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Summary 
 
Recently, the focus on patient-focused care has increased severely in the health care domain. To keep 

up with the competition it is important for hospitals to satisfy the patients needs and preferences. An 

example of patient-focused care is letting the patient schedule his own appointments for an outpatient 

visit. But do you open up the complete schedule for the patient, where the patient will plan as close as 

possible to his preference, or do you give him a selection of the schedule based on his preference? This 

leads to the following research question: 

 What is the best way of assigning slots to patients with preferences in an outpatient 

department?  

Leonié Ottens [1] performed a study in this area and the main conclusion was that the dynamic 

programming (DP) model gave better results than the greedy model. However, the calculation time of 

the DP model increases strongly as the number of slots in a schedule grows. The calculation time is too 

large to use this model in an outpatient department. The aim of this research is therefore to extend the 

model of Ottens with new patients and a stochastic process in which the patients arrive, and to solve 

the problem with the increasing calculation time. With the new stochastic way of patient arrivals you do 

not know upfront how many patients you have to schedule. 

We developed an improved DP model and this model includes two types of patients: the first type needs 

one slot because he comes for a follow up appointment. The second type needs two slots because it is a 

new patient. The DP model always gives lower values than the greedy model. But as there are more 

patients of type 2, this difference becomes bigger. Then the costs of the DP model are 24.5% smaller 

than the costs of the greedy model. Also, when the refusal costs are higher, this difference becomes 

bigger. Then the costs of the DP model are 46.8% smaller. So it depends on what the distribution is 

between the two types of patients and how high the refusal costs are, to see how much better the DP 

model actually is. But it is clear that the new way with stochastic arrivals of patients increases the profit 

you can get by using the DP model.  

To solve the problem of the increasing calculation time, we developed a reduced DP model which uses 

clusters instead of slots. This way we have to keep track of less variables, which solves the problem. 

Unfortunately, the value function of the reduced DP model is an estimation and gives higher values than 

the greedy and the DP model. This means that the reduced DP model results in higher costs. We expect 

that the actual values of the reduced DP model are lower than they are now, because in the value 

function we add up two different types of costs instead of one. Further research is required to 

determine whether this is really the case. 

We recommend to keep researching this problem, since the profit you can gain by using the DP model 

could be around 47%.  We advise to compute the actual costs of the reduced DP model and to extend 

the model with multiple days. To approach reality even more, we would also recommend to take costs 

into account of being left over with consecutive empty slots in the middle of the schedule. The profit 

that can be achieved with further research will be worth it.  
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1. Introduction 
 
Nowadays patients are becoming more conscious about where they can get the best care. 

Consequently, the competition in care becomes bigger and for hospitals it becomes more important to 

satisfy the patient’s needs and preferences. An example of satisfying the patient’s preferences is to give 

them a time and date for an appointment that they prefer. Most outpatient departments give each 

patient a strict time and date if they want to make an appointment. If the patient is not available at that 

time or that day, the appointment can be rescheduled, but this will cost extra effort from both the 

patient and the hospital. Therefore, it is desirable to let patients schedule their appointments instead of 

the hospital. But do you open up the complete schedule for the patient, where slots are taken in a 

greedy fashion, or do you give a selection of slots to the patient, depending on his preference? And if 

you give a selection, what selection should that be?  

Appointment scheduling of patients with preference is a recent development in health care and 

therefore there is not much literature about this subject. The literature that can be found is referred to 

in the report of Léonie Ottens [1]. Ottens investigated appointment scheduling with patient preferences 

by using a technique called dynamic programming. Her model gave better results than using a greedy 

algorithm. However, the calculation time increased exponentially as the number of appointments 

increased because the state space becomes too large. Also, the model assumed that there was only one 

type of appointment and that each time step a patient wanted to book an appointment. So this research 

had its limitations and therefore could not be used directly in an outpatient department. A new model 

which takes new patients with high refusal costs into account would probably try to shield these new 

patients. Since the new patients are very important to a hospital, it would be beneficial to use this new 

model. 

