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Summary
Recommender systems aim to provide relevant item recommendations to the
users of a service. Evidently, well-performing recommender systems can aid
corporations in increasing their users’ consumption and satisfaction. This re-
search set out to increase the performance of neighbourhood-based recommender
systems by including temporal information in addition to ratings. To judge the
effectiveness, we executed an evaluation procedure on data drawn from Movie-
Lens and Yelp. Regarding prediction performance, we found ratings to already
convey essentially all of the explanatory value. Moreover, for the MovieLens
dataset we showed that binary interactions might even suffice in the similarity
aspect of the neighbourhood-based systems. Thus, businesses looking to im-
prove the prediction performance of their recommender systems are most likely
to benefit more from other approaches than we investigated. However, the tem-
poral adaptations might yield increased performance in different aspects of rec-
ommender systems, such as novelty, diversity and personality. Further research
is needed to draw decisive conclusions based on these measures.
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1 Introduction
Large corporations such as Amazon deploy recommender systems to provide
their users with personalized item recommendations [Linden et al., 2003]. Ex-
amples of items include E-commerce products (in the case of Amazon), films
and restaurants. Evidently, well-performing recommender systems can aid cor-
porations in increasing their users’ consumption and satisfaction [Ricci et al.,
2015, p. 5].

The systems come in many forms. Bobadilla et al. [2013] distinguish four
classes: collaborative filtering, demographic filtering, content-based filtering and
hybrid filtering. Collaborative filtering includes a neighbourhood-based ap-
proach that relies on explicit rating information. This is the most common
method in the collaborative filtering landscape [Bobadilla et al., 2013] and pos-
sibly in the overall recommender systems landscape as well.

Neighbourhood-based collaborative filtering comprises two distinct variants:
one that focuses on users’ neighbourhoods and one that focuses on items’ neigh-
bourhoods. The former builds on the assumption that users with similar ratings
tend to prefer similar items. The latter assumes that users have a preference for
items that are similar to items they have rated highly in the past. Both systems
operate in two phases. The first phase determines the neighbourhoods of the
users or items and the second phase aggregates the ratings in these neighbour-
hoods.

Traditionally, the algorithms in these phases solely rely on explicit rating
information. Often, timestamps accompany this rating data. If not, this tem-
poral information is easy to acquire since it does not require additional user
input. Intuitively, temporal information might convey explanatory value. This
is predominantly due to user interests that change over time, but also due to
evolution of certain types of items (for example restaurants).

Research has been conducted into incorporating temporal information in the
neighbourhood determination phase [Liu et al., 2010, Organero et al., 2010, Wei
et al., 2012, Hu et al., 2014] and rating aggregation phase [Ding and Li, 2005,
Campos et al., 2010, Liu et al., 2010, Wei et al., 2012]. The presented methods
include temporal data by considering the temporal similarity among historical
ratings and the time distance from past ratings to the time of prediction.

This research investigates how temporal information can be included in
neighbourhood-based collaborative filtering in order to improve the performance.
We mainly focus on prediction performance, but also briefly touch upon the
novelty, diversity and personality of recommendations. Regarding the temporal
adaptations, the focus is on involving temporal similarity in the neighbourhood
determination phase and the time distance from past ratings to the time of pre-
diction in the aggregation phase. We refer to the former by the term temporal
similarity and to the latter by temporal recency. To evaluate the performance,
we apply the time-aware algorithms to datasets drawn from MovieLens and
Yelp.

This paper begins by discussing neighbourhood-based collaborative filtering
in Section 2. This includes the static variant as well as the adaptations for
the time-aware variant. It will then go on to describe, process and visualize
the data in Section 3. Section 4 outlines the evaluation and parameter tuning
procedures. This also comprises a discussion of the performance aspects of rec-
ommender systems from a business perspective. Section 5 descriptively reports

4



the findings of the evaluation procedure. Additionally, it further investigates
some remarkable results. Afterwards, Section 6 concludes and discusses this
study.
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2 Neighbourhood-Based Collaborative Filtering
Recommender systems in general and collaborative filtering algorithms in par-
ticular can be used to tackle two problems: rating prediction and top-n list
recommendation [Charu, 2016, p. 30]. The rating prediction problem formula-
tion is as follows: given a user and an item, predict the user’s rating for the
item. Throughout this paper, the terms active user and active item refer to
the user-item pair for which the rating should be predicted. The top-n list rec-
ommendation problem definition is: given a user, predict the n most relevant
recommendations. This problem formulation can be reduced to the rating pre-
diction problem by recommending the n items with the highest predicted rating
from the active user. In this report, we will therefore mostly focus on the rating
prediction problem.

The temporal methods that we will consider are adaptations of the tra-
ditional, time-unaware neighbourhood-based methods. Therefore, we discuss
these first in Section 2.1. We will then go on to present the time-aware variants
in Section 2.2.

2.1 Time-Unaware
Time-unaware neighbourhood-based collaborative filtering comes in two forms:
user-to-user and item-to-item. To predict a rating, the user variant combines
the active item’s ratings from users that are similar to the active user. The item-
to-item collaborative filtering method generates a prediction by aggregating the
active user’s ratings of items similar to the active item.

Both variants infer predictions from explicit rating data. It is convenient to
think of this data as a so called rating matrix. Let U be the set of users, let I
be the set of items and let rui be the rating of user u ∈ U for item i ∈ I. Then,
the rating matrix R is a |U | by |I| matrix with elements rui. Typically, R is
very sparse, since only a small subset of user-item pairs have a corresponding
rating.

2.1.1 User-to-User

User-to-user collaborative filtering builds on the assumption that users with
similar ratings tend to prefer similar items. This algorithm operates in two
phases. The first phase determines the k users that are most similar to the active
user, the so called neighbourhood. This requires a similarity measure which
captures the similarity between the users’ ratings. The second phase aggregates
the active item’s ratings from the users in the neighbourhood according to a
prediction function.

Neighbourhood Determination To determine the neighbourhood of the
active user u for active item i, we compute the similarity between u and all
other users v ∈ U \ {a}. Many choices exist for the similarity function, but
the two most popular are cosine similarity and Pearson correlation [Wei et al.,
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2012]. The cosine similarity between user u and user v is:

sim(u, v) =

∑
i∈Iu∩Iv

rui · rvi√ ∑
i∈Iu∩Iv

r2
ui ·

∑
i∈Iu∩Iv

r2
vi

.

Here, Iu is the set of items rated by user u. Assuming that ratings are positive,
the cosine similarity is a measure in the interval [0, 1] where high values indicate
a high similarity. When computing the similarity between users, it can occur
that the denominator is zero. For example, this happens if two users have not
rated any common items, i.e. if Iu ∩ Iv is empty. In such a situation, we are
unable to compute a finite similarity and we simply set the similarity between
the two users to zero. This applies to all user-to-user similarities we consider in
this report.

Ricci et al. [2015] argue that the cosine similarity measure fails to capture
differences in mean and variance between users’ ratings and that the Pearson
correlation does not have this drawback [p. 53]. The Pearson correlation between
user u and user v is as follows:

sim(u, v) =

∑
i∈Iu∩Iv

(rui − r̄u·) · (rvi − r̄v·)√ ∑
i∈Iu∩Iv

(rui − r̄u·)2 ·
∑

i∈Iu∩Iv
(rvi − r̄v·)2

. (1)

Here, r̄u· is the mean rating of user u, i.e. r̄u· = 1
|Iu|

∑
i∈Iu

rui. The Pearson

correlation is a measure in the interval [−1, 1]. The sign indicates whether users
u and v are similar (positive sign) or dissimilar (negative sign). The distance
from 0 indicates the strength of the (dis)similarity. Note that there also exists a
variant where the means r̄u· and r̄v· only consider items that are rated by both
u and v, which is computationally more expensive [Charu, 2016, p. 35]. The
variant displayed in Equation 1 is sometimes also referred to as the adjusted
cosine similarity.

Let N i
u be the set of k users that are most similar to user u and have rated

item i. This set is commonly referred to as the neighbourhood corresponding to
the user-item pair. Note that it is only sensible to include users with a positive
similarity to the active user. Here, k is a parameter that indicates the size of
the neighbourhood. Since the rating matrix is typically sparse, it can occur that
the actual size of the neighbourhood is smaller than k.

Rating Aggregation Charu [2016] presents two prediction functions to ag-
gregate the ratings once the neighbourhood has been determined. The mean-
centred prediction function is:

r̂ui = r̄u· +

∑
v∈Ni

u

sim(u, v) · (rvi − r̄v·)∑
v∈Ni

u

sim(u, v)
.

Here, r̂ui is the predicted rating for active item i from active user u. The Z-score
prediction function is an adaptation of the mean-centred one. It includes the
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users’ rating standard deviation in addition to the mean:

r̂ui = r̄u· + σu ·

∑
v∈Ni

u

sim(u, v) · rvi−r̄v·
σv∑

v∈Ni
u

sim(u, v)
.

Here, σu is the standard deviation of user u’s ratings, i.e. σu =
√∑

i∈Iu (rui−r̄u·)2
|Iu|−1 .

These prediction functions are not able to generate a rating prediction when
the neighbourhood N i

u is empty. If this is the case, we will simply predict the
mean rating of the active item i. It can occur that the active item i has not
received any ratings. Then, predicting item i’s mean rating is impossible. In
this situation, we predict the grand mean of all ratings.

2.1.2 Item-to-Item

Item-based collaborative filtering assumes that users have a preference for items
that are similar to items they have rated highly in the past. It is closely related
to the user-to-user variant: it comprises the same two stages and builds on
comparable similarity and prediction functions. The main difference is that
the neighbourhood is constructed in the item dimension instead of the user
dimension.

Neighbourhood Determination Since the item-to-item variant determines
the active item’s neighbourhood, this phase requires a measure that captures the
similarity between items. Again, the cosine similarity and Pearson correlation
are popular metrics. The cosine similarity between item i and item j is as
follows:

sim(i, j) =

∑
u∈Ui∩Uj

rui · ruj√ ∑
u∈Ui∩Uj

r2
ui ·

∑
u∈Ui∩Uj

r2
uj

.

Here, Ui is the set of users that rated item i. Comparable to the user-to-user
similarities, we set the similarity between two items to zero if we are unable
to compute a finite similarity between the two. This holds for all item-to-item
similarities we consider in this report.

