
Master Thesis

A machine learning approach to predict
service level for call centers

Author: Hatim Akidas (2596883)

1st supervisor: Rene Bekker
daily supervisor: Siqiao Li (CCMath)
2nd reader: Sandjai Bhulai

A thesis submitted in fulfillment of the requirements for
the VU Master of Science degree in Business Analytics

August 1, 2022



Abstract

One of the main challenges for call centers is to utilize the appropriate type
and amount of workforce to handle stochastic demand throughout time. The
process which is concerned with tackling this challenge is named workforce
management (WFM). One of several phases within the WFM process is the
agent scheduling phase, in which the service level is predicted to determine
whether the schedule meets the service demands. Currently, service level pre-
diction is done by the use of Erlang models (Erlang C, Erlang A) as well as
simulation. However, the Erlang models make several assumptions that do not
always hold in reality, which can lead to poor performance. Whereas simulation
may potentially perform better than Erlang models, it is less convenient to use
in a business environment due to its large time complexity and challenging im-
plementation. In addition, setting up a simulation model is a challenging task
which requires advanced skills and a lot of time. Furthermore, a call center
may show different behaviour depending on different attributes like its location
or agents. Based on this behavior different correlations and patterns may be
found, which cannot be captured by the Erlang models. Capturing these pat-
terns by a simulation model is a challenging task, since extensive data analysis
and implementation expertise is required to do so. We wonder whether a ma-
chine learning model is able to capture these type of hidden patterns and thus
provide a more accurate prediction of the service level. This paper proposes a
machine learning method to predict the service level in a realistic call center
environment, alternative to the traditional Erlang models and simulation. The
results show that the proposed machine learning method is able to have a more
accurate prediction of the service level than Erlang C and Erlang A with negli-
gible computing time. We were able to implement a machine learning method
that has a prediction error of 0.195 in terms of WAE in our experiments, which
is a reduction of 47.9% and 26.6% with respect to the Erlang C and Erlang A
model, respectively.
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1

Introduction

Call centers play an important role in providing good customer service for a wide range
of businesses. One may argue that due to the increasing popularity of offering automated
customer service, this role may become less significant in the future. However, market
growth statistics [12] show that the call center market size is increasing and is expected
to increase in the years to come. The general goal of call centers is to offer high quality
customer service while minimizing labor costs. A well-known metric to measure the quality
of customer service within call centers is the service level. The service level (SL) describes
the percentage of calls that are responded to within a certain time threshold τ . Call centers
are required to meet the so-called service level agreement (SLA), determined over a certain
time period. An often used SLA is that 80% of incoming calls (including abandoned calls)
must be answered within 20 seconds, measured per working day. A formal definition of
the service level is given in chapter 2. It is important to note that although the service
level makes a great tool to measure quality of service provided by a call center, it must be
put in perspective. Although responding to as many calls as possible within the specified
threshold will yield a higher service level, the actual quality of service provided during
these calls matters at least as much.

Within call centers service may only be provided shortly after demand has occurred. The
short time in which a call must be responded to, combined with the randomness in demand
and service time, creates challenges regarding workforce planning. An attempted solution
that may naturally address this challenge is predicting the required workforce throughout
time, based on the forecasted demand. The process of utilizing the appropriate workforce
at the right moment is called workforce management (WFM). The WFM process consists
of multiple phases, which we further elaborate on in chapter 2. This paper mainly focuses
on the agent scheduling phase.

An important part of the agent scheduling phase is predicting what the service level
will be over a certain period of time (e.g. a working day), given an agent schedule and a
forecast of the calls arriving. Based on this predicted service level, the agent shifts may
be rearranged, such that the service level of the considered day meets the SLA. The SL
estimation is often accomplished using Erlang models (Erlang C, Erlang A), which are easy
to apply in practice by only requiring a small number of relatively simple inputs. However,
the Erlang models have certain assumptions which may not always hold in reality. These

1



1. INTRODUCTION

assumptions include that the calls arrive according to a Poisson process and that the ser-
vice times follow an exponential distribution. Another method to predict the service level
is by simulation. Whereas simulation may potentially achieve more accurate prediction of
service levels than the Erlang models, it is less convenient to use in a business environment
due to its large time complexity and challenging implementation. Additionally, a call cen-
ter may show different behavior depending on several characteristics like its location, its
agents or the nature of the underlying business. In this behavior, different correlations and
patterns may be found, which cannot be captured by the Erlang models. Capturing these
patterns by simulation is a challenging task since extensive data analysis and implemen-
tation expertise is required to do so. Moreover, modelling can be very challenging since
many different factors and patterns have impact on the service level.

One example of these hidden patterns in agent behavior may be that specific agents
take considerably more time to handle calls due to various reasons, which in turn may
impact the service level. This example illustrates a hidden pattern which may be found
by analyzing the data of a call center, but which cannot be captured by Erlang models.
However, a machine learning model is able to capture patterns of such kind and, in doing
so, may provide a more accurate prediction of the service level. Moreover, in recent years
call center data has become more accessible than ever before. This allows for data-driven
approaches of optimizing business processes within this industry. Thus, this paper pro-
poses a framework of how to build a machine learning model specifically for a call center
using its historical data set so as to provide a more accurate prediction of the service level
than the traditional Erlang models while having limited computational time.

In chapter 2 we describe the process of WFM in a call center context. Additionally, we
explain how and in which phases of the WFM process the Erlang models are applied. In
chapter 3 we describe our data set, explain processing steps and present data analysis to
have a better understanding of the call center characteristics as well as potential patterns.
In chapter 4 we explain our methodology, including the choice of model, feature selection
and performance measure choices. In chapter 5 we obtain several features. This initial
feature selection is based on additional feature analysis as well as data analysis that is
presented in chapter 3. In chapter 6 we present the results in terms of model performance
on the conducted experiments and provide analysis to interpret these performances. In
chapter 7 we conclude our research by briefly summarizing our findings, describing our
contributions and giving recommendations for practitioners. Finally, in chapter 8 we dis-
cuss the limitations of this paper and give recommendations for future research.
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1.1 Related work

1.1 Related work

This paper aims to provide an approach to predict the service level for multi-skill call
centers using machine learning. Call centers are usually modelled by queuing models. The
most widely used queueing model for modelling call centers is the Erlang C model (M/M/c
queue), which was introduced by A.K. Erlang in [8]. [3] analyzes the fit of the Erlang C
model in realistic call center situations. They show that when Erlang C is used in a realis-
tic call center environment the predicted performance measures contain large error. This
error tends to be pessimistic, the Erlang C model tends to predict a lower service level
than in reality [3], which can lead to overstaffing. C. Palm proposed the Erlang A model
(M/M/N+M) in [18], which extends the Erlang C model by considering abandonment.
The Erlang A model assumes that every caller has a patience time. If the waiting time for
an agent to respond exceeds the patience time of the caller, the call is abandoned. The
patience time is modelled as an exponential distribution with constant mean [11, 17]. The
Erlang A model seems to make a decent prediction of steady-state behavior of high traffic
call centers. However, in realistic call center situations several assumptions are violated.
This causes the Erlang A model to suffer significant error in predicting performance mea-
sures. The error seems to have an optimistic bias in low volume scenarios and a pessimistic
bias in high volume scenarios [19]. Erlang C and Erlang A both assume that the calls are
homogeneous and that all agents are able to handle these calls. In a multi-skill situation,
which is often the case in a realistic call center environment, this assumption is violated [16].

Simulation models are proposed as a method to model multi-skill call centers in order
to predict performance measures [1, 6]. [13] provides an overview of simulation models
to model call centers. They discuss required inputs to model a call center by the use of
simulation. Simulation models allow for complex modelling and are able to make accurate
predictions of performance measures [4, 2]. However, one of the major drawbacks of sim-
ulation models is that they may have a large computational time. This makes simulation
models less appealing for schedulers that require multiple iterations of performance mea-
sure predictions within a short time frame. Due to the need for faster methods that allow
for real-time optimization of call center schedules, literature has recently started exploring
machine learning methods for prediction. [21] proposed a machine learning framework to
predict performance measures for a multi-skill call center, given a staffing level obtained
with simulated data. The paper concluded that a machine learning approach to predict
performance measures is promising for both small-to-mid-sized and large complex call cen-
ters. [5] proposed a data-driven method to predict the service level based on real-world
data. They discuss several input features based on data analysis and propose ensemble
tree methods to predict the service level. The paper conducts performance experiments in
which ground-truth values of input features were used instead of forecasted values, which
are used in reality. It concludes a reduction of 6% (MAE ) in prediction error compared to
Erlang A based on the experiments.
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2

Preliminaries

In this chapter we provide relevant information that is needed to have a better understand-
ing of this paper. This includes the context in which the research is conducted. In section
2.1 we give a general description of the call center process and WFM. In section 2.2 the
Erlang models are briefly discussed and a description is given of their application within
call centers. In section 2.3 we provide a list of definitions of terms and formula’s that are
frequently mentioned in this paper.

2.1 Call center process & WFM

The data set considered in this paper originates from Vanad Laboratories, which uses a
first come first served (FCFS) routing policy. In practice this means that the first arriving
call will be served first In figure 2.1 we show a simplified diagram which illustrates the
call center process schematically. Customers may abandon the queue if the waiting time
is too long. After abandonment the call may either be lost, or the customer may redial
to try again, which is counted as a new call arrival. After customers are served they may
either be satisfied or call again for any reason related to the previous call, which again is
considered as a new call arrival.

Figure 2.1: Simplified overview of call center call process with three agents

This paper focuses on a multi-skill call center situation. In a multi-skill call center dif-
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2.1 Call center process & WFM

ferent calls can require different types of service. Only agents that are trained to offer a
specific service are then able to handle an incoming call that requires the aforementioned
service. This constraint introduces a new layer of complexity when it comes to forecasting
and agent scheduling compared to a single-skilled call center as sketched in figure 2.1.

