
Vrije Universiteit Amsterdam

Research Paper Business Analytics

Effectiveness and efficiency of the CMA-ES algorithm

Author:
Ronald van Zwienen

Supervisor:
Prof. Dr. A.E. Eiben

November 16, 2018

Abstract

This research paper discusses the Evolutionary Computing algo-
rithm CMA-ES. It is investigated how the CMA-ES algorithm per-
forms relative to a Bayesian Optimizer. Two measures are used to
assess the performance: the speed of convergence and the number of
function evaluations.

The optimizers are used to optimize the controller of robots. The
characteristics of such controller functions are typically rugged, noisy
and ill-conditioned. Therefore, a test suite is made up that consists of
nine functions who have the characteristics mentioned.

From the testing results it can be concluded that in general the
CMA-ES algorithm is more effective and the BO algorithm is more
efficient for a few function evaluations. As more function evaluations
are acceptable, CMA-ES outperform BO in terms of efficiency.

1

Contents

1 Introduction 3

2 Sample-Efficient Optimizers 3
2.1 Bayesian Optimization (BO) algorithms 5
2.2 Evolutionary algorithms . 5

3 Covariance Matrix Adaption -
Evolutionary Strategy (CMA-ES) 8
3.1 Population sampling . 8
3.2 Population evaluation . 8
3.3 Selection of best solutions . 9
3.4 Updating distribution parameters 9

3.4.1 Updating the mean vector 9
3.4.2 Updating the covariance matrix 10
3.4.3 Updating the step size 12

4 Experimental set-up 12
4.1 Test Suite . 13
4.2 Statistics . 14

4.2.1 Effectiveness . 14
4.2.2 Efficiency . 14

4.3 Python implementation . 15

5 Results 16
5.1 Effect of initial σ of the CMA-ES algorithm 16
5.2 Effectiveness . 17
5.3 Efficiency . 19

6 Conclusion 22

7 Discussion 23

2

1 Introduction

This research paper aims to provide insight into the effectiveness and effi-
ciency of the CMA-ES optimizer. The degree of effectiveness is expressed in
the distance from the optimum given the number of iterations. The closer the
optimizer has reached the optimum, given a number of iterations, the better
the solution quality. The efficiency is expressed in the number of function
evaluations that are needed to reach the optimum of an objective function.
Since the number of function evaluations is a relative term, the results are
compared with a Bayesian Optimization algorithm. The results have been
compared with a Bayesian Optimization algorithm because, like CMA-ES, it
is suitable for optimizing black box functions and does not require derivatives.
The research question that is answered in this paper is:

How effective and efficient is the CMA-ES algorithm compared to the
Bayesian Optimization algorithm?

The concrete problem behind this research lies in evolutionary robotics where
the morphologies (bodies) of the robots are evolvable. In such a system a
newborn robot has a new morphology and it needs to learn how to move this
body quickly after birth. That is, it has to learn (optimize) its own controller
(brain) for an objective function that measures the ability to locomote. The
learner / optimizer should be fast in the first place. That is, it is acceptable
to sacrifize efficacy for efficiency.

Since this paper focuses specifically on the optimization part of the prob-
lem, the evolutionary robotics part of the problem will be neglected. Hence,
the concrete problem outlined has been transformed into a more abstract
problem. The abstract problem amounts to optimizing a noisy (stochastic)
objective function.

2 Sample-Efficient Optimizers

There are many types or classes of optimizers. However, they all have in
common that they use the insight that not all function values need to be
known to reach an optimum. Typically an optimizer uses a so-called surro-
gate model. A surrogate model is a mathematical data-driven model that
mimics the behavior of another model, the objective function, as closely as
possible while being computationally cheap(er) to evaluate [1].

3

Since there are many types of optimizers, we can not mention them all.
To restrict ourselves, we start with the No Free Lunch (NFL) theorem. This
theorem is well described by Wolpert [2] and states that the performance
of any pair of algorithms a1 and a2 over all possible objective functions is
the same. As a consequence, if an algorithm performs relatively better than
other algorithms on one class of problems its performance is necessarily offset
on the remaining problems. Therefore, it is important to first examine the
characteristics of the objective function or the class of objective functions one
wants to optimize. Thereafter, an optimizer can be selected that is capable
to mimic this characteristics.

Characteristics of the objective function
Objective functions in evolutionary robotics have the following characteris-
tics:

• Dimensionality. Objective functions in evolutionary robotics generally
have several dozen dimensions.

