n.d. n.d. n.d.
Test2 -52.2 7.3 0.5 0.3 14.11 1.76 0.08
Test3 -37.8 2.6 1.1 0.1 1.55 0.2 0.99
Average -44.9 7.8 0.8 0.3 - - -

Table 4.5: Experiment 2 chi-square minimization Charlie drone

Test Echo

â εa b̂ εb χ2 χ2

dof p-value

Test1 n.d. n.d. n.d. n.d. n.d. n.d n.d.
Test2 -45.3 5.9 -0.8 0.2 3.98 0.50 0.85
Test3 -35.8 3.3 -1.1 0.1 3.53 0.44 0.89
Average -40.5 6.8 -0.9 0.3 - - -

Table 4.6: Experiment 2 chi-square minimization Echo drone

In the following subsections, the plots of the average signal strength and
its lower and upper bound versus the fitted function will be presented.
The fitted function was determined based on the estimated parameters of
the chi-square minimization technique.

Chi-square minimization of the average signal strength test 2

The results of these plots can be found in Figure 4.8a for the Charlie
drone and in Figure 4.8b for the Echo drone. In both cases, the curve fit
returned the optimal parameters of the tests, which is:

f(distance) = −52.2 + 0.5× 20× log10 distance

for the Charlie drone and the following for the Echo drone:

f(distance) = −45.3 + 0.8× 20× log10 distance

The calculated function using these optimal parameters for Charlie drone
does not seem to fit the data, as the function touches the upper bound
of the average starting from the distance of 15meters. Nevertheless, this
does not happen for the drone Echo, which has a calculated function that
seems to follow the shape of the data.
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(a) Measurements of Test 2 recorded by drone Charlie

(b) Measurements of Test 2 recorded by drone Echo

Figure 4.8: Measurements of Test 2 from experiment 2

The results of chi-square minimization of tests 1 and 3 can be found in
the Appendix A.5.2.

Conclusions of experiment 2

– The drones record in a similar manner the signal strengths

– The environment under analysis plays a key role in the way the signal
strengths are recorded
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– The calculated function using the chi-square minimization seems to
fit in most of the cases the measured signal strengths

– The calculated function using the chi-square minimization resembles
partially the Friis equation

– It may the case that the measurement errors may not be normally
distributed

– Further calibration may be needed to compensate for the environ-
ment

4.2.3 Experiment 3 - iPhone & HTC in an active
state, using a mobile application

The configuration of this experiment was the same as the one mentioned
in Subsection 4.2.1, where four drones were placed on the table. As seen
in the results of this experiment, the Foxtrot drone behaved in a different
manner than the other drones. Thus, we decided to replace this drone with
another one called Beta and to verify whether the behavior is different.
Thus, the names of the used drones were: Beta, Charlie, Delta, and Echo.

The motivation behind this experiment is that we would like to check
whether the cell-phones communicate more and, therefore, send more
packets when they are streaming data(for example: using an app to listen
to music). In addition to this, it would be interesting to see whether it
has an impact on the calculation of the coordinates, e.g., having better
coordinates than the ones obtained in experiment1.

For this experiment, we used two different mobile devices: HTC and
iPhone, which we tested by changing their position in the center of the
table in four different directions. Each test was performed for 16 minutes
where the phones were not touched. For simplicity, the plots of the po-
sitions can be visualized in Figure 4.9. One of the reasons why we chose
to switch the position of the mobile device is that we wanted to check
whether there is a detection bias of the drone and whether the mobile
antenna has a different signal strength when the position is modified.
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(a) Test 1 the cell-phone is on the table
turned to the Echo and Delta drones

(b) Test 2 the cell-phone is on the table
turned to the Chalie and Delta drones

(c) Test 3 the cell-phone is on the table
turned to the Beta and Charlie drones

(d) Test 4 the cell-phone is on the table
turned to the Beta and Echo drones

Figure 4.9: The tests of experiment 3, the HTC and iPhone are each placed
in the center of the table, while the Beta, Charlie, Delta, and Echo drones are
located in the corners of the table

The starting and ending times of these tests can be visualized in the
Appendix in Table A.6.

The limitations of this experiment are the following:

– Only one main position is tested(the mobile device laid on the table)

– The drones are located close to each other

– The experiments last only 16 minutes

– The Delta and Echo drones are placed close to the window

The number of packets stored in the database for each test and drone can
be visualized in Table 4.7.

Experiment Beta Charlie Delta Echo

Experiment 3-HTC

Test 1 15586 15551 15529 15619
Test 2 15290 15487 15745 15752
Test 3 18060 18150 17897 18005
Test 4 14589 14482 14065 14267

Experiment 3-iPhone

Test 1 23978 23152 23402 23668
Test 2 22882 22949 22822 22788
Test 3 22829 22503 22648 22601
Test 4 23567 23446 23178 23304

Experiment 4
HTC 901 899 867 898

iPhone 820 794 777 776

Table 4.7: Number of packets per experiment, test, and drone
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Experiment Beta Charlie Delta Echo
µ(dBm) σ(dBm) µ(dBm) σ(dBm) µ(dBm) σ(dBm) µ(dBm) σ(dBm)

HTC

T1 -49.8 1.6 -49.8 1.4 -37.2 1.4 -49.4 1.2
T2 -59.9 0.9 -56.9 0.9 -37.9 1.6 -52.1 1.2
T3 -54.7 2.7 -47.7 2.6 -38.9 2.1 -46.5 2.8
T4 -47.6 2.3 -45.9 1.6 -46.5 2.9 -52.1 2.8

iPhone

T1 -42.9 1.4 -57.7 1.0 -42.1 1.4 -48.6 1.3
T2 -51.4 1.8 -41.2 1.1 -31.6 1.2 -46.1 1.2
T3 -46.7 1.4 -51.8 1.4 -35.9 1.4 -49.1 1.2
T4 -42.8 1.4 -41.1 1.1 -37.5 1.4 -41.9 1.0

Table 4.8: The signal strength per experiment, test, and drone

Experiment # records X coordinate(m) Y coordinate(m)
µ(m) σ(m) µ(m) σ(m)

HTC

T1 42 0.9 0.0 -0.8 0.1
T2 10 1.3 0.7 -0.7 0.1
T3 25 0.9 0.1 -0.6 0.2
T4 63 -0.1 0.3 -0.6 0.2

iPhone

T1 67 0.7 0.3 -0.1 0.2
T2 0 - - - -
T3 2 0.4 0.4 0.1 0.3
T4 93 0.3 0.0 -0.9 0.1

Table 4.9: The statistics of the Fitter algorithm per coordinate

4.2.3.1 Test 1

The configuration of this experiment can be found in Figure 4.9a. In
order to understand the behavior of the drones, we decided to plot the
distributions of the signal strength for each of them. By looking at Figures
4.10a and 4.10b, the shapes of all signal strength distributions resemble
the normal distribution for all drones. In addition to this, the Delta
drone has the highest average signal strength in both cases with −37.2±
1.4dBm(HTC) and −42.1± 1.4dBm(iPhone), respectively. On one hand,
in the HTC case it can be seen that this average is by far higher than the
other ones. One the other hand, this is not the case for the iPhone, where
the average of the Beta drone is very close to Delta’s(−42.9 ± 1.4dBm).
Moreover, it can be visualized in Figure 4.10a that Beta and Charlie have
similar values on average which is an interesting result given that these
two drones are located next to each other.
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(a) HTC mobile device

(b) iPhone mobile device

Figure 4.10: The distributions of the signal strength of Test 1 from experiment
3

The Figures 4.11 show the calculated coordinates that result from the
Fitter algorithm. According to Table 4.9, for this particular test, there
were 42 points calculated for the HTC and 71 for the iPhone, respectively.
In addition to this, the average x-coordinate was 0.9 ± 0.1 compared to
0.7±0.3 in the iPhone’s case, while the average y-coordinate was −0.8±0.1
for the y coordinate in the HTC case and −0.1± 0.2.

These results seem good particularly for the y coordinate, which is very
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close to its reference value of 0. Another interesting result is that the
points are clustered and most of the points are located in the area of the
room and, in the iPhone’s case, most of them are actually on the table
but shifted to the right side of the table and close to the Delta drone. One
particular explanation for this may be that the highest average signal had
been recorded for the Delta drone. As mentioned previously, the Fitter
algorithm gives a higher weight to a higher signal strength, which may
actually influence the determined values of the coordinates.

(a) HTC mobile device

(b) iPhone mobile device

Figure 4.11: The coordinates detected by the Fitter algorithm in case of Test 1
from experiment 3

The rest of the tests together with their results are found in the Appendix
A.5.3.
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4.2.3.2 Conclusions-experiment 3

After performing all these tests of experiment 3, the following conclusions
can be drawn:

– Cell-phones communicate differently with the drones( e.g., they send
more packets which include different signal strength values from drone
to drone)

– Different drones in the identical conditions detect the same device
with different signal strengths

– The computed coordinates of the phone may be influenced and placed
towards a drone which receives packets with higher signal strength

– The average drone signal strength differs with device type and device
position

– The Fitter algorithm does not construct all time the time the coor-
dinates of mobile devices and further investigation needs to be done

– The average calculated coordinates have values in general in the
[−1, 1]

– In the case of the iPhone, there were less points calculated for this
experiment compared to the HTC mobile device

4.2.4 Experiment 4-Idle state of the HTC and iPhone
devices

The fourth experiment was performed in the same configuration as the
previous one with the Beta, Charlie, Delta, and Echo drones, which can
be visualized in Figure 4.12. However, both cell-phone devices were in an
idle state and laid on the table next to each other. This experiment was
recorded for one hour.

The motivation behind experiment 4 is that we would like to verify how
the mobile devices send packets when they are idle and whether the al-
gorithms can actually determine accurate coordinates based on this raw
dataset, how often they can do that, and whether there is a big differ-
ence between cell-phones. We chose not to change the position of the
cell-phones, because we believed that this may not actually influence the
way the packets are sent and because of time limitations.
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Figure 4.12: The configuration of the experiment 4 where the iPhone was placed
next to the HTC

The limitations of this experiment are the following:

– There was only one position tested for this experiment

– The mobile devices were tested both at the same time

– The test only took one hour

– The mobile devices were placed on a table lower than the actual
drones

– The phones contain different apps(that run in the background and
influence the data traffic)

As shown in Table 4.10, there are more packets recorded by the drones for
the HTC than for the iPhone mobile device when the cell phones are idle.
This result is in contrast to the one obtained in experiment 3, where the
iPhone communicated more that the HTC with the drones with streaming
data(see Table 4.7).

Experiment Beta Charlie Delta Echo

Experiment 4
HTC 901 899 867 898

iPhone 820 794 777 776

Table 4.10: Number of packets per experiment, test, and drone

According to Table 4.11, on one hand, the highest average signal strength
was recorded for the Delta drone in case of the iPhone(−38.7±5.6), while
for the HTC device on average the highest signal strength was detected by
Charlie(−41.3± 2.4). This may mean that the cell-phones have a prefer-
ence towards a certain drone. In addition to this, the distributions of the
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signal strength obtained in this test resemble the ones obtained in the forth
test of experiment 3 performed for both the HTC and the iPhone. How-
ever, there are several differences between these two experiments. Firstly,
there is a time recording difference: the test 4 of experiment 3 lasted 16
minutes, while this test lasted one hour. Secondly, both devices are in
another state: the active state(listening to music on an app) versus the
idleness state. Lastly, it can be clearly seen a high difference between the
number of records obtained by the idleness test which are fewer than the
results obtained by the data management packets. On the other hand,
the distributions of the rest of the drones( Beta, Delta, and Echo) overlap
with each other.

Experiment Beta Charlie Delta Echo
µ(dBm) σ(dBm) µ(dBm) σ(dBm) µ(dBm) σ(dBm) µ(dBm) σ(dBm)

HTC -48.3 2.6 -41.3 2.4 -48.1 1.2 -49.3 1.9
iPhone -48.8 6.8 -44.5 6.3 -38.7 5.6 -48.9 4.4

Table 4.11: Average signal strength per device and drone experiment 4

Experiment # Records X coordinate Y coordinate
µ(m) σ(m) µ(m) σ(m)

HTC 21 -0.5 0.1 -0.9 0.2
iPhone 1 0.2 0.0 -0.2 0.0

Table 4.12: Average coordinates Fitter algorithm experiment 4

As shown in to Table 4.12, there were 21 points(HTC) and 1 point(iPhone),
respectively reconstructed by the Fitter algorithm for the idleness experi-
ments. In the HTC case, the average value of the x-coordinate is−0.5±0.1,
while for the y-coordinate is −0.9±0.2, which represent good results given
the state of the device. A negative aspect is that the algorithm was not
able to actually reconstruct more than one data point in case of the iPhone
device even though there was an increased number of “detected” packets.

When looking at the drones’ signal distribution, which can be found in
Figure 4.13a in the HTC case, it can be seen that on average the Charlie
drone has higher signal values which is interesting as this situation did
not happen previously in other experiments. Compared to the other ex-
periments, the distributions of the signals of each drones do not have the
nice normal distribution shapes as previously seen. In Figure 4.13b, the
double peaks can be seen in the iPhone case, where the Delta drone still
has on average the highest signal strength, while the other drones seem to
coincide with each other. Another particularity that is visualized in both
Figure 4.13a and Figure 4.13b is that on average the values of Echo and
Beta coincide with each other.

Even though the direction of the cell-phones was identical to the one
found in experiment 3, test 4, but with the two mobile devices located
next to each other, both the average values of the signal strength and the
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uncertainties and the signal strength distributions do not coincide with
the ones obtained with this idleness experiment. This might mean that
the position of the mobile device may impact the way the signal strength
is detected.