The WFM process aims to utilize the appropriate workforce at the right moment. In
figure 2.2 we present a schematic overview of the WFM process [10]. The process can be
split in five steps, one row for each step. In the Time column we observe an approximation
of how much time in advance the considered step should be taken. The Frequency column
indicates how often the considered step should be taken. Steps describes the steps that are
taken. Note that prior to each step there is a forecasting step. This forecast is made based
on historical data and gives an indication of how much call volume to expect within the
desired time scale. Capacity planning is an important step which aims to estimate how
many agents are required based on a forecast and on the required output. It can also be
noted that capacity planning occurs several times for different steps and processes. The
distinction between those steps is made based on their time scale and desired output. This
brings us to the next column Output which specifies what the desired outcome is after
taking the specified steps. To clarify how the overview should be read and how the steps
can differ from each other based on the time scales we give a description of the first two
rows of the overview.

We see that the budget planning process and capacity planning process both have fore-
casting and capacity planning as steps to take with different desired output. Within the
budget planning process, which is described in the first row, it is noted that approximately
a year in advance a forecast of the expected call volume should be made. Based on this
forecast the call center performs capacity planning. Based on this capacity plan the call
center then creates a budget plan. During the capacity planning process, described in
the second row, the call center makes a forecast of the call volume approximately three
months in advance. This allows a more precise forecast than the forecast made in the
budget planning phase. Based on this forecast the number of agents needed weekly can
be estimated. Combined with the budget plan, the hire/fire agenda is developed so as to
meet the required demand with sufficient service level as much as possible.

5
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Figure 2.2: Schematic overview of WFM process
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2.1 Call center process & WFM

As mentioned in section 1, our research locates in the agent scheduling phase. This
phase in practice often consists of multiple steps. The process starts with staffing, which
requires a forecast of the call volume, the outsourced call volume and the available (hired
and trained) agents as input. During this step the schedulers estimate how many and
which agents are required for every day. This estimation is generally done by the use
of queueing models (e.g. Erlang C) or simulation. Service performance measures (ser-
vice level, average speed of answer) as well as employee workload measures (occupancy)
are taken into account during staffing. This means that the number of agents staffed for a
certain day must meet several requirements, for example the service level agreement (SLA).

After staffing, schedulers can convert staffing levels to shifts and assign them to agents.
This phase of scheduling shifts and shift assignment based on staffing levels can be com-
pared to a feedback loop, which is illustrated in figure 2.3 [10]. During this phase a certain
schedule is created, after which the performance measures (e.g. SL) are predicted through-
out the day and based on the result the schedule may be altered by re-arranging the shifts
and the shift assignment to the agents. In this phase, agents’ contract hours, unavailability
and scheduling rules should be considered. This is repeated until a sufficient schedule is
found to meet their different kinds of SL agreements (e.g., meet a SL target throughout
the day or meet a SL target every interval). The prediction of the performance measures is
again done by queuing models or simulation. In practice, many call centers or scheduling
tools will apply the Erlang C or Erlang A model instead of simulation during scheduling
to predict the service level per interval because of its calculation speed. The focus of our
research is on this scheduling & shift assignment phase. A better SL prediction considering
agents’ behavior can lead to a more reliable schedule which gives less adjustment in the
last phase: intra-day management process.

Figure 2.3: Diagram of agent scheduling process

7



2. PRELIMINARIES

2.2 Erlang models

To give a better understanding of how the Erlang models are exactly used we give for-
mal formulations of each queuing model and further elaborate on their utility within the
scheduling phase.

The Erlang C model (also known as M/M/c queue) is the most simple and popular
queuing model used within call centers. It requires several assumptions, some of which can
also be its main drawbacks when used for call centers. These assumptions within a call
center environment are:

• Poisson arrival process of calls,

• Exponentially distributed service times,

• no abandonments,

• calls are handled according to FIFO,

• calls are directed to the first available agent,

• queue sizes are unlimited.

The probability that a calling customer has to wait to get service is given by the Erlang

C formula Pw =
AN

N !
N

N−A

(
∑N−1

i=0
Ai

i!
)+AN

N !
N

N−A

, where

• Pw is the probability that an arriving call has to wait,

• λ is the number of call arrivals per hour,

• T is the average handling time in minutes,

• A = λ T
60 is the total traffic intensity in Erlangs (total call hours per hour),

• N is the number of agents available.

Based on the probability Pw the service level can be calculated according to the model.
The formula is given by SL = 1−Pw ∗ e−

τ(N−A)
60T , where τ is the response threshold in sec-

onds. For the system to be stable the number of available agents must be larger than the
total traffic intensity (N > A). Given a call volume forecast, average handling time and
number of agents the Erlang C model can be used to predict the service level. This service
level prediction is done at several phases of the WFM process. Since we are concerned with
the scheduling phase, we will give a description of how the Erlang C model is used during
this phase. In practice, call centers may have different types of SLA’s that they must meet.
Contracts may contain agreements about service levels that must be met throughout the
day (e.g. meeting service levels over consecutive intervals) as well as over each day sep-
arately. This is an important reason for call centers to predict service levels per interval
when scheduling. Partially guided by the predicted service levels, the schedule-makers re-
arrange the schedule and again apply the Erlang C model to predict new service levels after

8



2.3 Definitions and terminology

changes are made. This is repeated until a schedule is found that meets the concerned SLA.

One of the main drawbacks of the Erlang C model is that it assumes that the queue can
be infinitely long which means that there are no abandonments. It is evident that this
assumption does not hold in reality, since customers will hang-up after a certain amount
of time waiting in the queue. The Erlang A model (also known as M/M/N+M queue)
extends the Erlang C model by taking abandonments into account. It models that each
caller has an exponentially distributed patience time with mean 1

θ . If the waiting time
exceeds the patience time, the caller will abandon the queue and hang-up the call. Even a
small amount of abandonments can have a large impact on the performance of the queuing
system. Extending the model from assuming no abandonment to considering abandonment
is therefore a fundamental change which can have great impact on the model performance
measures. In contrast to the Erlang C model, the Erlang A model tends to overestimate
the service level [20], which can lead to understaffing.

2.3 Definitions and terminology

Definitions of frequently used terminology are given below.

• Call volume: The number of calls that arrive to the call center within a specified
time interval is referred to as call volume.

• Abandonment: The number of calls that are hanged up before being picked up by
an agent within a specified time interval is known as abandonment.

• Call time: The time that an agent spends on call with the caller.

• Wrap-up time: Time that is spent on finishing work related to a call after hanging
up is referred to as wrap-up time.

• Shrinkage: The time (or fraction of time) that agents spend on activities that do
not contribute to handling calls (e.g. breaks or meetings). We distinguish between
scheduled and unscheduled shrinkage.

• Service level (SL): The fraction of calls that are answered within a time threshold
τ over a time interval. There are several methods to define the service level. The
definition that is considered in this paper is given by SL = #answered≤τ

#offered , where τ
equals 20 seconds.

• Service level agreement (SLA): The service level that the call center aims to minimally
offer. The industry standard is that 80% of calls are answered within 20 seconds.

• Handling time (HT): The sum of call time and wrap-up time.

• Average Handling Time (AHT): The average handling time for a specified interval.

9



2. PRELIMINARIES

• Weighted Average Error (WAE): The average prediction error weighted by the call
volume. WAE is defined as:

WAE =

∑n
i=1Ci|yi − ŷi|∑n

i=1Ci
(2.1)

, where

– Ci is the call volume of interval i,

– yi is the realised service level over interval i,

– ŷi is the predicted service level over interval i

– and n is the number of intervals.

• Mean Absolute Error (MAE): is defined by

MAE =
1

n

n∑
i=1

|yi − ŷi|. (2.2)

• Gradient Boosted Decision Trees (GDBT): A tree-based ensemble learning method
that uses gradient boosting as its ensemble technique.

10



3

Data analysis

In this chapter we describe the data and perform analysis to get a better understanding of
the call center and its attributes. In section 3.1 we give a thorough description of the data
as well as relevant data processing steps. In sections 3.2 to 3.5 data analysis is performed to
find potential patterns and correlations, which are used to determine the machine learning
model features.

3.1 Data description and processing

The data that is used in this paper is from a multi-skill call center named Vanad Lab-
oratories. Two data sets of the year 2014 are considered. The first data set consists of
call records whereas the second data set consists of agent activity records. Both data sets
consist of one year of records. In table 3.1 we illustrate example records of the call record
data set. The column descriptions are summarized below.

queue_time queue_id agent answered consult transfer hangup
2014-01-03 14:45:44 30175 6945 2014-01-03 14:46:25 NaN NaN 2014-01-03 14:48:54
2014-01-03 14:45:48 30175 9427 2014-01-03 14:46:29 2014-01-03 14:49:57 2014-01-03 14:50:59 2014-01-03 14:57:54
2014-01-03 14:45:56 30175 NaN NaN NaN NaN 2014-01-03 14:46:28

Table 3.1: Example of call record data

• queue_time describes the moment that the call has arrived.

• queue_id denotes what queue type the contact record is admitted to.

• answered describes whether a call was answered, and if so, the moment it was an-
swered. Missing values mean that the call was never answered and thus abandoned.

• consult describes if and when a consultation (internal) call was made to help serve
the customer. Missing values show that there was never a consultation call for the
considered record.

• transfer describes if and when the call was transferred to a colleague to help serve
the customer. Missing values indicate that there was no transfer made for this call
record.

11



3. DATA ANALYSIS

• hangup describes the moment the call was ended.

This data set contains 1.543.164 rows of contact records, each assigned to one of 27
queue types. We observe that the eight most common queue types make up approximately
99% of all contact records. We decided to drop the records which are assigned to the less
relevant queues and only consider these eight queue types. The call center is closed on
Sundays and has minimal activity on Saturdays compared to the rest of the week. The call
volume on Saturdays makes up 1% of the total number of calls. Additionally, we observe
that on working days, the majority of calls arrive between 08:00 - 20:00. We thus decide to
focus on calls that occur between 08:00 - 20:00 on working days. Calls that occur during
weekends, national holidays or beyond the specified time frame are beyond the scope of
this paper. After dropping the mentioned records we are left with 1.503.127 call rows,
which is a decrease of 2.6% of the total number of records.