• Ill-conditioned. In mathematics, the condition number of a function
with respect to an argument measures how much the output value of
the function can change for a small change in the input argument. A
function with a high condition number is said to be ill-conditioned.

• Non-separable. Functions that have dependencies between the objec-
tive variables have this characteristic. As a result, the variance can be
high between different estimates of the optimum.

• Rugged. This term refers to functions that are non-smooth, discon-
tinuous, multi-modal and / or noisy. Multi-modality means that there
are several, at least locally, optimal solutions. A discontinuous function
has at least one point in its domain where it has no derivative.

Based on these characteristics, derivative-free sample-efficient stochastic op-
timizers are the class of optimizers we are interested in. An optimizer is
sample efficient when it learns fast by exploring the important parts of the
domain of an objective function while ignoring the less relevant parts of the
domain. Two main strategy types will be further described in this chapter:

1. Bayesian Optimization algorithms

2. Evolutionary algorithms

4

2.1 Bayesian Optimization (BO) algorithms

A BO optimizer uses a Gaussian Process (GP) to find the optimum of an
objective function f . A GP is a collection of random variables, any finite
number of which have (consistent) joint Gaussian distributions [3]. The dif-
ference between a Gaussian distribution and a GP is that a Gaussian distri-
bution is over vectors and a GP is over functions. The surrogate model in
case of BO can be written as:

f ∼ GP (m, k) , (1)

which means that the function f is distributed as a GP with mean function
m and covariance or kernel function k. A BO algorithm typically starts with
two points, x1 and x2, in the domain of the objective function, f , and fits a
Gaussian Process (GP) over these two points. Then the GP is updated with
an iterative procedure until the GP reaches the optimum of f or a certain
stop condition. This iterative procedure is given in Algorithm 1.

Algorithm 1 Bayesian Optimization algorithm

1: procedure UpdateGaussianProcess
2: for t = 1, 2, ... do
3: Find xt by combining attributes of the posterior distribution in

an utility function u and maximizing: xt = argmaxx u (x|D1:t−1).
4: Sample the objective function f : yt = f (xt) + εt.
5: Augment the data {D1:t = D1:t−1, (xt, yt)} and update the GP.

The interesting part in Algorithm 1 is the utility function u. The utility
function u determines which point x will be evaluated at iteration t. Re-
garding the utility function u, there is a trade-off between exploration and
exploitation. When a utility function focuses on exploration, places in the
objective function domain with high variance are selected. When a utility
function focuses on exploitation, places with a low mean (in case of mini-
mization) are selected. Therefore, the optimization result depends to a large
extent on which utility function and which parameters are chosen.

2.2 Evolutionary algorithms

Evolutionary algorithms are inspired by biological evolutionary principles,
such as reproduction, mutation, recombination and selection. The Evolu-
tionary Computing terminology and his equivalent optimization terminology

5

is given in Table 1. A main difference between BO algorithms relative to
evolutionary algorithms is that BO algorithms examine one new point x per
iteration whereas evolutionary algorithms simultaneously consider multiple
candidate solutions per iteration.

Table 1: Evolutionary Computing terminology

Evolutionary Computing Optimization
individual, parent ⇔ candidate solution, decision variables
population ⇔ set of candidate solutions
fitness function ⇔ objective function
generation ⇔ iteration

Pseudo-code of the main steps of an evolutionary algorithm is given in Al-
gorithm 2.

Algorithm 2 Evolutionary Algorithm Scheme

1: Initialize population with random candidate solutions
2: Evaluate each candidate
3: while Termination condition is not satisfied do
4: Select parents
5: Recombine pairs of parents
6: Mutate the resulting offspring
7: Evaluate new candidates
8: Select individuals for the next generation

Typically, the starting point of an evolutionary algorithm is a population
with random candidate solutions. These candidate solutions f(x) are ob-
tained by drawing random xi‘s from the x-domain of the objective function.
After making the initial population, each candidate solution is evaluated and
evolution operators are applied. There are three evolution operators:

1. Selection,

2. Recombination or crossover and

3. Mutation.

6

The selection operator acts on a population level. Based on their fitness, the
µ best candidates are selected and serve as parents for the next generation.
The recombination and mutation operator act on an individual level. Re-
combination means that children inherit characteristics from their parents,
whereas mutation is adding some randomness to keep the next generation
diverse.