(a) The distribution of signal of the HTC mobile device in experiment
4

(b) The distribution of signal of the iPhone mobile device in experi-
ment 4

Figure 4.13: The distributions of the signal strength from experiment 4

Figures 4.14a and 4.14b reveal information about the frequency and am-
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plitude of the signal over time. Here, we are able to see the time gaps
between packets being sent. Moreover, if there are no packets detected at
a particular time, these plots reveal this information as well as whether
there is a pattern in which mobile cell-phone communicate with the drones.
There is clearly a different behavior in time between two device types. In
the HTC case, we see a consistent behavior over time which is much more
frequent than in the iPhone case. This is interesting as in the future exper-
iments based on the history of the signal strength and data modeling may
be done which may predict the mobile device type. This information may
answer the question related to whether a mobile device is in the interest
area, even though the mobile device did not communicate too much.
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(a) The distribution of signal of the HTC mobile device in experiment
4 over time

(b) The distribution of signal of the iPhone mobile device in experi-
ment 4 over time

Figure 4.14: The distributions of the signal strength from experiment 4 over
time

Figures 4.15a and 4.15b show the reconstructed position/coordinates of
the mobile devices calculated by the Fitter algorithm. In the HTC case,
it can be seen that there are far more points clustered outside the table
area. As expected, the position of these points is close to the Charlie
drone, as this was the one which detected on average the highest signal
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strength compared to the rest of the drones. In the iPhone case, it can be
seen that there is only one point reconstructed by the algorithm. This is
a surprising result as there are sufficient packets. Apparently, the Fitter
algorithm was not able to properly reconstruct other points and it needs
further investigation.
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(a) The coordinates detected by the Fitter algorithm for the HTC
mobile device in experiment 4

(b) The coordinates detected by the Fitter algorithm for the iPhone
mobile device in experiment 4

Figure 4.15: The coordinates detected by the Fitter algorithm for experiment 4
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4.2.4.1 Conclusions-experiment 4

– The idle mobile phones communicate far less with the drones com-
pared to the ones in active state(experiment 1 and experiment 3)

– The number of points reconstructed in the iPhone case is much
smaller than in the HTC case

– The Fitter algorithm did not reconstruct too many coordinates in
this experiment, even though there are more than 4 data packets
detected by the drones
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Chapter 5

The performance of the
Fitter algorithm

5.1 Introduction

In the previous chapter, we observed that the Fitter algorithm did not
reconstruct the coordinates of the cell-phone in most cases even though
there was a sufficient number of packets(more than 4). In this chapter, we
decided to run the analysis of counting packets versus the states for the
experiments with data points(experiment 1, experiment 3, and experiment
4), because we did not observe a consistent outcome of the Fitter across
all of these experiments. A similar algorithm to the first part of the cut-off
model was used, which computes the behavior of a device. The difference
is that the behavior is used for counting purposes for both the coordinates
and the packets. The results showed that there was a bug in the algorithm,
which was later fixed.

The comparison between the coordinates and the raw packets contains
several steps. Firstly, the number of packets per 10 second interval is
computed, as well as the number of points calculated by the algorithm.
Secondly, a binary variable called state is introduced in the case of the
coordinates for every 10 seconds time interval. The state is equal to one,
if there were coordinates calculated for that particular device and time
interval, and zero otherwise. Lastly, for each time interval of 10 seconds,
the number of packets and the state are compared by means of a graphical
representation. This graphical representation can indicate which intervals
have detections or not and packets or not.

For a better understanding of what actually happened, we decided to
analyze in parallel both the previous datasets and the current obtained
datasets by looking at the following elements: the quantities that assess
the performance of the Fitter algorithm and the indicators regarding the
efficiency of the Fitter algorithm and of the WiFi tracking system, respec-
tively.
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5.2 Quantities that assess the performance
of the Fitter algorithm

Several quantities were computed for each test and experiment in order
to evaluate the performance of the Fitter algorithm before and after the
bug fix, which have a 0 index if they refer to the results prior to the bug
fix(before), while 1 indexes refer to the results after the bug fix(after).

There are two types of quantities:

– related to the total number of packets(Records packets)

– related to the number of reconstructed data points by the Fitter
(Records Fitter)

Three different categories were created for the comparison between data
packets and states which have as a measurement unit a number of 10
seconds time intervals. The categories are the following:

– niFitter are the number of time intervals that have both points recon-
structed by the algorithm and the number of data packets not equal
to zero(state 6= 0 and Records packets 6= 0).

– ni0 are the number of intervals with no reconstructed points by the
Fitter, but with records different than zero in the raw dataset(state
= 0 and Records packets 6= 0).

– ninopackets are the number of intervals with neither records in the
raw dataset nor records reconstructed by the Fitter algorithm(state
= 0 and Records packets = 0).

The sum of these should be equal to the the maximum number of time
intervals for a particular test, the intervals variable, which represents the
number of time intervals of size 10 seconds that are between the arrival
and departure of a device or the start and end time of an experiment.

intervals = niFitter + ni0 + ninopackets

The arrivals and departures of the WiFi devices are quantified as follows:

– Arr interval pack, the number of the first time interval when the
mobile device sent packets to the routers and the timestart.

– Dep interval pack represents the number of remaining intervals
between the timestop and the last interval when the mobile device
sent packets to the routers

– Arr interval alg, the number of intervals between the interval of
first point detected by the algorithm and the timestart

– Dep interval alg, the number of intervals between the timestop and
the time of the last point detected by the algorithm

Other important quantities that are relevant for the performance are re-
lated to the resolution of the Fitter algorithm:
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– µx represents the average value of the x-coordinate for a particular
test and experiment

– µy represents the average value of the y-coordinate for a particular
test and experiment

– σx represents the root mean squared error of the x-coordinate for a
particular test and experiment

– σy represents the root mean squared error the y-coordinate for a
particular test and experiment

Eventually, the tracking system performance was evaluated quantitatively
based on the indicators below, which refer to the performance of the al-
gorithm and to the performance of the WiFi tracking system.

Prob ddeted alg represents the probability that the algorithm computes
the points for a selected time interval of for example 10 seconds. Moreover,
it is the fraction of the number of intervals with coordinates computed by
the Fitter algorithm(niFitter) divided by the number of time intervals with
data packets.

Prob ddeted alg =
niFitter

niFitter + ni0

Efficiency wifi represents the probability that the WiFi tracking system
communicates during a time interval(e.g., 10 seconds). These statistics
are calculated within the entire measurement period [timestart, timestop].
1

Efficiency wifi =
niFitter + ni0

niFitter + ni0 + ninopackets

Efficiency wifi ui constitutes the probability that the WiFi tracking sys-
tem communicates every selected time interval(e.g., 10 seconds) with the
mobile device within the time interval [Arrival, Departure], where the
Arrival represents the time interval when the first detection of a particular
device was seen first, while Departure represents the time interval where
the last detection of that particular devices was seen. Arr interval alg
represents the number of 10 seconds intervals of the difference between
the Arrival and timestart, while Dep interval alg represents the num-
ber of 10 seconds intervals of the difference between the timestop and
the Departure. The Efficiency wifi and Efficiency wifi ui differ
when the Arrival and Departure of a WiFi device do not correspond
to timestart and timestop.1

0

Efficiency wifi ui =
niFitter + ni0

niFitter + ni0 + ninopackets −Arr interval alg −Dep interval alg
1The reason why this interval is important is because sometimes the analyst is not able

to choose the exact moment when the first packets or coordinates were calculated by the
algorithm.
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Total efficiency represents the probability of reconstructing the coordi-
nates of the mobile devices given the performance of the WiFi tracking
system for every selected time interval(e.g., 10 seconds).

Total efficiency = Prob ddeted alg × Efficiency wifi

Total efficiency ui is the probability of the Fitter reconstructing the co-
ordinates for the mobile devices given its efficiency in the interval [Arrival,
Departure]. This indicator should be compared with the Total efficiency
indicator.

Total efficiency ui = Prob ddeted alg × Efficiency wifi ui

5.3 Experiment 1

It is reminded that for this experiment, we tested the communication
between mobile devices and routers when the cell-phones are not connected
to the network. In this state, the mobile devices send probe packets.

In Table 5.1, a difference can be observed between the results before and
after the bug fix. Initially, the algorithm computed a smaller number of
records for each test, but after the algorithm was corrected the number
increased(which is a good result). For example, the highest increase was
in Test 3 of this experiment, which initially had only 2 points calculated,
but after fixing the bug there were 81 points added. As it can be seen
in the same table, the number of intervals without packets is similar for
all four tests except for test 2 which contains 3 time intervals of 10second
compared to the rest which contain only 2 time intervals of 10 seconds.

When looking at the probability that the algorithm computes records(this
was completely different from test to test prior the bug fix), but it in-
creased afterwards to intervals of probability with the upper bound of
100% for all four tests. Due to the fact that the arrival time and the time
start of the tests coincide, the Efficiency wifi and Efficiency wifi ui
coincide. It is interesting to see that within this experiment almost all 10
seconds contain data packets.

The Total efficiency and Total efficiency ui are different before and
after the bug fix as they depend on the probability that the algorithm
calculates points.
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Statistics iPhone test1 iPhone test2 iPhone test3 iPhone test4
Records F itter0 96 39 2 20
Records F itter1 113 88 83 59
Records packets 2,390 816 1,205 466

niFitter0 96 39 2 20
niFitter1 113 88 83 59
ninostates0 17 49 81 39
ninostates1 0 0 0 0
ninopackets0 2 3 2 1
ninopackets1 2 3 2 1

Intervals 115 91 85 60
Prob ddeted alg0 84.9%± 11.6% 44.3%± 18.1% 2.4%± 5.8% 33.9%± 21.2%
Prob ddeted alg1 [99%, 100%] [98.7%, 100%] [98.6%, 100%] [98.1%, 100%]
Efficiency wifi0 98.3%± 4.2% 96.7%± 6.5% 97.6%± 5.8% 98.3%± 5.8%
Efficiency wifi1 98.3%± 4.2% 96.7%± 6.5% 97.6%± 5.8% 98.3%± 5.8%
Efficiency wifi ui0 98.3%± 4.2% 96.7%± 6.5% 97.6%± 5.8% 98.3%± 5.8%
Efficiency wifi ui1 98.3%± 4.2% 96.7%± 6.5% 97.6%± 5.8% 98.3%± 5.8%
Total efficiency0 83.5%± 12.0% 42.9%± 18.0% 2.4%± 5.8% 33.3%± 21.2%
Total efficiency1 98.3%± 4.2% 96.7%± 6.5% 97.6%± 5.8% 98.3%± 5.8%

Total efficiency ui0 83.5%± 12.0% 42.9%± 18.0% 2.4%± 5.8% 33.3%± 21.2%
Total efficiency ui1 98.3%± 4.2% 96.7%± 6.5% 97.6%± 5.8% 98.3%± 5.8%

µx0(m) -0.9 0.4 0.4 -0.2
µx1(m) -1.1 -1.3 -71.6 0.5
µy0(m) 0.0 -0.1 0.3 0.0
µy1(m) 0.2 -1.2 -5.1 0.7
σx0(m) 0.6 1.0 0.7 0.8
σx1(m) 0.9 2.0 501.4 0.8
σy0(m) 0.3 0.7 0.2 0.8
σy1(m) 0.8 3.7 41.2 1.5

Table 5.1: Statistics of experiment 1 iPhone(before(0) and after(1) fix results)

5.3.1 Test 1

In the Figure 5.1, the comparison between the states and the data packets
can be seen and the 10 seconds time intervals which have detections or
not. Figure 5.1a shows whether there were detections for this particular
before the bug fix, while Figure 5.1b shows the improvement. The later
figure reveals that two time intervals of 10 second have no packets, while
the rest of the intervals all have detections. Test 1 represented the test
with the largest number of points calculated by algorithm before the bug
fix, but, after the fix, the 17 more points were detected.

According to the Table 5.1, even though there were much more points
the performance of the average x and y coordinates decreased. Initially,
the average x coordinate was −0.9 ± 0.6 and the average y coordinate
was 0.0± 0.3 for this test. However, after the correction both values had
values further away from 0, the reference point for both coordinates, and
their spreads(σx and σy increased as well). Hence, there was an increase
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in detection efficiency, but this increase did not improve the precision in
resolution.

When looking at Figure 5.2, the coordinates calculated by the algorithm
are plotted. The red rectangle represents the area of the room, while
the green rectangle represents the area of the table on which the mobile
device was placed. It can be seen that the points detected before the bug
fix are still present in the plots after the fix. Figure 5.2b reveals additional
points, which are in the area of the room, but are not located on the table.
This is in accordance with the fact that there were improvements from a
number of data points calculated, but this did not bring any increase the
accuracy of the detections for both x and y. One can see 3 main areas
with multiple data points. On one hand, there is a cluster of points that
located on the table, but shifted to the left side of the center of reference
with the y coordinate close to 0. On the other hand, there are two other
areas with points in the room, but not on the table. These points are
either located in the vicinity of Charlie and Echo routers, but with their
y coordinate close to 0 or in the middle between the Charlie and Foxtrot
routers, but with their x coordinate close to 0. According to Table 4.3,
the Foxtrot, Echo, and Charlie routers had the highest signal strength.
The algorithm uses this information and fits the signals according to their
magnitude. Thus, the calculated points will be closer to the router with
a higher signal strength. The orientation of the mobile device might not
have a large impact on the reconstruction of the coordinates compared to
the recorded signal strength.
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(a) The comparison between the states and data packets for experi-
ment 1 Test 1(before)

(b) The comparison between the states and data packets for experi-
ment 1 Test 1(after)

Figure 5.1: The comparison between the states and data packets for experiment
1 Test 1 before and after
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(a) The calculated coordinates by the Fitter algorithm experiment 1
Test 1 (before)

(b) The calculated coordinates by the Fitter algorithm experiment 1
Test 1 (after)

Figure 5.2: The calculated coordinates by the Fitter algorithm experiment 1
Test 1(before and after)

The rest of the tests and the results of their analyses can be found in the
Appendix in section A.6

5.4 Experiment 3

We remind the reader that experiment 3 was performed in order to analyze
the way the mobile devices communicate when an app is used. There
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were two main mobile devices used HTC and iPhone, which were tested
under the same conditions and for the same amount of time. From a
number of packets perspective, according to Tables 5.2 and 5.3, the HTC
communicates less with the routers than the iPhone which can be observed
given the number of recorded packets per test for each device. Therefore,
a higher number of points was expected to be computed in the iPhone
case. However, this only occurred for tests 1 and 4. Moreover, for tests 2
and 3, the HTC contained much more points than the iPhone.