The Pearson correlation between item i and item j is:

sim(i, j) =

∑
u∈Ui∩Uj

(rui − r̄·i) · (ruj − r̄·j)√ ∑
u∈Ui∩Uj

(rui − r̄·i)2 ·
∑

u∈Ui∩Uj

(ruj − r̄·j)2
.

Here, r̄·i is the mean rating of item i, i.e. r̄·i = 1
|Ui|

∑
u∈Ui

rui. The neighbourhood

M i
u consists of the k items most similar to the active item i which are rated by

the active user u.

Rating Aggregation To aggregate the ratings in the neighbourhoodM i
u, we

can again use the mean-centred or Z-score prediction formulas [Ricci et al., 2015,
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p. 50-52]. For item-to-item collaborative filtering, the mean-centred prediction
function is as follows:

r̂ui = r̄·i +

∑
j∈Mi

u

sim(i, j) · (ruj − r̄·j)∑
i∈Mi

u

sim(i, j)
.

The item-based formulation of the Z-score prediction is:

r̂ui = r̄·i + σi

∑
j∈Mi

u

sim(i, j) · ruj−r̄·j
σj∑

i∈Mi
u

sim(i, j)

Here, σi is the standard deviation of item i’s ratings, i.e. σi =

√∑
u∈Ui

(rui−r̄·i)2

|Ui|−1 .

In the case that the neighbourhood N i
u is empty, we again will predict the mean

rating of the active item i. If this is impossible, we predict the grand mean of
all ratings.

2.2 Time-Aware
Table 1 shows an instance of a rating matrix. Suppose that we want to predict
user A’s rating for itemW. According to time-unaware user-to-user collaborative
filtering, the similarity between user A and B would be equal to the similarity
between user A and C.

Table 1: Hypothetical rating matrix

Item W Item X Item Y Item Z
User A ? 4 5 ?
User B 3 4 5 2
User C 2 4 5 3

Now assume that the corresponding rating dates are as in Table 2. Intu-
itively, user A is more similar to B than to C, because the common ratings are
temporally closer. As a result, user A’s predicted rating for item W should
be more strongly influenced by user B’s rating. Recall that in this report we
refer to this notion of temporal closeness between historical ratings by the term
temporal similarity.

Table 2: Hypothetical time matrix

Item W Item X Item Y Item Z
User A ? 17 Aug 2017 26 Oct 2017 ?
User B 01 Aug 2016 17 Aug 2017 26 Oct 2017 16 Feb 2018
User C 22 Apr 2018 10 Feb 2016 22 Apr 2018 23 Mar 2017

Now suppose that B and C are equally similar to A (i.e. we use the time-
unaware similarity). Time-unaware user-based collaborative filtering would ig-
nore the time difference between B’s rating of W and C’s rating of W. However,
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C’s rating should instinctively have more influence on the predicted rating, since
it is more recent. Remember that throughout this report the term temporal re-
cency refers to this phenomenon.

For the temporal adaptations, it is convenient to also think of the time data
as a matrix. Let tui be the timestamp of the rating of user u ∈ U for item
i ∈ I. Then, the timestamp matrix T is a |U | by |I| matrix with elements
tui. The timestamp matrix T has the same sparsity structure as the rating
matrix R. Typically, we record the timestamps as a date-time pair. However,
the adaptations require the elements of T to be numeric. We can achieve this
by, for example, defining tui as the number of seconds, hours or days since the
timestamp of the first rating.

Although the focus of this section is on user-to-user collaborative filtering,
the same notions and models analogously apply to the item-to-item variant.
Section 2.2.1 deals with the incorporation of temporal similarity in the neigh-
bourhood determination phase. In Section 2.2.2, we include temporal recency
in the rating aggregation phase. Section 2.2.3 combines the two models into one
hybrid, time-aware algorithm.

2.2.1 Temporal Similarity

Hu et al. [2014] include temporal similarity in the neighbourhood determination
phase by incorporating weights in the similarity function. These weights ensure
that temporally closer ratings have more influence on the similarity between
users. Another approach is to simply compute the similarity of users based on
the timestamp matrix T instead of the rating matrix R. This is proposed by
Organero et al. [2010]. However, they do not present a thorough evaluation of
its performance on publicly available datasets. In this report, we build further
on the approach of Organero et al. [2010] by aggregating similarities that are
obtained by applying the similarity function separately to the rating data and
the timestamp data.

To compute the similarity between user u and v using the Pearson correlation
function, we execute three steps.

1. Compute the rating similarity between u and v according to Equation 1.
Let rsim(u, v) denote this rating similarity.

2. Compute the timestamp similarity between u and v as:

tsim(u, v) =

∑
i∈Iu∩Iv

(tui − t̄u·) · (tvi − t̄v·)√ ∑
i∈Iu∩Iv

(tui − t̄u·)2 ·
∑

i∈Iu∩Iv
(tvi − t̄v·)2

.

Here, t̄u· is the average timestamp of user u’s ratings, i.e. t̄u· = 1
|Iu|

∑
i∈Iu

tui.

3. Combine the rating and timestamp similarity by means of a weighted mean
to come to an aggregated similarity between user u and v:

sim(u, v) = α · rsim(u, v) + (1− α) · tsim(u, v).

Here, α ∈ [0, 1] is a parameter that regulates the relative importance of the
rating similarity. Higher values of α result in a greater emphasis on rating
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similarity and consequently a smaller emphasis on timestamp similarity.
Note that we obtain the traditional, time-unaware algorithm when α = 1.

Alternatively, we can use the cosine similarity instead of the Pearson corre-
lation to determine rsim(u, v) and tsim(u, v). Unlike the Pearson correlation,
the outcome of the cosine similarity depends on the range of the values it is
applied to. However, it is not necessarily a problem if the ranges of the ratings
and timestamps are different: tuning the parameter α allows us to eliminate the
effect of the range difference.

Apart from the different method of similarity computation, the algorithm is
equal to the time-unaware variant described in Section 2.1.1. This temporal-
similarity adaptation can be analogously included in item-to-item neighbourhood-
based collaborative filtering.

2.2.2 Temporal Recency

Ding and Li [2005], Campos et al. [2010] and Liu et al. [2010] alter the prediction
function of the time-unaware algorithms to incorporate temporal recency in the
rating aggregation phase. They include weights wvi (t) such that recent ratings
contribute more to the predicted rating than old ratings. Here, t denotes the
time of prediction. For the user-based mean-centred prediction function, the
result is as follows:

r̂ui = r̄u· +

∑
v∈Ni

u

sim(u, v) · (rvi − r̄v·) · wvi (t)∑
v∈Ni

u

sim(u, v) · wvi (t)
.

The adapted Z-score prediction function is similar:

r̂ui = r̄u· + σu ·

∑
v∈Ni

u

sim(u, v) · rvi−r̄v·
σv

· wvi (t)∑
v∈Ni

u

sim(u, v) · wvi (t)
.

Strictly speaking, the predicted rating now depends on t and we should thus
denote it by r̂uit. We deliberately do not adopt this notation, because this would
unnecessarily clutter the evaluation section.

Several approaches exist for the computation of weights. Liu et al. [2010]
propose an exponential-decay function:

wvi (t) = e−λ·(t−tvi).

Here, λ ≥ 0 is a parameter that regulates the rate of decay. Higher values
of λ result in a greater emphasis on recent ratings. Note that we obtain the
traditional, time-unaware algorithm when λ = 0.

Another option is a window-based decay function [Campos et al., 2010]. This
approach simply ignores ratings that are older than a predefined window-length.
We will not consider this weight function in this research.

As was the case for the temporal-similarity adaptation of the previous Sec-
tion, the rest of the algorithm is equal to the time-unaware variant described in
Section 2.1.1. The outlined temporal-recency adaptations can be analogously
included in item-to-item neighbourhood-based collaborative filtering.
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2.2.3 Hybrid

The hybrid model combines the temporal adaptations from the two previous
Sections. This model computes the similarity as described in Section 2.2.1. Like
the time-unaware variant, it then determines the neighbourhood by selecting
the k most similar users. Afterwards, the model applies the time-aware rating
aggregation phase from Section 2.2.2.
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3 Data
In this report, we apply the models from Section 2 to datasets drawn from
MovieLens and Yelp. The former contains rating information about films ob-
tained from the MovieLens recommender. This dataset comes in different sizes.
We focus on the 1 million variant.1 The Yelp dataset2 originates from a chal-
lenge and contains information about the businesses, reviews and users from the
Yelp service. In this report, we examine the data from the eleventh round of
the challenge. We use the review portion of this data for the evaluation of the
models. The expectation is that the performance gain of the time-aware models
is larger for the Yelp dataset. This is because businesses such as restaurants can
change over time, whereas films can not. We will explore the MovieLens and
Yelp datasets in Sections 3.1 and 3.2 respectively.

3.1 MovieLens
The MovieLens 1 million dataset contains 1,000,209 reviews from 6,040 users
about 3,706 films. The corresponding rating matrix thus has a density of 4.5%.
Table 3 shows the first five rows of the dataset. The user attribute indicates
the user id. These ids range from 1 to 6,040. Similarly, the item attribute gives
the item id, ranging from 1 to 3,952. The fact that the highest item id is larger
than the number of items suggests that there are films without any ratings. The
third attribute, rating, specifies the value of the rating, as the name suggests.
These ratings are integers on a scale from 1 to 5. The final attribute contains the
timestamp in seconds since the Unix epoch (01 Jan 1970, 00:00:00 (UTC)). The
smallest timestamp is 956,703,932 and the largest is 1,046,454,590 Converted to
dates, the values of this attribute range from 26 Apr 2000 to 28 Feb 2003.

Table 3: MovieLens dataset snapshot

User Item Rating Timestamp

1 1193 5 978300760
1 661 3 978302109
1 914 3 978301968
1 3408 4 978300275
1 2355 5 978824291

Figure 1 shows the cumulative number of ratings over time. In the year 2000,
the cumulative number of ratings was sharply increasing. This growth decreased
from 2001 and onwards. As a result, 90.5% of ratings have a corresponding
timestamp that is on or before 31 Dec 2000. To obtain a more real-world insight
of the performance of the models in an actively used recommender systems
setting, we remove the remaining ratings from the data.