The aim of this research is to extend the model of Ottens and to find ways to deal with the exponential 

increasing calculation time. The model of Ottens will be extended by adding another patient type that 

needs a double appointment, making the process of planning patients stochastic and implement the 

possibility to refuse patients. This leads to the following research question: 

 What is the best way of assigning slots to patients with preferences in an outpatient 

department? 

To answer this question the following subquestions are addressed: 

1. How much better does dynamic programming performs than the greedy algorithm for 

appointment scheduling? 

2. How does the planning of multiple types of patients influence the way of planning? 

3. How does the possibility of refusing patients influence the way of planning? 

4. How can the problem of the exponential increasing calculation time be dealt with the 

use of dynamic programming? 
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In this research paper three scenarios are considered: the greedy policy, the dynamic programming 

model and the reduced dynamic programming model. The greedy policy gives each patient the nearest 

available slot(s) he/she prefers. The dynamic programming model calculates all possibilities and 

determines which is the best one at each time step and for each patient. The reduced dynamic 

programming model works with a reduced state space where less calculations are performed.  

This paper is divided in four chapters. Chapter 2 describes the methods we have used throughout this 

research. This includes a description of the greedy model, the dynamic programming model and the 

reduced dynamic programming model, including pseudo code. Chapter 3 contains the validation of the 

greedy and dynamic programming model and the results following from the three models. Chapter 4 

presents the conclusion and recommendations. Here we answer the research question and 

subquestions and give some recommendations for future research.  
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2. Methods 
 
This chapter describes the model in paragraph 2.1 and the three models we have used in this research in 

section 2.2-2.4. The three models are the greedy model, the dynamic programming model and the 

reduced dynamic programming model. We explain the problem, how the models work, how the models 

are implemented with pseudo code and give an example. All models are programmed with JAVA in 

Eclipse. 

2.1 Model description 
 
We consider the problem for a fixed day: each day there is a schedule with   available slots. In each slot 

an appointment can be booked. There are   time steps where an event can happen. There are three 

types of events: 

 type 0: no patient arrives that wants to make an appointment. 

 type 1: a patient arrives that wants to make an appointment for one slot. This is a patient that 

has been to the hospital before and needs a checkup.  

 type 2: a patient arrives that wants to make a appointment for two consecutive slots. This is a 

new patient and therefore the patient needs a double appointment. 

Each type of event has a probability of occurrence (  ,   ,   ), where the sum of the three probabilities 

is one. Thus each time step an event happens: a dummy event where no patient arrives, or a patient of 

type 1 or 2 arrives. Each event is independent of the previous event. The expected number of occupied 

slots      of the schedule after   steps is as follows: 

                        . (2.1) 
 
For each different size of schedule, the number of time steps is chosen such that the schedule is 

expected to be 95% full. If the schedule is full, or the patient cannot be scheduled for that day, it will be 

refused. This means that his appointment will be moved to the next day. It may happen that a patient is 

refused even though the schedule is not full, because it is better to keep slots empty for patients that 

arrive later. This may be the case when the free slots are far apart from the preferred slot. Examples of 

this situation will be discussed in chapter 3. 

Each patient arrives with a preference for a certain slot. Ottens [1] has proposed three different 

formulas for the distribution of the preference for some slot. The first formula describes the situation 

where the probability of a preference for each slot is equal: 

       
 

 
. (2.2) 

 
The second formula entails that patients are more likely to prefer an outer slot of the schedule. So this 

means that patients prefer the slots at the beginning and at the end of the day. 
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The last formula describes the opposite situation, where patients prefer the slots in the middle of the 

day: 

        
     

 

 
    

    
 
                 

 

 
    

    
 

       
 

 
    

    
 
                 

 

 
    

    
 
  

   

. (2.4) 

 
 
The three preference functions are used to compute the probabilities of a preference for slot   for type 

1 and type 2:    
  and   

   This entails that   
       , where           and        . For type 2 the 

preference function is different. Since the patient wants an appointment for two slots, he can have four 

preferences in a schedule with five slots: for slot 1 + 2, slot 2 + 3, slot 3 + 4 and slot 4 + 5. Therefore, in 

the functions   is substituted with    . 