After the Fitter algorithm was fixed, the number of calculated points was
similar except for test 3, where for the iPhone device were computed 95
points compared to the 94 number of points calculated for the HTC. This
result is reassuring as this may indicate that the device type may not
influence the number of points calculated by the algorithm. In addition to
this, the total efficiency of the tracking system is very high for both devices.
It can be also seen that the average values of the x and y coordinates did
not significantly change. This is a positive result compared to the values
obtained in experiment 1, where the resolution deprecated.

Statistics HTC test1 HTC test2 HTC test3 HTC test4
Records packets 62,285 62,274 72,112 57,403

niFitter0 42 10 25 63
niFitter1 94 95 94 94
ninostates0 54 86 72 33
ninostates1 2 1 2 2
ninopackets0 1 1 1 1
ninopackets1 1 1 1 1

Intervals 97 97 97 97
Prob ddeted alg0 43.8%± 17.5% 10.4%± 10.8% 26%± 15.5% 65.6%± 16.8%
Prob ddeted alg1 97.9%± 5.1% 99.0%± 3.5% 97.9%± 5.1% 97.9%± 5.1%
Efficiency wifi0 99.0%± 3.5% 99.0%± 3.5% 99.0%± 3.5% 99.0%± 3.5%
Efficiency wifi1 99.0%± 3.5% 99.0%± 3.5% 99%± 3.5% 99.0%± 3.5%
Efficiency wifi ui0 [98.2%, 100%] [98.2%, 100%] [98.2%, 100%] [98.2%, 100%]
Efficiency wifi ui1 [98.2%, 100%] [98.2%, 100%] [98.2%, 100%] [98.2%, 100%]
Total efficiency0 43.3%± 17.5% 10.3%± 10.7% 25.7%± 15.4% 64.9%± 16.8%
Total efficiency1 96.9%± 6.1% 97.9%± 5.1% 96.9%± 6.1% 96.9%± 6.1%

Total efficiency ui0 43.8%± 17.5% 10.4%± 10.8% 26%± 15.5% 65.6%± 16.8%
Total efficiency ui1 97.9%± 5.1% 99.0%± 3.5% 97.9%± 5.1% 97.9%± 5.1%

µx0(m) 0.9 1.3 0.9 -0.1
µx1(m) 1.0 1.3 0.9 -0.2
µy0(m) -0.8 -0.7 -0.6 -0.6
µy1(m) -1.0 -0.8 -1 -0.9
σx0(m) 0.0 0.1 0.1 0.3
σx1(m) 0.1 0.1 0.1 0.3
σy0(m) 0.1 0.1 0.2 0.2
σy1(m) 0.1 0.0 0.2 0.5

Table 5.2: Statistics of experiment 3 HTC(before(0) and after(1) fix results)
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Statistics iPhone test1 iPhone test2 iPhone test3 iPhone test4
Records packets 94,200 91,441 90,581 93,495

niFitter0 67 0 2 93
niFitter1 94 95 95 94
ninostates0 29 0 94 3
ninostates1 2 1 1 2
ninopackets0 1 1 1 1
ninopackets1 1 1 1 1

Intervals 97 97 97 97
Prob ddeted alg0 69.8%± 16.2% [0%, 1.2%] 2.08%± 5.0% 96.9%± 6.1%
Prob ddeted alg1 97.9%± 5.1% 99.0%± 3.5% 99.0%± 3.5% 97.9%± 5.1%
Efficiency wifi0 99.0%± 3.5% 99.0%± 3.5% 99.0%± 3.5% 99.0%± 3.5%
Efficiency wifi1 99.0%± 3.5% 99.0%± 3.5% 99.0%± 3.5% 99.0%± 3.5%
Efficiency wifi ui0 [98.8%, 100%] [98.8%, 100%] [98.8%, 100%] [98.8%, 100%]
Efficiency wifi ui1 [98.8%, 100%] [98.8%, 100%] [98.8%, 100%] [98.8%, 100%]
Total efficiency0 69.1%± 16.3% [0%, 1.2%] 2.1%± 5.1% 95.9%± 7.0%
Total efficiency1 96.9%± 6.1% 97.9%± 5.1% 96.9%± 6.1% 96.9%± 6.1%

Total efficiency ui0 69.8%± 16.2% [0%, 1.2%] 2.1%± 5.1% 96.9%± 6.1%
Total efficiency ui1 97.9%± 5.1% 99.0%± 3.5% 99.0%± 3.5% 97.9%± 5.1%

µx0(m) 0.7 - 0.4 0.3
µx1(m) 0.4 1.2 1.0 0.3
µy0(m) -0.1 - 0.1 -0.9
µy1(m) 0.4 -1.2 -1.0 -0.9
σx0(m) 0.3 - 0.4 0.0
σx1(m) 0.5 2.2 0.2 0.0
σy0(m) 0.2 - 0.3 0.1
σy1(m) 0.8 1.0 0.3 0.2

Table 5.3: Statistics of experiment 3 iPhone(before(0) and after(1) fix results)

5.4.1 Test 1

In this test, there was a significant difference from a number of computed
points perspective. Thus, as previously seen, where there were packets the
algorithm was able to compute points for the majority of the 10 time in-
tervals which contained data packets, except for 2 for both mobile devices.
Besides this, it could be seen that there existed a time interval which did
not contain both packets and calculated points. This can be visualized in
Figure 5.3 for the HTC case and in Figure 5.5 for the iPhone.

5.4.1.1 HTC

The plots of the coordinates(Figure 5.4) show that a cluster of points
was formed in the vicinity of router Delta. According to the results of
experiment 3 Test 1( Subsubsection 4.2.3.1), the Delta delta drone had
on average the highest signal strength. Thus, one potential explanation
for the location of the points calculated by the algorithm is that the high
average signal strength of recorded by this drone which seems to influence
the algorithm.
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Another interesting aspect can be seen in Figures 5.3a and 5.3b, where
there seems to be no significant difference between the results obtained
prior to the bug fix and current ones besides the increased number of
points obtained in the later. However, the majority of these points are
located outside the area of the table, but still in the room.

5.4.1.2 iPhone

In Test 1 of the iPhone, a similar situation as in the HTC case occurs,
where the main cluster of points was maintained after the algorithm was
fix(Figure 5.6). This cluster contains as well points that are close to the
Delta drone as in the HTC case, but these points are located closer to the
reference point for the y coordinate. Besides the main cluster, there can
be also points that are located both outside the area of the table and the
area of the room. These are outliers, which seem to have the x coordinate
close to 0. One potential explanation may be that the distribution of the
signal strength of the Beta router overlapped with the one obtained for the
Delta drone(Subsubsection 4.2.1) and may have influenced the calculated
coordinates.
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(a) The states and coordinates detected by the Fitter algorithm for
the HTC mobile device experiment 3 Test 1(before)

(b) The states and coordinates detected by the Fitter algorithm for
the HTC mobile device experiment 3 Test 1(after)

Figure 5.3: The states and coordinates detected by the Fitter algorithm for the
HTC mobile device experiment 3 Test 1
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(a) The calculated coordinates by the Fitter algorithm for the HTC
mobile device experiment 3 Test 1(before)

(b) The calculated coordinates by the Fitter algorithm for the HTC
mobile device experiment 3 Test 1(after)

Figure 5.4: The calculated coordinates by the Fitter algorithm for the HTC
mobile device experiment 3 Test 1(before and after)
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(a) The states and coordinates detected by the Fitter algorithm for
the iPhone mobile device in experiment 3 Test 1(before)

(b) The states and coordinates detected by the Fitter algorithm for
the iPhone mobile device in experiment 3 Test 1(after)

Figure 5.5: The states and coordinates detected by the Fitter algorithm for the
iPhone mobile device in experiment 3 Test 1(before and after)
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(a) The calculated coordinates by the Fitter algorithm for the iPhone
mobile device experiment 3 Test 1(before)

(b) The calculated coordinates by the Fitter algorithm for the iPhone
mobile device experiment 3 Test 1(after)

Figure 5.6: The calculated coordinates by the Fitter algorithm for the iPhone
mobile device experiment 3 Test 1(before and after)

The rest of the tests and the results of their analyses can be found in the
Appendix in section A.7

5.5 Experiment 4

Experiment 4 was performed for both the HTC and iPhone at the same
time in order to get insight in how mobile devices communicate with the
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routers when they are in an idle state. This experiment was important,
because the idle state is the most common state of a mobile device. In-
teresting information could be drawn out of this experiment. Initially,
the algorithm could barely compute points for the mobile devices. Thus,
according to Table 5.4, the initial probability was 30.9% ± 16.3% for the
HTC compared to 4.6% ± 7.4% for the iPhone, these results changed to
the intervals of probability [98.4%, 100%] and [95.1%, 100%], respectively,
after the algorithm was fixed. Nevertheless, the efficiency of the tracking
system scored initially 18.8%±13.8% for the HTC mobile device and only
6.1% ± 8.4 for the iPhone. This seems to be a poor result compared to
experiment 1 and 3 which had data packets in the majority of the 10 sec-
onds time intervals. This may mean that the mobile devices send fewer
packets and tracking seems a challenge when they are in an idle state.

The main difference could be seen from a number of points computed for
both mobile devices. According to Table 5.4, there were in the end 68
points for the HTC and 22 points calculated for the iPhone. These con-
stituted points for all the intervals which contained data packets. From a
coordinate perspective, the results after the algorithm was fixed revealed
that the average x and y coordinates of the HTC mobile device did not
differ compared to the ones initially obtained, but they were slightly in-
creased. However, in the iPhone case, there was a significant change as 21
points more were calculated. For example, the average x coordinate was
0.6± 0.2, while the average y coordinate was −1.3± 0.3.
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Statistics HTC iPhone
Records packets 3565 3167

niFitter0 21 1
niFitter1 68 22
ninostates0 47 21
ninostates1 0 0
ninopackets0 293 339
ninopackets1 293 339

Intervals 361 361
Prob ddeted alg0 30.9%± 16.3% 4.6%± 7.4%
Prob ddeted alg1 [98.4%, 100%] [95.1%, 100%]
Efficiency wifi0 18.8%± 13.8% 6.1%± 8.4%
Efficiency wifi1 18.8%± 13.8% 6.1%± 8.4%
Efficiency wifi ui0 18.9%± 13.8% 6.4%± 8.6%
Efficiency wifi ui1 6.1%± 8.4% 18.8%± 13.8%
Total efficiency0 18.8%± 13.8% 0.3%± 1.9%
Total efficiency1 18.8%± 13.8% 6.1%± 8.4%

Total efficiency ui0 5.9%± 13.8% 0.3%± 1.9%
Total efficiency ui1 18.9%± 13.8% 6.4%± 8.6%

µx0(m) -0.5 0.2
µx1(m) -0.6 0.6
µy0(m) -0.9 -0.2
µy1(m) -1.3 -1.3
σx0(m) 0.1 0.0
σx1(m) 0.2 0.2
σy0(m) 0.2 0.0
σy1(m) 0.3 0.3

Table 5.4: Statistics of experiment 4 HTC and iPhone (before(0) and after(1)
fix results)

5.5.1 HTC

According to Figure 5.8, it can be seen that the initial cluster of points
was increased after the algorithm was repaired. In addition to this, the
position of the cluster is between the Charlie and Delta routers, on the left
side of the reference point, very close to the area of the table and inside the
room. In addition to this, the additional points seem to be more scattered
than the initial ones. One potential explanation for this shift to the left
side may be that the Charlie router had on average the highest signal
strength, followed by the Delta and Beta(very close to Delta).
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(a) The states and coordinates detected by the Fitter algorithm for
the HTC mobile device in experiment 4(before)

(b) The states and coordinates detected by the Fitter algorithm for
the HTC mobile device in experiment 4(after)

Figure 5.7: The states and coordinates detected by the Fitter algorithm for the
HTC mobile device in experiment 4(before and after)
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(a) The reconstructed coordinates by the Fitter algorithm for the
HTC mobile device experiment 4(before)

(b) The reconstructed coordinates by the Fitter algorithm for the
HTC mobile device experiment 4(after)

Figure 5.8: The reconstructed coordinates by the Fitter algorithm for the HTC
mobile device experiment 4(before and after)

5.5.2 iPhone

Figure 5.92 presents the comparison between the performance of the points
before and after the algorithm was fixed. As mentioned before, the algo-
rithm initially computed only one point for this experiment, which could

2This figure was separated in two plots, because the matplotlib package for python some-
times shrinks the image and the time intervals with detections do not overlap with the ones
with detections
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be seen in the first time interval of 10 seconds with data packets. This
seemed a poor result given the existence of sufficient data packets for the
rest of the 21 time intervals. However, the new results seemed encouraging
as one could draw the conclusion that if there are more than 4 available
data packets in a time interval, then the algorithm may compute a data
point.