As a consequence, the dataset now contains 904,721 reviews from 6,034 users
about 3,678 films. Furthermore, there are users that have no associated ratings.
The same applies to films, but as mentioned before this was already the case
with the complete dataset. For simplicity, we recode the user and item ids in

1https://grouplens.org/datasets/movielens/1m/
2https://yelp.com/dataset/
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such a way that they range from 1 to 6,034 and 1 to 3,678 respectively. Note
that we lose the real-world interpretation of the ids during this process. In this
report, this is not a problem since we do not link the ids to the corresponding
users and films. After the removal and recoding processes, the density of the
corresponding rating matrix is still 4.5%.

2001 2002 2003

Year

N
um

be
r
of

ra
ti
ng

s

0
5e
+
05

1e
+
06

Figure 1: Cumulative number of ratings over time (MovieLens)

Figure 2 displays two histograms of the number of ratings per user, where
the right graph is simply a zoomed in version of the left graph. The left graph
shows a long tail: the majority of uses has given less than 500 ratings. Moreover,
the right histogram shows a large spike at 20 ratings. We can explain this as
follows. Initially, the complete dataset only included users with 20 ratings or
more. As a result of removing the ratings after 31 Dec 2000, there is a small
number of users with less than 20 ratings. The minimum number of ratings per
user is 2 and the maximum is 2,029. On average, a user has given 149.9 ratings
with a standard deviation of 174.1.
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Figure 2: Histograms of the number of ratings per user (MovieLens)

Analogously, Figure 3 shows two histograms of the number of ratings per
item. Compared to the user counterpart, the range is wider with a minimum
of 1 and a maximum of 3,291. Furthermore, the distribution of the number of
ratings per item also has a long tail. Unlike in the user-based figure, the right
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graph does not show any apparent anomalies in the item-based figure. Because
the dataset contains more users than items, it is not surprising that the number
of ratings per item is generally larger than the number of ratings per user. On
average, an item has 246.0 ratings with a standard deviation of 356.9.
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Figure 3: Histograms of the number of ratings per item (MovieLens)

Figure 4 depicts the mean daily rating over time, together with a smoothed
trend. The mean daily rating seems to be slightly higher halfway November and
in the beginning of July and October. In contrast, the opposite appears to be
true for the start of the months August, November and December. However,
these seasonal patterns are not terribly extreme. On all days combined, the
overall mean rating is 3.59 with a standard deviation of 1.12.
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Figure 4: Mean daily rating over time (MovieLens)

In the implementation of the models, the large values of the timestamp
attribute can cause integer overflows. Therefore, we convert the timestamps
from seconds since the Unix epoch to days since 25 Apr 2000, 00:00:00 (GMT).
As a result, the timestamp values now range from 0.96 to 250.96.
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3.2 Yelp
The Yelp dataset contains 5,261,669 reviews from 1,326,101 users about 174,567
businesses. The corresponding rating matrix thus has a density of 0.0023%,
much lower than the MovieLens equivalent. Table 4 shows a snapshot of the data
that is most relevant for this research. The user and item attributes indicate the
user and business ids. Both are strings of 22 characters. The third attribute,
rating, specifies the value of the rating, as the name suggests. Similar to the
MovieLens dataset, these ratings are integers on a scale from 1 to 5. The final
attribute contains the date of the rating. The values of this attribute range
from 22 Jul 2004 to 11 Dec 2017.

Table 4: Yelp dataset snapshot

User Item Rating Date

le_brG6cwrzvWdKEGqA7YA uz7UbvVUwsg68Rok6kbqRg 5 22 Jul 2004
w_6miJytUt6z8oRkGjVG-A 9X-43jnj6-6ZBuBdFm7BLA 2 15 Sep 2004
sE3ge33huDcNJGW3V4obww PD2MAlYYi9HCqPH7IBKwTg 5 12 Oct 2004
c6HT44PKCaXqzN_BdgKPCw u8C8pRvaHXg3PgDrsUHJHQ 5 19 Oct 2004
yYSBB5q7bY-qSVvmMgk4FA GCRvrxMSC1nzShyM4Y-guQ 5 19 Oct 2004

In view of running time, we need to decrease the size of the dataset. Neigh-
bourhood-based collaborative filtering relies on rating overlap between users and
items. Therefore, we decrease the size in the following data selection procedure
that aims at preserving overlap. We start by selecting the ratings of businesses
of the category Restaurants that are located in the state Nevada. These are
the largest category and state in terms of number of ratings, as can be seen in
Figure 5. This selection contains 1,041,803 reviews from 358,722 users about
7,135 restaurants.
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Figure 5: Number of ratings per state and category (5 largest)

To further decrease the number of users, we select the reviews of users with
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at least 15 ratings. We filter out users with a low number of ratings, since they
will most likely not benefit from neighbourhood-based collaborative filtering due
to their limited amount of data. The resulting dataset contains 299,971 ratings
from 8,605 users about 6,888 restaurants. Consequently, the corresponding rat-
ing matrix has a density of 0.51%. For convenience, we again recode the user
and item ids to integers from 1 to 8,605 and 1 to 6,888 respectively.

Figure 6 shows the cumulative number of ratings over time. Unlike the
MovieLens set, this figure does not show any counter-intuitive patterns for the
Yelp data. In the beginning, the number of ratings grows slowly. As time
progresses, it increases roughly exponentially. The oldest rating originates from
28 Apr 2005, whereas the most recent rating was given on 11 Dec 2017.
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Figure 6: Cumulative number of ratings over time (Yelp)

Figure 7 depicts two histograms that contain information about the number
of ratings per user. The right graph is a zoomed-in version of the left. Again,
the graphs show a long tail: there is an extremely small amount of users with
more than 80 ratings. Furthermore, the right graph indicates that there are
no users with less than 15 ratings. This is a result from our above-described
data selection procedure. Moreover, the maximum number of ratings per user
is 1,291. On average, a user has 34.9 ratings with a standard deviation of 40.0.
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Figure 7: Histograms of the number of ratings per user (Yelp)
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Likewise, Figure 8 displays two histograms of the number of ratings per
item. The minimum number of ratings per item is 1 and the maximum is 1,005.
Thus, the range is narrower compared to the user counterpart. Apart from the
recurring long tail, these graphs show no noteworthy patterns. The average
number of ratings per item is 43.5 with a standard deviation of 74.5.
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Figure 8: Histograms of the number of ratings per item (Yelp)

Figure 9 shows the mean daily rating over time, along with a smoothed
trend. Up until 2009, the trend appears to be decreasing. Afterwards, it seems
to be increasing, although very slowly. Furthermore, it stands out that the
fluctuation in mean daily rating is much larger in the first years compared to
the last. This is most likely a consequence from the low number of ratings per
day in the beginning of the Yelp service: extremely high or low ratings have
more influence on the mean daily rating when the number of ratings per day is
limited. On all days combined, the overall mean rating is 3.72 with a standard
deviation of 1.19.
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Figure 9: Mean daily rating over time (Yelp)

As mentioned in Section 2.2, the time-aware models require numerical times-
tamps. We obtain such timestamps by converting the dates to the number of
days since 27 Apr 2005. The resulting timestamp values are integers and range
from 1 to 4,611.
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4 Evaluation
As is common in machine learning, we evaluate the performance of the algo-
rithms based on a train-validate-test approach. Therefore, we split up the data
into a training set, a validation set and a testing set, containing respectively
70%, 15% and 15% of the ratings and the corresponding timestamps. We train
the models on the training set. In the context of neighbourhood-based collab-
orative filtering, this means that the neighbourhood determination infers from
the data in this set. We use the validation set to determine the parameter val-
ues that yield the best performance. To come to an unbiased conclusion, we
obtain the final performance values by fitting the models with optimal param-
eters on the training set and the validation set combined, before measuring the
performance on the test set.

To avoid temporal dependency between the three sets, we split the data
based on time. This is essential, since the models incorporate temporal infor-
mation. Therefore, the test set contains the 15% most recent ratings. Likewise,
the training set consists of the 70% oldest observations. The validation set
contains the ratings that remain.

Evidently, accurate rating predictions indirectly result in relevant recom-
mendations to users. Hence, prediction performance is an essential aspect of
recommender systems from a business perspective. We therefore mainly fo-
cus on optimizing the prediction performance of the models. To measure this,
we calculate the root mean square error (RMSE) and the mean absolute error
(MAE) metrics. Suppose that we want to evaluate a model’s prediction perfor-
mance on the dataset S ∈ {validation, test}. Let OS ⊂ U × I denote the set
of observations that are included in S. The elements of OS are user-item pairs
(u, i). Then:

RMSE(S) =

√√√√ 1

|OS |
∑

(u,i)∈OS

(rui − r̂ui)2
,

and
MAE(S) =

1

|OS |
∑

(u,i)∈OS

|rui − r̂ui| .

Both measures are error based, which means that lower values indicate better
performance. The RMSE more strongly penalizes large errors compared to the
MAE. Including both measures allows us to distinguish models that make a few
large errors from models that consistently have a small prediction error.

The RMSE and MAE are metrics that measure the prediction performance
on individual user-item pairs. Besides this, the quality of a recommender system
is also characterized by various aspects of the top-n lists it is able to produce.
Examples of these aspects include novelty and diversity [Bobadilla et al., 2013].
The novelty of recommendations refers to the degree of newness of the items
in the recommendation list. Commonly, the newness of a recommended item
is inversely related to the similarity with the items that the active user has
already rated in the past. The diversity of recommendations is related to the
extent to which the recommended items are dissimilar. Another characteristic is
the personality of the top-n lists, which refers to the degree of diversity among
the top-n recommendations to different users.
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Although sufficient prediction performance is necessary for a good-quality
recommender system, the top-n list characteristics are also important from a
business perspective. These characteristics directly affect the user’s experience,
whereas the user does not explicitly see the predicted rating in most recom-
mender system implementations. Evidently, it is desirable to have an algorithm
with a sufficient level of novelty and diversity. This enables the users to dis-
cover unfamiliar and diverse types of items, which can assist in increasing their
satisfaction. Furthermore, it is beneficial to have a recommender system with
adequately personalized recommendations, instead of one that simply recom-
mends the same top-n list to every user.