Once a patient is scheduled for a slot and this is not the slot the patient preferred, costs are involved. 

Ottens [1] also proposed three different formulas for the distribution of the costs, where   is the 

assigned slot and   the preferred slot. Figure 1 shows the behavior of these three cost function. The first 

formula is called the linear cost function. This formula implies that once the distance between the 

preferred and assigned slot increases, the costs increases linearly. 

         
 

 
        . (2.5) 

 
The second formula is the quadratic cost function. Here the costs increase quadratic, once the distance 

between the preferred and assigned slot increases. This means that the costs first increase slowly, but 

after a certain point start to increase rapidly. 

         
 

         . (2.6) 

 
Third is the saturating cost function. As you can see in figure 1, the costs first increase slowly, then faster 

in the middle and slower at the end. Thus at a certain distance between the preferred and assigned slot, 

the costs start to saturate. 

                
 

   
 
 

        . (2.7) 
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Figure 1: visualization of cost functions 

In the program we use a binary representation for the occupied slots in the schedule as an index. We 

use this representation for the greedy and the DP model. Consider the following schedule with five slots: 

1 2 3 4 5 

     

 
At index zero, there are no occupied slots. At index one only slot 5 is occupied (00001) and at index two 

slot 4 is occupied (00010). At index three both slot 4 and slot 5 are occupied (00011). The complete list 

with the index and corresponding schedules according to the binary representation can be found in 

appendix B. 

2.2 Greedy model 
 
The greedy model is the simplest model and will be used to compare with the results of the dynamic 

programming model. Each time step the greedy policy assigns the slot(s) that the patient prefers, or the 

free slot(s) that is/are closest to the preferred slot(s), with a preference for the left slot. For example, if 

we have the following schedule, with black slots representing booked slots: 

1 2 3 4 5 

     

 
If a patient of type 1 arrives and prefers the second slot, the greedy policy will assign the first slot, 

because the closest available slots are 1 and 3 and the model has a preference for left slots. If the 

second and third slots are both not available and an arriving patient prefers the third slot, the fourth slot 

will be assigned. Once the second and fourth slots are assigned, it is not possible to plan a patient of 

type 2. This suggests that the greedy model is not optimal and can be improved. But how can we 

compare two different models? We have to calculate a value       which is the value of the model at 

time step   for schedule  . The value gives an impression of how high the costs are. So a lower value 

means that the costs for this model will be lower and therefore the model is better.  
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Ottens [1] has derived four formulas that are used to calculate the value function of a model. We have 

extended these formulas to take refusals into account. For all three models we start in the last time step 

where no events can occur anymore and go back to the first time step where the schedule is empty. This 

process comes from the dynamic programming model, but here we assign a slot according to the greedy 

policy instead of determining which slot is optimal. In each time step almost any schedule is possible, 

because you do not know how many arrivals of type 0, 1 and 2 will occur. So for each time step and for 

each possible schedule the value function must be computed. At the last time step, where no events can 

happen anymore, the value function must be zero for each schedule  : 

        . (2.8) 
 
For other time steps the value function is as follows: 

 
                             

                 

 

   

  

       
                 

   
   . 

(2.9) 

 
The function consists of three parts, a part for each type of event. As we mentioned before,   ,    and 

   are the probabilities for the three different events.              are the costs at time   (  

        , given that the current schedule is   and the event is of type 0. For type 1 and type 2 events, 

the values depend on the preference   of the patient. Thus there is a summation for         for type 

1 and for           for type 2. Namely, for type 2 there are     combinations of two 

consecutive slots. Because for an event of type 0 nothing happens, the following holds: 

                     . (2.10) 

 
For type 1 you have to take the direct costs of assigning slot   according to the greedy policy and the 

expected value from the next time step on of schedule   without slot  : 

                                  . (2.11) 
 
For type 2 it is the same as type 1, but now you have to take the expected value of schedule J without 

slot   and slot    : 