We immediately add several columns which contain relevant information about the records.
An updated illustration of the call record data is given in table 3.2. These columns are
summarized below.

queue_time queue_id agent answered consult transfer hangup wait_time talk_time after_call handling_time
2014-01-03 14:45:44 30175 6945 2014-01-03 14:46:25 NaN NaN 2014-01-03 14:48:54 41 149 0 149
2014-01-03 14:45:48 30175 9427 2014-01-03 14:46:29 2014-01-03 14:49:57 2014-01-03 14:50:59 2014-01-03 14:57:54 41 685 37 722
2014-01-03 14:45:56 30175 NaN NaN NaN NaN 2014-01-03 14:46:28 32 0 NaN NaN

Table 3.2: Example of call record data after modification

• wait_time denotes the total time in seconds the customer has waited in the orig-
inal queue before receiving response or hanging up. It is defined by answered −
queue_time if an agent answers the call and by hangup− queue_time otherwise.

• talk_time denotes the total time in seconds the call has lasted. It is defined by
hangup− answered if an agent picks up, and by 0 otherwise.

• after_call describes the time spent by the agent on finishing up work related to the
considered call, denoted in seconds. The values are obtained by matching the agent
activity records with the call records.

• handling_time denotes the total time spent by the agent on handling the call, in-
cluding any relevant work. It is defined by talk_time+ after_call.

In table 3.3 we illustrate an example of the agent activity data that is used, followed by
the column descriptions.

id user_id activity_id start end shrinkage agent
20032893 5088 3 2014-01-02 15:09:07 2014-01-02 15:10:15 0 6929
20032898 6664 3 2014-01-02 15:09:09 2014-01-02 15:10:37 0 8494
20032905 6666 16 2014-01-02 15:09:17 2014-01-02 15:09:18 0 8496

Table 3.3: Example of agent activity records
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3.1 Data description and processing

• id denotes the id unique to the activity log record in consideration.

• user_id denotes the id unique to the user account that is used by the agent for the
activity log record in consideration.

• activity_id denotes the id of the following logged activities:

– 2 logging off
– 3 taking calls
– 7 paid break
– 8 unpaid lunch break
– 16 wrapping up the call after hang-up
– 35 logging in
– 39 meeting with senior
– 40 meeting with supervisor
– 41 additional work
– 42 additional work
– 43 unpaid break
– 44 logged off by system
– 61 outbound calling
– 71 administrative activity, consider logged off

• start denotes the date and time that the considered activity has started.

• end denotes the date and time that the considered activity has ended.

• shrinkage describes whether the activity can be considered productive to incoming
calls, where 1 denotes that the activity is labeled as shrinkage and 0 denotes that the
activity is indeed productive to incoming calls.

• agent denotes the agent id that performed the activity in consideration.

This data set consists of 1.639.803 rows. Again, we strictly consider records of working
days between 08:00 - 20:00 and are left with a total of 1.619.587 rows, which is a decrease
of 1.2% of the total number of activity records.

Next, we take necessary data processing steps to aggregate the data. This is done such
that we have aggregated information of the number of incoming calls, abandonments, num-
ber of agents, which agents are working, average handling time and service level per interval
of 15 minutes. We describe how we go from the data sets given in tables 3.2 and 3.3 to an
aggregated data set. The steps are described per column of the aggregated data frame.

• number of calls is obtained by applying the pandas functions groupby() and Grouper()
on the call records data frame. By counting every record and specifying the frequency
as 15 minutes we obtain the number of calls per 15 minute interval.
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• number of abandoned calls is obtained by initially creating a column in the call record
data frame which denotes 1 if the call is abandoned and 0 if the call is not abandoned.
The records of abandoned calls are identified by locating the missing values in the
answered column. Next, we are able to group the call records per 15 minutes and
sum over the newly created abandoned column. This gives us the total number of
abandonments per interval.

• average handling time is obtained by using the created column handling_time shown
in 3.2. We again group per 15 minutes and calculate the mean of this column, which
results in the average handling time per interval.

• number of agents is calculated by the following procedure. For every agent we iterate
through every day. For each day we identify the shift by the earliest start time
and latest end time. Next, we locate the 15 minute intervals that fall within that
considered shift. We name these intervals core intervals and use cores to denote the
core intervals of shift s. For all core intervals that are located, we add one agent to
the column n_agents. Next, we want to calculate the fraction of the first and last
intervals that the agent is working in. We do this by selecting one interval previous
to and one interval after cores, we name these intervals f and l, respectively. For
every shift s we calculate heads =

fend
s −starts

df
and tails =

ends−lstarts
dl

, where

– the numerators are expressed in minutes,

– fend
s denotes the ending time of the first interval that comes prior to cores,

– lstarts denotes the starting time of the first interval that comes after cores,

– starts describes the starting time of shift s,

– ends describes the ending time of shift s,

– df describes the duration of interval f in minutes,

– dl describes the duration of interval l in minutes.

For every shift s we add fractions heads and tails to column n_agents on intervals
fs and ls, respectively.

• agents are determined in a similar fashion as the number of agents. We create an
empty list for every interval in the agents column. Next, we append the agent id of
the considered agent to all records located by the core intervals. After this we append
the agent id to the intervals fs and ls, in which the considered agent is working for
a fraction of the intervals.

• service level is calculated by first creating a new column meets_threshold which
denotes 1 when the considered call was answered within the threshold of 20 seconds
and 0 if not. The calls which are picked up within 20 seconds are identified by
locating the records for which answered - queue_time ≤ 20 seconds. Next, we
are able to group by 15 minutes and sum the number of times this threshold is met.
After obtaining the number of times the threshold is met per interval we calculate the
realised service level per interval. We create the service level column by calculating
SLi =

n_meets_thresholdi
n_callsi

for each interval i.
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In table 3.4 an illustrative example of the aggregated data table is given.

start end n_calls n_abandoned aht_min n_agents agents sl
2014-01-02 14:30:00 2014-01-02 14:45:00 145 11 6.011940 45.570000 [9425, 8189, 8723, 8493, 6940, 9424, 8393, 934... 0.289655
2014-01-02 14:45:00 2014-01-02 15:00:00 120 2 4.916384 34.222222 [9425, 8189, 8723, 8391, 8493, 6940, 9424, 839... 0.741667
2014-01-02 15:00:00 2014-01-02 15:15:00 152 0 4.936075 40.007778 [9425, 8189, 8588, 8723, 8391, 8077, 8493, 694... 0.796053

Table 3.4: Example of aggregated data per 15 minutes

3.2 Arrivals

After data processing steps we first analyze the call arrivals to see whether we can find any
patterns on different time scales.

To get an idea of how the call volume behaves on a larger timescale we illustrate the
weekly call volume for the entire year in figure 3.1. We only want to consider entire weeks
for this illustration, so we leave out week 1 and week 52. We see significant declines in call
volume for several weeks (e.g. weeks 7, 16 and 43). These declines may be coincidental
or due to an underlying seasonality pattern. Take for example weeks 30 - 34, in which we
observe a decrease of approximately 3500 calls (∼12%). This decrease may be explained
by the large number of people that yearly go on holiday during the month of August.
However, since we conduct this research based on one year worth of data we are not able
to confirm that this is indeed a seasonality pattern. We focus on short time scale prediction
but are aware that this potential seasonality pattern may introduce extra variability in the
intra-day patterns.

Figure 3.1: Weekly call volume
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In figure 3.2 a clear intra-day trend can be observed for the call arrivals. The number of
incoming calls seems to drastically increase between 08:00 - 09:00, after which we can see a
clear dip and quick recovery in the incoming call volume around lunch time (12:00 - 13:00),
followed by a slow decline which eventually turns into a drastic decrease between 16:00 -
17:00. There seems to be relatively little difference between the trends of the different days.
However, on Mondays there are significantly more calls compared to the rest of the week.
This may be explained by customers that may have encountered problems or intended
calling during the weekend. These customers intent on calling as soon as possible, which
is on Monday.

Figure 3.2: 15 min interval call volume per day of the week

We see that the average call volume on the other weekdays (Tuesday to Friday) is quite
similar. Because the average call volume is calculated over a full year of data, we illustrate
the variability in terms of standard deviation. In figure 3.3 we plot the call volume including
the standard deviation for Mondays and the average of the other days. We see that the
variability is larger on Mondays compared to the rest of the week. Additionally, we observe
that the variability increases in bandwidth when the call volume increases and that the
bandwidth becomes smaller when the call volume decreases.
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Figure 3.3: 15 min interval call volume with variability

We want to see how the variance increases and decreases relative to the average value
of call arrivals. We do this by plotting the variance-to-mean ratio over all intervals in
figure 3.4. We can see clear fluctuations in the variance-to-mean ratio, which means that
the variance does not move in proportion to the mean. It is interesting to see that the
variance-to-mean ratio is large during the early hours and small during the later hours of
the day, while the average call volume is relatively low during both moments. This means
that there is larger variance during the early hours, which can also be seen in figure 3.3.
Furthermore, it is observed that for most intervals the variance-to-mean ratio is larger than
2. This tells us that the variance is often much larger than the mean. We know that for
a Poisson distribution holds that E(X) = V ar(X) = λ, which clearly is not the case for
our data. This gives us the expectation that the Erlang C and Erlang A models may not
model this call center data properly, since Poisson distributed call arrivals are one of the
assumptions of the Erlang models.
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Figure 3.4: Variance-to-mean ratio per interval over entire year

3.3 Agents

The number of agents available to handle calls is an important factor when it comes to the
service level. As one can imagine, if more agents are available to take a call, the call may be
picked up quicker. Not all agent activities are considered to be productive when we want
to focus on handling calls. Activities that do not contribute to picking up or handling calls
are named shrinkage activities. Examples of shrinkage activities are e-mailing, receiving
training and taking breaks. Initially, we have determined the number of agents per interval
including shrinkage activities. This means that we look at the number of agents, without
taking non-productive activities into account (e.g. breaks). This number will be specified
as the scheduled number of agents. We are aware that it is not equal to the actual number
of scheduled agents because of last-minute changes and unexpected absence that we cannot
retrieve from the data. We do however consider this a decent approximation of the number
of scheduled agents. To first see whether there is any difference in the number of agents
on different weekdays, a plot of the distribution of the number of agents is given in figure
3.4.
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3.3 Agents

Figure 3.5: Scheduled number of agents distribution

We can observe that for a significant fraction of time the number of agents scheduled is
around 10 and 80. It is interesting to note that generally less agents are scheduled as the
week passes. The largest difference seems to be on Mondays compared to the rest of the
week. We see significantly more agents scheduled on Mondays. This may be because of
the schedulers anticipating a larger call volume observed on Mondays. We want to take a
closer look at the scheduled number of agents and zoom in throughout the day.