Thus, recommender systems should not solely focus on prediction perfor-
mance, but also consider other characteristics such as novelty, diversity and
personality. We will therefore report the models’ performance in terms of these
metrics. In view of running time, we will only measure these on the models we
apply to the test set.

For the definitions of novelty and diversity we drew inspiration from Bobadilla
et al. [2013]. The novelty of the top-n list recommended to user u is:

novelty(u) =

{
1

|Ĩu|·|Zu|

∑
i∈Ĩu

∑
j∈Zu

(1− isim(i, j)) if |Ĩu| > 0

1 else.

Here, Ĩu is the set of items for which a rating of user u is included in the
training or validation set, Zu is the set of items that are included in the top-n
list recommended to user u and isim(i, j) is the item-similarity between item i
and j. In this report, we only consider the cosine similarity of the ratings in
view of simplicity. Naturally, other options are possible in terms of the similarity
measure (e.g. Pearson correlation) and the values to which we apply the measure
(e.g. the timestamp values).

We compute the diversity of the top-n list recommended to user u as follows
(assuming that n ≥ 2):

diversity(u) =
1

|Zu| · (|Zu| − 1)

∑
i∈Zu

∑
j∈Zu:j 6=i

(1− isim(i, j)) .

The outcomes of the novelty and diversity metrics are in the range [0, 1] where
larger values indicate higher levels of novelty and diversity.

Ideally, we would combine the novelty and diversity over all users to come to
an aggregated measure. In view of running time, this is not feasible. Therefore,
we randomly sample a set of 50 users. Note that we use the same random sample
of users when evaluating different models on the same dataset. Let Ũ denote
the set of sampled users. Then, we aggregate the novelty and diversity of the
users in Ũ by applying an unweighted mean.

Furthermore, we formulate the personality measure as follows:

personality =

∣∣∪u∈ŨZu∣∣∑
u∈Ũ |Zu|

.

Again, the outcome lies in the range [0, 1] and higher values indicate a higher
level of personality.

Throughout the rest of this report, we fix n = 10. Following the brief
description at the beginning of Section 2, we obtain the top-10 list for user u
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by selecting the 10 items that have the highest predicted rating and are not
rated by the user (i.e. not an element of Ĩu). When using the temporal-recency
models to obtain top-10 lists, we need to specify t, the time of prediction. For
the MovieLens dataset we use t = 250.96 and for the Yelp we use t = 4, 611.
These are the largest timestamp values that are present in these datasets.

4.1 Parameter Validation
In our evaluation procedure, we determine the optimal parameters of the mod-
els based on prediction performance in terms of RMSE and MAE. To start,
we determine the optimal parameters for the time-unaware models. We con-
sider these models with all combinations of the following parameters: vari-
ant v ∈ {user-to-user, item-to-item}, similarity measure s ∈ {cosine,Pearson},
neighbourhood size k ∈ {2, 5, 10, 20, 30, 40, 50, 60, 75, 100, 150, 250} and predic-
tion function p ∈ {mean-centred,Z-score}.

In view of running time, we can not investigate all possible parameter com-
binations for the time-aware models. Therefore, we fix k = k∗v,s and p = p∗v,s
based on the validation results of the time-unaware models. We choose the pa-
rameter values k∗v,s and p∗v,s that yield a reasonable balance between prediction
performance and running time. These fixed values can differ based on the values
of v and s.

With k and p fixed, we consider the temporal-similarity models with all
combinations of the following parameters: v ∈ {user-to-user, item-to-item}, s ∈
{cosine,Pearson} and α ∈ {0, 0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 0.95, 0.975, 1}.

The parameter tuning procedure described above is equal for both datasets.
This is not the case for the λ parameter we consider in the temporal-recency
models, since the two sets span time periods of greatly different lengths. For the
temporal-recency models we apply to both datasets, we vary the variant and
similarity measure: v ∈ {user-to-user, item-to-item} and s ∈ {cosine,Pearson}.
Additionally, we vary the parameter λ. For the MovieLens data, we consider
λ ∈ {0.001, 0.0025, 0.005, 0.01, 0.02}. For the Yelp dataset, we consider λ ∈
{0.0001, 0.00025, 0.0005, 0.001, 0.002}. We deem these parameter values to be
reasonable based on Figures 10 and 11. Given a parameter combination, we
again only consider the fixed values of k and p.
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Figure 10: Temporal recency weight functions MovieLens
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Figure 11: Temporal recency weight functions Yelp

For the user-to-user and item-to-item hybrid models, we simply combine the
temporal-similarity and recency models’ parameters that yield the best predic-
tion performance on the validation set.

4.2 Testing
Based on the validation results, we evaluate the RMSE, MAE, novelty, diversity
and personality of the following three types of models on the test set.

1. The best-performing (in terms of RMSE and MAE) temporal-similarity,
temporal-recency and hybrid models for both variants v ∈ {user-to-user,
item-to-item}. These are only included if they outperform their time-
unaware equivalents in terms of prediction performance.

2. The time-unaware equivalents of the models in 1. We include these to be
able to determine the performance gains of the time-aware adaptations.

3. The best-performing (in terms of RMSE and MAE) time-unaware models
for both variants v ∈ {user-to-user, item-to-item}. Including these models
allows us to argue whether it is sensible to use the time-aware models at
all.
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5 Results
In this section, we descriptively report the results of the evaluation procedure
described in Section 4. In addition, we further investigate some of the remark-
able results. This comprises analyses of the prediction performance convergence
for large k and the explanatory value of binary interactions.

Sections 5.1 and 5.2 deal with the MovieLens and Yelp datasets respectively.
For reference, we provide all validation results in Appendix A. We present all
testing results in the respective sections below.

5.1 MovieLens
We start with a general remark: the MAE of the models applied to the Movie-
Lens dataset shows similar patterns to the RMSE. In view of clarity, we omit
the figures of the MAE results in this section and display them in Appendix
A.1.

5.1.1 Parameter Validation

Time-unaware models Figure 12 depicts the prediction performance of the
user-to-user variant of the time-unaware models in terms of the RMSE. In view
of clarity, the x-axis is truncated at k = 75. The figure shows that lower
values of k yield worse performance when k is relatively small. For k ≥ 50,
however, the RMSE remains approximately stable. Moreover, the mean-centred
prediction function seems to consistently outperform the Z-score equivalent.
Furthermore, the Pearson correlation yields better performance compared to
the cosine similarity measure.
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Figure 12: RMSE of the time-unaware user-to-user models applied to the Movie-
Lens validation set

Likewise, we display the RMSE of the item-to-item time-unaware models
in Figure 13. Again, the x-axis is truncated at k = 75. Apart from the fact
that the item-to-item variant generally yields lower RMSE values, the relative
patterns are similar to the user-to-user variant: lower values of k result in worse
performance and the RMSE is approximately stable for k ≥ 50. In addition, the
mean-centred prediction function again yields lower RMSE values compared to
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the Z-score function, although the difference is extremely small. In contrast to
the user-to-user variant, the cosine similarity performs better than the Pearson
correlation for the item-to-item variant.
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Figure 13: RMSE of the time-unaware item-to-item models applied to the Movie-
Lens validation set

Since the models with lower values of k have a shorter running time and
the prediction performance does not seem to improve for values larger than 50,
we fix k∗v,s = 50, for v ∈ {user-to-user, item-to-item} and s ∈ {cosine,Pearson}.
Additionally, we fix p∗v,s = mean-centred for v ∈ {user-to-user, item-to-item}
and s ∈ {cosine,Pearson} because of its smaller RMSE (and MAE) compared
to the Z-score prediction function.

Convergence In Figures 12 and 13, we found remarkable results for high
values of k. First of all, the user-to-user variant of the time-unaware models
seems to converge to a stable RMSE when the value of k is sufficiently large.
As the neighbourhood size k grows, the models might eventually predict values
close to the item means over all users. The algorithm that simply predicts the
mean rating of the active item is sometimes referred to as the item-mean popular
algorithm. On the MovieLens validation set, this algorithm yields a RMSE of
0.9950. This is approximately equal to the RMSE value that the time-unaware
models converge to. Thus, we conclude that the prediction performance of
user-to-user neighbourhood-based collaborative filtering indeed converges to the
performance of the item-mean popular algorithm as k increases. However, we
expect that the personality of the item-mean popular algorithm is considerably
lower. We will further investigate this in Section 5.1.2.

Similar to the user-to-user variant, the RMSE of the item-to-item models
also converge when k is sufficiently large. We therefore investigate whether it
is plausible that the item-to-item models converge to the user-mean popular
algorithm, which simply predicts the mean rating of the active user. When
applied to the MovieLens validation set, the user-mean popular algorithm results
in a RMSE of 1.1458, which is considerably higher than the value of the RMSE
to which the item-to-item models converge (approximately 0.985). Thus, we
conclude that the item-to-item time-unaware models do not converge to the
user-mean popular algorithm in terms of prediction performance.
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Temporal-similarity models Figure 14 shows the prediction performance
of the temporal-similarity models. Recall that the temporal-similarity models
with α = 1 are simply equal to their time-unaware equivalent. What stands
out is that including temporal similarity does not seem to strongly affect the
performance of the models that use the cosine similarity measure. In contrast,
the RMSE of the models that use the Pearson correlation does to some extent
depend on the value of α. For the user-to-user variant, the RMSE decreases
monotonically as α increases and thus the time-unaware model performs best.
For the item-to-item variant, however, we obtain the lowest RMSE with α = 0.5.
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Figure 14: RMSE of the temporal-similarity models applied to the MovieLens
validation set

Temporal-recency models Figure 15 shows the RMSE of the temporal-
recency models. Remember that we obtain the time-unaware models with λ = 0.
Interestingly, the value of λ does not seem to affect the errors of the item-to-
item models. For the user-to-user variant, the RMSE increases monotonically
as λ grows. All in all, we conclude that the including temporal recency is not
sensible from a prediction performance viewpoint.
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Figure 15: RMSE of the temporal-recency models applied to the MovieLens val-
idation set
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5.1.2 Testing

Table 5 lists the collaborative filtering models we apply to the MovieLens test
set. For convenience, we name these models with letters from A to D. Model
A is the best performing item-to-item temporal-similarity model. The param-
eter evaluation procedure showed that the temporal-similarity adaptation is
not sensible for the user-to-user variant, in terms of prediction performance.
The same holds for the temporal-recency and hybrid models for both variants
v ∈ {user-to-user, item-to-item}. Therefore, we do not evaluate the perfor-
mance of these models on the test set. Model B is the time-unaware equivalent
of model A. Furthermore, we include models C and D, which are the best-
performing time-unaware models. In addition to the models listed in the table,
we briefly test the item-mean popular algorithm.