All three steps are crucial for proper functioning of an evolutionary al-
gorithm. This because using selection alone will tend to fill the population
with copies of the best individual from the population and therefore does
not lead to improvement of the population. Furthermore, using selection and
crossover operators only will tend to cause the algorithms to converge on a
good but sub-optimal solution instead of converging to a global optimum.
Using mutation alone induces a random walk through the search space. And
finally, Using only selection and mutation creates a parallel, noise-tolerant,
hill climbing algorithm.

At this point, we see some similarities between Bayesian Optimization al-
gorithms and Evolutionary Algorithms. In subsection 2.1 we stated for
Bayesian optimizers that there is a trade-off between exploration and ex-
ploitation. In the case of using Evolutionary Algorithms we have the exact
same problem. Evolutionary Algorithms have a trade-off between novelty
and quality. On one hand, we want to increase the diversity of the popula-
tion by the variation operators recombination and mutation. These operators
push the population towards novelty. On the other hand, the diversity of the
population is decreased by selection of parents, which pushes the population
to quality.

Finally, it can be stated that there are different classes of Evolutionary Al-
gorithms, which can be seen as a flavour on the foregoing of this subsection.
Historically different flavours of Evolutionary Algorithms have been associ-
ated with different data types to represent solutions. For example, Genetic
Algorithms use binary strings to represent solutions, while Evolution Strate-
gies use real-valued vectors. One Evolutionary Strategy is Covariance Matrix
Adaption - Evolutionary Strategy (CMA-ES). This optimizer is described in
the next chapter.

7

3 Covariance Matrix Adaption -

Evolutionary Strategy (CMA-ES)

The CMA-ES algorithm consists of five steps:

1. Sampling a population, using a multivariate Normal distribution,

2. Evaluating the sampled population on the fitness function,

3. Selection of a portion of the population, which are the best fit solutions,

4. Updating the current distribution using the information of the best fit
solutions,

5. Repeating the foregoing steps until a stopping criterion is met.

These steps are explained in more detail in the rest of this chapter. Hereby,
intensive use is made of a paper of Hansen [3], including his notation.

3.1 Population sampling

At each iteration, a population is sampled from the multi-variate Normal
distribution. A population consist of λ new search points. Each search point
xi is sampled according Equation (2).

x
(g+1)
i ∼ N

(
m(g),

(
σ(g)
)2

C(g)
)
, for i = 1, ..., λ (2)

In this equation x
(g+1)
i is the i’th search point from generation g + 1. The

vector m is the mean vector of the multi-variate normal distribution, which
is initially set to a random point in the domain or if one knows how the
objective function looks like, a point near the possible optimum. The matrix
C is the covariance matrix and is initially set to the identity matrix I, whereas(
σ(g)
)2

is the step size at generation g.

3.2 Population evaluation

The sampled population is evaluated by retrieving the value of the fitness
function for each x

(g+1)
i .

8

3.3 Selection of best solutions

In case of minimization of the fitness function, µ of the λ x
(g+1)
i ’s are selected,

such that f
(
x
(g+1)
1:λ

)
≤ f
(
x
(g+1)
2:λ

)
≤ ... ≤ f

(
x
(g+1)
µ:λ

)
.

3.4 Updating distribution parameters

From Equation (2) it can be seen that the used Normal distribution has three
parameters:

1. A mean vector m,

2. A covariance matrix C and

3. A step size control parameter σ2.

All three parameters are updated at each iteration.

3.4.1 Updating the mean vector

At each iteration, the mean vector m is updated according to Equation (3).

m(g+1) = cm

µ∑
i=1

wix
(g+1)
i:λ ≡m(g) + cm

µ∑
i=1

wi(x
(g+1)
i:λ −m(g)) (3)

For the weights wi the following holds:

cm

µ∑
i=1

wi = 1, w1 ≥ w2 ≥ ... ≥ wµ > 0 (4)

If all wi is set to 1/µ, then m(g+1) is the equally weighted mean of the µ best
solutions. The constant cm ≤ 1 is a learning rate, which is usually set to
1. If cm < 1 and the step size σ = 1/cm, then the x

(g+1)
i are sampled from

a wider range. This can be advantageous on noisy functions with (a lot of)
local optima.