Figure 3.6: Average number of scheduled agents throughout the day (full year)
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In figure 3.6 we see the average number of scheduled agents throughout the day. The
green line indicates the average number of scheduled agents for all intervals, which is ap-
proximately 54. We can see clearly that during the first hour of the day a small number
of agents are scheduled. The same can be observed for hours after 17:00, during which we
see a gradual decrease in the number of scheduled agents for each hour until 20:00. We
see that on average a relatively large number of agents is scheduled during hours 09:00
- 17:00. This is to be expected since we have seen in figure 3.2 these are the most busy
hours regarding call volume. It seems that the peak around 10 agents observed in figure
3.6 can be explained by the relatively small number of scheduled agents during the hours
08:00 - 09:00 and 17:00 - 20:00. Similarly, the peak around 80 agents can be explained
by the number of agents scheduled during 09:00 - 17:00. During 12:00 - 16:00 we see a
gradually decreasing pattern similar to the one observed after 17:00. It is noticeable that
even though we clearly see the average number of agents vary per interval, the decision
makers seem to schedule agents per hour for certain parts of the day.

Now it is interesting to see how the number of agents compares when we take the shrink-
age activities into consideration. We determine this number by counting the number of
agents per interval that are either taking calls or wrapping up after hang-up, which are the
only non-shrinkage activities. This means that agents that are doing any other activities
(e.g. meetings) are not counted. We shall refer to this number as the effective number
of agents. In figure 3.7 we see that compared to the distribution in figure 3.5 there are
significantly less number of agents per day of the week. We see relatively small difference
between the peak around 10 in figure 3.7 compared to the peak around 10 in figure 3.5.
However, we see a clear shift to the left for all days for the second peak. We now see
that for a significant fraction of time there are roughly 50 agents rather than the original
80 agents that we have observed before. Although it can be observed that the differences
between the days have become smaller, we can still see a similar pattern compared to the
number of scheduled agents. The number of effective agents decreases throughout the week
and on Mondays there are significantly more effective agents compared to the rest of the
week.
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3.3 Agents

Figure 3.7: Effective number of agents distribution

Now we again zoom in and take a closer look at the effective number of agents throughout
the day in figure 3.8. We keep the distinction of the days to see whether there are any
differences between the patterns and how the average number of agents compare.
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Figure 3.8: Average number of agents across the day per day of the week

In figure 3.8 we see five plots representing the average number of effective agents through-
out the day, for each day of the week. The average number of effective agents for the
considered day is represented by a green horizontal line, which is below 50 consistently
and even below 40 for the second part of the week. This is a clear decrease compared
to the average of 54 scheduled number of agents over all days which we have observed in
figure 3.6. Next, we see a clear pattern where early in the day the number of agents is
relatively low and drastically increases between 08:00 and 09:00, which is similar to the
pattern that we have seen before. However, after 09:00 we see a different pattern which we
have not observed for the scheduled agents. The number of effective agents declines slowly
until a larger decrease occurs around lunchtime (11:30-12:30). After lunchtime we see a
small recovery in the number of agents, after which a drastic decrease occurs from 16:00
on. Every day of the week seems to follow a similar pattern. We can also see significantly
higher number of agents on Mondays compared to the rest of the week, which was observed
before in figure 3.7. Lastly, similar to our observation for the scheduled agents, we see a
lower number of agents in the early and late hours of the day. For the larger part of the
day we see an higher amount of agents. This explains the peaks of approximately 10 and
50 agents in the distribution shown in figure 3.7. The general shape of the average number
of agents in figure 3.8 is similar to the shape shown in figure 3.6 except for the mentioned
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moments in which we see clear drops in number of agents.

It is clear that shrinkage activities play an important role in the number of agents and the
intra-day patterns. We want to understand the shrinkage activities to determine whether
they are known in advance during scheduling or whether they are unknown prior to the
considered working day. For this reason shrinkage activities are split in two categories,
scheduled shrinkage and unscheduled shrinkage. In figure 3.9 we illustrate break activity
records of two different activity types, unpaid lunch break and paid break. There is a clear
difference between the two break types. We see that the lunch breaks have a consistent
length of around 30 minutes and most of the time take place at 12:00, 12:30, 13:00 or 13:30.
For the paid breaks however, we see much variability in the duration. Most of these breaks
seem to be outside of the hours 12:00 - 14:00. This can be explained by the lunch breaks
that take place at this moment. It seems reasonable that if an agent takes a break during
hours 12:00 - 14:00, it will generally be a lunch break rather than a paid break. During
hours 08:00 - 10:00 and 17:00 - 20:00 we see very little breaks since there are significantly
less agents working. Additionally, it is expected that agents will not take breaks shortly
after their shift starts or shortly before their shift ends. Outside of these hours the timing
of paid breaks seems to be rather random. Based on this analysis it seems reasonable to
classify that lunch breaks are a form of scheduled shrinkage activities whereas paid breaks
are a form of unscheduled shrinkage activities.

Figure 3.9: Overview break activities throughout the day

In figure 3.10 we show a similar plot but now of the activity meeting with supervisor.
We see that the meetings are held at various times but not later than 17:00. This can be
explained by the supervisor being absent as well as the low number of agents after 17:00.
Intuitively one would expect that meetings are a form of scheduled shrinkage. However, in
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figure 3.10 it can be observed that that the duration of these meetings varies substantially,
ranging approximately from one minute to one hour. It can be argued that meetings of
very short duration are not scheduled beforehand but rather occur in a more natural way
depending on several factors. Moreover, in practice it is not usual to schedule activities
of very short duration. We think that it is reasonable to classify activity meeting with
supervisor with a duration smaller than 5 minutes as unscheduled shrinkage. Whereas
meeting with supervisor with a duration larger than or equal to 5 minutes is considered
scheduled shrinkage. We analyze all shrinkage activities in similar fashion to classify them
accordingly.

Figure 3.10: Overview meeting with supervisor activity

3.4 Average handling time

The average handling time (AHT) is an important metric which indicates how long, on
average, it takes for an agent to handle a call. This time includes the so-called wrap-
up time, which contains any work that is necessary to finish up the considered call after
breaking contact with the customer. As one can imagine, the average handling time largely
impacts the availability of agents since it measures how efficient the agents are when it
comes to handling calls. The availability of agents may in turn impact the service level
significantly. We analyze whether there are any intra-day patterns when it comes to the
average handling time of agents per interval of 15 minutes. For example, increasing average
handling times throughout the day may indicate possible shift-fatigue patterns. In figure
3.11 we illustrate a box plot that summarizes the average handling time per 15 minutes
throughout the day for calls.
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Figure 3.11: Average handling time per 15 min interval

We can observe that the AHT is relatively short in the early part of the day but quickly
becomes longer and stabilizes after 09:00. Next, we see a small decrease and recovery
around lunchtime. Between 16:30 and 17:00 we see the AHT quickly become shorter
again, after which it stabilizes. The AHT seems to vary considerably more towards the
end of the day compared to the rest of the day.

Figure 3.12: Average handling time against number of calls handled per agent over entire
year

We want to compare the AHT per agent to understand whether the availability of dif-
ferent agents largely impacts the speed at which the calls are handled. We do this by the
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use of a scatter plot where each data point represents one agent, this plot can be seen in
figure 3.12. We can observe large differences in AHT between the agents, varying between
approximately 3 and 9 minutes. It seems that the agents with more calls handled have
slightly lower AHT than agents with fewer calls handled.

3.5 Service level

In this subsection we perform analysis of the service level (SL) so that we can find po-
tential patterns in the service level behaviour. After this analysis we can have a better
understanding of how we are able to predict the service level.

As mentioned in subsection 3.1 we focus on the eight most common queue types. Each
queue requires a certain type of service, which is specified by an identification number.
In figure 3.13 we illustrate the service levels per service type, we see that the differences
in service level between these service types are rather small, varying from 0.61 to 0.68.
The service level does not vary drastically per service type. We believe this is a result of
scheduling since decision-makers would likely aim to schedule agents such that the team
is able to handle each queue, which results in a consistent service level across different
queues.

Figure 3.13: Service level per service type

Next, we examine the SL on a daily basis to understand if there are any intra-day patterns
and to get an idea of the variability. In figure 3.14 we see a box plot of the SL per 15
minute interval. It is observed that that there is large variability in SL throughout the day.
The SL seems to be quite often close or equal to 1.0 during the early hours of the day, after
which we see the SL decline. Especially after 12:00 we see the SL decline more frequently,
where it seems to be below 0.8 for the larger part of the time. We previously observed in
subsections 3.2 and 3.4 that the call volume and average handling time decrease around
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12:00. Intuitively, one would expect that decreasing call volume and average handling time
would lead to an increase in SL. Less incoming calls and less time spent per call should
result in more idle agents, which allows for more quick responses to calls. However, in
subsection 3.3 we saw that the number of agents declines at the same time due to the
lunch break, which may explain the decrease in SL.

Figure 3.14: Boxplot of 15 min interval service level including average (green triangles)

During the final part of the day the SL seems to increase again whereas its variability
becomes relatively limited, yet larger compared to the variability during the early part of
the day. In subsections 3.2 and 3.4 we have seen significantly smaller call volumes and
shorter average handling times during the early and late hours of the day, which explains
the high SL values during these intervals. It is interesting to note that in figure 3.8 we have
observed drastically lower number of agents before 09:00 and after 17:00. Furthermore, we
see the variability in average handling time increase after 17:00, which explains the larger
variability in SL after 17:00 compared to the early hours.