Table 5: MovieLens test set collaborative filtering models

Name v s k (= k∗v,s) p (= p∗v,s) α λ

A item-to-item Pearson 50 mean-centred 0.5 0
B item-to-item Pearson 50 mean-centred 1 0
C user-to-user Pearson 50 mean-centred 1 0
D item-to-item cosine 50 mean-centred 1 0

Prediction performance Figure 16 depicts histograms of the test-set eval-
uation errors of the collaborative filtering models. The errors seem to be ap-
proximately identically distributed across the four models. The only (minor)
difference is that the most negative error is slightly lower for models B and C
when compared to A and B, but this difference is not noticeable in the his-
tograms.

The fact that is hardly a prediction performance difference between the mod-
els is also reflected in the RMSE and MAE that we show in Table 6. Including
temporal similarity in the item-to-item model with s = Pearson marginally
decreases the RMSE with 0.072% and the MAE with 0.065%. Compared to
the best-performing time-unaware model (model D), however, the temporal-
similarity model performs worse. Furthermore, the user-to-user collaborative
filtering model outperforms the item-mean popular algorithm, whereas they
performed approximately equal on the validation set. Apparently, the former
benefits more from the larger amount of training data than the latter.

Top-n characteristics In terms of novelty, diversity and personality, the col-
laborative filtering models do not differ extremely. There are, however, large
differences between these models and the item-mean popular algorithm. To
start, the novelty and diversity of the popular algorithm are considerably higher.
This can be explained as follows. It is intuitively logical that the items with a
mean rating of 5 stars have received a low number of ratings. These are exactly
the items that the item-mean popular algorithm recommends in its top-10 lists.
In general, items with a low number of ratings are extremely dissimilar to all
the other items. This is because of the small amount of overlapping ratings (in
many cases there is even no overlap). Hence, the items in the top-10 lists are
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Figure 16: Histograms of the errors of the collaborative filtering models applied
to the MovieLens test set

predominantly dissimilar to each other and to all other items. Therefore, the
novelty and diversity of the item-mean popular algorithm are relatively high.

Compared to the collaborative filtering models, the item-mean popular al-
gorithms is far less personalized. This was expected, since the mean ratings
of items are equal for all users. Note that it is still possible that the popular
algorithm’s top-10 lists differ between users, because these exclude items that
are already rated by the active user. However, such an exclusion does not occur
often since the items with a high mean rating generally have a low number of
ratings. In fact, all users receive exactly the same top-10 lists in this case.

Binary interactions Throughout the parameter validation and testing pro-
cedures, the fact that the temporal adaptations do not strongly affect the pre-
diction performance of the models has been a remarkable, recurring outcome.
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Table 6: RMSE, MAE, novelty, diversity and personality of the models applied
to the MovieLens test set

Name RMSE MAE Novelty Diversity Personality

A 0.9718 0.7730 0.1041 0.1703 0.830
B 0.9725 0.7735 0.1074 0.1846 0.806
C 0.9759 0.7768 0.1107 0.1879 0.826
D 0.9712 0.7730 0.1053 0.1857 0.790
Item-mean popular 0.9862 0.7869 0.4085 0.5000 0.020

Especially the lacking effect of the temporal-similarity adaptation lead us to
believe that a binary rating matrix (where rui = 1 if user u rated item i and
0 otherwise) would suffice for this dataset. This type of data is sometimes also
referred to as the binary interactions between users and items. This belief would
imply that the number of common users or items would be the most valuable
information for the similarity computations, as opposed to the actual values of
the ratings or timestamps.

Preliminary analysis shows that this belief is plausible, since model D results
in a RMSE of 0.9790 when applied to the binary rating matrix. This is just
0.803% higher than when we apply the model to the non-binary matrix. Further
parameter tuning based on the binary variant, possibly with different similarity
functions that are especially attuned to binary data, could likely decrease this
RMSE even further. Note that we solely used the binary rating matrix for the
similarity computations and not for the rating aggregations.

5.2 Yelp
5.2.1 Parameter Validation

Time-unaware models Figures 17 and 18 display the performance of the
user-to-user time-unaware models in terms of the RMSE and MAE respectively.
For clarity, the x-axes are truncated at k = 75. It stands out that the models
perform worse when applied to the Yelp dataset instead of MovieLens. This
is most likely a consequence of the lower density of the Yelp rating matrix.
Furthermore, the figures show that the relation between the RMSE (and MAE)
and k is similar for the Yelp and MovieLens datasets. As we will later see, this
is also the case for the item-to-item variant. Therefore, we again fix k∗v,s = 50,
for v ∈ {user-to-user, item-to-item} and s ∈ {cosine,Pearson}.

Overall, the user-to-user model with s = cosine and p = Z-score yields the
lowest RMSE and MAE of all user-based models. According to the RMSE,
the cosine similarity measure performs best when combined with the Z-score
prediction function, whereas it is optimal to combine the Pearson correlation
measure with the mean-centred prediction function. The figure containing
the MAE of the models shows a slightly different pattern. According to the
MAE, the mean-centred and Z-score prediction functions perform nearly iden-
tical when combined with the Pearson correlation measure. Therefore, we
base our fixed values of p solely on the RMSE: p∗user-to-user,cosine = Z-score and
p∗user-to-user,Pearson = mean-centred.

We depict the RMSE and MAE of the item-to-item time-unaware models in
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Figure 17: RMSE of the time-unaware user-to-user models applied to the Yelp
validation set
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Figure 18: MAE of the time-unaware user-to-user models applied to the Yelp
validation set

the Figures 19 and 20. Again, we truncate the x-axes at k = 75. Similar to
the user-to-user variant, the item-to-item models perform worse when we apply
them to the Yelp data instead of the MovieLens set. Both figures show that the
cosine similarity measure is superior to the Pearson correlation for the item-to-
item models. Furthermore, the RMSE figure indicates that there is a negligible
performance difference between the two prediction functions. In contrast, the
Z-score function yields lower MAE values for both similarity measures. Hence,
we fix p∗item-to-item,cosine = p∗item-to-item,Pearson = Z-score for further evaluation
and testing.

Convergence Similar to the MovieLens results, the time-unaware models ap-
plied to the Yelp data showed convergence in terms of RMSE and MAE for
large values of k. Therefore, we again investigate the item-mean and user-mean
algorithms. When we apply the item-mean algorithm to the Yelp validation set,
we obtain a RMSE of 1.2046. We can therefore conclude that this algorithm
slightly outperforms the best-performing user-to-user model, which converges
to a RMSE of approximately 1.22. Most likely, the performance of the collab-
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Figure 19: RMSE of the time-unaware item-to-item models applied to the Yelp
validation set
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Figure 20: MAE of the time-unaware item-to-item models applied to the Yelp
validation set

orative filtering models is limited due to the low density of the rating matrix.
However, we again expect the personality of the item-mean popular algorithm
to be considerably lower. We will further investigate this for the Yelp dataset
in Section 5.2.2.

Comparable to what we found for the MovieLens models, the item-to-item
time-unaware models do not converge to the user-mean popular algorithm in
terms of prediction performance. The popular algorithm yields a RMSE of
1.2597. This is considerably higher than the RMSE value to which the best-
performing item-to-item collaborative filtering model converges (approximately
1.22).

Temporal-similarity models As was the case for the time-unaware mod-
els, the RMSE and MAE display different patterns for the time-aware models.
However, these differences seem to be propagations of the differences that are
already present in the validation results of the time-unaware models we pre-
sented above. Therefore, we omit the figures of the time-aware MAE validation
results in this section and display them in Appendix A.2.
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Figure 21 depicts the performance of the temporal-similarity models in terms
of the RMSE. Similar to what we have seen with the MovieLens dataset, the
RMSE of the models that use the cosine similarity does not seem to depend on
the value of α. This is different for the models with s = Pearson. Although
the RMSE seems to fluctuate somewhat randomly, the figure suggests that the
models that purely use the timestamp or rating similarity yield better results
than a mix of the two. There is no value of α that clearly shows better perfor-
mance than the time-unaware models. All in all, we thus conclude that including
temporal similarity is not sensible from a prediction performance point-of-view.
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Figure 21: RMSE of the temporal-similarity models applied to the Yelp validation
set

Temporal-recency models Figure 22 depicts the RMSE of the temporal-
recency models. All parameter combinations approximately have the same
general pattern: the performance degrades monotonically as λ increases. The
RMSE of the user-to-user models seems to increase faster than the RMSE of
the item-to-item variants. As was the case for the MovieLens set, including
temporal recency is thus not rational for the models we apply to the Yelp data,
in terms of prediction performance.

5.2.2 Testing

Table 7 lists the collaborative filtering models we apply to the Yelp test set, for
convenience named E and F. Since the parameter validation procedure showed
that it is not rational to apply the time-aware models based on the RMSE and
MAE, we solely test the best-performing time-unaware models. In addition to
the models listed in the table, we briefly test the item-mean popular algorithm.

Table 7: Yelp test set collaborative filtering models

Name v s k (= k∗v,s) p (= p∗v,s) α λ

E user-to-user cosine 50 Z-score 1 0
F item-to-item cosine 50 Z-score 1 0
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Figure 22: RMSE of the temporal-recency models applied to the Yelp validation
set

Prediction performance We depict histograms of the collaborative filtering
models’ errors in Figure 23. Surprisingly, the largest error made by model E is
bigger than 8, even tough this is hard to notice in the figure. This implies that
this model predicts a rating that is relatively far outside the range [1, 5], even
though all the actual ratings are within this range. Apart from this anomaly,
the distributions of the errors of both models do not seem to differ strongly.
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Figure 23: Histograms of the errors of the collaborative filtering models applied
to the Yelp test set

In terms of the RMSE and MAE (presented in Table 8), the item-to-item
variant performs slightly better than the user-to-user equivalent. Similar to what
we found during the parameter validation, the item-mean popular algorithm
also performs slightly better than the user-to-user model in terms of prediction
performance.
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Top-n characteristics The novelty, diversity and personality results are, for
a large part, comparable to the MovieLens dataset: the collaborative filtering
models do not differ strongly with each other and do differ with the item-mean
popular algorithm. Again, the popular algorithm yields higher novelty and
diversity, but considerably lower personality. However, the novelty and diversity
values of the collaborative filtering models are relatively high compared to the
MovieLens results. This is most likely a consequence of the lower density of
Yelp’s rating matrix. Due to this, the number of common ratings between
items is generally lower and thus so are the similarities.