9

3.4.2 Updating the covariance matrix

It is known that the sample variance of a Gaussian distribution can be es-
timated with the unbiased estimator s2. The bias of an estimator is the
difference between an estimator’s expected value and the true value of the
estimator being estimated. If an estimator has zero bias, the estimator is
called unbiased. The estimator s2 is computed according to Equation (5).

s2 =
n

n− 1
σ̂2 =

1

n− 1

n∑
i=1

(xi −m)2 (5)

Therefore, the sample or empirical covariance matrix C of a sampled gener-
ation in case of the CMA-ES is:

C
(g+1)
λ =

1

λ− 1

λ∑
i=1

(
x
(g+1)
i −m(g)

)(
x
(g+1)
i −m(g)

)T
(6)

To obtain a better covariance matrix, that is, a covariance matrix which
results in better x′is in the next generation, only the µ best xi values can be
used. By also using the weighted selection mechanism from Equation (4),
Equation (7) is obtained.

C(g+1)
µ =

µ∑
i=1

wi

(
x
(g+1)
i:λ −m(g)

)(
x
(g+1)
i:λ −m(g)

)T
(7)

Sampling from C(g+1)
µ tends to produce better fitness function values, since

the sampled xi’s are closer to the optimum. To achieve fast search, the pop-
ulation size λ must be small. However, for small populations this estimation
can be influenced by outliers and becomes more unreliable. Hence, the co-
variance matrix adaptation must be adjusted, which is usually done with the
so-called rank-µ-update.

Rank-µ update
To obtain a reliable estimate of the covariance matrix for small population
sizes, the weighted mean of the estimated covariance matrices from all gen-
erations can be used.

C(g+1) =
1

g + 1

g∑
i=1

1

σ(i)2
C(i+1)
µ (8)

10

In Equation (8) all covariance matrices have the same weight. In order to
assign higher weights to more recent generations, exponential smoothing can
be used.

C(g+1) = (1− cµ) C(g) + cµ
1

σ(g)2
C(g+1)
µ (9)

Using Equation (7), this can be written as:

C(g+1) = (1− cµ) C(g) + cµ

µ∑
i=1

wi

(
x
(g+1)
i:λ −m(g)

σ(g)

)(
x
(g+1)
i:λ −m(g)

σ(g)

)T

(10)

In Equation (9) and (10) cµ ≤ 1 is the learning rate for updating the covari-
ance matrix. If cµ = 0, no learning takes place and C(g+1) = C(0). If cµ = 1,
no prior information is used. Hansen et al [2] examined that approximately
37% of the information in C(g+1) is older than 1/cµ generations. Therefore,
the choice of cµ is very important. If cµ is low, the learning is very slow
whereas if cµ is large the covariance matrix C degenerates.

Rank-One Update
In the limit case, only a single point can be used for updating the covariance
matrix at each generation and the covariance matrix is updated according to
Equation (11).

C(g+1) = (1− cµ) C(g) + cµ

(
x
(g+1)
1:λ −m(g)

σ(g)

)(
x
(g+1)
1:λ −m(g)

σ(g)

)T

(11)

Since in Equation (11) the maximum likelihood is added to the covariance
matrix, the probability to generate the maximum likelihood in the next gen-
eration increases. If in Equation (11) the term x

(g+1)
i:λ −m(g) is negative, the

negative sign vanished. Therefore, in practice this term is replaced by the
evolution path pc resulting in Equation (12).

C(g+1) = (1− cµ) C(g) + cµp
(g+1)
c p(g+1)T

c (12)

An evolution path pc can be expressed by a sum of consecutive steps. This
summation is referred to as cumulation. To construct an evolution path, the
step-size σ is disregarded. In the CMA-ES algorithm, the evolution path pc
is defined as in Equation (13).

pc = (1− cc) p(g)
c +

√
cc (2− cc)µeff

m(g+1) −m(g)

σ(g)
(13)

11

As in Equation (9) and (10) the constant cc ≤ 1 in Equation (13) is the
learning rate, 1/cc is the backward time horizon of the evolution path pc
that contains roughly 63% of the overall weight. A time horizon between√
n and n is effective. Finally, the term

√
cc (2− cc)µeff is a normalization

constant.

Practically every CMA-ES implementation puts the above together, lead-
ing to Equation (14).

C(g+1) = (1− c1 − cµ) C(g) + c1p
(g+1)
c p(g+1)T

c +

cµ

µ∑
i=1

wi

(
x
(g+1)
i:λ −m(g)

σ(g)

)(
x
(g+1)
i:λ −m(g)

σ(g)

)T

(14)

3.4.3 Updating the step size

Finally, the step size σ is updated according Equation (15).