                                      . (2.12) 

 
If the preferred slot   is available, the costs of assigning will be equal to zero and you only add the 

expected value from the next time step on. If there is no slot available for a patient of type 1, the patient 

is refused with costs   . Once there are no two consecutive slots available for a patient of type 2, the 

patient is also refused but now with costs   . Once a patient is refused, the assigning costs        are 

replaced with the refusal costs. By using these formulas we can calculate      , where   is the schedule 

where each slot is empty. The pseudo code of this process is shown on the next page. 
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Algorithm 1 Greedy model 

Input: number of slots  , number of time steps  , probabilities for all events:       and   , costs of 
refusing type 1 and type 2:    and   , cost function        and preference function     .  
 
Output: value      . 
 
1: Create array with all possible schedules 
2: for each schedule J do 
3:  Save:         
4: end for  
5: for each time step           do 
6: for each schedule J do 
7:  Save:                       

8:  for each preference         do 
9:   if (no slot available) do 

10:    Compute   
                   

                   

11:   else 
12:    Determine which slot   to assign for type 1 

13:    Compute   
                   

                       

14:   end if 
15:  end for 
16:  for each preference           do 
17:   if (no two consecutive slots available) do 

18:    Compute   
                   

                       

19:   else 
20:    Determine which slots       to assign for type 2 

21:    Compute   
                   

                           

22:   end if 
23:  end for 

24:  Save:                              
                 

 
           

     
   

                                              

25: end for 
26: end for 
17: Return: expected value       for each time step   and schedule  . 
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2.3 Dynamic programming model 
 
With the dynamic programming (DP) model we want to find the optimal policy. The model works similar 

as the greedy model, but now the decision of which slot to assign depends on which action will give the 

lowest expected value. So for each time step, for each schedule  , for each type of patient and each 

preference the value is computed for each action. This way the model computes which action gives the 

lowest value and then is the optimal action. Because the model works similar as the greedy model, 

Formulas (2.8), (2.9) and (2.10) are the same. However, for type 1 and type 2, the following formulas 

replace Formulas (2.11) and (2.12) from the greedy model: 

                       
   

                                  (2.13) 

 
Schedule       is the same as schedule  , but where slot   is occupied. The same as with          

where slot   and slot     are occupied.   

                       
         

                                      (2.14) 

 
You can see here that you first have to determine which slot gives the minimum expected value, and 

also take the minimum of that value and the costs of a potential refusal. This way, it may be better to 

refuse a patient than to schedule it with high costs. The pseudo code is now as shown on the next page. 
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Algorithm 2 Dynamic programming model 

Input: number of slots  , number of time steps  , probabilities for all events:       and   , costs of 
refusing type 1 and type 2:    and   , cost function        and preference function     .  
 
Output: value       and the optimal slot to assign at time step   with schedule   and an arrival of type 1 
or 2. 
 
1: Create array with all possible schedules 
2: for each schedule J do 
3:  Save:         
4: end for  
5: for each time step           do 
6: for each schedule J do 
7:  Save:                       

8:  for each preference         do 
9:   for each free slot   in   do 
10:    Compute                    

11:   end for 

12:   Compute   
                  

     
                                              

13:   Save: the optimal slot   to assign 
14:  end for 
15:  for each preference           do 
16:   for all free slots       in   do 
17:    Compute                        

18:   end for 

19:   Compute   
                  

                                              
                                                       

20:   Save: the optimal slots       to assign 
21:  end for 

22:  Save:                              
                 

 
           

     
   

                                              

23: end for 
24: end for 
25: Return: expected value       for each time step   and schedule   and the optimal slot to assign at 

time step   with schedule   and an arrival of type 1 or 2. 