Table 8: RMSE, MAE, novelty, diversity and personality of the models applied
to the Yelp test set

Name RMSE MAE Novelty Diversity Personality

E 1.2125 0.9395 0.3337 0.4377 0.780
F 1.2029 0.9310 0.3259 0.4289 0.864
Item-mean popular 1.1958 0.9612 0.4702 0.5000 0.020

Binary interactions Similar to the MovieLens data, we apply the best per-
forming model (model F) to the binary equivalent of the rating matrix. This
results in a RMSE of 1.2873, which is 7.016% higher than when we apply the
model to the non-binary matrix. We can therefore conclude that the ratings
(and timestamps) seem to provide additional explanatory value over the num-
ber of common ratings between users or items.
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6 Conclusion and Discussion
This research set out to improve the performance of neighbourhood-based col-
laborative filtering by including temporal information. We mainly focussed on
prediction performance, but also briefly touched upon the novelty, diversity and
personality of the recommendations. With regard to the temporal adaptations,
the focus was on incorporating temporal similarity in the neighbourhood deter-
mination phase and the time distance from past ratings to the time of prediction
in the rating aggregation phase. To evaluate the performance, we applied the
time-aware algorithms as well as their time-unaware equivalents to data drawn
from MovieLens and Yelp.

We found that generally the temporal-similarity and temporal-recency adap-
tations do not greatly increase the prediction performance of neighbourhood-
based collaborative filtering. In many cases, the performance even slightly de-
graded. These findings suggest that the ratings already convey essentially all of
the explanatory value for prediction performance. Hence, businesses looking to
decrease the prediction errors of their recommender systems are most likely to
benefit more from other approaches.

A possible explanation for the lacking effect of the temporal-similarity adap-
tation on the MovieLens dataset might be that neither the ratings nor the
timestamps, but the binary interactions between users and items contain the
explanatory value for the similarity computations. We did not find this expla-
nation to be plausible for the Yelp data. Furthermore, it is difficult to explain
the minor prediction performance degradation of the temporal-recency adapta-
tion, but it might be related to the evaluation approach. The outcome of Ding
and Li [2005] suggests that a leave-one-out procedure combined with distinct
parameter values per user or item might lead to different results.

Based on the viewpoints of novelty, diversity and personality, we can not
draw any decisive conclusions. In this research, the focus on these measures
was simply too limited to be able to substantiate any conclusive claims. Fur-
ther research could deeper investigate the temporal models by more strongly
focusing on the novelty, diversity and personality measures. It would, for exam-
ple, be informative to incorporate these measures in the parameter validation
procedure. Furthermore, other performance characteristics might be usefully
examined to possibly capture added value of the temporal adaptations. Exam-
ples not only include trust and serendipity [Ricci et al., 2015, p. 295, 297], but
also the evolution of the recommendations over time.

Generally, the scope of this research was limited in terms of the analysis and
interpretation of what exactly caused the found outcomes. Instead, the main
focus was on descriptively reporting the results of the evaluation procedure.
Further research is needed to thoroughly explain these results.

Future studies could also dive deeper into the subject of temporal informa-
tion in various other ways. Firstly, different evaluation procedures and user or
item dependent parameter values might produce interesting findings. In addi-
tion, further studies could investigate similarity functions that are specifically
attuned to temporal data. Related to this would be the exploration of: apply-
ing other methods of combining the rating and timestamp similarity, blending
different similarity measures and employing various recency-weight functions.
More broadly, further experiments could usefully explore if the incorporation
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of temporal information leads to better performance of other recommendation
algorithms, such as matrix factorization and deep learning.
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Appendices
A Parameter Validation Results

A.1 MovieLens
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Figure 24: MAE of the time-unaware user-to-user models applied to the Movie-
Lens validation set
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Figure 25: MAE of the time-unaware item-to-item models applied to the Movie-
Lens validation set
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Figure 26: MAE of the temporal-similarity models applied to the MovieLens
validation set
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Figure 27: MAE of the temporal-recency models applied to the MovieLens vali-
dation set

Table 9: RMSE and MAE of the time-unaware models applied to the MovieLens
validation set

v s k p α λ RMSE MAE

user-to-user cosine 2 mean-centred 1 0 1.0367 0.8236
user-to-user cosine 2 Z-score 1 0 1.0472 0.8283
user-to-user cosine 5 mean-centred 1 0 1.0099 0.8044
user-to-user cosine 5 Z-score 1 0 1.0154 0.8072
user-to-user cosine 10 mean-centred 1 0 1.0007 0.7974
user-to-user cosine 10 Z-score 1 0 1.0042 0.7992
user-to-user cosine 20 mean-centred 1 0 0.9965 0.7942
user-to-user cosine 20 Z-score 1 0 0.9988 0.7952
user-to-user cosine 30 mean-centred 1 0 0.9952 0.7932
user-to-user cosine 30 Z-score 1 0 0.9970 0.7941
user-to-user cosine 40 mean-centred 1 0 0.9945 0.7927
user-to-user cosine 40 Z-score 1 0 0.9961 0.7934
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user-to-user cosine 50 mean-centred 1 0 0.9941 0.7922
user-to-user cosine 50 Z-score 1 0 0.9957 0.7929
user-to-user cosine 60 mean-centred 1 0 0.9938 0.7920
user-to-user cosine 60 Z-score 1 0 0.9953 0.7926
user-to-user cosine 75 mean-centred 1 0 0.9936 0.7918
user-to-user cosine 75 Z-score 1 0 0.9950 0.7924
user-to-user cosine 100 mean-centred 1 0 0.9934 0.7915
user-to-user cosine 100 Z-score 1 0 0.9947 0.7920
user-to-user cosine 150 mean-centred 1 0 0.9932 0.7913
user-to-user cosine 150 Z-score 1 0 0.9944 0.7916
user-to-user cosine 250 mean-centred 1 0 0.9930 0.7910
user-to-user cosine 250 Z-score 1 0 0.9942 0.7913
user-to-user Pearson 2 mean-centred 1 0 1.0366 0.8232
user-to-user Pearson 2 Z-score 1 0 1.0419 0.8249
user-to-user Pearson 5 mean-centred 1 0 1.0106 0.8047
user-to-user Pearson 5 Z-score 1 0 1.0137 0.8060
user-to-user Pearson 10 mean-centred 1 0 1.0008 0.7971
user-to-user Pearson 10 Z-score 1 0 1.0032 0.7981
user-to-user Pearson 20 mean-centred 1 0 0.9960 0.7933
user-to-user Pearson 20 Z-score 1 0 0.9978 0.7941
user-to-user Pearson 30 mean-centred 1 0 0.9941 0.7917
user-to-user Pearson 30 Z-score 1 0 0.9958 0.7925
user-to-user Pearson 40 mean-centred 1 0 0.9932 0.7909
user-to-user Pearson 40 Z-score 1 0 0.9948 0.7916
user-to-user Pearson 50 mean-centred 1 0 0.9927 0.7904
user-to-user Pearson 50 Z-score 1 0 0.9943 0.7912
user-to-user Pearson 60 mean-centred 1 0 0.9924 0.7901
user-to-user Pearson 60 Z-score 1 0 0.9940 0.7909
user-to-user Pearson 75 mean-centred 1 0 0.9921 0.7899
user-to-user Pearson 75 Z-score 1 0 0.9936 0.7906
user-to-user Pearson 100 mean-centred 1 0 0.9917 0.7895
user-to-user Pearson 100 Z-score 1 0 0.9932 0.7902
user-to-user Pearson 150 mean-centred 1 0 0.9915 0.7893
user-to-user Pearson 150 Z-score 1 0 0.9930 0.7899
user-to-user Pearson 250 mean-centred 1 0 0.9914 0.7891
user-to-user Pearson 250 Z-score 1 0 0.9928 0.7897
item-to-item cosine 2 mean-centred 1 0 1.0264 0.8116
item-to-item cosine 2 Z-score 1 0 1.0274 0.8118
item-to-item cosine 5 mean-centred 1 0 1.0039 0.7958
item-to-item cosine 5 Z-score 1 0 1.0033 0.7956
item-to-item cosine 10 mean-centred 1 0 0.9942 0.7893
item-to-item cosine 10 Z-score 1 0 0.9944 0.7894
item-to-item cosine 20 mean-centred 1 0 0.9881 0.7855
item-to-item cosine 20 Z-score 1 0 0.9885 0.7856
item-to-item cosine 30 mean-centred 1 0 0.9863 0.7843
item-to-item cosine 30 Z-score 1 0 0.9867 0.7845
item-to-item cosine 40 mean-centred 1 0 0.9858 0.7840
item-to-item cosine 40 Z-score 1 0 0.9862 0.7842
item-to-item cosine 50 mean-centred 1 0 0.9856 0.7839
item-to-item cosine 50 Z-score 1 0 0.9860 0.7840
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item-to-item cosine 60 mean-centred 1 0 0.9855 0.7839
item-to-item cosine 60 Z-score 1 0 0.9859 0.7840
item-to-item cosine 75 mean-centred 1 0 0.9855 0.7838
item-to-item cosine 75 Z-score 1 0 0.9859 0.7839
item-to-item cosine 100 mean-centred 1 0 0.9855 0.7838
item-to-item cosine 100 Z-score 1 0 0.9859 0.7840
item-to-item cosine 150 mean-centred 1 0 0.9858 0.7841
item-to-item cosine 150 Z-score 1 0 0.9863 0.7843
item-to-item cosine 250 mean-centred 1 0 0.9864 0.7845
item-to-item cosine 250 Z-score 1 0 0.9868 0.7848
item-to-item Pearson 2 mean-centred 1 0 1.0309 0.8155
item-to-item Pearson 2 Z-score 1 0 1.0276 0.8126
item-to-item Pearson 5 mean-centred 1 0 1.0048 0.7972
item-to-item Pearson 5 Z-score 1 0 1.0032 0.7959
item-to-item Pearson 10 mean-centred 1 0 0.9948 0.7900
item-to-item Pearson 10 Z-score 1 0 0.9941 0.7894
item-to-item Pearson 20 mean-centred 1 0 0.9899 0.7864
item-to-item Pearson 20 Z-score 1 0 0.9898 0.7862
item-to-item Pearson 30 mean-centred 1 0 0.9887 0.7854
item-to-item Pearson 30 Z-score 1 0 0.9887 0.7853
item-to-item Pearson 40 mean-centred 1 0 0.9881 0.7849
item-to-item Pearson 40 Z-score 1 0 0.9882 0.7848
item-to-item Pearson 50 mean-centred 1 0 0.9878 0.7847
item-to-item Pearson 50 Z-score 1 0 0.9879 0.7847
item-to-item Pearson 60 mean-centred 1 0 0.9876 0.7846
item-to-item Pearson 60 Z-score 1 0 0.9878 0.7845
item-to-item Pearson 75 mean-centred 1 0 0.9875 0.7845
item-to-item Pearson 75 Z-score 1 0 0.9877 0.7845
item-to-item Pearson 100 mean-centred 1 0 0.9874 0.7845
item-to-item Pearson 100 Z-score 1 0 0.9877 0.7845
item-to-item Pearson 150 mean-centred 1 0 0.9875 0.7846
item-to-item Pearson 150 Z-score 1 0 0.9877 0.7846
item-to-item Pearson 250 mean-centred 1 0 0.9876 0.7847
item-to-item Pearson 250 Z-score 1 0 0.9878 0.7847