From a coordinate perspective, Figure 5.10 shows that a cluster of points
outside the area of the table was added to the point found inside it after
fixing the algorithm. This cluster is positioned on the right side of the
reference point in the vicinity of the Delta router. This indicates as previ-
ously seen that even though the number of points increased, this did not
mean that the performance improved as well. According to the results
of experiment 4 for the iPhone case, the highest signal strength could be
found in the case of Delta followed by Charlie which may have influenced
the position of the computed data points.
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(a) The states and coordinates detected by the Fitter algorithm for
the iPhone mobile device in experiment 4(before)

(b) The states detected by the Fitter
algorithm for the iPhone mobile device
in experiment4(after)

(c) The packets for the iPhone mobile
device in experiment4(after)

Figure 5.9: The states and coordinates detected by the Fitter algorithm for the
iPhone mobile device in experiment 4
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(a) The reconstructed coordinates by the Fitter algorithm for the
iPhone mobile device experiment 4(before)

(b) The reconstructed coordinates by the Fitter algorithm for the
iPhone mobile device experiment 4(after)

Figure 5.10: The reconstructed coordinates by the Fitter algorithm for the
iPhone mobile device experiment 4(before and after)
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5.6 Conclusions

From the results of the experiments before and after the bug fix of the
Fitter algorithm, the following conclusions can be drawn:

– The number of points reconstructed by the Fitter algorithm has in-
creased significantly after the bug fix(e.g, a higher reconstruction
efficiency)

– The accuracy of the average x and y coordinates is changed, but it
was not improved in the majority of the cases

– The efficiency of the WiFi system and the efficiency of calculating
coordinates have increased significantly

– There is a high probability that the Fitter algorithm is able to recon-
struct the coordinates of the mobile devices if there are more than 4
data packets from 4 different drones

– Depending on the experiment and on the test, the extra reconstructed
points by the Fitter are either points in the vicinity of the reference
point or outliers

– WiFi tracking may be challenging in idle states of mobile devices

– Strategies need be developed for increasing the communication be-
tween mobile devices and drones
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Chapter 6

Features of the system
and comparison with
other projects

In this chapter, the KPMG LAS system is compared with projects found in
the literature by following the framework of Mautz[34] which contains the
user and technical requirements an indoor positioning application should
have. Crucial elements need to be taken into consideration according to
Mautz[34] when actually designing and implementing an indoor position-
ing application. These requirements are shown in Figure 6.1a and Figure
6.1b. These figures show the multi-dimensionality of the optimization
problem that the companies are confronted with.

(a) User requirements for indoor posi-
tioning systems(Mautz[34])

(b) Technical parameters for indoor
positioning systems(Mautz[34])

6.1 Business-user requirements

Mautz[34] describes briefly each user requirement as follows in Figure 6.1a:
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– accuracy (mm, cm, dm, meter, decameter level)

– coverage area/limitations to certain environments (single room,
building, city, global)

– cost (unique system set-up costs, per user device costs, per room
costs, maintenance costs)

– required infrastructure (none, markers, passive tags, active beacons,
pre-existing or dedicated, local or global)

– market maturity (concept, development, product)

– output data (2D or 3D coordinates, relative, absolute or symbolic
position, dynamic parameters such as speed, heading, uncertainty,
variances)

– privacy (active or passive devices, mobile or server based computa-
tion)

– update rate (on-event, on request or periodically e.g., 100Hz or
once a week)

– interface (man-machine interfaces such as text based, graphical dis-
play, audio voice and electrical interfaces such as RS-232, USB, fiber
channels or wireless communications)

– system integrity (operability according technical specification, alarm
in case of malfunction)

– robustness (physical damage, theft, jamming, unauthorized access)

– availability (likelihood and maximum duration of outages)

– scalability (not scalable, scalable with area-proportional node deploy-
ment, scalable with accuracy loss)

– number of users (single user e.g., total station, unlimited users e.g.,
passive mobile sensors)

– intrusiveness/user acceptance (disturbing, imperceptible)

– approval (legal system operation, certification of authorities)

Several user requirements are discussed here in more detail with respect
to the ones presented by Mautz. These requirements are the following:
accuracy, coverage, market maturity, integrity, availability, update rate,
system latency, interface, data output, privacy, costs, and number of users.

Accuracy

The accuracy requirement represents the most important measure, if it is
viewed from a user perspective. In order to compare system performances,
a useful metric for the quality of positions is the computation of the stan-
dard deviation(RMSD-Root Mean Squared Deviation or RMSE-Root Mean
Squared Error):

σP =

√√√√ 1

n

n∑
i=1

(P̂i − Pi)
2
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,

where n is the number of estimated position vectors P̂i and Pi the position
vector predicted by a modal of the localized node i, or, if only one single
location is estimated, Pi is replaced with a single position vector P0.

Low accuracy can be defined as the standard deviation σP > 10m and
high accuracy as σP < 1cm. Even though, the accuracy represents a key
driver for most applications. It should be viewed in the context with the
other performance parameters.

The main metric used for evaluating the accuracy of the KPMG WiFi
tracking system is the root mean squared error(RMSE) like the metric
proposed by Mautz. According to the results of the experiments and
the CHEP data, the RMSE differs by experiment and test. Due to the
fact that the coordinates are calculated by means of the Fitter algorithm
in Chapter 3, Chapter 4, and Chapter 5, the main factor that affects the
quality of the results represents the recorded signal strength by the drones,
which is influenced itself by several factors. Other factors that also play
a key role are the following: device type, device state, position of the
mobile device, shape of the area under analysis, and the configuration of
the drones, etc.

The results obtained from the CHEP conference showed that the accu-
racy for a lying still on a table iPad device was 7.8m for the x coordinate
and 6.4m for the y coordinate. However, the results obtained from the
experiments revealed a RMSE smaller than 1m. Nevertheless, these ex-
periments where performed with the drones close to the mobile(WiFi)
devices. It might be that the mobile(WiFi) devices are detected with a
higher RMSE as long as it is not close to the drones.

It may be the case that the results obtained for the CHEP data have larger
RMSE values of the x and y coordinates. This assumption is made based
on the validation experiments which revealed that after the bug fix, the
RMSE increased. Verifying this assumption was not possible, because a
new dataset of the CHEP could not be obtained after the bug fix and,
thus, the models could not be applied.

The KPMG LAS system is compared with similar projects from the liter-
ature and public information of the main competitors. From a literature
perspective, Bahl and Padmanabhan’s system RADAR[20] has an accu-
racy of 2 − 3m. From a competitors’ perspective, an indoor positioning
system developed by Polestar company represents NAO Campus, which
promises an accuracy that ranges from 2.1m up to 5m[27]. The Infsoft
company promises on their website[32] an accuracy of 1m. 1

Coverage

The coverage describes the spatial extension where system performance
must be guaranteed by a positioning system. One of these categories
should be specified:

1It may be the case that the public information of the main competitors is not reliable for
comparison due to marketing strategies.
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– Local coverage - small, well-defined, limited area which is not ex-
tendable

– Scalable coverage - systems with the ability to increase the area
by adding hardware(deployment of additional sensors)

– Global coverage - system performance worldwide or within the de-
sired/specified area. Only the GNSS systems and celestial navigation
belong in this category

The coverage area is dependent mainly on the detected signal strength of
the mobile devices and the environmental limitations within this area. The
environmental limitations are the elements such as windows, furniture,
and walls that may interfere with the way the signal strength is recorded.
Our experiments showed that sometimes these obstacles could increase or
decrease the magnitude of the signal strength.

According to Subsection 4.2.2, more than 30 meters distance was enough
to detect a mobile device. Nevertheless, the 30 meters were measured on
a hallway where there were no obstacles. This value may change if these
environmental limitations stand in the way. When comparing with the
literature, Nuaimi and Kamel[12] argue that the range of existing systems
go from 5 to 50 meters, as providing a system with a coverage of more
than 60 is very challenging.

The category in which the KPMG WiFi tracking system belongs to is the
scalable coverage systems, the systems with the ability o increase the area
under analysis by adding drones. If we assume that the area under analysis
has a square shape(the distance between the drone and the WiFi device
is equal to 30m and half of the diagonal of the room) and based on the
results of the experiments, then the coverage area may be approximately
1800m2.

Market maturity

The KPMG WiFi tracking system has been developed for less than 6
months from a market maturity perspective. It represents a product
in development as it is tested only in small experiments like the ones
developed within this work. Even though the performance seems to be
promising, this products needs more testing in a real-life environment.
For example, the system will be tested at the KPMG canteen.

Integrity

Integrity relates to the confidence which can be placed in the output of a
system. Integrity risk is the probability that a malfunction in the system
leads to an estimated position that differs from the required position by
more than an acceptable amount(the alarm limit) and that the user is not
informed within the specified period of time(time-to-alarm).

According to Mautz[34], regulator bodies have studied and defined in-
tegrity performance parameters in some sectors such as civil aviation,
however, in other sectors, including those relating to indoor navigation
it is more difficult to find quantified integrity parameters.
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Availability

Availability is the percentage of time during which the positioning service
is available for use with the required accuracy and integrity. This may be
limited by random factors (failures, communications congestion) as well as
by scheduled factors(routine maintenance). Generally, one of the following
three levels could be specified, although this will depend on the particular
application:

1. low availability: < 95%

2. regular availability: > 99%

3. high availability: > 99.9%

To achieve availability, it is assumed that continuity, accuracy, and in-
tegrity requirements are fulfilled. Application descriptions usually include
specification of availability, whereas system developers usually do not spec-
ify an availability figure.

As mentioned before, the KPMG LAS represents an experimental project
which has not yet extensively been tested in a real-life environment. This
means that assessing the availability of the system is difficult. However, it
can be affirmed that the entire system was tested at the CHEP conference
for 4 days in row and it was affected by random factors such as failures and
congestion problems leading to a low availability. Due to the fact, that
this project represents a pilot, the desire is to increase the availability to
> 99.9%.

Update rate

The update rate is the frequency with which the positions are calculated
on the device or at an external processing facility. The following types of
measurements rates exist:

1. periodic: regular update, specified in an interval (unit e.g., (Hz) )

2. on request: triggered by the user or by a remote device.

3. on event: measurement update initiated by the local device when
a specific event occurs, e.g., when a temperature sensor exceeds a
critical threshold.

The KPMG WiFi system has an update rate of 10 seconds in which the
positions are calculated. From a measurement rate type, this system enters
in the periodic category as it synchronizes with the way the algorithms
work, which, as mentioned before, use a buffer of 10 seconds time interval
to compute the coordinates of a mobile device. From the rate of update
perspective, it would be good in the future if the 10 second time interval
is lowered to a smaller time interval. It may the case that the accuracy of
the coordinates may be improved and the rate of update will be faster.

The update rate may suffer modifications depending on the tracking type,
“static” or in “motion”. On one hand, if the tracking type is static(the
device does not move), more data packets may be needed to increase the
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accuracy of the detections. On the other hand, if the tracking type is in
motion(device is moving), then there are less data packets per unit time,
which may decrease the accuracy of the coordinates.

System latency

The system latency describes the delay with which the requested informa-
tion is available to the user. The latency can have the following values:

– real time: Does not tolerate “perceivable” delays. It is the most
demanding latency requirement. It is necessary for navigation and
almost all indoor positioning applications.

– sooner the better: Requires the system’s best effort.

– sooner the better with an Upper Limit: Requires the system’s best
effort but the system must be designed to limit the maximum delay
to a specified threshold.

– post processing: No specific time of delivery is defined.

When looking at the system latency perspective, the information re-
lated to what the main areas of interest are. The heatmap uses the re-
constructed coordinates of the algorithm. Thus, the delay represents only
from the amount of time it takes to the algorithm in order to compute
the coordinates of the mobile device. The KPMG system may enter the
post-processing category.

Interface

The KPMG LAS platform contains a user-friendly web interface/dash-
board which consists of several parts. The heatmap plays a key role. It
has on the background the floor plan of the area of coverage. On this
floor plan, the areas where the mobile devices are detected are plotted.
The heatmap shows this activity on an aggregated level and not on an
individual device level. This way the privacy element is handled properly
as the intention is only to count the number of devices in the areas of
interest. These areas of interest enable the clients identify whether the
current display layout is attractive enough for the clients, what are the
most interesting and visualized products by the visitors, and where the
clients spend more time e.g., at the cash-register, in a queue, etc.

The KPMG LAS dashboard also provides statistics with respect to the
number of visitors in the area, as well as an intuitive plot which shows
how this number varies in time. As well as, the percentages of the clients
split by areas of interests are shown by means of a pie chart plot. In
addition to this, the box-plot indicates the dwell time of the visitors and
the results are presented on aggregated level.

Data output

The output data of the KPMG LAS platform contains 2D data with
only x and y coordinats that are visualized on an aggregated level in the
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heatmap, as well as the timestamp, the errors for the coordinates of the
algorithm. It is foreseen that the z coordinates is also calculated by the
algorithms. At the moment, the z coordinate is equal to 0, thus it might
affect the accuracy of the computed coordinates. In addition to this, not
all the mobile devices are located on the same axis.

Privacy

KPMG has put a lot of effort in ensuring that the data privacy is handled
carefully. The KPMG LAS platform is designed to comply with the Dutch
Data Protection Directive and contains a number of measures to ensure
that it is virtually impossible to identify a single individual. In addition to
this, the KPMG LAS platform provides opt-out(in) capabilities for those
individuals who do not wish to be tracked. The system filters out the
opt-out devices and retains only the ones that are opt-in. A randomiser is
also forseen to be implemented which adds a random perturbation/statis-
tical noise to the results of the analyses making the identification process
virtually impossible(Aircloak).

Number of users

The web-interface of the KPMG LAS platform can be accessed by multiple
users at the same time. However, the maximum number of users has not
been assessed yet. Each user requires a username and a password in order
to log in to the system.

6.2 Technical parameters

Besides, the user requirements which refer mainly to the companies in-
terested in purchasing the IPA(Indoor positioning applications), there are
still some technical parameters that need to be taken into consideration.
Mautz described these as the following:

– level of hybridization(single modality, two different sensors, highly
hybrid sensor fusion).

– technology(optical, inertial, magnetic, sound etc.)

– measured quantity(direction, distance, signal amplitude, accelera-
tion, time)

– basic measuring principle ((tri)lateration, (tri)angulation, fingerprint-
ing, cell of origin, dead-reckoning)

– positioning algorithm used (multidimensional scaling, multilatera-
tion, heuristics)

– signal used (sound waves, electromagnetic waves, magnetic field strength)

– signal wavelength (visible light, infrared, radio frequencies)

– system architecture (central or distributed systems)

– application (navigation, surveying, industry tracking, metrology)
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– coordinate reference (local, global, object or sensor coordinate sys-
tem)

According to the same author[34], the values of the performance param-
eters are sometimes not determinable, because they depend on various
factors, circumstances, and conditions. The definitions of the positioning
requirements parameters according to the same thesis[34] are presented,
in order to have a reference point of how these systems should typically
behave.