Now that we have a better understanding of the intra-day service level behaviour we
take a look on a larger timescale. In figure 3.15 we see the weekly service level throughout
the entire year. Note that the weekly service level is below 0.8 for most weeks. We see a
clear decline during weeks 20-25 (below 0.4). Furthermore, weeks 12, 17, 18 and 48 stand
out as well due to their low service level (below 0.5). As mentioned in section 3.2 we are
aware that underlying seasonality patterns may have an effect on the service level. It can
be seen that the service level indeed is different for specific weeks. We are not able to
confirm whether these declines are due to an underlying yearly seasonality pattern since
we only have one year worth of data. We do however keep this possible effect in mind
when evaluating our prediction accuracy.
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Figure 3.15: Weekly service level
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4

Methodology

In this chapter we describe the different steps taken in developing a machine learning
method to predict the service level. In section 4.1 we provide an overview of the process
and give a brief description of each step. In section 4.2 we discuss the feature analysis
process and our initial selection of features. In section 4.3, we explain the machine learning
model that we consider and its implementation. In section 4.4 we discuss our methods for
model validation, feature selection as well as hyperparameter tuning. At last, we explain
the choices made for the performance measures in section 4.5.

4.1 Machine learning pipeline

Our machine learning pipeline is visualized in figure 4.1. We initiate the process with data
extraction & cleaning. This step is concerned with collecting the necessary data, replicating
it to the desired environment and cleaning it so it may be ready for analysis. Since we
have received a clean dataset in the form of csv files, which are conveniently imported to a
Python environment, this step is rather insignificant in our situation. However, for the sake
of completeness we have included this step in our process. During data analysis we analyse
the data such that we get a general understanding of how the call center operates (e.g.
opening hours, total number of agents etc.). In addition, we may find certain patterns or
interesting behaviour during this phase. Based on this understanding we are able to make
decisions during the data preparation step, which is concerned with preparing the data
in such a manner that it is cleaned and ready to be used for features. Next, we perform
feature extraction, during this phase we extract several features from the data which serve
as potential input for our model. This step is based on prior analysis and understanding
of the data as well as additional feature analysis. During model evaluation and validation
we evaluate how our model performs and get an understanding which features to drop and
select. Besides feature selection, we are looking to tune the hyperparameters of the model,
such to optimize the performance while controlling overfitting. This is done by the use of
5-fold cross validation. We now have a final, trained model which is ready to be used. We
perform a final evaluation by the use of an unseen test set to get an idea of how well the
model performs.
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Figure 4.1: Schematic overview of the machine learning pipeline

4.2 Feature analysis & extraction

To select an initial group of features we analyse relations between potential features and
the service level. In addition, we look for relations that are not necessarily obvious when
directly compared to the service level. This is done by analysing interaction between
the features and using our understanding of the dataset gained by prior analysis. The
features are expressed per interval, and can generally be extracted by aggregating the data
per interval of 15 minutes. For time-sensitive features we ensure to create a forecast or
estimator based on historical data. The extracted features are categorized in three groups,
basic features, intermediate features and advanced features. This categorization is made
for several reasons. The distinction between the feature groups is made based on the
complexity of their extraction combined with the anticipated predicting value the feature
will bring to the machine learning model. Creating three groups of features allows us to
understand how performance is impacted by the number and type of features used as input
for the machine learning model. Based on interim results of the models, which are based on
the feature groups, the best performing model is selected. The features considered in the
selected model will endure a feature selection process which is based on the importance of
the feature for making predictions. We elaborate on the feature selection process in section
4.4.

4.3 Machine learning model

4.3.1 Ensemble learning methods

Ensemble learning methods are methods that aim to achieve better prediction performance
by combining predictions of multiple models. There are different approaches to ensemble
methods. We will explain the three most popular techniques, bagging, stacking and boost-
ing.

Bagging stands for bootstrap aggregation. This technique aims to obtain diverse en-
semble members by varying the training data. It often consists of multiple models based
on a decision tree algorithm. Each model is trained on a different sample of the same
training dataset. The predictions of these models are then combined. This is usually done
by simple methods, like averaging or voting. The key of bagging is in the unique training
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data samples for every ensemble member. This variation results in distinctive and capable
models.

Stacking (stacked generalization) is an ensemble technique which aims to have a diverse
group of ensemble members by training different model types on the same training dataset.
The predictions of the models are then combined by the use of a model. The distinctive
models are named first-level learners whereas second-level learner refers to the combiner
model. It is possible to add more layers of models and have a third-level or fourth-level
learner for example. However, it is most common in stacking to have two layers of models.
It is common to use a linear model to combine the predictions and to have more complexity
in the first layer of models.

Boosting is an ensemble technique that focuses on improving previous prediction errors.
The models are fit on the training data and added to the ensemble sequentially. This is
done in such a way that every model tries to improve particularly on the worst predictions
of the previous model. The models are usually based on a simple decision tree algorithm,
which are referred to as weak learners. The predictions of these weak learners are combined
by simple methods, similar to bagging, like averaging or voting. However, the combining
method may be weighted by assigning a larger weight to each model according to their
performance. The idea is to combine the weak learners such to create a so-called strong
learner. There are several techniques when it comes to boosting. One of the widely-used
techniques is gradient boosting [9]. Gradient boosting can be used for classification as
well as regression tasks. It looks to optimize the boosting process by minimizing the loss
function of the model. This is done by adding weak learners using gradient descent, hence
the name ’gradient’ boosting.

4.3.2 eXtreme Gradient Boosting

The machine learning technique that we propose is eXtreme Gradient Boosting (XGBoost),
which is implemented by [7]. XGBoost is a particular implementation of Gradient Boosted
Decision Trees (GBDT), which is a tree-based ensemble learning method that uses gradient
boosting as its ensemble technique. The general process of tree-based gradient boosting is
illustrated in figure 4.2 [15].
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Figure 4.2: Schematic overview of tree-based gradient boosting

The weak learners are decision trees with the same structure, each usually consisting of
8 to 32 leaves. The ensemble learning method creates an initial prediction of the output
variable, usually by calculating the sample mean. For each sample prediction the residual
is calculated. The first iteration residuals are then used as leaves in the first decision
tree. The leaves that contain multiple residuals are replaced by the mean value of those
residuals. The learning algorithm then iterates and creates a new prediction by adding
the residuals of the previous decision tree to the previous predicted value. To scale the
result of the decision tree and counter over-fitting, the predicted residuals of each tree are
weighted by a learning rate. Based on the second prediction made by the first decision
tree, new residuals are calculated. These residuals are placed in the leaves of a second
decision tree that is constructed. The same process proceeds, such that a new decision
tree is constructed until a maximum number of trees is reached, or that new decision trees
do not reduce the residuals. This results in a final prediction of the output variable. In
algorithm 1 the general outline for GBDT is given.

Algorithm 1 GBDT

Initialize f0(x) = argminγ
∑N

i=1 L(yi, γ)
for m = 1, ...,M do

for i = 1, 2, ...N do

rim = −

[
δL(yi,f(xi))

δf(xi)

]
f=fm−1

end for
Fit a regression tree to rim obtaining Rjm, j = 1, 2, ..., Jm
for j = 1, 2, ..., Jm do

γjm = argmin− γ
∑

xi∈Rjm
L(yi, fm−1(xi) + γ)

end for
Update fm(x) = fm−1(x) +

∑Jm
j=1 γjmI(x ∈ Rjm)

end for
Output f̂(x) = fM (x)
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XGBoost provides parallel tree boosting which allows for more efficient utilization of
computer power compared to sequential tree boosting. Furthermore, XGBoost constructs
the trees in a unique manner. It aims to choose the best decision nodes based on the
largest gain in similarity score compared to the initially selected decision node. This gain
is influenced by a regularization parameter λ which controls overfitting. In this research
all XGBoost models are implemented by the use of the XGBoost Python Package.

4.4 Model evaluation & validation

The input features are expressed per intervals of 15 minutes. The dataset will be split
in 70% for training and 30% for testing. All three models will be trained and tested on
the same training and dataset. Based on interim results of the three models, we select the
best performing model for feature selection and hyperparameter tuning. Gradient boosting
allows for a relatively straightforward feature selection method. During the construction
of the boosted trees, it stores how many times each feature is used for important decision
nodes. The more a feature is used for key decision nodes, the higher its relative importance
will be. To calculate feature importance over a single tree, each decision node is consid-
ered. For each decision node the improvement in impurity is calculated. Weighing this
improvement by the number of observations gives us the importance. For regression, which
is what we are concerned with, the impurity metric used is the mean squared error. The
final feature importance is then determined by calculating the average for each feature,
over all boosted trees within the model.

With the use of the feature importance scores, several subsets of the input features
can be selected. This is done based on several thresholds. By taking multiple thresholds
that correspond well to the feature importance, we are able to iteratively evaluate model
performance with each subset of input features. We validate the performances of several
models which are characterized by their subset of input features. This is done by the
use of 5-fold cross validation. Based on these performances we can choose which subset
of features to include in our final model. After the feature selection process we perform
hyperparameter tuning. XGBoost has many hyperparameters which can be tuned. We
select a subset of hyperparameters, namely n_estimators, max_depth, max_child_weight,
subsample, colsample_bytree and eta. We tune the hyperparameters using 5-fold cross
validated Grid Search. After feature selection and tuning we again test our selected model
and analyse its final performance.
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4. METHODOLOGY

4.5 Performance measures

There are several ways to measure the prediction performance. We need to select the per-
formance measures most suitable for our situation. Since we predict the SL per interval
of 15 minutes we need to realize that not every predicted SL is equally important. This is
due to the fact that the call volume can vary drastically between intervals. It is common
practice for call centers to monitor the service level throughout the day (per interval) as
well as over an entire day. Since an interval with high call volume will have larger impact
on the service level over the entire day than an interval with low call volume, we want
to weight the interval service levels according to their call volumes. Additionally, looking
at the interval level, in a trade-off between better accuracy in SL prediction for high call
volume intervals and less accurate SL prediction for low call volume intervals or vice-versa,
one would naturally select the prior. This is because accurately predicting the SL during
high call volume intervals would lead to more customers receiving better service, which is
eventually what matters.

Keeping this in mind, we introduce a weighted performance measure that we are going
to use to evaluate our baseline models and machine learning model performance. WAE,
which stands for weighted average error, gives the mean absolute prediction error weighted
by the call volume. WAE is defined as

WAE =

∑n
i=1Ci|yi − ŷi|∑n

i=1Ci
(4.1)

where,

• Ci is the call volume of interval i,

• yi is the realised service level over interval i,

• ŷi is the predicted service level over interval i

• and n is the number of intervals.