 

2.4 Reduced dynamic programming model 
 
The DP model calculates the policy for each time step, each schedule and each preference. With the DP 

model there are    possible schedules. As the number of slots grows, the number of possible schedules 

grows tremendously. This caused a huge increase of calculation time for the model. If the schedule 

consists of 13 slots, the calculation time is a few hours. Therefore, the reduced DP model has less states. 
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The idea of this model is to split the schedule in clusters instead of slots. First you have to remember for 

each slot in a schedule if it was occupied or not. If the schedule consists of 20 slots this method gave 

              different possible schedules. If you split the schedule in five clusters of four slots you 

only have to remember how many slots in a cluster are taken. There are now five states for each cluster: 

zero, one, two, three or four occupied slots. This will give          different schedules. This is a huge 

difference and will solve the exponentially increasing calculation time. But if you do not know which 

slots are exactly available, how do you know if it is possible to plan a patient in that cluster and what are 

the resulting costs? 

Each patient now arrives with a preference for a specific cluster. If the patient is assigned to another 

cluster than the one he/she prefers, costs are made. The costs are the computed with the formula 

       , where   is the assigned cluster and   the preferred cluster. As a patient is assigned to a cluster 

again there are costs involved. The costs depend on the number of occupied slots in the cluster and the 

preferred slot of the patient, which you do not know anymore. These type of costs are described as 

      , where   is the type of patient and   the assigned cluster.  

To estimate the costs        we prescribed a strategy. The strategy for each cluster is described in 

Appendix A. For example, if the cluster is free and a patient of type 1 arrives, you give the slot he/she 

prefers. Therefore, the costs will be zero. But if a patient of type 2 arrives you place him at the left of the 

cluster or at the right (see two schedules below), but not in the middle. This way, there are two slots 

free next to each other, for a type 2 patient that may arrive in the future. If the patient has a preference 

for slots 1 + 2 or 3 + 4, there will be no costs. But if the patient has a preference for slot 2 + 3, there will 

be costs. So in this case you take the costs of assigning a patient with a preference for slot 2 + 3 and 

divide it by three. We can only divide it by three if we use the uniform distributed preference function. 

This will be the estimated costs for placing a patient of type 2 in a cluster with 4 empty slots. Because 

these costs are an estimation, the actual costs may differ. Therefore, it will be difficult to compare the 

results of this model with the Greedy and DP model. Also, it is not possible anymore to place a patient of 

type 2 at the slot 4 and slot 1 of two adjacent clusters. This can affect the resulting values. 

1 2 3 4 

     

 
The pseudo code of this model is similar the pseudo code of the DP model. The difference is that a 

schedule now consists of clusters instead of slots. The state of each cluster is part of             instead 

of       for each slot. Also, the model now only works with the linear preference function, because you 

have to add up two components in the costs. As a patient is assigned to a cluster he does not prefer, 

costs         are made. Next there are costs        made by placing the patient in the cluster. 

Therefore, only the linear cost function can be used. The current implementation only works with 

clusters of size four, so the number of slots has to be a multiple of four. In the pseudo code you will find 

the variables       and       . These variables mean that the cluster   in schedule   has been assigned an 

appointment of patient type 1 or type 2. 

 

1 2 3 4 
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Algorithm 3 Reduced dynamic programming model 

Input: number of slots  , number of time steps  , probabilities for all events:       and   , costs of 
refusing type 1 and type 2:    and   , expected costs for type   and cluster  :       . 
 
Output: value       and the optimal cluster to assign at time step   with schedule   and an arrival of 
type 1 or 2. 
 
1: Create array with all possible schedules 
2: for each schedule J do 
3:  Save:         
4: end for  
5: for each time step           do 
6: for each schedule J do 
7:  Save:                       

8:  for each preference       
 

 
 do 

9:   for each available cluster   in   do 
10:    Compute                        

    

11:   end for 

12:   Compute   
                  

     
                                    

                 

13:   Save: the optimal cluster   to assign 
14:  end for 

15:  for each preference       
 

 
 do 

16:   for each available cluster   in   do 
17:    Compute                        

     

18:   end for 

19:   Compute   
                  

                                              
                                      

                  

20:   Save: the optimal cluster   to assign 
21:  end for 

22:  Save:                              
                 

 

 
           

  
 

 
   

                                              

23: end for 
24: end for 
25: Return: expected value       for each time step   and schedule   and the optimal cluster to assign at 

time step   with schedule   and an arrival of type 1 or 2. 
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3. Results 
 
This chapter describes the validation and the results of the models. We describe how we validated the 

greedy and DP model using Ottens’ report in section 3.1. Also, we present the results obtained from the 

greedy and the DP model in section 3.3 and the results of the reduced DP model in section 3.4. 