From a technical requirements’ perspective, the following requirements
perspective the following will be taken into consideration: technology,
basic measuring principle, application, and signal strength.

Technology

The technology for the KPMG LAS is based on the detection of the WiFi
signals, data that are recorded by the WiFi drones and that are sent to the
KPMG Analytics Visualization and Environment Platform(KAVE), where
the data is stored, validated, and calibrated. The output data obtained
from the algorithms is visualized on a dashboard in a web-interface.

Basic measuring principle

The main measuring principle is trilateration, which represents a technique
for identifying the location of a device if the distances of at least three
references are known. The Fitter algorithm combines the trilateration
technique with nonlinear Chi-square fit and Newton-Rapson technique
to estimate the best possible parameters for the non-linear relationship
between the signal strength and the distance[55].

Application

There are multiple applications of the KPMG LAS to the business side.
Firstly, the interest areas are revealed based on which customer paths
can be identified. Both enhance the understanding of the customer base.
In addition to this, a new store layout can be optimized. For example,
the visitors/customers may find in their way products that are sold in
associations with the most purchased ones or they may be “required” to
follow a different path in their way to certain products. These products
can be determined based on the market basket analysis technique. Such
techniques offer insight in the relationships between products that are
purchased together. This insight combined with the information extracted
from the WiFi tracking system can be used for customer profiling and
targeted advertising.

Due to privacy restrictions, the tracking system will not be evaluated on
an individual device level to control to which extend the individual data
is used. However, besides the opt-out feature, KPMG also supports an
opt-in feature for clients who would like to be contacted after since they
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are interested in a certain product and they would like to have much more
information.

6.3 Conclusion regarding the system

The performance of the KPMG LAS platform was evaluated from both
business and technical perspectives. This system is currently a pilot which
seems to have a lot of potential. From a business perspective, this system
brings insight into the interest areas of the customers, an estimation of
the number of detected devices, and several other statistics relevant for
matching product offers to customers.

6.4 Implications of Apple’s decision to im-
plement random Mac address on iOS8

At the Apple Worldwide Developers Conference in June 2014, David Stites
and Katie Skinner announced the changes of the WiFi scanning behavior
in the iOS8. It will will use random, locally administrated MAC addresses
for probe requests(sub-type 0x4) and responses(sub-type 0x5). According
to Apple’s product security and privacy representatives’ presentation[47],
the MAC address used for the WiFi scans may not always be the devices’
real(universal) address.

In this section, the potential implications of these changes are evaluated.
Greg Sterling from Marketingland[53] believes that these decisions are
mainly targeted such that Ad networks, WiFi hotspots, and other third
parties will not be able anymore to have access to the real MAC Iphone
iOS 8 and to combine them with other datasets. Thus, individuals cannot
be associated anymore with particular locations for later re-targeting. It
may also be the case that Apple tries to get people’s consent that their
MAC addresses can be used.

Another potential implication of this change may affect the statistics re-
lated to the dwell time of the Iphone mobile devices that are not connected
to the network. However, this will not have implications on the counting
process, if the devices are connected to the WiFi network. In this case,
the MAC address is not random anymore and all the statistics can be
calculated based on that. In addition to this, the Android mobile devices
are not affected by this decision. The main competitors in the indoor/out-
door positioning industry surprisingly support this decision even though
this may influence the various analyses that are performed.

It may be the case that Apple tries to increase their market share by
attracting potential clients that are concerned with privacy. However, the
company has bought in 2013 the WifiSlam start-up. They built for indoor
positioning technologies that pinpoint the location of the smartphone(and
the location of your friends) in real-time with an accuracy of 2.5m by using
only ambient WiFi signals that are already present in buildings. Besides
this, they developed location-based mobile apps that could engage with
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users at the scale that personal interaction actually took place. Other
applications ranged from step-by-step indoor navigation, to product-level
retail customer engagement, to proximity-based social networking.
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Chapter 7

Contributions,
limitations, conclusions,
recommendations

7.1 Contribution to the literature

This work analyzes the performance of a new WiFi tracking system for lo-
cation aware services from both business and technical perspectives. In the
literature, most projects for location aware services are small pilot projects
that do not involve large amounts of data. Instead, in this research data
were analyzed from both real-life environment(CHEP conference), but also
controlled experiments which zoomed in and described how mobile devices
communicate with the drones in different situations. The most important
factors that influence the way the coordinates are calculated in controlled
environments were identified based on the literature and on the controlled
experiments.

This research also proposes a strategy for analyzing the performance of
the WiFi tracking systems by looking at the most important statistics
both on individual and aggregated levels, which could not be found in the
literature. It evaluates into depth the performance of the algorithms and
proposes models for calculating the probability of detecting mobile devices.
In addition to this, a visualization over time, statistics, and indicators are
created to assess the performance of the WiFi tracking system and the
algorithms.

From a business perspective, this study analyzes the WiFi tracking system
based on the framework proposed by Mautz[34] for indoor positioning
algorithms. In addition to this, it contains information related to the
main competitors on the indoor tracking industry, but also projects from
the literature.
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7.2 Limitations

This research has several limitations which are explained chronologically.

One of the main limitations within Chapter 2 was that the CHEP datasets
used for analysis lacked relevant data which could be used for the analysis.
Therefore, the accuracy was evaluated only based on one device(an iPad
device). In addition to this, the actual coordinates of the iPad device
may not be correctly calculated. This may have an impact on the bias
of the average coordinates for both x and y coordinates. For a better
understanding of how this WiFi tracking system works, the entire tracking
system should be tested in a real-life environment and on several more
devices which have their states and positions known.

In Chapter 3, two models were proposed for computing the probability of
detecting mobile devices. The probability of detecting the mobile devices
was calculated on a 5 minute level, but also on a 10, 30, and 60 second
level. The results of the models were obtained based on the datasets from
the old version of the Fitter algorithm which had a bug. Due to this
bug, the algorithm did not compute all the points even though there were
sufficient available data packets. It may be the case that the results of
the models are obsolete and that the probability as well as the indicatiors
may increase after the bug fix. Unfortunately, due to computer and time
limitations, the new Fitter algorithm after the bug fix could not be applied
on a day level for the CHEP data. The Fitter algorithm was run more
than 6 times on the raw dataset from the CHEP conference. However,
it failed to compute the entire dataset. Due to the fact that the history
obtained based on the CHEP data is not relevant to KPMG, redoing the
analysis would not bring any insight to this research.

Chapter 4 contained the design and implementation of the experiments,
which can be structured in two main categories: tracking devices and
testing the relationship between signal strength and distance.

The tracking experiments had the same configuration across the entire
tests. Nevertheless, there was a difference between the experiment 1 and
experiments 3 and 4, respectively, from the perspective of used drones. For
experiment 1, the Foxtrot drone was used which, according to the results,
it behaved differently compared to the other drones. A possible reason
for this behavior may be that Foxtrot had technical problems. Thus, for
experiments 3 and 4, it was replaced with the Beta drone.

There are several other limitations related to the design and configuration
of the experiments. All three experiments were performed in an isolated
room, where four different drones were placed on the table. The reason
why four different drones were used was that the Fitter algorithm requires
four different drones in order to compute a data point for a particular
mobile device. The position of the drones was higher than the one of the
mobile device. The mobile device was placed on a wooden table. It may
the case that the signal strength may have been attenuated by this wooden
table. This table was also close to the windows of the room which may also
have had an influence on the magnitude of the signal strength. Another
limitation of these experiments constitutes the fact that only one position
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of the cell phone was tested, laid on the table. It may be the case that
the signal strength may have a different behavior with other positions.

Experiment 2 also faced several limitations. Firstly, the shape of the
hallway where the drones were placed may have influenced the magnitude
of the signal strength. Secondly, the hallway represents a public space in
the office. Thus, it may be the case that the people’s bodies interfered in
the recording process. Lastly, this experiment was performed with only
two drones, compared to the other three experiments.

7.3 Conclusions

The KPMG WiFi tracking system works. The Fitter and Trilaterator
algorithms seem to have similar performance. However, the Fitter algo-
rithm performs better from a resolution perspective and, thus, the rest of
the analyses and models were created based on its results.

Two different models were developed for calculating the probability of
detecting a mobile device: the “basic” model and the “cut-off” model.
With the first model, the probability of detecting a WiFi device seems to
be underestimated, while the results of the second model show that the
probability of detecting a WiFi device increases considerably, when larger
time intervals are used for detecting devices.

Four experiments were developed for analyzing how the drones listened
passively to WiFi devices. It was found that the signal strengths of the
devices were measured differently by the drones when placed in different
positions. In addition to this, no pattern could be found with respect
to the recorded signal strengths and different positions. It could be seen
that the mobile devices sent less packets when they were in an idle state
compared to when an application was used or when the phone was active,
but not connected to a network. The experiments also revealed that the
Fitter algorithm did not compute data points sometimes even though there
were sufficient data packets and that a bug was in the algorithm.

The comparison between the results before and after the bug fix revealed
that the algorithm did not reconstruct some of the data points even though
there were sufficient data packets and it seemed to perform sometimes as
a quality cut for several points.

Based on the results of the experiments, the bug fix in the algorithm im-
pacts the outcome of the models for calculating the probability of detecting
mobile devices in several ways. On one hand, the number of reconstructed
data points that will be computed may increase considerably and, thus,
the delta time between consecutive detections may decrease and the dis-
tribution of the delta time may be different. In addition to this, it may the
case that the threshold of 5 minutes is not appropriate anymore, given the
fact that the mobile devices are detected almost every 10 seconds when
there are sufficient packets detected by the drones. Besides the delta time,
the number of mobile devices detected every 10 seconds also may increase,
because additional points are computed for a mobile device. This impacts
also the shape of the plot of the total detected devices, which seemed to
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have a time dependent shape with several peaks, as well as the arrivals,
and departures.

The ∆time(the time between two consecutive detections of a device) could
not be entirely explained as proposed in the beginning. There are several
explanations that can be given to it depending on the type of used algo-
rithm. If the Fitter algorithm was used before the bug fix, it may be the
case that a large ∆time can be explained by the bug. However, it may
also be the case that the mobile device can be in an idle state, switched
off, or not detected.

In principle, assuming that the Fitter algorithm after the bug fix is used
and the information extracted from the experiments, it is not possible
to explain what is happening within a large ∆time, whether it is dwell
time, walking time, missing data, or any other combination between them.
What it can be affirmed is that, after the bug fix, the Fitter algorithm
is able to reconstruct coordinates if there are more than 4 data packets
recorded from the drones with a certitude of more than 90%.

In the end, the performance of the KPMG LAS platform was evaluated
from both business and technical perspectives. This system is a pilot
which seems to have a lot of potential given the time within it was devel-
oped. From a business perspective, this system brings insight into KPI’s
such as the interest areas of the customers, an estimation of the number
of detected devices, and dwell time of the visitors. However, there are
several improvements that need to be made mainly with respect to the
resolution of the calculated coordinates in order to increase the accuracy
of the reconstructed data points.

7.4 Recommendations for improving the per-
formance of the WiFi tracking system

Based on the research performed so far on the KPMG LAS system, certain
recommendations are made for improving the performance of the system
which will be briefly explained:

1. Calibration of the drones to equalize the received signal strength
across the drones, because the signal strength represents a key factor
in reconstructing the coordinates of mobile devices

2. More experiments should be performed in order assess the perfor-
mance of the system such as:

(a) WiFi devices in different states such as idle, active, or not con-
nected to the network with the owner walking at different speeds

(b) WiFi devices held in different places such as hand, pocket, and
bags

3. Investigating more expensive hardware to ensure the drones are op-
erating in a reliable manner

4. Thoroughly testing the Fitter algorithm for bugs and errors with
different settings in order to verify the consistency and accuracy of
the data
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5. Improving the way the Trilaturator algorithm converts the signal
strengths into distances(fit the relationship between signals and dis-
tances)

6. Generating documentation of the entire WiFi tracking system

7. Developing mobile applications which clients can use for indoor posi-
tioning of their interest areas that may stimulate the communication
between mobile devices and drones to improve tracking

8. Building simulations of how the signal strengths can be measured
in different environments, because the environment may have a big
impact on the recorded signal strength

9. Testing the number of counted devices by the system from the web-
interface to ensure the accuracy of the detections

10. Developing a system that can automatically calculate the efficiency
and potential failures of the entire system in order to acknowledge
potential problems

11. Building algorithms and simulations that calculate the dwell time to
improve in order to prevent underestimation or overestimation

12. Integrating the WiFi tracking with other technologies such as GPS,
Bluetooth, movement sensors, and cameras to improve the quality of
the tracking
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Appendix A

Appendix

A.1 Terminology

In this section, we briefly describe the most important parameters based
on which we will compute different statistics.

1. The timestart represents the start time of the period that we will
analyze the system, while the timestop represents the end time of the
period we will analyze the system.

2. The interval of [timestart, timestop] can be either a day, half a day,
or any other desired interval time. Usually, we define this interval on
a 5 minute level, but it can also be expressed on a second level.

The starting and ending time have the following structure: ”‘yyyy-
mm-dd HH:MM:SS”’, where y stands for year, m for month, d is for
day, H for hour, M for minute, S for second.

3. The time interval represents the time moment for which we zoom-
into the selected period ([timestart , timestop ]). It can be expressed
both in minutes and seconds.

4. A detected device represents a device which is recorded by the LAS.
Thus, records related to this device can be found in the database.

5. An arrival represents the first time moment when a mac address is
seen for the first time in the database within a selected period of
time. This means that before this detection there was no previous
information related to this mac address.

6. A departure is the last time moment or a moment after which a mac
address will not be detected anymore. Hence, there will be no other
record in the database besides this one and we say that ”‘it has left
the system”’. This means that this mac address will never be seen
in the selected period.