Additionally, we consider a second performance measure that is not weighted. The reason
for adding this performance measure is because of its intuitive and straightforward nature
as well as the additional insight that may be gained by comparing it to the errors measured
by the weighted performance measure. The second performance measure that we use is
Mean Absolute Error (MAE), defined by

MAE =
1

n

n∑
i=1

|yi − ŷi|. (4.2)
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5

Feature analysis

In this section we analyse potential features and their relation to the service level. We
categorize the input features for the models in three groups. Basic features are straightfor-
ward and relatively simple to obtain. Intermediate features are features that are relatively
easy to obtain but may capture valuable effects in addition to the basic features. Advanced
features contain all features that may not be as straightforward as basic and intermediate
features and are more difficult to obtain. For each feature category it is described how the
features are defined, how they are obtained and why they are selected.

5.1 Basic features

We introduce five basic features which are based on the input variables for the Erlang
A model. To capture the call volume we introduce the feature C which is specified per
15 minute interval. It is obtained by counting the number of call records with an arrival
time within the considered 15 minute interval. Since the ground truth values of the call
volume are not known at the moment of scheduling, a forecast should be implemented to
anticipate the expected call volume. We assume that there must be at least a full week in
between the moment of scheduling and the week to be scheduled. Therefore, we will use a
one-week margin for calculating historical metrics that will be used for our input features.
However, in a realistic situation, at the moment of training the model historical data is
available. This means that for model training the actual call volume is known. Therefore,
we implement a simple forecasting method specifically for the call volume input feature of
the test set.

First we define intervals to be similar when they share the moment they take place
within a day and the day of the week. Then the forecast is determined by calculating the
Moving Average of the call volume over four similar intervals prior to the interval to be
forecasted. Using a one-week margin in this case, means that to predict the SL of intervals
in week w, the forecast will be calculated over weeks w − 5 to w − 2, such that w − 1 is
used as a one-week margin for scheduling.

Secondly, we want to capture how long it takes to handle calls. We do this by introducing
the feature H, which denotes the average handling time per 15 minute interval. Similar
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5. FEATURE ANALYSIS

to the call volume, we calculate an average handling time estimate for the test set input
feature which is implemented in the same manner as the call volume forecast. The average
handling time for interval i is defined as

Hi =

∑
j∈Ci

tj + uj

di
(5.1)

where,

• tj denotes the call time in seconds of call j,

• uj denotes the wrap-up time in seconds of call j,

• Ci is the set of calls that arrived in interval i,

• di describes the duration in seconds of interval i.

The third basic input feature that we introduce is A, which represents the number of
agents working per 15 minute interval. Note that at the moment of scheduling it is not
known exactly how many agents will end up working during every interval. This is due to
unexpected absences (e.g. sick calls) and unscheduled shrinkage (e.g. short meeting with
supervisor) during the shift. Thus, the scheduled number of agents should be used as an
input feature rather than the actual number of agents. Although we do not have access
to the original schedule that corresponds to the data set, we are able to approximate the
scheduled number of agents per interval based on the agent activity data set. By the use
of the analysis in section 3.3 we are able to identify what shrinkage activities are scheduled
or unscheduled. We define A for interval i as Ai = |Ai| = |As

i | −
Si
di

, where

• Ai is the set of scheduled agents to effectively work in interval i after removing
scheduled shrinkage,

• As
i is the set of all scheduled agents to work in interval i without including scheduled

shrinkage,

• Ss
i is the total duration of scheduled shrinkage activities in seconds within interval i,

• di describes the duration in seconds of interval i.

Additionally, we want to capture the workload per interval and see whether it may im-
pact the service level. We introduce basic feature L which estimates the total duration of
call(related) work that needs to be handled by the agents within the specified time frame.
We define L over each interval i by Li =

Ci∗Hi
di

where di denotes the duration of interval
i expressed in seconds. Note that L is an estimated input feature if C and H are estimated.

The last basic input feature, based on the input variables for the Erlang A model, is the
estimated patience of the customers denoted as P . Patience can be defined as the time a
caller is willing to wait before abandoning the queue. Customers that have less patience
than 20 seconds will abandon the call early and are counted as calls that have not met
the 20 second threshold. This means that little patience has a direct negative effect on
the SL. Additionally, customers that have large patience will stay in the queue for a longer
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5.1 Basic features

time, which impacts the queuing system. This can be of value in predicting the SL. We
want to estimate this patience and use it not only as an input variable for Erlang A but
as an input feature for our ML model as well. We estimate the patience by the use of
the Kaplan-Meier estimator, which is a technique of estimating the survival function St by
Ŝ(t) =

∏
i:ti≤t(1−

di
ni
), where S(t) is the probability of surviving longer than t, ti is a time at

which at least one call was abandoned, di is the number of abandoned calls at time ti, ni the
number of calls until time ti. Using this probability we calculate the density between each
abandon moment, after which the patience is calculated by determining the expectation.
The patience input feature P is calculated for each day of the week over the entire data
set. Note that in reality the patience for interval i cannot be known prior to interval i.
However, since we estimate the patience per day of the week over the entire dataset and
not over each interval, we find it reasonable to believe that the ’unfair’ advantage for the
benefit of our model is negligible.

In figure 5.1 we observe a correlation heatmap of the basic input features mentioned.
We see that SL is slightly negatively correlated with H, C and L. One may intuitively
anticipate lower SL with larger call volumes as well with longer AHT. We see minimal
negative correlation between SL and A. Perhaps at first sight, one would expect the ser-
vice level to be positively correlated with the number of agents, since more availability of
agents should allow the call center to respond to calls more quickly. However, this small
negative correlation can be explained by the schedulers anticipating incoming call volumes.
This means that more agents are scheduled when larger call volumes are expected. This
idea can be confirmed since we indeed observe that C and A are highly positively correlated.
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Figure 5.1: Correlation heatmap of basic input features

Furthermore, we see that P has very little correlation with all other features. There
is positive correlation between C and H. More incoming calls will include more compli-
cated calls, which may lead to more transfer and consulting calls as well. These internal
lines increase the total handling time significantly, which may explain the positive cor-
relation. Additionally, we notice that A and H are positively correlated as well. This
means that when more agents are actively working the average handling times become
longer, which may be due to the prominent correlation between number of agents and
call volume. Finally, we note that L is highly positively correlated with the other three
basic input features. This is to be expected since L is derived from the product of C and H.

In section 3.5 we have observed that around lunchtime (12:00) there is a decrease in call
volume, average handling time, number of agents while there is a decrease in SL as well.
Similarly we have seen during the early and late intervals small call volumes, short average
handling times and a small number of agents but now with increasing SL. This may be
an explanation for the small negative correlation between A and SL. Smaller C and H
increase the SL while smaller A would drive the SL down. When the input features take
smaller or larger values simultaneously due to interactions which cause the SL to decrease
or increase, the correlations between the basic input features and the SL may be compen-
sated. Especially for A since this input feature is highly dependent on C.
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5.2 Intermediate features

The correlations and corresponding patterns give us reason to believe that the basic
input features may contain meaningful information to predict the service level. The input
features H, A, C, L and P are initially selected. However, we keep in mind the large
interactions between the features, especially the large correlation between C,A and L.

5.2 Intermediate features

Next, we want to capture the impact of time on the service level. We do this by creating
two time related input features. I denotes the interval of the considered day. The interval
duration is 15 minutes and a full working day is from 08:00 to 20:00, this means there
are 12 hours and four intervals within each hour, which gives 48 intervals per day. Thus,
I can take on values {1, 2, ..., 47, 48}. To capture the impact of time on a weekly basis
we introduce the time related feature D, which specifies what day of the week it is. D
can take on values {0, 1, 2, 3, 4} which represent Monday, Tuesday, Wednesday, Thursday
and Friday, respectively. With the possible value combinations of these two features the
machine learning model can interpret information as ’the third interval (08:30 - 08:45) on
a Monday. Since the focus of this paper is on short time scale prediction, large time scale
indications (e.g. week number, month) are not considered as input features.

In figure 3.12 we see that agents can have very different average handling times, varying
between 3 and 9 minutes. These differences can be due to several factors like generally
slow or fast agents, inexperienced agents that are slow and need training, specific agents
that have a lot of unscheduled shrinkage activities (e.g. sudden breaks) etc.

To capture this type of agent behaviour we introduce the third and last intermediate
feature ax, which specifies whether agent x is working (and available) per interval. However,
as described in subsection 5.1, we do not know exactly which agents are working during
each interval at the moment of scheduling due to unexpected absence and unscheduled
shrinkage activities. We want to use an estimation of the scheduled agents for each interval.
Therefore, axi takes on value 1 for each interval i if agent x ∈ Ai = As

i \Aa
i and 0 otherwise,

where

• Ai is the set of scheduled agents to effectively work in interval i after removing
scheduled shrinkage,

• As
i is the set of all scheduled agents to work in interval i without including scheduled

shrinkage,

• Aa
i is the set of agents that have scheduled shrinkage activities during entire interval

i and thus are absent.

For ax we choose to use a one-hot encoded representation. This means that we create
307 columns, one for every unique agent id. For convenience and tracking purposes we
re-define the agent ids from 1 to 307 based on the ascending order of their original id.
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5.3 Advanced features

Finally, we introduce four advanced input features. These features are less straightforward
and can give the ML models an edge compared to the Erlang models.

In section 3.4 we have seen that agents which transfer calls more often to colleagues and
make more consulting calls have larger average handling times. We want to see whether
the number of transfers and consulting calls can be used as a predicting factor for the
service level. When using predictive input features we must be aware to use information
that is known at the moment of scheduling. Similar to the forecast, we will use a one-week
margin for calculating historical metrics that will be used for our input features. To create
a new feature that incorporates the number of transfers and consults per agent, we first
introduce a new metric named r (consulting & transfer ratio). r calculates the 4-week
Moving Average of the number of consults and transfers made divided by the total number
of calls handled by the considered agent.

We define r for agent x and interval i as rxi =
Xo

x+Xt
x

Xx
, where

• Xx is the number of calls that were routed to agent x over four weeks prior to the
week of interval i,

• Xo
x is the number of consults agent x has made over four weeks prior to the week of

interval i,

• Xt
x is the number of transfers agent x has made over four weeks prior to the week of

interval i

By the use of r we create a new input feature R that is calculated per interval. We define
R for interval i as Ri =

∑
x∈Ai

rxi

|Ai| , where Ai is the set of scheduled agents to effectively
work in interval i. For the intervals that miss R values (e.g. for the first week of the data),
we insert the average over the entire data set.