σ(g+1) = σ(g)exp

(
dσ
cσ

(
‖ p

(g+1)
σ ‖

E ‖ N (0, I) ‖
− 1

))
(15)

There are a lot of parameters involved in the CMA-ES algorithm. However,
three parameters have the biggest influence on the efficiency of this algorithm.
These parameters are given in Table 2. Only these parameters will be taken
into account when testing this algorithm on the test suite.

Table 2: Most relevant parameters of CMA-ES

Parameter Function in model
λ Population size: effects the diversity of the population.
µ Number of parents: effects the quality of the population.
σ Step size: the degree of mutation.

4 Experimental set-up

To test the effectiveness and efficiency of the CMA-ES optimizer and compare
it to an Bayesian optimizer, both type of optimizers must be tested on the

12

same objective functions. Therefore, a test suite has been composed which
is described in section 4.1. The goal is to determine the effectiveness and
efficiency of the CMA-ES on the test suite. The statistics used are described
in section 4.2. Finally, 4.3 describes how the algorithms are implemented in
Python.

4.1 Test Suite

The optimizers will be evaluated with the COCO (Comparing Continuous
Optimizers) benchmark functions, as presented by Flinck et al (2009) [4][5],
which has been used for the Black-Box-Optimization-Benchmarking (BBOB)
workshops during GECCO conferences in several years, as well as for the
Congress on Evolutionary Computation (CEC) in 2015. Nine of these bench-
mark functions have been selected and form the test suite. These functions
are given in Table 3. In choosing these nine functions we mainly aimed to
construct a diverse test suite, meaning that the functions have different com-
plexities and varying shapes. The test suite consists of five noiseless functions
and four noisy functions. The noisy functions are noisy counterparts of the
noiseless functions. This, in order to analyze the effect of the noise on the
performance of the optimizers.

Table 3: Test Suite Functions

Noiseless functions Noisy functions
Number Name Number Name
f1 Sphere f102 Sphere with moderate

uniform noise
f8 Rosenbrock f110 Rosenbrock with Gaussian

noise
f17 Schaffers F7 f124 Schaffers F7 with seldom

Cauchy noise
f21 Gallagher’s Gaussian f128 Gallagher’s Gaussian peaks,

101-me Peaks 101-me with Gaussian noise
f23 Katsuura

The numbering of the functions (e.g. f1) corresponds to the BBOB num-
bering. Each test function has several instances. Each instance is randomly

13

shifted in both the x-space and the f -space. By optimizing various instances
it is easy to determine how the optimizer performs on the type of function in
question without changing any starting points. Finally, the f -axes are upside
down and all function are to be minimized, so the optima are peaks.

Since a robot usually has several dozens of dimensions and to figure out
the effect of adding more dimensions to the problem, the optimizers will be
tested on real-valued vectors of 2, 5, 10, 20 and 40 dimensions.

4.2 Statistics

The goal of an optimizer is, given a starting point, moving as fast as possible
to the optimum. Therefore, we are interested in both effectiveness (solution
quality) and efficiency (speed).

4.2.1 Effectiveness

In Evolutionary Computing, the Mean Best Fitness (MBF) is a common
measure to determine the extent to which the algorithm is able to find the
optimum [1]. The MBF can be determined by recording the fitness of the best
individual at termination for each run. That is, for each of the 50 instances
per test function the best fitness at termination is recorded. Then, the MBF
of the test suite is the average of these values over all test functions and
instances.

Since each instance is randomly shifted in both the x-space and the f -
space, the best fitness value at termination is difficult to interpret. Because
of the random shifts, the optimum also shifts and hence differs per instance.
Therefore, to measure the effectiveness, the distance from the starting point
to the optimum in the f -space is used. Furthermore, the distance traveled
from the starting point to the optimum is measured in percentages. This is
because not every starting point is just as far away from the optimum. So if
a value of 0.2 is measured at iteration t, this means that the distance to the
optimum has been reduced by 80 percent relative to the starting point.

4.2.2 Efficiency

The number of function evaluations has been used to assess the speed of
the CMA-ES algorithm. In case of the CMA-ES the number of function

14

evaluations depends on the population size at each iteration. In case of BO,
at each iteration one new point is evaluated.