7. A missing mac address represents a mac address which had an arrival,
but which did not have a departure. However, this mac address is
not being detected within certain time intervals. This situation can
occur, due to several reasons like: the drones do not function, the
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drones are busy, the mac address left the area of detection, or the
device is idle.

8. The ideal number of mac addresses represents the number of mac
addressed that should ideally be detected at a certain time moment
given the known dataset.

9. The intervals represents the number of intervals of user selected time
interval(time interval) that are obtained within a time period([timestart ,
timestop ]):

intervals =
(timestart − timestop)
(60× time interval)

We divide by 60 in order to transform the result from seconds to
minutes. The same formula is used but without dividing by 60 if we
want to use seconds instead.

10. The Arrivalsi constitutes the number of mac addresses that are seen
first within the time interval i = [t, t+ time interval].

11. The Departuresi is the number of mac addresses which are detected
for the last time within i ∈ [t, t+ time interval].

12. The Total detectedi is the equivalent of the total number of unique
devices which are being detected within i = [t, t+ time interval].

13. The matrix of detection represents a matrix which contains the num-
ber of detections of a mac addresses per time interval. It has the
following format: the rows represent the name of the unique hashed
mac address, while on the columns we can find the time interval num-
ber, which ranges in [0, intervals]. Let m be the number of unique
mac addresses that can be analyzed and n be equal to the number
of intervals.

Matrixdetections =


i0 i1 ... in

Mac0 # detections00 # detections01 . . . # detections0n
Mac1 # detections10 # detections11 . . . # detections1n

...
...

...
. . .

...
Macm # detectionsm0 # detectionsm1 . . . # detectionsmn



If the # dectectionsij=0, where i ∈ [0, m] and j ∈ [0, n], and there
was an arrival, but no departure, then this means that the Maci is
not being detected anymore, thus it is missing.

14. The behavior of a mac address represents a compressed way to de-
scribe how a mac address has been or not detected, which contains
information about its arrival and departure during a time interval of
a time period, as well as the number of consecutive detected inter-
vals followed by the number of consecutive missing intervals. This
compressed way of describing a mac address is very efficient when
calculating the statistics for very small time intervals as 10, 30, or 60
seconds, where there are a lot of time intervals.
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A.2 Statistics

Let there be time interval as the user-selected time interval and the time
period [timestart, timestop] within which we will compute the following
statistics:

1. The number of unique arrivals per selected time interval

Arrivals[t,t+time interval] = No. mac addresses with first appearances ∈ [t, t+ time interval]

, where t ∈ [timestart, timestop]

2. The number of unique departures

Departures[t,t+time interval] = No. mac addresses with last appearances ∈ [t, t+ time interval]

3. The number of detected devices per selected time interval

Total detected[t,t+time interval] = Arrivals[t,t+time interval]+Departures[t,t+time interval]

+Actual macs[t,t+time interval] −Mac in out[t,t+time interval]

where Mac in out[t,t+time interval] represents the number of unique
mac addresses that arrive and depart in the time interval [t,t+time interval].
The reason why we need to correct the value with these mac addresses
is that we add them twice: first for their appearance and second for
their departure, however, it represents the same mac address.

4. The number of devices that should have ideally been de-
tected by the drones

Ideal[t,t+time interval] =

[t−time interval,t]∑
i=[tstart,tstart+time interval]

(Arrivals[i] −Departures[i])

(A.1)

5. The number of missing mac addresses or the number of not
detected mac addresses

Missing[t,t+time interval] = Ideal[t,t+time interval]−Total detected[t,t+time interval]

- Departures[t,t+time interval]

6. The probability of detecting a device per time interval

P detected devices[t,t+time interval] =
Actual[t,t+time interval]

Ideal[t,t+time interval]
(A.2)
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, where

Actual[t,t+time interval] = Total detected[t,t+time interval]−Arrivals[t,t+time interval]−
Departures[t,t+time interval] +Mac in out[t,t+time interval](A.3)

and represent the mac addresses which arrived in a previous interval,
but have not departed yet.

7. The corrected percentage of detecting a device per time
interval

P detected devices[t,t+time interval] =
Actual[t,t+time interval]

Corrected Ideal[t,t+time interval]
(A.4)

where Actual[t,t+time interval] has the same formula previously men-
tioned, while the

Corrected Ideal[t,t+time interval] = Ideal[t,t+time interval]−Correction[t,t+time interval]
(A.5)

, which represents a correction that we use in order to not underes-
timate the value of the percentage of devices detected.

8. The average time difference between two consecutive detec-
tions

This is computed in two steps. First, we calculate the average delta
time per mac address:

Average delta time maci =

[timestop−time interval,timestop]∑
j=[timestart,timestart+time interval]

∆timeij∑[timestop−time interval,timestop]

i=[timestart,timestart+time interval]
# detectionsi−1(A.6)

Then we calcu-

late the average delta:

Average deltai =
m∑
i=0

Average

∆time maci
m(A.7)

where m represents the number of unique mac addresses.

The average number of detected devices∑[timestop−time interval,timestop]
j=[timestart,timestart+time interval]

# detectionsj

nj
(A.8)

, where n represents the number of unique mac addresses detected for each j.

The pull distribution
The pull distribution has the following formula:

pullx(i) =
(xi − actualx(i))

σx(i)

pully(i) =
(yi − actualy(i))

σy(i)

where the x(i) and y(i) represent the determined coordinates, the actualx(i)
and actualy(i) are the actual measurements of a mac address, and the σx(i)
and σy(i) are the errors of the algorithms.
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A.3 Experiments

A.3.1 Experiment 1

A.3.1.1 Test 1

Time Action Other

14:55 Started the experiment Direction towards Foxtrot and Delta
15:57 Pressed the home button -
15:58 Pressed the home button twice
14:59 Pressed the home button -
15:01 Pressed the home button -
15:02 Pressed the home button -
15:04 Pressed the home button -
15:05 Pressed the home button the cell phone a bit shifted to the side
15:07 Pressed the home button now it has the correct position
15:08 Pressed the home button -
15:09 Pressed the home button -
15:10 Pressed the home button -
15:11 Pressed the home button -
15:13 Pressed the home button -
15:14 Pressed the home button Stop the experiment

Table A.1: Experiment 1 Test 1

A.3.1.2 Test 2

Time Action Other

15:14 Started the experiment Direction towards Echo and Delta
15:16 Pressed the home button -
15:18 Pressed the home button twice
15:19 Pressed the home button -
15:21 Pressed the home button -
15:22 Pressed the home button -
15:23 Pressed the home button -
15:26 Pressed the home button twice
15:27 Pressed the home button -
15:29 Pressed the home button Stop the experiment

Table A.2: Experiment 1 Test 2

A.3.1.3 Test 3
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Time Action Other

15:30 Started the experiment Direction towards Echo and Charlie
15:32 Pressed the home button -
15:33 Pressed the home button -
15:34 Pressed the home button -
15:36 Pressed the home button -
15:37 Pressed the home button -
15:38 Pressed the home button -
15:39 Pressed the home button -
15:40 Pressed the home button -
15:42 Pressed the home button -
15:44 Pressed the home button Stop the experiment

Table A.3: Experiment 1 Test 3

A.3.1.4 Test 4

Time Action Other

15:45 Started the experiment Direction towards Charlie and Foxtrot
15:46 Pressed the home button Changed a bit its position
15:47 Pressed the home button -
15:49 Pressed the home button -
15:51 Pressed the home button third times pressed
15:52 Pressed the home button -
15:54 Pressed the home button twice
15:55 Pressed the home button Stop the experiment

Table A.4: Experiment 1 Test 4

A.3.2 Experiment 2

Test Timestart Timeend
Test1 13:40 13:49
Test2 13:50 14:00
Test3 14:03 14:13

Table A.5: Experiment 2
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A.3.3 Experiment 3

Test HTC Iphone
Timestart Timeend Timestart Timeend

Test1 11:40 11:56 15:00 15:16
Test2 11:58 12:14 15:19 15:35
Test3 12:20 12:36 15:40 15:56
Test4 12:38 12:54 15:59 16:15

Table A.6: Experiment 2

A.4 Datasets

The used datasets depend on the experiment and the analyses that were per-
formed. For simplicity, these datasets are explained by chapter as follows:

• Chapter 2, Comparison between the two developed algorithms

– The Fitter dataset of the CHEP conference

– The Trilaterator dataset of the CHEP conference

• Chapter 3, Modeling the time dependency of detecting WiFi devices

– The Fitter dataset of the CHEP conference

• Chapter 4, Controlled table top experiments

– Experiment 1

∗ The dataset with the recorded signal strength for the iPhone mo-
bile device

∗ The Fitter datasets of the reconstructed points for this experiment
before the bug fix

– Experiment 2

∗ The dataset with the recorded signal strength for the HTC mobile
device

– Experiment 3

∗ The dataset with the recorded signal strength for the iPhone and
HTC mobile devices

∗ The Fitter datasets of the reconstructed points for the iPhone and
HTC before the bug fix

– Experiment 4

∗ The dataset with the recorded signal strength for the iPhone and
HTC mobile devices

∗ The Fitter datasets of the reconstructed points for the iPhone and
HTC before the bug fix

• Chapter 5, The performance of the Fitter algorithm

– Experiment 1

∗ The dataset with the recorded signal strength for the iPhone mo-
bile device
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∗ The Fitter datasets of the reconstructed points for this experiment
before the bug fix

∗ The Fitter datasets of the reconstructed points for this experiment
after the bug fix

– Experiment 3

∗ The dataset with the recorded signal strength for the iPhone and
HTC mobile devices

∗ The Fitter datasets of the reconstructed points for this experiment
before the bug fix

∗ The Fitter datasets of the reconstructed points for this experiment
after the bug fix

– Experiment 4

∗ The dataset with the recorded signal strength for the iPhone and
HTC mobile device

∗ The Fitter datasets of the reconstructed points for this experiment
before the bug fix

∗ The Fitter datasets of the reconstructed points for this experiment
after the bug fix

A.5 Experiments and tests

A.5.1 Experiment 1

A.5.1.1 Test 2

The second test is shown in Figure 4.1b. In this experiment, the cell-phone is
on the table turned to the Echo and Delta drones. The start time of the Test
2 was at 15 : 13 until 15 : 29. The history of the actions that were performed
during this test can be read in Table A.2.

As in the case of the previous test, we plotted the signal strength distribution
over time and per drone. The results are visualized in FiguresA.1 and A.2. It
can be observed that over time in this case the Foxtrot drone has the highest
detected signal, followed by Delta, Echo, Charlie, and in the end Alpha, which is
different from the previous case. In addition to this, Foxtrot has again a smaller
number of records than the rest of the drones.
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Figure A.1: The signal strength of the five drones during Test 2

From a signal strength distribution perspective, it can be observed that all
the drones seem to have a Gaussian distribution shape. In contrast with Test 1,
the highest average value of the signal strength can be found in the case of the
Foxtrot drone, followed by the Delta drone with an average value of −48.6±2.1,
then by Echo −55.0 ± 5.2, and lastly Charlie −55.9 ± 5.2. These results may
indicate that there is a difference between the signal strengths given the position
of the cell-phone.

Figure A.2: The distribution of signal strength for each of the five drones during
Test 2

131



By looking at the scatter plot in Figure A.3, it can be observed that most of
the points are still on the table, where they form two clusters. It can observed
that the cluster on the left resembles the one obtained in Test 1, with the x
coordinates shifted to the left side and the y coordinates very close to 0. Besides
this cluster, one can also see another one on the right side. These points are
a bit shifted for both coordinates. An explanation for this result may be that
the Fitter allocates different weights to the received signal strength by different
drones depending on the magnitude of them. As seen in the previous plots, the
Foxtrot drone seemed to detect the most powerful signal strength.

Figure A.3: The determined coordinates by the Fitter algorithm after Test 2

A.5.1.2 Test 3

The third test can visualized in Figure 4.1c. The cell-phone is on the table
turned to the Echo and Charlie drones and the history of the actions that were
performed in this test is in Table A.3. This third test started at 15 : 30 until
15 : 45. As it can be seen in Figure A.4, Foxtrot seems to detect again the
highest signal strength and it seems to have a different shape than the others.
By comparing the other drones with each other, Delta seems to have a higher
signal than Echo and Charlie, followed in the end by Alpha. According to this
plot, Echo and Charlie detected the same signal at the beginning of this test,
but after a while they started differentiating themselves.
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Figure A.4: The signal strength of the five drones during Test 3

On one hand, when looking at the distribution of the signal strengths in
Figure A.5, the shape of Foxtrot’s distribution does not resemble the Gaussian
one, which may give us again an indication of the fact that this drone may have
some technical problems. On the other hand, the other drones seem to have
the shape of the normal distribution, with average values in this order: Delta,
followed by Echo, Charlie, and in the end Alpha. Compared to the other tests,
the Echo and Charlie distributions do not seem to resemble anymore and they
are not centered anymore in a close average signal value. According to Table
4.3, the average value of the signal strength for Charlie was −60.3± 3.1 smaller
than the one of Echo −54.2± 2.4.
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Figure A.5: The distribution of signal strength for each of the five drones during
Test 3

The Fitter algorithm seems to perform less well for this test compared to
Test 1 and Test 2, as only 2 points were calculated(Figure A.6). However, these
points are detected in the area of the table. As it can be seen, one of the points
seems to have the y coordinate close to 0, while the other one was detected
in the area of the Foxtrot drone, which can be explained by the fact that the
algorithm allocates a higher weight to the drone which detects the highest signal
strength, which in this case is Foxtrot.
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Figure A.6: The determined coordinates by the Fitter algorithm after Test 3

A.5.1.3 Test 4

The fourth test is visualized in Figure 4.1d. It started at 15:45 until 15:55. The
cell-phone was placed on the table turned to the Charlie and Foxtrot drones
and the history of the actions that were performed in this test is in Table A.4.
According to Figure A.7a, the signal strengths of Charlie, Delta, Echo seem to
intersect each other pretty much, especially in the case of Delta and Charlie.
This seems to be an interesting aspect, as this result has not occurred before.
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(a) The signal strength of the five drones during Test 4

(b) The distribution of signal strength for each of the five drones
during Test 4

Figure A.7: The results of Test 4 experiment 1

When looking at the distributions of the signal strength, it appears that
all the distributions except for Foxtrot seem to follow a Gaussian distribution.
Charlie, Delta, and Echo seem to have these distributions centered in pretty
similar average signal strength, which are −52.6 ± 6.0 for Charlie, −49.0 ± 2.1
for Delta, and −51.3± 4.3 for Echo(Table 4.3).
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Figure A.8: The distribution of signal strength for each of the five drones during
Test 4

The scatter plot of Test 4 in Figure A.9 shows that the Fitter algorithm
detects the coordinates of the iPhone close to its actual point. Most of the
resulting points form two different clusters on the table, which have the value
of the x coordinate on average close to zero. However, there can be also seen
points which are positioned outside the table, but still in the room.