Table 10: RMSE and MAE of the temporal-similarity models applied to the
MovieLens validation set

v s k p α λ RMSE MAE

user-to-user cosine 50 mean-centred 0.000 0 0.9962 0.7939
user-to-user cosine 50 mean-centred 0.025 0 0.9947 0.7927
user-to-user cosine 50 mean-centred 0.050 0 0.9947 0.7927
user-to-user cosine 50 mean-centred 0.100 0 0.9946 0.7926
user-to-user cosine 50 mean-centred 0.250 0 0.9946 0.7926
user-to-user cosine 50 mean-centred 0.500 0 0.9945 0.7926
user-to-user cosine 50 mean-centred 0.750 0 0.9945 0.7925
user-to-user cosine 50 mean-centred 0.950 0 0.9944 0.7925
user-to-user cosine 50 mean-centred 0.975 0 0.9944 0.7925
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user-to-user cosine 50 mean-centred 1.000 0 0.9941 0.7922
user-to-user Pearson 50 mean-centred 0.000 0 0.9974 0.7945
user-to-user Pearson 50 mean-centred 0.025 0 0.9970 0.7941
user-to-user Pearson 50 mean-centred 0.050 0 0.9969 0.7940
user-to-user Pearson 50 mean-centred 0.100 0 0.9966 0.7937
user-to-user Pearson 50 mean-centred 0.250 0 0.9956 0.7928
user-to-user Pearson 50 mean-centred 0.500 0 0.9940 0.7915
user-to-user Pearson 50 mean-centred 0.750 0 0.9929 0.7906
user-to-user Pearson 50 mean-centred 0.950 0 0.9927 0.7904
user-to-user Pearson 50 mean-centred 0.975 0 0.9927 0.7904
user-to-user Pearson 50 mean-centred 1.000 0 0.9927 0.7904
item-to-item cosine 50 mean-centred 0.000 0 0.9873 0.7853
item-to-item cosine 50 mean-centred 0.025 0 0.9866 0.7846
item-to-item cosine 50 mean-centred 0.050 0 0.9862 0.7842
item-to-item cosine 50 mean-centred 0.100 0 0.9858 0.7839
item-to-item cosine 50 mean-centred 0.250 0 0.9854 0.7837
item-to-item cosine 50 mean-centred 0.500 0 0.9854 0.7836
item-to-item cosine 50 mean-centred 0.750 0 0.9854 0.7838
item-to-item cosine 50 mean-centred 0.950 0 0.9855 0.7839
item-to-item cosine 50 mean-centred 0.975 0 0.9856 0.7839
item-to-item cosine 50 mean-centred 1.000 0 0.9856 0.7839
item-to-item Pearson 50 mean-centred 0.000 0 0.9874 0.7853
item-to-item Pearson 50 mean-centred 0.025 0 0.9866 0.7845
item-to-item Pearson 50 mean-centred 0.050 0 0.9861 0.7840
item-to-item Pearson 50 mean-centred 0.100 0 0.9857 0.7836
item-to-item Pearson 50 mean-centred 0.250 0 0.9853 0.7832
item-to-item Pearson 50 mean-centred 0.500 0 0.9851 0.7831
item-to-item Pearson 50 mean-centred 0.750 0 0.9854 0.7831
item-to-item Pearson 50 mean-centred 0.950 0 0.9869 0.7841
item-to-item Pearson 50 mean-centred 0.975 0 0.9874 0.7844
item-to-item Pearson 50 mean-centred 1.000 0 0.9878 0.7847

Table 11: RMSE and MAE of the temporal-recency models applied to the Movie-
Lens validation set

v s k p α λ RMSE MAE

user-to-user cosine 50 mean-centred 1 0.0000 0.9941 0.7922
user-to-user cosine 50 mean-centred 1 0.0010 0.9941 0.7922
user-to-user cosine 50 mean-centred 1 0.0025 0.9941 0.7923
user-to-user cosine 50 mean-centred 1 0.0050 0.9942 0.7924
user-to-user cosine 50 mean-centred 1 0.0100 0.9946 0.7927
user-to-user cosine 50 mean-centred 1 0.0200 0.9959 0.7938
user-to-user Pearson 50 mean-centred 1 0.0000 0.9927 0.7904
user-to-user Pearson 50 mean-centred 1 0.0010 0.9927 0.7905
user-to-user Pearson 50 mean-centred 1 0.0025 0.9927 0.7905
user-to-user Pearson 50 mean-centred 1 0.0050 0.9929 0.7906
user-to-user Pearson 50 mean-centred 1 0.0100 0.9935 0.7911
user-to-user Pearson 50 mean-centred 1 0.0200 0.9953 0.7926
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item-to-item cosine 50 mean-centred 1 0.0000 0.9856 0.7839
item-to-item cosine 50 mean-centred 1 0.0010 0.9856 0.7839
item-to-item cosine 50 mean-centred 1 0.0025 0.9856 0.7839
item-to-item cosine 50 mean-centred 1 0.0050 0.9856 0.7839
item-to-item cosine 50 mean-centred 1 0.0100 0.9856 0.7839
item-to-item cosine 50 mean-centred 1 0.0200 0.9856 0.7839
item-to-item Pearson 50 mean-centred 1 0.0000 0.9878 0.7847
item-to-item Pearson 50 mean-centred 1 0.0010 0.9878 0.7847
item-to-item Pearson 50 mean-centred 1 0.0025 0.9878 0.7847
item-to-item Pearson 50 mean-centred 1 0.0050 0.9878 0.7847
item-to-item Pearson 50 mean-centred 1 0.0100 0.9878 0.7847
item-to-item Pearson 50 mean-centred 1 0.0200 0.9878 0.7847

A.2 Yelp
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Figure 28: MAE of the temporal-similarity applied to the Yelp validation set
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Figure 29: MAE of the temporal-recency models applied to the Yelp validation
set
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Table 12: RMSE and MAE of the time-unaware models applied to the Yelp
validation set