4.3 Python implementation

The optimizers are tested in Python on the test suite. For the CMA-ES
algorithm, the library cma is used. The code below shows how this package
was used to optimize the first instance of test function f128 in 10 dimensions.

import cma

from cma import bbobbenchmarks as bb

dim = 10

initial_sigma = 200

popsize = (4 + int(3*np.log(dim)))

CMA_mu = int(popsize / 2)

opts = cma.CMAOptions({’popsize’: popsize, ’CMA_mu’: CMA_mu})

objective = bb.F128(1)

es = cma.CMAEvolutionStrategy(dim * [mean], initial_sigma, opts)

number_of_iterations = 100

for k in range(number_of_iterations):

x_values = es.ask()

fitness_values = [objective.evaluate(x) for x in x_values]

es.tell(x_values, fitness_values)

es.logger.add()

The BO algorithm is implemented with the package BayesianOptimization
from the library bayes opt. The code below shows that theBayesianOptimization
package was used to optimize the first instance of test function f128 in 2 di-
mensions.

from bayes_opt import BayesianOptimization

objective = bb.F128(1)

def target(x, x2):

return -objective.evaluate([x, x2])

bo = BayesianOptimization(target, {’x’: (MIN, MAX), ’x2’: (MIN,

15

MAX)})

kernel = gp.kernels.Matern()

opts = {’kernel’: kernel, ’alpha’: 1e-5}

bo.maximize(init_points=2, n_iter=0, acq=’ei’, **opts, kappa=10)

for i in range(number_of_iterations):

bo.maximize(init_points=0, n_iter=1, acq=’ei’, **gp_params,

kappa=10)

best_fitness = bo.res[’max’][’max_val’]

The parameter kappa determines whether the focus is on exploration or ex-
ploitation. The lower kappa, the more the emphasis is placed on exploitation.
Furthermore, the Expected Improvement (EI) utility function was used. This
utility function is defined as:

EI(x) = E
max

[f(x)− f(x+), 0)],

where f(x+) is the value of the best sampled xi so far.

5 Results

This section describes the effectiveness and efficiency of both the CMA-ES
and the BO optimizer on the test suite.

But before both the effectiveness and the efficiency are identified, the
initial σ of the CMA-ES algorithm will be determined. This is done because
this parameter has a major influence on the number of iterations needed. In
terms of optimization: the initial σ can be seen as an exploration parameter.
If the initial σ is too low, then few new areas of the objective function are
discovered in a few iterations and hence the speed of convergence is low. On
the other hand, if the initial σ is too high, then you can quickly get close
to the optimum, but it is difficult to actually reach the optimum, because
a wide range is being discovered for candidate solutions. That is why it is
important to first find a good value for the initial σ.

5.1 Effect of initial σ of the CMA-ES algorithm

Figure 1 shows the effect of the initial σ on the speed of convergence. The
y-axis shows the distance to the optimum relative to the starting point per
iteration in percentages.

16

The plots are obtained by testing the CMA-ES on the first 50 instances
of function f128 from the test suite. This function is used, since it is one of
the most noisy functions in the test suite. This prevents a value from being
selected whereby the algorithm gets stuck in a local optimum.

From Figure 1, it can be seen that for low σ values is much slower than
for higher σ values. Furthermore, there is a clear effect on the speed of
convergence with regard to the average distance from the starting point to
the optimum. In Figure 1a an initial mean vector of zeros is used, which is
relatively closer to the optimum than a vector of 100,000‘s, which is used in
Figure 1b. If the starting point is further away from the optimum, there is
a kind of a warm up period perceptible. Once the CMA-ES has found the
right direction, it goes to the optimum just as quickly as with a higher sigma.

Based on the plots in Figure 1, a value of 200 is used as an initial σ, when
testing the functions of the test suite. Regardless of the starting point, this
value performs very reasonably in terms of speed of convergence.

(a) (b)

Figure 1: Effect of initial σ on convergence with initial mean the 0T -vector
(a) and the 100,000T -vector (b).

A fairly high initial σ is also logical, since the algorithm in the first
iteration does not know anything about the form of the fitness function yet.
The emphasis should then be on exploration instead of exploitation.

5.2 Effectiveness

Figure 2 shows the effectiveness of both optimizers on the five noiseless test
functions of the test suite. The effectiveness is measured as the distance from

17

the optimum, relative to the starting point, at termination. Figure 2 shows
the effectiveness of the optimizers for different termination conditions. As
termination condition, a specified number of iterations has been used.