3.1 Validation 
 
First step of this research was to validate the results with the ones Ottens retrieved in her research. 

Ottens’ model only had one type of patient, no refusals and each time step a patient wanted to make an 

appointment. So at the end the schedule will be completely full. For to this model, we had to choose the 

probabilities as follows:         and     . Also, the number of time steps   is now equal to the 

number of slots  . This is only necessary for the greedy model so that each time step a patient of type 1 

arrives. For the other models   is determined such that the schedule is expected to be 95% full. The 

refuse costs were set extremely high, so it will never be better to refuse a patient than assigning a slot in 

the schedule. 

Ottens calculated the optimal value of the greedy and DP model for each preference and cost function 

and for    . This resulted in two tables. It was checked that our program gave the same values. The 

tables can be found below. 

                         

      0.6596 0.2847 0.5848 
      0.7483 0.3210 0.6729 
      0.8417 0.2995 0.7085 
Table 1: Optimal values greedy model, only type 1 

                         

      0.6513 0.2644 0.5698 
      0.7427 0.3099 0.6629 
      0.8050 0.2282 0.5857 
Table 2: Optimal values DP model, only type 1 

Besides the optimal values, Ottens also presented several examples of the appointment scheduling 

process. It was checked if our program showed the same behavior as these examples and most of the 

time it did. For example, we use      , the first function for the preference distribution, and the 

quadratic cost function        . The current schedule is as follows: 

1 2 3 4 5 

     

 
If a patient now arrives with a preference for slot 3, slot 2 will be given to retain the dispersion of the 

free slots. In this situation, our program gave the same results as Ottens. In some other examples, our 

program did not gave the same results. Now we use the second function for the preference       and 

the linear cost function        . The current schedule is as follows: 
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1 2 3 4 5 

     

 
If a patient arrives with a preference for slot 2, according to Ottens slot 3 should be assigned. According 

to our program, slot 1 is assigned. Because we use      , it is more likely that the next patients will have 

a preference for the middle slots. Therefore it makes more sense to keep the middle slot free. It is 

difficult to find out where the differences in these two examples come from. But since most examples 

gave the same results and the optimal values were exactly the same, we assume that the greedy and DP 

model give correct results. 

3.2 Results dynamic programming model 
 
First, we compare the optimal values of the greedy and the DP model. In Ottens’ report, the differences 

between the two models were fairly small, but the DP model was always better than the greedy model. 

Since the model in Ottens’ report is not stochastic and only uses a patient of type 1, we expect that the 

differences are now larger. Table 3 shows the differences between the optimal values of the two models 

for the different preference and cost functions and    . The probabilities for each type of event are 

as follows:       ,        and       . The refusal costs are:      and     . As you can see, 

the values differ per combination of functions and the DP model is always better than the greedy model. 

Table 4 shows the same differences, but now for a schedule with     . The probabilities for the 

events and the refusal costs are the same. As expected, the differences are higher for a schedule with 

more slots. This means, that as the size of the schedule increases, the absolute difference between the 

optimal and greedy policy becomes larger. 

                         

      -0.0544 -0.1434 -0.0966 
      -0.0267 -0.0861 -0.0518 
      -0.1559 -0.2467 -0.2152 
Table 3: Difference between DP and greedy model with N = 5 and M = 4 

                         

      -0.1441 -0.2477 -0.2142 
      -0.0754 -0.1265 -0.1192 
      -0.1924 -0.2849 -0.2698 
Table 4: Difference between DP and greedy model with N = 10 and M = 9 