Figure A.9: The determined coordinates by the Fitter algorithm after Test 4
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A.5.2 Experiment 2

A.5.2.1 Measurements of the signal strength versus distance-Test 1

Compared to Test 2 and Test 3, Test 1 has fewer measurements performed and
it has detections only up to the 27th meter step. The plot of the measurement
for this test can be visualized in Figure A.10.

(a) Measurements of Test 1 taken by drone Charlie

(b) Measurements of Test 1 taken by drone Echo

Figure A.10: Measurements of Test 1 from experiment 2

The plots of the measurements of both dronesA.10a and A.10b contain not
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only the measurements, but also the average of these measurements at every 3
meter step. It can be seen that the greater the distance is from the drones, the
lower the signal strength is.

Due to the fact that the drones are placed next to each other, we expect that
the signal strength to be detected in the same way, which can be actually seen.
However, for the 15th meter step the situation is different, as Charlie detects a
higher signal than Echo. A reason for this situation may be the shape of the
hallway, which at the 15th meter step has the entrance of the open-space area,
where the desks are located on the left side, while on the right side there are
the rooms of other offices and this may attenuate the signal strength.

A.5.2.2 Measurements of the signal strength versus distance-Test 2

By looking at the measurements performed in Test 2 with the results in Figure
A.11a and Figure A.11b, it can be seen again that the signal strength decreases
the further a cell-phone device is, but this is not the case all the time. If the
Charlie and Echo measurements are compared with each other, the shape of
their measurements resembles, except for the 3 meter distance. In addition to
this, the average value of the measurements decreases up to the 9 meters distance
and then it starts increasing in both cases at the 12 meter distance. Then, on
one hand, in case of the Charlie drone the average continues to decrease up
to 27 meters and then it increases for the 30 meters. On the other hand, this
situation does not actually happen for the Echo drone, where the average signal
strength increases at the 18 meter distance, followed by another increase but
less intense at 27 meters. This seems surprising as we would expect the power
of the signal to decrease continuously. One possible reason for this may be the
shape of the hallway, the walls, and the metal drawers which may attenuate or
may increase the signal strength at different locations.
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(a) Measurements of Test 2 taken by drone Charlie

(b) Measurements of Test 1 taken by drone Echo

Figure A.11: Measurements of Test 2 from experiment 2

A.5.2.3 Measurements of the signal strength versus distance-Test 3

The measurements of test 3 can be visualized in Figure A.12a and Figure A.12b.
Compared to the other experiments, these measurements seem to have in most
cases a smoother decrease even though this is not always the case. It can be
observed that Charlie has again spikes of the average signal strength at 12, 24,
and 30 meters distance, while Echo has an average signal spikes at 9, 18, 27, and
30. The reason why these spikes occur may be due to the shape of the hallway.
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(a) Measurements of Test 3 taken by drone Charlie

(b) Measurements of Test 3 taken by drone Echo

Figure A.12: Measurements of Test 3 from experiment 2

A.5.2.4 Chi-square minimization of the average signal strength test
1

As it can be seen in Tables 4.5 and 4.6 in the case of Test 1, the curve fit
function found in the scimpy.optimize Python package did not manage to find
the optimal parameters and instead it returned the initial guesses for several
trials. Due to this situation, we decided to try the average value of the parameter
estimates obtained by applying the same function for Test 2 and Test 3. Thus,
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in Figure A.13a and Figure A.13b, the calculated function is plotted, which has
the following form:

f(distance) = −44.9− 0.78× 20× log10 distance

versus the average signal strength obtained from the taken measurements.
As it can be seen in Figure A.13a, the fit seems pretty good up to the 12 meter
distance. However, in the interval between 12 up to 18 meters, the calculated
function does not entirely fit the data. As mentioned before, it may be the
situation that the shape of the hallway must have influenced the signal strength.
However, this is not the same situation for the Echo drone. According to Figure
A.13b, the calculated function, which has the following form :

f(distance) = −40.5− 0.9× 20× log10 distance

seems to fit pretty well the average values of the signal strength. Given the
fact that the curve fit function did not return any optimal parameters for this
data either, because the function may not have converged, these average values
of the optimal parameters seem to be quite good, but they may not be the ones
where the errors are minimized.
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(a) Measurements of Test 1 taken by drone Charlie

(b) Measurements of Test 1 taken by drone Echo

Figure A.13: Measurements of Test 1 from experiment 2

A.5.2.5 Chi-square minimization of the average signal strength test
3

The Figure A.14a and Figure A.14b describe the behavior of the drones Charlie
and Echo, respectively in Test 3. The functions are the following:

f(distance) = −37.7− 1.1× 20× log10 distance

for the Charlie drone and
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f(distance) = −35.8− 1.1× 20× log10 distance

for the Echo drone.
By looking at the first drone, it can be observed that the determined function

with the optimal parameters seems to fit the data better than in the previous
tests. The same thing seems to be for the Echo drone, even though it can be
seen that the function fits instead the lower bound of the average signal strength
at the 9 meter distance.

(a) Measurements of Test 3 taken by drone Charlie

(b) Measurements of Test 3 taken by drone Echo

Figure A.14: Measurements of Test 3 from experiment 2
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A.5.3 Experiment 3

A.5.3.1 Test 2

The distributions of the signal strengths can be visualized in Figure A.15a and
A.15b. On one hand, as seen in Test 1, the highest average signal strength can
be also seen for Delta for both devices. Apparently, this time the iPhone seems
to detect an higher average than the HTC for Delta drone. In addition to this,
the iPhone seems to communicate more with the drones than the HTC when
streaming data. On the other hand, the Beta drone has the lowest average signal
strength in both cases with −59.9±0.9dBm for the HTC versus −51.4±1.7dBm,
respectively for the iPhone. The main difference between the two devices is that
the HTC is recorded on average better by Echo than Charlie in contrast to the
iPhone, which is detected better by Charlie and less by Echo.
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(a) HTC mobile device

(b) iPhone mobile device

Figure A.15: The distributions of the signal strength of Test 3 from experiment
2

The results of test 2 are not as encouraging as the ones obtained in test 1,
because the number of calculated coordinates is small(10 for the HTC and 0
for the iPhone) given the high number of sniffed packets. However, a positive
aspect may be that in the HTC case, these points are clustered and the mobile
device is still seen in the area of the room where the experiment was performed.
The values of the average x-coordinate are still pretty small 1.3 ± −0.7 and
−0.7± 0.1 for the y coordinate, respectively. These values are higher compared
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to the ones of the previous experiment.

(a) HTC mobile device

(b) iPhone mobile device

Figure A.16: The coordinates detected by the Fitter algorithm in case of Test
2 from experiment 3

A.5.3.2 Test 3

According to Figures A.15b and A.17b, the Delta drone has again the highest
values of the average signal strength in the case of both mobile devices. More-
over, in the case of the iPhone mobile device, the second highest average signal
strength is followed by the Beta drone, then by the Echo drone, and finally by
Charlie. This is not the case with the HTC, which is followed by Echo, Char-
lie, and Beta lastly. Besides this, the distributions of Beta, Charlie, and Echo
overlap.
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(a) HTC mobile device

(b) iPhone mobile device

Figure A.17: The distributions of the signal strength of Test 3 from experiment
2

According to table4.9, the number of calculated points by the Fitter algo-
rithm is 25 for the HTC and 2 for the iPhone. This result is comparative to the
previous test, as the algorithm could not compute the position of the iPhone
device more than twice, but these points were still situated on the table. How-
ever, an interesting outcome was again that the determined points were located
close to the Delta drone for the HTC case.

The average coordinates obtained by the algorithm in the HTC case were
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0.9 ± 0.1 for the x-coordinate and −0.7 ± 0.2 for the y-coordinate, while, in
the iPhone’s case, they were 0.4 ± 0.4 for the x-coordinate 0.1 ± 0.3 for the y
coordinate, respectively.

(a) HTC mobile device

(b) iPhone mobile device

Figure A.18: The coordinates detected by the Fitter algorithm in case of Test
3 from experiment 3

A.5.3.3 Test 4

In the last performed test, it can be seen in Figure A.19a that the distributions
of Beta, Charlie, and Delta overlap. However, Echo seems to be shifted to the
left side and has the smallest average detected signal strength compared to the
rest. The same situation happens for the iPhone where the distributions of
Beta, Charlie, and Echo overlap, which is in contrast to the HTC case, where
the distribution of Delta is shifted to the right side and has a higher signal
strength compared to the other ones.
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(a) HTC mobile device

(b) iPhone mobile device

Figure A.19: The distributions of the signal strength of Test 4 from experiment
3

According to Figures A.20a and A.20b, it can be clearly seen that test 4
represents by far one of the best results obtained from this experiment as the
number of detected points is 63(HTC) and 63(iPhone). Each test was performed
for 16 minutes. Normally, at every 10 seconds, the Fitter algorithm should pro-
vide at least one point. This would mean that for these 16 minute experiments

around (16×6)
10 = 96 points should be determined. This means that the algorithm

performed unexpectedly well in the iPhone case.
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On the other hand, the average coordinates in the HTC case are −0.1± 0.3
and −0.6± 0.2 versus the ones calculated for the iPhone with an average for x
equal to 0.3± 0.0 and −0.9± 0.1 for y, respectively.

(a) HTC mobile device

(b) iPhone mobile device

Figure A.20: The coordinates detected by the Fitter algorithm in case of Test
4 from experiment 3

A.6 The performance of the Fitter algorithm -
Experiment 1

A.6.1 Test 2

In Test 2, we remind the reader that the position of the iPhone mobile device
was located with the home button towards the Charlie and Foxtrot routers.
According to Table 5.1, the number of calculated points by the algorithm is
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39, which is much less compared to the previous test. Thus, there were 49
time intervals of 10 without no detections and no pattern drawn from their
non-detections. However, after the bug fix, this issue was remedied and all
the time intervals with packets had points computed. For this experiment, 2
time intervals seem to not have any calculated points for the entire experiment.
Therefore, the probability of calculating points by the algorithm is equal to 1,
as in all the cases where packets were available it computed them.

Figure A.21 shows a nice shape in the number of packets over time. The
majority seem to be more than 5 packets per time interval of 10 seconds. This
is reassuring, because this experiment was performed mainly by pressing the
home button once a minute. This may indicate that even though the transition
between idle to active state is performed, the mobile devices still send sufficient
packets which can be used for applying the trilateration technique.

When looking at the plots of the coordinates Figure A.22, the calculated
points by the algorithms can be visualized before the bug fix and after. As
seen in the previous test, the number of points has definitely increased, but
the performance of the resolution did not. In Figure A.22b, the points are
scattered in all directions, even though most of them are located on the right
side of the reference point. One of the possible explanations for this result may
be that the routers that seem to record a higher signal strength compared to
the others are Foxtrot and Delta. Compared to Figure A.22a, Figure A.22b
contains much more outliers, which are especially located in outside the area of
the table and some of them even outside the area of the room. This appearance
of new points affected as mentioned before the average values of x and y. For
example, the average value of the x coordinate was 0.4± 1 while after the bug
fix it became −1.3 ± 2 which represents a significant difference. In addition to
this, the average y coordinate was initially −0.1± 0.7 and later was −1.2± 3.7.
Thus, not only the average values of both coordinates are further away from 0,
but their uncertainties have increased significantly.
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(a) The comparison between the states and data packets experiment
1 Test 2(before)

(b) The comparison between data records and packets experiment 1
Test 2(after)

Figure A.21: The comparison between data records and packets experiment 1
Test 2(before and after)
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(a) The calculated coordinates by the Fitter algorithm experiment 1
Test 2(before)

(b) The calculated coordinates by the Fitter algorithm experiment 1
Test 2(after)

Figure A.22: The calculated coordinates by the Fitter algorithm experiment 1
Test 2(before and after)

A.6.2 Test 3

In Test 3, the position of the mobile device with the home button towards the
Foxtrot and Delta routers. One would expect that the routers that would detect
the highest signals strengths would be Charlie and Echo. This is not entirely true
as the Foxtrot and Delta seem to again dominate in having the largest recorded
signal strengths. Another particularity for this test was that the algorithm
initially computed only 2 points, which did not make any sense as there were
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sufficient number of packets for every 10 second time intervals. Thus, according
to Table 5.1, there were 81 time intervals of 10 seconds with no detections. In
addition to this, the percentage of time intervals that had detections is 2.4%±
5.8%, which is low given the 97.6%±5.8% efficiency of the WiFi tracking system,
as there were 2 time intervals with no received packets. However, after the
bug fix the algorithm computed points for all the time intervals and the total
efficiency increased significantly from 2.4%± 5.8% to 97.6%± 5.8%.

According to the plots of the coordinates in Figures A.24a and A.24b1 , it
can be seen a significant difference between the two of them, as an increased
number of points are plotted after the correction of the algorithm. All these
points seem to be located as in Test 2 on the right side of the reference point.
The majority of points are close to the Foxtrot and Delta routers, which had
the highest signal strengths. This may reveal again that the orientation of the
device has an impact on the signal strength which significantly influences the
points calculated by the algorithm. Thus, by correcting the signal strength the
performance of the points may be improved. This represents a reassuring result
as correcting the signal strength can be controlled, but the position of the mobile
device cannot.