Figure 2: Effectiveness of CMA-ES and BO on noiseless test functions, with
D the number of dimensions and I the number of iterations (stop condition).

Figure 2 shows that regardless of the termination condition, the effec-
tiveness of the CMA-ES is better. That is, at termination the CMA-ES
approaches the optimum more than the BO algorithm. Furthermore, in case
of BO the improvement of the solution quality is relatively limited after 50
iterations. One cause is the kappa parameter in the BO algorithm. This pa-
rameter determined the degree of exploration and exploitation and is fixed.
Based on Figure 2, this parameter should actually be adjusted after 50 it-
erations so that the focus is more on exploitation. This, because after 50
iterations the BO algorithm do not find new promising areas, taking into
account the limited increase of the solution quality.

18

Figure 3: Effectiveness of CMA-ES and BO on noisy test functions, with D
the number of dimensions and I the number of iterations (stop condition).

Figure 3 shows the effectiveness of the optimizers on the four noisy test
functions. Figure 3 shows a similar picture as with the noiseless test func-
tions. The solution quality of the CMA-ES is in all cases better. However,
there are some differences with the noiseless functions. To begin with, the so-
lution quality on the noisy test functions is less good than with the noiseless
functions. Furthermore, given the stop condition, the results of the different
dimensions are relatively close to each other with BO. And finally, it is strik-
ing that BO does not perform better for 2-dimensional instances than for
5-dimensional instances. And 5-dimensional instances do not perform better
than 10-dimensional instances. This is counterintuitive. A possible explana-
tion is that the used BO parameters work differently at different dimensions
on noisy functions.

5.3 Efficiency

The efficiency of the CMA-ES is measured by the number of iterations and
the number of evaluations it takes to reach the optimum. In Table 4, 95%-
Confidence Intervals (CI‘s) for both the number of iterations and the number
of evaluations are given for several dimensions. From the table it can be seen
that as the number of dimensions increases the number of iterations and
evaluations also increases.

19

Table 4: 95%-Confidence Intervals Efficiency Test Suite

Number of dimensions
2 5 10 20

Evaluations
Mean 1465.69 3446.60 8298.73 21014.87
Standard deviation 1070.53 2144.12 8401.22 30570.75
CI upper bound 1535.63 3586.69 8847.61 23012.16
CI lower bound 1395.75 3306.52 7749.85 19017.58
Iterations
Mean 244.28 430.83 829.87 1751.24
Std dev. 178.42 268.01 840.12 2547.56
CI upper bound 255.94 448.34 884.76 1917.68
CI lower bound 232.62 413.32 774.99 1584.80

The CI‘s are computed from testing the first 50 instances of each of the
nine test functions twice. In this way, 900 values have been generated for
each dimension. The CI is than computed as:

CI = X̄ ± 1.96
σ√
n

Figure 4 shows for both optimizers how the optimum is approached for the
first 100 iterations.

(a) (b)

Figure 4: Effectiveness of CMA-ES and BO on noiseless test functions (a)
and Effectiveness CMA-ES on noisy test functions (b).

20

However, this does not give a good picture of the efficiency because the
number of function evaluations per iteration differs strongly per optimizer.
BO uses one function evaluation per iteration. However, the CMA-ES uses a
population size of 4 + 3*ln(number of dimensions) per iteration. That means
that for 2-dimensional instances there are 6 evaluations per iteration, while
for 40-dimensional instances the population size of 15 is used. Therefore the
results of the CMA-ES must be adjusted so that a comparison can take place
based on the number of function evaluations.

Figure 5 shows the speed of convergence per function evaluation. In the
noiseless case, the BO algorithm in general performs better than the CMA-
ES. In case of noisy functions the CMA-ES performs better. However, within
the first 100 function evaluations BO performs better in the 40-dimensional
case. This is due to the fact that the CMA-ES uses 15 function evaluations
per iteration in the 40-dimensional case. Therefore, one iteration with the
CMA-ES algorithms corresponds to 15 iterations with BO.

(a) (b)

Figure 5: Efficiency of CMA-ES and BO on noiseless (a) and noisy (b) test
functions

Striking during testing was that the CMA-ES performs very consistently
across the different dimensional instances and functions. BO shows the op-
posite. Figure 6 shows the great difference in performance between the two
optimizers. For an important part, the disappointing result of BO is due
to the fact that the objective function is very rugged. BO fits a smooth
GP which aims to approach the objective function. Because the objective
function is far from smooth, the BO algorithm fails.