Because of the basic features, we have all necessary input variables to use both Erlang C
and Erlang A as a prediction method of the SL. This means that the result of the Erlang
models can serve as an estimated SL input feature. We introduce input features Ec and
Ea for interval i by the use of input features Ci, Hi, Ai and Pi.

Since we are considering a multi-skill call center, it is of importance what type of service
is required for each call and whether agents capable of offering that service are available.
To capture this effect we create an input feature that measures the variety and depth of
skills that the effectively scheduled team offers. We re-define the different queue id’s from
1 to 8, where 1 is the queue with least call volume and 8 is the queue with the largest call
volume. This input feature is denoted as Qs for every required service s. Qsi describes the
total capacity of agents able to offer service s and are present in interval i. The capacity
of an agent is distributed over the queues that the agent is able to handle, weighted by the
call volume. In table 5.1 we illustrate an example of the Q feature. Finally, we provide an
overview of all input features in table 5.2
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5.3 Advanced features

interval Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

40 0.5 1.4 1.5 3.6 8.6 13.7 17.3 33.4
41 0.5 1.3 1.2 3.3 7.6 12 15.4 29.7
42 0.5 1.2 1.3 3.3 7.6 12 15.4 29.8

Table 5.1: Example of Q input feature representation

Description Symbol
Basic features

Call volume C

Average handling time H

Number of agents A

Load L

Patience P

Intermediate features
Interval I

Day of the week D

Agent presence features ax
Advanced features

Consult & transfer ratio R

Team skill Qs

Erlang C SL prediction Ec

Erlang A SL prediction Ea

Table 5.2: Overview of input features

41



6

Results

In this chapter we describe the experiments that we have conducted and evaluate the
performance of the machine learning models, which are compared to the performance
of the Erlang models. Finally, we provide analysis and give our interpretation of these
performances.

6.1 Experiments and performance

We create three different XGBoost models which are characterized by their input features.
The basic model is a minimal model that considers the basic input features, which includes
features C, H, A, L and P. We create this model to get an idea of how the machine learn-
ing model performs with input features comparable to the input variables of the Erlang
models. The intermediate model takes the intermediate features as input in addition to
the basic features. Features I, D, P and ax are labeled as intermediate features. We create
this model to understand how large the impact is of using relatively easy obtainable input
features that contain information that is not directly captured by the Erlang models. The
advanced model extends the intermediate model by also considering the advanced features,
which are input features that are not necessarily straightforward and may be more difficult
to obtain. We consider Q, Ec, Ea and R as advanced features. Additionally, the basic
features C, H and L are split per queue.

We use the feature data expressed per interval to create a 70%/30% split for training
and testing. Since the output of our model should be between 0 and 1, we have specified
the learning task and corresponding objective to be logistic regression. We found that
the default parameters of the XGBoost library would cause the models to overfit, espe-
cially the intermediate and advanced models. We believe this is due to the complexity
introduced by the large number of input features. After several experiments considering
all hyperparameters that control overfitting in XGBoost, we found that hyperparameters
n_estimators, eta, max_depth and min_child_weight had the largest impact. Therefore,
we choose the initial values for the hyperparameters such that we solve the overfitting
problem for the intermediate and advanced models. The values set for the hyperparame-
ters are n_estimators = 1000, eta = 0.01, max_depth = 4 and min_child_weight = 1.
The remaining hyperparameters are set as default values. Since the basic model has less
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complexity, we choose to set eta = 0.05 so that the model may become less conservative.
The remaining hyperparameters are the same as for the other models. The in-sample
performances of the three models are shown in table 6.1.

MAE WAE Min SL Max SL
XGBoost Basic 0.255 0.269 0.033 0.992

XGBoost Intermediate 0.206 0.195 0.050 0.992
XGBoost Advanced 0.203 0.195 0.033 0.992

Table 6.1: XGBoost models in-sample performance

Next, we test the performance of our models on the unseen test set. In addition, we
test two benchmarks models to compare the performances. The Erlang C and Erlang A
model are applied per interval, based on the forecasted values. The performance of the
benchmark and machine learning models are shown in table 6.2.

MAE WAE Min SL Max SL
Test Set // // 0 1
Erlang C 0.301 0.374 0 1
Erlang A 0.227 0.266 0 1

XGBoost Basic 0.272 0.303 0.172 0.988
XGBoost Intermediate 0.240 0.239 0.181 0.966

XGBoost Advanced 0.201 0.209 0.337 0.993

Table 6.2: Benchmark and machine learning models test set performance

We see that for all models the prediction errors are larger than 20% in terms of MAE as
well as WAE, which is quite a significant error. As mentioned in section 4.5, we mainly fo-
cus on the weighted performance measure WAE for performance. We see that even though
the basic model performs poorly due to its limited input features, it still has a smaller
weighted prediction error than Erlang C. It is interesting to see that the Erlang A model
significantly outperforms the basic model, which has input features that contain similar
information to the input variables of Erlang A. The intermediate model notably improves
the basic model and outperforms the Erlang A model in terms of WAE. The difference
in error is perhaps significant but not necessarily large by any means. Furthermore, it is
interesting to note that although the basic and intermediate model have a smaller WAE
than the Erlang C and Erlang A model, respectively, the error measured in MAE is larger.
With the advanced model, which introduces the advanced features, we again see a sig-
nificant improvement in performance compared to its predecessor. The advanced model
performs the best out of the three models and reduces the prediction error of Erlang A
with 24% in terms of WAE.
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After obtaining initial results we select our best performing model XGBoost advanced
for feature selection and hyperparameter tuning. First we perform feature selection, which
is based on the built-in XGBoost feature importance metric described in section 4.4. Since
there are many input features we visualize the top and bottom ten features regarding
feature importance in figures 6.1 and 6.2, respectively. There are several features with
importance equal to nil, these are not considered for visualization. It can be observed that
the most important features as well as the least important features largely consist of agent
features, which describe whether the considered agent is working or not.

Figure 6.1: Advanced model top ten features based on importance

Figure 6.2: Advanced model bottom ten features based on importance

We determine ten thresholds based on the feature importance distribution which are
going to be used in our feature selection process. These thresholds are given in table 8.1
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in the appendix. The feature selection process proceeds as follows:

1. Iterate over every threshold.

2. For every iteration select a subset of features with feature importance larger than
threshold.

3. Perform 5-fold cross validation on the selected feature subset.

4. After all iterations select final feature subset based on the smallest cross validation
error.

We find that threshold 4 gives the smallest cross validation prediction error. We select
the features with importance larger than 0.0026 for our final model. We drop 147 features
that have an importance lower or equal to the threshold and are left with 146 features,
which reduces model complexity significantly. The subset of features for our final model
is summarized in table 6.3. The features that were dropped during the feature selection
process are shown in table 8.2 in the appendix.

Description Symbol Queues
Call volume C 5, 7, 8

Load L 5, 6, 7

Team skill Q 1, 2, 3, 6, 7, 8

Erlang C prediction Ec //

Erlang A prediction Ea //

Day of the week D //

Interval I //

127 agent features ax //

Table 6.3: Features selected for final model

In section 6.2 we take a more thorough look at why certain features are dropped and
are considered not sufficiently important for the final model. With these selected features
we tune the hyperparameters to obtain our final model. We perform tuning by the use of
5-fold cross validated Grid Search, the considered and final parameters are shown in table
6.4.

Parameter Range Stepsize Final setting
n_estimators 100, ..., 1500 1 1500
max_depth 3, ..., 6 1 5

min_child_weight 1, ..., 4 1 1
subsample 0.7, ..., 1 0.1 0.7

colsample_bytree 0.7, ..., 1 0.1 1
eta 0.001, 0.01, 0.1, 0.3 // 0.01

Table 6.4: Parameter tuning
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We train and test the final model on the same sets used for table 6.2. In table 6.5 we
show the performance of our final model including the relative error reduction compared
to the performances in table 6.2.

In-sample MAE WAE Min SL Max SL
XGBoost Final 0.154 0.141 0.016 0.996

Test set
XGBoost Final 0.184 0.195 0.388 0.998

Relative error reduction
Erlang C 38.9% 47.9% // //

Erlang A 18.9% 26.6% // //

XGBoost Basic 32.4% 35.6% // //

XGBoost Intermediate 23.5% 18.3% // //

XGBoost Advanced 8.6% 6.7% // //

Table 6.5: Final model performance

We see a significant reduction in prediction error after feature selection and hyperparam-
eter tuning. The final model clearly outperforms the other XGBoost models. It is worth
noting that since we have seen an improvement of 6.7% in WAE after feature selection
and tuning of the advanced model, we can expect the basic and intermediate model to
significantly improve in performance after feature selection and tuning as well. Finally, we
see a large reduction in WAE of 47.9% and 26.6% compared to Erlang C and Erlang A,
respectively.

6.2 Performance analysis

We take a closer look at the selected features and features that are dropped during the
selection process. We find that the total importance of the 127 agent features is approx-
imately 75%. Therefore, we split the selected features in agent features and non agent
features. In figures 6.3 we visualize the importance of the top agent features, which are
agent features with larger importance than all non-agent features.
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Figure 6.3: Final model top agent features

We want to get a better understanding of which agents are dropped, selected and con-
sidered as highly important agents for the final model. We do this by determining the
service level per agent over the entire dataset. The service level per agent is determined
by calculating the average service level over all intervals in which the agent was present.
We create a scatter plot in figure 6.4 that visualizes the service level per agent against
the number of intervals the agent has worked in. We distinguish between agent features
dropped after feature selection, agent features selected and agent features considered most
important for the final model, which are a290 and a10.