Figure 2 shows the optimal value of different models for different schedule sizes. Here, the cost function 

is         and the preference function is      . The probabilities for the different types of events and 

the refusal costs are unchanged. Unfortunately, the calculation time became too big for   larger than 

twelve, so we decided not to calculate the values anymore. As stated in Chapter 2, the value function 

gives an indication of how high the costs will be if you use this model. As you can see in the graph, the 

values of the DP model are always lower than the greedy model and therefore better. Also, it appears 

that for a bigger schedule, the difference between the two values also gets bigger. The graph has a 

lower point at     . The number of time steps   is always chosen such that the schedule will be at 

least occupied for 95%. If we use the same probabilities       and    then up until      this means 
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that      . But when   reaches the size of twelve,   should be equal to ten. This causes a lower 

for the value.  

 

Figure 3: Optimal value of different models 

To show the behavior of the DP model a few examples will be presented for a schedule with five slots. 

The examples are all for a linear cost function and a uniform distribution for the preference function. 

Example 1: In this example we start with the schedule that is shown below.  

1 2 3 4 5 

     

 
The table below shows which slot will be assigned to a patient of type 1, for preferences 1,…,5 

presented at the top row and for        . This means that at      there are still 4 time steps to 

assign patients. Thus     is the last time to assign patients. 

 1 2 3 4 5 

M = 4 1 2 4 4 4 

M = 3 1 4 4 4 4 

M = 2 1 4 4 4 4 

M = 1 1 2 2 4 4 
Table 5: Example 1, patient type 1 

The table shows that the first time step, the patient gets the slot that he prefers or closest to the one 

he/she prefers. If a patient arrives with a preference for slot 3, slot 4 is assigned. You might except that 

slot 2 is assigned, because the costs of placing at slot 2 and slot 4 are the same and the model then has a 

preference for the left slot. But now apparently it is better to keep the slots 1 and 2 free for a patient of 

type 2 that may arrive in the future. At    , this behavior starts to change. If a patient arrives with a 

preference for slot 2, slot 4 is assigned. It seems as if the model again is trying to keep slots 1 and 2 free, 

for patients of type 2, that may arrive in the future. It is remarkable that this behavior did not show at 
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the first time step. At the last time step, the model just gives the patient what he wants, because there 

aren’t any time steps to come. For type 2, the model does not show a change in behavior over time. The 

patient is always assigned to slot 1 and 2. 

Example 2: In this example we start with the following schedule: 

1 2 3 4 5 

     

 
The table below again shows which slot will be assigned to a patient of type 1, for preferences 1,…,5 and 

for        . 

 1 2 3 4 5 

M = 4 2 2 3 4 5 

M = 3 2 2 3 4 5 

M = 2 2 2 3 4 5 

M = 1 2 2 3 4 5 
Table 6: Example 2, patient type 1 

In this example the behavior of scheduling a patient of type 1 does not change over time. Perhaps the 

reason is that after scheduling a patient of type 1, you will always have enough space of planning 

another patient of type 1 and of type 2. The behavior of scheduling a patient of type 2 does change over 

time as you can see in table 7. In the first three time steps, the patient is always placed at slot 2 + 3 or at 

slot 4 + 5. This way, there is still room for another patient of type 2. Of course at the last time step, you 

always give the patient the (nearest) slots he prefers. 

 1 2 3 4 

M = 4 2 2 4 4 

M = 3 2 2 4 4 

M = 2 2 2 4 4 

M = 1 2 3 4 4 
Table 7: Example 2, patient type 2 

Figure 2 shows us that the difference between the values of the greedy and DP model grows as the 

number of slots increases. We have created six different scenarios to investigate what other factors may 

have an influence on this difference. Table 8 shows these five scenarios. Scenario 1 is the same as we 

used for figure 2. In scenario 2 the probability of an arrival of patient type 2 is higher. Therefore, the 

number of time steps   is lower, because it will take less time steps to fill up the schedule. In scenario 3 

and scenario 4 the refusal costs are higher. In scenario 5 the probability of an arrival of patient type 1 is 

higher. Finally, in scenario the probability of an arrival of patient type 2 is much higher. Here, the 

number of time steps   is also much higher. 
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 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