21

(a)
(b)

Figure 6: Performance of the optimizers on test function f128

6 Conclusion

The goal of this research paper is to compare two sample-efficient optimizers
based on their effectiveness and efficiency on a test suite. We are especially
interested in speed of convergence to the global optimum. Based on the re-
sults, some conclusions can be drawn.

In the first place, from Evolutionary Strategies it is known that it perform
fairly constantly on a wide range of function types. The CMA-ES algorithm
also shows this on the test suite. In all cases the optimizer managed to
reach the optimum, rounded to two decimal places. This is in contrast to
the BO optimizer, which in many cases did not reach the optimum within a
fair amount of time. The BO algorithms tends to get stuck in local optima
more often. Especially for highly irregular function with a lot of peaks, it is
difficult for a BO algorithm to estimate the true function curve.

Regarding the effectiveness, in all cases the CMA-ES approaches the op-
timum better at termination then the BO algorithm. The more noisy the
objective function is, the better is the effectiveness of the CMA-ES compared
to BO.

Regarding the efficiency, BO is very efficient and can compete with the CMA-
ES. It should be noted here that this only applies when the maximum number
of function evaluations is relatively small. As more function evaluation is ac-

22

ceptable, CMA-ES becomes an increasingly better choice.

Furthermore, based on the results, the CMA-ES algorithm always seems to
converge. This in contrast to the BO algorithm. This makes it safer to choose
the CMA-ES algorithm in case the objective function is completely unknown.

Finally, using the BO algorithm it is important to limit the x-domain within
which the optimum is sought. When the domain is defined on the whole real
line and no boundaries in the x-domain are set, the variance of the Gaussian
Process goes to infinity and hence the areas around minus infinity and plus
infinity will be discovered. Hence, for a successful application of the BO
algorithm some knowledge of the objective function is more or less required.

Which algorithm can ultimately be best used in evolutionary robotics can
not be determined unambiguously based on the results. On one hand, BO
is an attractive choice because with a few function evaluations a good result
can be achieved. And few function evaluations within evolutionary robotics
means that a few runs of robots to locomote is needed, which is desirable. On
the other hand, CMA-ES is very robust in its performance. CMA-ES prac-
tically always reaches the global optimum very close, while BO in common
cases get stuck if the objective function is very rugged. Therefore, for rugged
objective functions, the number of function evaluations increases very fast
in case of BO without moving to the optimum. Furthermore, CMA-ES con-
stantly converges over the iteration, whereas BO converges less constantly.
All in all, this makes the CMA-ES a safer choice.

7 Discussion

The results in this research paper show that the CMA-ES algorithm is more
robust than the BO algorithm. Nevertheless, it can not by definition be
concluded that CMA-ES performs better. BO can achieve a reasonable result
with few function evaluations. The results with the BO algorithm depend to
a large extent on the used utility function. For the results in this paper, the
Matèrn kernel function is used. It is worth testing other kernel functions.
Furthermore, hyper parameters of the BO algorithm can be optimized, which
can lead to better and more robust results.

Ultimately, optimization of black-box functions is about the right level of

23

exploration and exploitation. The BO algorithm can be in entirely different
areas of the x-domain per iteration. In the CMA-ES algorithm, exploration
and exploitation are linked together in an elegant way. Exploitation is done
by adapting the mean vector and exploration is done by adapting the covari-
ance matrix for the direction and the σ for the range. This research paper
shows that this leads to good results with a limited amount of effort.

References

[1] J.E. Smith A.E. Eiben. Introduction to Evolutionary Computing.
Springer, Amsterdam, The Netherlands, 2nd edition, 2015.

[2] Koumoutsakos P Hansen N, Müller SD. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation
(cma-es). Evolutionary Computation, page 11(1):1–18, 2003.

[3] Hansen N. The cma evolution strategy: A tutorial. Saclay–Ile-de-France,
2016.

[4] R. Ros S. Finck, N. Hansen and A.Auger. Real-parameter black-box
optimization benchmarking 2009: Presentation of the noiseless functions.
Research Center PPE, Technical Report 2009/20, 2009.

[5] R. Ros S. Finck, N. Hansen and A.Auger. Real-parameter black-box
optimization benchmarking 2009: Presentation of the noisy functions.
Research Center PPE, Technical Report 2009/21, 2009.

24