As mentioned in other tests as well, even though the number of points in-
creased significantly, the performance has decreased. For example after the bug
fix, the average x coordinate was 71.6±50.4, while the average y coordinate was
−5.1± 41.1. Thus, a search into the dataset of the coordinates was performed
which revealed the existance of 3 computed points with very high x and y coor-
dinates, which have a small probability of appearance. However, this situation
may provide evidence that further corrections should be made to the algorithm
such that these high values are avoided from analyses.

1It may be the case that the plot of the states and packets after the bug fix(Figure A.23b)
does not reveal the second time gap. This may happen, because the matplotlib package for
python sometimes does not show the gaps due to the multitude of 10 second time intervals.
Thus, it shrinks the image and some time intervals overlap with each other.
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(a) The comparison between the states and data packets experiment
1 Test 3(before)

(b) The comparison between the states and data packets experiment
1 Test 3(after)

Figure A.23: The comparison between the states and data packets experiment
1 Test 3(before and after)
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(a) The calculated coordinates by the Fitter algorithm experiment 1
Test 3(before)

(b) The calculated coordinates by the Fitter algorithm experiment 1
Test 3(after)

Figure A.24: The calculated coordinates by the Fitter algorithm experiment 1
Test 3(before and after)

A.6.3 Test 4

The fourth test of experiment 1 was with the home button positioned towards
the Echo and Delta routers. When looking at the Figures A.25a and A.25b, it
can be seen that on average there are 5 packets per 10 second time intervals,
except for one time interval which does not contain any data packets. Thus,
the efficiency of the WiFi tracking system is 98.3%± 5.8%. This is a significant
result as this experiment tested the communication with the probe packets.
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Initially, for this test only 20 points were detected, but afterwards the algorithm
computed 39 more points which represented all the number of 10 second time
intervals with packets, but no calculated points.

When looking at the Figure A.26, it can be seen again that the newly com-
puted points do not improve the accuracy of the detections, as most of them are
outliers are located either in the area of the room or outside the room. Because
the Foxtrot had on average the highest detected signal strength, the majority
of the points are located close to this router. In addition to this, there are also
points scattered on the table, which seem to have the x coordinate close to 0.
However, on an aggregated level, the average x coordinate is 0.5 ± 0.8, while
the y coordinate is 0.7 ± 1.5. Thus, as expected, the resolution of the average
coordinate did not improve even though there were points computed.
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(a) The comparison between the states and data packets experiment
1 Test 4(before)

(b) The comparison between the states and data packets experiment
1 Test 4(after)

Figure A.25: The comparison between the states and data packets experiment
1 Test 4(before and after)
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(a) The calculated coordinates by the Fitter algorithm experiment 1
Test 4(before)

(b) The calculated coordinates by the Fitter algorithm experiment 1
Test 4(after)

Figure A.26: The calculated coordinates by the Fitter algorithm experiment 1
Test 4(before and after)

A.7 The performance of the Fitter algorithm -
Experiment 3

A.7.1 Test 2

Test 2 was performed by having the mobile devices with their home buttons ori-
ented towards routers Beta and Echo. According the results of test 2(Subsubsection
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A.5.3.1), the average signal strengths could be found for both devices in the case
of the Delta drone, followed by Echo and Charlie in the HTC case and the re-
verse order the iPhone case. In addition to this, this test together with test 3
provided initially poor results with respect to the number of points being cal-
culated. However, this result changed after the fix and the number of compute
points increased from 10(HTC) and 0(iPhone) to 95 points(Figure A.27 and
Figure A.29). In addition to this, the algorithm could not only compute the
coordinates for one time interval for both mobile devices.

A.7.1.1 HTC

An interesting result in the HTC case was that the average x and y coordinates
did not change even though the number of computed points was significantly
higher after the bug fix. This was a positive result compared to the one obtained
in experiment 1 where the average x and y changed considerably. For example,
according to Table 5.2, the average previous x coordinate was 1.3 ± 0.1, while
the current one is 1.3±0.1, while for the y coordinate the average was −0.7±0.1
compared to −0.8± 0.0.

Figures A.28a and A.28b show the points computed by the algorithm. As it
can be seen in the first figure, there is a small cluster of points located in the
vicinity of the Delta router. As mentioned before, the Delta router recorded
the highest signal strength out of the four routers and this may represent one of
the reasons why the cluster of points is located in that area. A positive aspect
is that this cluster of points is still maintained after the bug fix(Figure A.28b),
which seem to be concentrated into the same space with a similar shape. Besides
this, it can be observed that the points are still in the area of the room and
close to the area of the table. This may indicate that if the routers are properly
calibrated the results may improve.

161



(a) The states and coordinates detected by the Fitter algorithm for
the HTC mobile device experiment 3 Test 2(before)

(b) The states and coordinates detected by the Fitter algorithm for
the HTC mobile device experiment 3 Test 2(after)

Figure A.27: The states and coordinates detected by the Fitter algorithm for
the HTC mobile device in experiment 3 Test 2(before and after)
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(a) The reconstructed coordinates by the Fitter algorithm for the
HTC mobile device experiment 3 Test 2(before)

(b) The reconstructed coordinates by the Fitter algorithm for the
HTC mobile device experiment 3 Test 2(after)

Figure A.28: The reconstructed coordinates by the Fitter algorithm for the
HTC mobile device experiment 3 Test 2(before and after)

A.7.1.2 iPhone

Test 2 for the iPhone was initially the one which performed the worst. This was
unexpected as there seemed to be a lot of data packets for each 10 second time
interval. This test was similar to other tests from a number of data packets
perspective, but later contained data points compared to test 2 which did not
compute any data point. However, after the bug fix, for this test 95 data
points were computed. Due to the absence of data points, there cannot be
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made any comparison before the initial situation and the current situation from
a resolution of coordinates point of view. It can be affirmed that the current
average x coordinate is 1.2±2.2 and −1.2±1.0 for the y coordinate, respectively.

In Figure A.30b, a cluster of points can be observed close to the Delta drone
and several scattered points are located between the Charlie and the Delta
drones. These points are not on the table, but inside the room. This may
indicate that the signal strength plays a key role in the way the coordinates are
reconstructed(Subsubsection A.5.3.1).
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(a) The states and coordinates detected by the Fitter algorithm for
the iPhone mobile device in experiment 3 Test 2(before)

(b) The states and coordinates detected by the Fitter algorithm for
the iPhone mobile device in experiment 3 Test 2(after)

Figure A.29: The states and coordinates detected by the Fitter algorithm for
the iPhone mobile device in experiment 3 Test 2(before and after)
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(a) The reconstructed coordinates by the Fitter algorithm for the
iPhone mobile device experiment 3 Test 2(before)

(b) The reconstructed coordinates by the Fitter algorithm for the
iPhone mobile device experiment 3 Test 2(after)

Figure A.30: The reconstructed coordinates by the Fitter algorithm for the
iPhone mobile device experiment 3 Test 2(before and after)

A.7.2 Test 3

Besides Test 2, Test 3 also seemed to have a poor performance initially for both
mobile devices, actually the iPhone performed worse from a number detected
data points) However, this situation changed when the algorithm was fixed and
the number of points computed for the iPhone was 95 compared to 94 in the
HTC case which had one time interval for which the algorithm could not provide
a solution even though the number of packets was different than 0. In Tables 5.2
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and 5.3, the average x and y coordinates can be visualized. As it can be seen,
the average coordinates in the HTC case did not seem to increase significantly,
compared to the iPhone case where the x coordinate increased slightly from
0.4±0.4 to 1.0±0.2 and 0.1±0.3 to −0.9±0.3 for the y coordinate, respectively.

A.7.2.1 HTC

The plots of the coordinates can be observed in Figure A.32 where there is a
formed cluster of points which is situated close to the Delta router. This cluster
is split between the area of the table and the area of the room. Between the
Figure A.32a and Figure A.32b, there seems to be a difference only from a
number of computed points perspective. This is also supported by the fact that
the average x and y coordinates changed slightly from the previous dataset to
the new obtained one after the algorithm was fixed. As mentioned before, the
position of the cluster may be influenced by the signal strengths of the Delta
and Echo routers.
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(a) The states and coordinates detected by the Fitter algorithm for
the HTC mobile device experiment 3 Test 3(before)

(b) The states and coordinates detected by the Fitter algorithm for
the HTC mobile device experiment 3 Test 3(after)

Figure A.31: The states and coordinates detected by the Fitter algorithm for
the HTC mobile device experiment 3 Test 3(before and after)
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(a) The reconstructed coordinates by the Fitter algorithm for the
HTC mobile device experiment 3 Test 3(before)

(b) The reconstructed coordinates by the Fitter algorithm for the
HTC mobile device experiment 3 Test 3(after)

Figure A.32: The reconstructed coordinates by the Fitter algorithm for the
HTC mobile device experiment 3 Test 3(before and after)

A.7.2.2 iPhone

The number of computed points for this test was significantly increased from 2
to 95 which meant that the probability that the algorithm determined points
raised from 2.1%± 5.8% to 99.0%± 3.5%(Table 5.3).

The plots of the points computed by the algorithm can be visualized in
Figure A.34 where two main clusters of points can be seen. On one hand, there
is the one which is close to the Delta router and which is located at the area
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of the table. These points seem to have smaller x and y coordinates. On the
other hand, there is another area with scattered points that are located inside
and outside the area of the room. These points are positioned in the middle
between the Beta and Echo routers. This result may be explained by the fact
that the distributions of the signal strength of the Beta and Echo routers seem
to overlap with each other.
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(a) The states and coordinates detected by the Fitter algorithm for
the iPhone mobile device in experiment 3 Test 3(before)

(b) The states and coordinates detected by the Fitter algorithm for
the iPhone mobile device in experiment 3 Test 3(after)

Figure A.33: The states and coordinates detected by the Fitter algorithm for
the iPhone mobile device in experiment 3 Test 3(before and after)
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(a) The reconstructed coordinates by the Fitter algorithm for the
iPhone mobile device experiment 3 Test 3(before)

(b) The reconstructed coordinates by the Fitter algorithm for the
iPhone mobile device experiment 3 Test 3(after)

Figure A.34: The reconstructed coordinates by the Fitter algorithm for the
iPhone mobile device experiment 3 Test 3(before and after)

A.7.3 Test 4

Test 4 was performed with the mobile devices having their home button oriented
towards Charlie and Delta routers. From a performance perspective, this test
can be compared with Test 1 which also had sufficient initial points computed.
Thus, it can be seen in Tables 5.2 for the HTC and 5.3 for the iPhone that the
average x and y coordinates did not considerably alter. This seems a positive
aspect in the sense that the algorithm is able to be consistent even though some
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changes were made to it. From an efficiency point of view, the total efficiency
the tracking system increased from 64.9% ± 16.8% to 96.9% ± 6.1% in case of
the HTC, but, in the iPhone case, it only changed slightly from 95.9% ± 7.0%
to 96.9%± 6.1%.

A.7.3.1 HTC

Test 4 of the HTC revealed that only 63 points were computed initially. How-
ever, this represented the best result obtained for this mobile device. After the
algorithm was modified, the final number of computed points was 94 which was
equal to the one obtained for the iPhone. From a coordinates’ perspective, there
was no significant modification compared to the previous results. For example,
the initial average x coordinate was equal to −0.1 ± 0.3 and −0.6 ± 0.2 for y,
while the new ones are −0.2± 0.3 for x and −0.9± 0.5 for y.

According to Figure A.36, one can see two main areas with points. One
of them seems to have a vertical straight shape slightly positioned to the left
and downward side of the reference point. These points tend to have the x
coordinate close to 0. In addition to this, they are split between the area of
the table and the area of the room and they are located between Delta and
Charlie routers. This may be explained by the fact that the routers with the
highest signal strength were Delta, followed by Charlie, Echo, and Beta which
had overlapping distributions of the signal strength.
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(a) The states and coordinates detected by the Fitter algorithm for
the HTC mobile device in experiment 3 Test 4(before)

(b) The states and coordinates detected by the Fitter algorithm for
the HTC mobile device in experiment 3 Test 4(after)

Figure A.35: The states and coordinates detected by the Fitter algorithm for
the HTC mobile device in experiment 3 Test 4(before and after)
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(a) The reconstructed coordinates by the Fitter algorithm for the
HTC mobile device experiment 3 Test 4(before)

(b) The reconstructed coordinates by the Fitter algorithm for the
HTC mobile device experiment 3 Test 4(after)

Figure A.36: The reconstructed coordinates by the Fitter algorithm for the
HTC mobile device experiment 3 Test 4(before and after)

A.7.3.2 iPhone

This test contained an unexpectedly large number of computed data points
compared to the rest(93 points). Thus, there only 3 time intervals of 10 seconds
which did not contain a reconstructed data point by the algorithm. For 2 out
of these three 3 time intervals, the algorithm after it was repaired it was able
to compute points(Figure A.37). This was an encouraging result

Figure A.38 reveal the plots of the reconstructed points for this mobile de-
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vice. As expected, the shape of the plot did not change, as only two additional
points where added. This shape seems to have a vertical straight form located
between the Charlie and Delta routers and outside the area of the table, which
may be explained by the overlapping distributions of the Charlie and Delta
routers.

(a) The states and coordinates detected by the Fitter algorithm for
the iPhone mobile device in experiment 3 Test 4(before)

(b) The states and coordinates detected by the Fitter algorithm for
the iPhone mobile device in experiment 3 Test 4(after)

Figure A.37: The states and coordinates detected by the Fitter algorithm for
the iPhone mobile device in experiment 3 Test 4(before and after)
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(a) The reconstructed coordinates by the Fitter algorithm for the
iPhone mobile device experiment 3 Test 4(before)

(b) The reconstructed coordinates by the Fitter algorithm for the
iPhone mobile device experiment 3 Test 4(after)

Figure A.38: The reconstructed coordinates by the Fitter algorithm for the
iPhone mobile device experiment 3 Test 4(before and after)
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