v s k p α λ RMSE MAE

user-to-user cosine 2 mean-centred 1 0 1.3450 1.0626
user-to-user cosine 2 Z-score 1 0 1.3418 1.0362
user-to-user cosine 5 mean-centred 1 0 1.2703 1.0026
user-to-user cosine 5 Z-score 1 0 1.2607 0.9797
user-to-user cosine 10 mean-centred 1 0 1.2468 0.9824
user-to-user cosine 10 Z-score 1 0 1.2361 0.9620
user-to-user cosine 20 mean-centred 1 0 1.2375 0.9738
user-to-user cosine 20 Z-score 1 0 1.2267 0.9552
user-to-user cosine 30 mean-centred 1 0 1.2351 0.9720
user-to-user cosine 30 Z-score 1 0 1.2244 0.9540
user-to-user cosine 40 mean-centred 1 0 1.2338 0.9709
user-to-user cosine 40 Z-score 1 0 1.2232 0.9529
user-to-user cosine 50 mean-centred 1 0 1.2332 0.9702
user-to-user cosine 50 Z-score 1 0 1.2225 0.9524
user-to-user cosine 60 mean-centred 1 0 1.2329 0.9699
user-to-user cosine 60 Z-score 1 0 1.2223 0.9521
user-to-user cosine 75 mean-centred 1 0 1.2327 0.9697
user-to-user cosine 75 Z-score 1 0 1.2222 0.9520
user-to-user cosine 100 mean-centred 1 0 1.2324 0.9694
user-to-user cosine 100 Z-score 1 0 1.2219 0.9517
user-to-user cosine 150 mean-centred 1 0 1.2323 0.9693
user-to-user cosine 150 Z-score 1 0 1.2220 0.9518
user-to-user cosine 250 mean-centred 1 0 1.2323 0.9693
user-to-user cosine 250 Z-score 1 0 1.2221 0.9518
user-to-user Pearson 2 mean-centred 1 0 1.3178 1.0452
user-to-user Pearson 2 Z-score 1 0 1.3414 1.0415
user-to-user Pearson 5 mean-centred 1 0 1.2563 0.9961
user-to-user Pearson 5 Z-score 1 0 1.2719 0.9927
user-to-user Pearson 10 mean-centred 1 0 1.2371 0.9796
user-to-user Pearson 10 Z-score 1 0 1.2519 0.9773
user-to-user Pearson 20 mean-centred 1 0 1.2299 0.9735
user-to-user Pearson 20 Z-score 1 0 1.2445 0.9720
user-to-user Pearson 30 mean-centred 1 0 1.2279 0.9717
user-to-user Pearson 30 Z-score 1 0 1.2424 0.9702
user-to-user Pearson 40 mean-centred 1 0 1.2273 0.9710
user-to-user Pearson 40 Z-score 1 0 1.2420 0.9696
user-to-user Pearson 50 mean-centred 1 0 1.2271 0.9707
user-to-user Pearson 50 Z-score 1 0 1.2417 0.9694
user-to-user Pearson 60 mean-centred 1 0 1.2271 0.9707
user-to-user Pearson 60 Z-score 1 0 1.2417 0.9693
user-to-user Pearson 75 mean-centred 1 0 1.2269 0.9705
user-to-user Pearson 75 Z-score 1 0 1.2415 0.9691
user-to-user Pearson 100 mean-centred 1 0 1.2268 0.9705
user-to-user Pearson 100 Z-score 1 0 1.2415 0.9691
user-to-user Pearson 150 mean-centred 1 0 1.2268 0.9704
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user-to-user Pearson 150 Z-score 1 0 1.2415 0.9690
user-to-user Pearson 250 mean-centred 1 0 1.2268 0.9704
user-to-user Pearson 250 Z-score 1 0 1.2415 0.9690
item-to-item cosine 2 mean-centred 1 0 1.3301 1.0420
item-to-item cosine 2 Z-score 1 0 1.3259 1.0297
item-to-item cosine 5 mean-centred 1 0 1.2514 0.9844
item-to-item cosine 5 Z-score 1 0 1.2504 0.9770
item-to-item cosine 10 mean-centred 1 0 1.2308 0.9687
item-to-item cosine 10 Z-score 1 0 1.2313 0.9632
item-to-item cosine 20 mean-centred 1 0 1.2251 0.9637
item-to-item cosine 20 Z-score 1 0 1.2258 0.9587
item-to-item cosine 30 mean-centred 1 0 1.2237 0.9623
item-to-item cosine 30 Z-score 1 0 1.2244 0.9572
item-to-item cosine 40 mean-centred 1 0 1.2233 0.9620
item-to-item cosine 40 Z-score 1 0 1.2240 0.9569
item-to-item cosine 50 mean-centred 1 0 1.2230 0.9617
item-to-item cosine 50 Z-score 1 0 1.2237 0.9566
item-to-item cosine 60 mean-centred 1 0 1.2229 0.9616
item-to-item cosine 60 Z-score 1 0 1.2237 0.9565
item-to-item cosine 75 mean-centred 1 0 1.2229 0.9615
item-to-item cosine 75 Z-score 1 0 1.2237 0.9564
item-to-item cosine 100 mean-centred 1 0 1.2228 0.9614
item-to-item cosine 100 Z-score 1 0 1.2236 0.9563
item-to-item cosine 150 mean-centred 1 0 1.2228 0.9613
item-to-item cosine 150 Z-score 1 0 1.2236 0.9563
item-to-item cosine 250 mean-centred 1 0 1.2228 0.9613
item-to-item cosine 250 Z-score 1 0 1.2236 0.9563
item-to-item Pearson 2 mean-centred 1 0 1.3293 1.0389
item-to-item Pearson 2 Z-score 1 0 1.3235 1.0263
item-to-item Pearson 5 mean-centred 1 0 1.2702 0.9942
item-to-item Pearson 5 Z-score 1 0 1.2689 0.9869
item-to-item Pearson 10 mean-centred 1 0 1.2581 0.9835
item-to-item Pearson 10 Z-score 1 0 1.2577 0.9777
item-to-item Pearson 20 mean-centred 1 0 1.2550 0.9807
item-to-item Pearson 20 Z-score 1 0 1.2549 0.9753
item-to-item Pearson 30 mean-centred 1 0 1.2543 0.9799
item-to-item Pearson 30 Z-score 1 0 1.2542 0.9745
item-to-item Pearson 40 mean-centred 1 0 1.2540 0.9795
item-to-item Pearson 40 Z-score 1 0 1.2540 0.9741
item-to-item Pearson 50 mean-centred 1 0 1.2540 0.9794
item-to-item Pearson 50 Z-score 1 0 1.2539 0.9741
item-to-item Pearson 60 mean-centred 1 0 1.2539 0.9794
item-to-item Pearson 60 Z-score 1 0 1.2539 0.9740
item-to-item Pearson 75 mean-centred 1 0 1.2539 0.9793
item-to-item Pearson 75 Z-score 1 0 1.2538 0.9740
item-to-item Pearson 100 mean-centred 1 0 1.2539 0.9793
item-to-item Pearson 100 Z-score 1 0 1.2538 0.9740
item-to-item Pearson 150 mean-centred 1 0 1.2539 0.9793
item-to-item Pearson 150 Z-score 1 0 1.2538 0.9740
item-to-item Pearson 250 mean-centred 1 0 1.2539 0.9793
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item-to-item Pearson 250 Z-score 1 0 1.2538 0.9739

Table 13: RMSE and MAE of the temporal-similarity models applied to the Yelp
validation set

v s k p α λ RMSE MAE

user-to-user cosine 50 Z-score 0.000 0 1.2224 0.9522
user-to-user cosine 50 Z-score 0.025 0 1.2224 0.9522
user-to-user cosine 50 Z-score 0.050 0 1.2224 0.9523
user-to-user cosine 50 Z-score 0.100 0 1.2224 0.9523
user-to-user cosine 50 Z-score 0.250 0 1.2225 0.9523
user-to-user cosine 50 Z-score 0.500 0 1.2223 0.9522
user-to-user cosine 50 Z-score 0.750 0 1.2224 0.9523
user-to-user cosine 50 Z-score 0.950 0 1.2225 0.9523
user-to-user cosine 50 Z-score 0.975 0 1.2225 0.9524
user-to-user cosine 50 Z-score 1.000 0 1.2225 0.9524
user-to-user Pearson 50 mean-centred 0.000 0 1.2272 0.9697
user-to-user Pearson 50 mean-centred 0.025 0 1.2283 0.9704
user-to-user Pearson 50 mean-centred 0.050 0 1.2282 0.9703
user-to-user Pearson 50 mean-centred 0.100 0 1.2281 0.9702
user-to-user Pearson 50 mean-centred 0.250 0 1.2283 0.9701
user-to-user Pearson 50 mean-centred 0.500 0 1.2356 0.9749
user-to-user Pearson 50 mean-centred 0.750 0 1.2292 0.9701
user-to-user Pearson 50 mean-centred 0.950 0 1.2300 0.9706
user-to-user Pearson 50 mean-centred 0.975 0 1.2304 0.9709
user-to-user Pearson 50 mean-centred 1.000 0 1.2271 0.9707
item-to-item cosine 50 Z-score 0.000 0 1.2239 0.9566
item-to-item cosine 50 Z-score 0.025 0 1.2239 0.9567
item-to-item cosine 50 Z-score 0.050 0 1.2238 0.9566
item-to-item cosine 50 Z-score 0.100 0 1.2238 0.9566
item-to-item cosine 50 Z-score 0.250 0 1.2237 0.9565
item-to-item cosine 50 Z-score 0.500 0 1.2237 0.9565
item-to-item cosine 50 Z-score 0.750 0 1.2237 0.9566
item-to-item cosine 50 Z-score 0.950 0 1.2237 0.9566
item-to-item cosine 50 Z-score 0.975 0 1.2237 0.9566
item-to-item cosine 50 Z-score 1.000 0 1.2237 0.9566
item-to-item Pearson 50 Z-score 0.000 0 1.2462 0.9706
item-to-item Pearson 50 Z-score 0.025 0 1.2463 0.9706
item-to-item Pearson 50 Z-score 0.050 0 1.2462 0.9705
item-to-item Pearson 50 Z-score 0.100 0 1.2464 0.9706
item-to-item Pearson 50 Z-score 0.250 0 1.2478 0.9713
item-to-item Pearson 50 Z-score 0.500 0 1.2571 0.9764
item-to-item Pearson 50 Z-score 0.750 0 1.2528 0.9731
item-to-item Pearson 50 Z-score 0.950 0 1.2541 0.9744
item-to-item Pearson 50 Z-score 0.975 0 1.2544 0.9745
item-to-item Pearson 50 Z-score 1.000 0 1.2539 0.9741
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Table 14: RMSE and MAE of the temporal-recency models applied to the Yelp
validation set

v s k p α λ RMSE MAE

user-to-user cosine 50 Z-score 1 0.00000 1.2225 0.9524
user-to-user cosine 50 Z-score 1 0.00010 1.2223 0.9523
user-to-user cosine 50 Z-score 1 0.00025 1.2222 0.9522
user-to-user cosine 50 Z-score 1 0.00050 1.2224 0.9523
user-to-user cosine 50 Z-score 1 0.00100 1.2242 0.9535
user-to-user cosine 50 Z-score 1 0.00200 1.2306 0.9577
user-to-user Pearson 50 mean-centred 1 0.00000 1.2271 0.9707
user-to-user Pearson 50 mean-centred 1 0.00010 1.2271 0.9707
user-to-user Pearson 50 mean-centred 1 0.00025 1.2272 0.9709
user-to-user Pearson 50 mean-centred 1 0.00050 1.2278 0.9713
user-to-user Pearson 50 mean-centred 1 0.00100 1.2300 0.9731
user-to-user Pearson 50 mean-centred 1 0.00200 1.2369 0.9783
item-to-item cosine 50 Z-score 1 0.00000 1.2237 0.9566
item-to-item cosine 50 Z-score 1 0.00010 1.2235 0.9564
item-to-item cosine 50 Z-score 1 0.00025 1.2233 0.9562
item-to-item cosine 50 Z-score 1 0.00050 1.2232 0.9560
item-to-item cosine 50 Z-score 1 0.00100 1.2239 0.9563
item-to-item cosine 50 Z-score 1 0.00200 1.2277 0.9584
item-to-item Pearson 50 Z-score 1 0.00000 1.2539 0.9741
item-to-item Pearson 50 Z-score 1 0.00010 1.2537 0.9739
item-to-item Pearson 50 Z-score 1 0.00025 1.2536 0.9738
item-to-item Pearson 50 Z-score 1 0.00050 1.2537 0.9738
item-to-item Pearson 50 Z-score 1 0.00100 1.2551 0.9747
item-to-item Pearson 50 Z-score 1 0.00200 1.2603 0.9779
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