Figure 6.4: Agent features analysis
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We see that the most important agents for the final model have a low service level and
work in a limited number of intervals. The importance of a feature indicates the relative
amount of splits made based on that feature. This means that the highly important agent
features are used frequently in the decision trees to base the prediction on. It seems that the
model has found these two agents to be good predictors of the service level. The two agents
work in enough intervals such that the model has sufficient data to base the predictions on,
while having a service level that is sufficiently discriminating. Furthermore, there seems
to be no obvious difference between the selected and dropped agents. We believe that
the model learns for many agents whether they are working, or not working, based on the
presence of other agents. This can be supported by the fact that there is large correlation
between the presence of agents, which is shown in figure 8.1 in the appendix. This is due
to the typical consistency in schedules throughout time (e.g. largely similar team of agents
that always work on Monday mornings). Additionally, a scheduler would generally aim
to make balanced teams of agents in terms of experience and performance. This explains
the variety of the selected and dropped agents in figure 6.4. In figure 6.5 we visualize the
importance of all non-agent features.

Figure 6.5: Final model feature importance non-agent features

There numerous observations that seem interesting. We see that all average handling
time features were dropped during feature selection, which is remarkable. In addition,
we see that several call volume, load and queue features were selected while others were
dropped. It seems that the model captures the effect of average handling time by the other
features. Furthermore, it is interesting to note that all features related to queue seven,
except for the average handling time were selected. It seems that the skill capacity to handle
each queue is a sufficiently important feature that six out of eight queue features where
selected. Lastly, we find it particularly interesting that the Erlang C feature is considered as
more important than the Erlang A feature, while the Erlang A model achieves significantly
better performance in predicting the service level. We take a closer look at the prediction
errors of the Erlang models as well as the Final model. In figure 6.6 we visualize scatter
plots of the test set prediction errors of the Erlang C, Erlang A and Final model against
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the call volume of the corresponding interval.

Figure 6.6: Erlang C, Erlang A and XGBoost Final prediction errors against number of calls

We see for all three models that there are many error measurements around 10 and
150 calls. This is due to the large number of intervals that have a call volume of those
magnitudes which is visualized in the histogram. Erlang C seems to make very large errors
that are close to 100% for intervals that have between 100 and 250 calls. We found that
these are cases at which the forecasted load exceeds the number of agents. In these cases
Erlang C predicts a service level of 0, while in reality a high service level is realised. This
show cases that the model is pessimistic. The large prediction errors during intervals with a
substantial amount of call volume explain the large WAE, since the errors are weighted by
the call volume. We do not see similar behaviour for Erlang A because of its consideration
of abandonments. We have found that the performance of the Erlang C model improves
drastically (to 24.7% in WAE ) when disregarding the cases for which it predicts a service
level of 0%. This may however explain the larger importance of the Erlang C feature.
Our XGBoost model may have picked up that Erlang C is probably not reliable when its
prediction equals 0%. Therefore it makes relatively more splits on Erlang C which means
it has a larger importance.
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Furthermore, it can be observed that the Erlang models have more of a symmetric error
compared to the XGBoost model. All models have a hard time predicting the intervals
with low call volume. We see that the models often underestimate the service level when
there are a small number of calls. Little call volume introduces larger variability. Since
we are considering short time intervals of 15 minutes, which introduces variability as well,
we have many intervals with large call volume. This combined with the extra forecasting
error that is introduced explains the large prediction error for all models. We see that
although the XGBoost model very often underestimates the service level. It does a better
job than the Erlang models in limiting the magnitude of its underestimation. The model
found that limiting its underestimation is rewarding, which explains our earlier observation
of the lowest predicted service level of 38.8% in table 6.5.
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Conclusion

The goal of this paper was to propose a machine learning method to predict the service
level in call centers, alternative to the traditional queueing models and simulation. The
context in which the predictions are made is within the scheduling & shift assignment
phase of the WFM process. This means that the predictions have to be short-term and
are determined over short time intervals. We assumed that the predictions are made at
least one week prior to the predicted moment and that the intervals are 15 minutes long.
To assess whether the proposed machine learning method can be of value in a realistic
environment, we train the model on a real world dataset and evaluate the performance on
an unseen test set. We strictly consider input features that can be obtained at the moment
of scheduling and compare the model performance to that of the traditional Erlang C and
Erlang A models.

The machine learning technique that we proposed is XGBoost, an implementation of
GBDT, which is a tree-based ensemble learning method that uses gradient boosting as en-
semble technique. Three different XGBoost models, distinguished by their input features,
were considered. This is to understand how well the model performs with several levels
of input features. The basic model considers input features that are comparable to the
input variables of the Erlang A model. The basic model performed better than Erlang C
and worse than Erlang A. The intermediate model performs slightly better than Erlang
A in terms of WAE, while the advanced model improves all prior models. However, the
hyperparameters of these three models are not tuned nor have they endured the feature
selection process. Based on these interim results we selected our final model for feature
selection and hyperparameter tuning. We have found that our final model has a prediction
error of 0.195 in terms of WAE, which is a reduction of 47.9% and 26.6% with respect to
the Erlang C and Erlang A model, respectively.

The prediction errors are large in general for all models. This is partially due to the
extra variability introduced by the short time intervals. We can conclude that the Erlang
C and Erlang A model perform poorly in the environment considered within this research.
This is because several assumptions of the models were violated. The dataset considered
within this paper originates from a multi-skill call center. This means that the assumption
that the calls are homogeneous and the agents are identical clearly does not hold. We have
found that the arrivals do not follow a Poisson process. Furthermore, Erlang C and Erlang
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A have been applied on small intervals of 15 minutes. This assumes that the arrival and
service rate are constant and that a steady state is quickly reached within each interval
[14], which is not the case for this dataset. In section 6.2 we have shown that the Erlang
models poorly predict intervals with small call volumes and that Erlang C in particular
makes very large prediction errors due to underestimation.

The Final XGBoost model often underestimates the service level but with limited mag-
nitude. However, we have seen that the service level over short time intervals still remains
hard to predict. We found that input features have large impact on the performance of
the machine learning models. Furthermore, we concluded that the effect of the average
handling time on the service level was captured by the model due to the other features.
We believe that the load largely replaces the average handling time as input feature. In
section 6.2 we have shown that the model considers many agent features more important
for predicting the service level than features based on traditional input variables. This is
an interesting insight since it implies that the model captures the impact of the presence
of specific agents on the service level.

We can state that within a realistic call center environment a machine learning method
can provide more accurate short-term prediction of the service level than Erlang C and
Erlang A while having negligible computational time, which can be valuable for practition-
ers during the scheduling & shift assignment phase. Although the model provides more
accurate prediction than the Erlang models, its prediction error is still quite large. Prop-
erly predicting the service level of short time intervals remains a challenge due to large
variability. In conclusion, applying a machine learning method to predict the service level
for call centers in a realistic environment can be valuable and is a promising field for future
research. Based on this conclusion we recommend call centers and WFM practitioners to
gather more quantitative and qualitative data such that enhanced future machine learning
methods may be researched and implemented.
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Discussion

In this research we have proposed a machine learning framework to predict the service
level for call centers. In chapter 7 we have concluded that the proposed machine learning
method is able to provide more accurate prediction of the service level than Erlang C and
Erlang A and can be valuable for practitioners. However, there are several limitations to
this paper to be mentioned. The research is conducted base on one year worth of data
which means that yearly seasonality patterns could not be captured. Although we have
focused on short-term prediction, we believe that a yearly seasonality effect could have
impact on predicting the service level. In addition, even though the call center operates
on Saturdays and holidays, we have left those out of consideration. Furthermore, we have
applied both Erlang models as if we had a one-skill call center environment by considering
the different queues as one. An alternative to this method used by practitioners is to
apply the Erlang model per queue separately. The working capacity of one agent is then
distributed over the queues that the agent is able to handle. This is done according to
the call volume of the corresponding queues. This may potentially result in better perfor-
mance of the Erlang models. Due to time and computation related limitations we were not
able to explore alternative machine learning methods and implementations (e.g. extensive
hyperparameter tuning, additional features).

There are several aspects that are interesting for future research within this field. As
mentioned in chapter 7 we have found that predicting 15 minute intervals remains a chal-
lenge due to large variability, even with a machine learning model that considers many
input features. A natural continuation would be to implement the proposed framework
for longer intervals (e.g. 30, 60 minutes). We believe that the overall error of the machine
learning models as well as the Erlang models would be significantly smaller due to less
variability.

We believe the machine learning method to be less sensitive than the Erlang models to
the forecast error introduced by the forecast implemented in this paper. An interesting
topic for future work would be to research several forecast implementations and compare
the introduced performance errors of the Erlang models with the machine learning model.
Furthermore, we have explored an alternative method of training the machine learning
method which showed promising interim results. We adjusted the training data such that
we duplicate the interval rows as many times as the number of calls within that interval.
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By doing this we add more weight to intervals with larger call volume. Since for the train-
ing data holds that each row represents one call, we are able to train on whether the call is
picked up within 20 seconds or not. We did this by adding a new column success, in which
we denote 1 if the corresponding call is picked up within 20 seconds and 0 otherwise. The
model learns the relations between the input features and the new output feature. The
model is able to output a predictive probability that this interval is ’picked up’ within 20
seconds or not. This probability is essentially the service level prediction of the considered
interval. The gain of this method alternative to the method implemented in this paper is
that more value is assigned to intervals that have large call volume.

The machine learning method may be improved in several aspects. More input features
could be considered, as for example the remaining shift duration per agent or individual
performance metrics of agents. Alternative machine learning techniques may be explored
with the use of real world datasets of different call centers. Lastly, more extensive exper-
iments may be conducted, for example comparing the model performance to simulation
models that are constrained by limited computational time.
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Appendix

threshold 1 threshold 2 threshold 3 threshold 4 threshold 5
0 6 · 10−4 1.2 · 10−3 2.6 · 10−3 3.4 · 10−3

threshold 6 threshold 7 threshold 8 threshold 9 threshold 10
4.2 · 10−3 8.3 · 10−3 1.25 · 10−2 1.67 · 10−2 3.33 · 10−2

Table 8.1: Feature selection thresholds

Figure 8.1: Correlation heatmap between agent features (whether agents are working or not)
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8. DISCUSSION

Description Symbol Queues
Call volume C 1, 2, 3, 4, 6

Load L 1, 2, 3, 4, 8

Team skill Q 4, 5

Average handling time H 1, 2, 3, 4, 5, 6, 7, 8

Consult & transfer ratio R //

124 agent features ax //

Table 8.2: Features dropped during feature selection
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