   0.2 0.1 0.1 0.1 0.1 0.9 
   0.5 0.3 0.3 0.3 0.8 0.05 
   0.3 0.6 0.6 0.6 0.1 0.05 
  10 10 10 10 10 10 
  9 6 6 6 10 63 
   1 1 2 5 5 5 
   2 2 4 10 10 10 

Table 8: Different scenarios 

Figure 2 shows the results of the five scenarios. In all scenarios the DP model gives better results than 

the greedy model. As you can see, the difference becomes larger when there are more patients of type 

2 and when the refusal costs are higher. This means that if you have more patients of type 2 and/or you 

have high refusal costs, the gain you get from using the DP model will increase.  

 

Figure 2: costs per scenario 

3.3 Results reduced dynamic programming model 
 
An important part of the reduced DP model was that it should have a small calculation time and is able 

to determine the policies for a schedule up to size twenty. Table 9 below shows the calculation time in 

minutes of the three models for   divisible by four. Unfortunately, performing the greedy and the DP 

model takes too much time for     . But the table shows that the calculation time of the reduced DP 

model is very small and it can determine the policies of a schedule of size twenty in a minute. In this 

section, each result comes from performing the models with the uniform preference function       and 

linear cost function        . 
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N M Greedy model DP model Reduced DP model 

4 3 0.0006 0.0007 0.0005 
8 7 0.0074 0.0112 0.0012 
12 10 1.2930 6.5773 0.0047 
16 14 > 4 hrs > 4 hrs 0.0236 
20 17 > 4 hrs > 4 hrs 1.0160 
Table 9: Calculation time in minutes 

To give an idea of how the reduced DP model works an example is presented. The example considers a 

schedule with twenty slots divided into five clusters of four slots and use the same event probabilities 

and refusal costs as in scenario 1. 

Example 3: The schedule now looks as follows: 

1 2 3 4 5 

0 1 2 3 4 

 
The schedule shows the five clusters with all different numbers of taken slots. Now, we do not look at 

the slot the patient prefers, but the cluster. The table below shows which cluster will be assigned to a 

patient of type 1, for preference 1,…,5 and for         . 

 1 2 3 4 5 

M = 17 1 2 R 4 R 

M = 16 1 2 R 4 R 

M = 15 1 2 R 4 R 

…      

M = 3 1 2 3 4 4 

M = 2 1 1 3 4 4 

M = 1 1 1 3 4 4 
Table 10: Example 3, patient type 1 

This example shows some remarkable actions. The first time steps for a patient of type 1 with a 

preference for cluster 3 or cluster 5, he/she will be refused. For a preference for cluster 5 this is logical 

because you cannot be assigned to cluster 5 so you already have the costs of placing the patient in a 

cluster he does not prefer. For the patient with a preference for cluster 3 the first time steps he/she is 

probably is refused so this cluster is still available for a patient of type two. Also, it probably is cheaper 

to refuse this patient then to place he/she at cluster 2 or cluster 4. This behavior changes at a certain 

point.  

At the last time steps also something remarkable happens. At     a greedy policy occurs, which is 

logical at the last time steps. But this is different for     and    . Then a patient with a preference 

for cluster 2 is assigned to cluster 1. This may have to do with the fact that placing a patient in a cluster 

with one occupied slots costs more than placing it in an empty cluster. 

Table 11 shows the policy for a patient type 2. At the first time steps a patient with a preference for 

cluster 5 is refused. At the last time steps this behavior is changed. The patient with a preference for 



18 
 

cluster 5 is now placed at cluster 3. It seems as if the model tries to does not fill cluster 3 completely at 

first, but later on it does not matter anymore because the day is almost over. 

 1 2 3 4 5 

M = 17 1 2 3 3 R 

M = 16 1 2 3 3 R 

M = 15 1 2 3 3 R 

…      

M = 3 1 2 3 3 3 

M = 2 1 2 3 3 3 

M = 1 1 2 3 3 3 
Table 11: Example 3, patient type 2 

Table 12 below shows the values of the three models for values of   that are divisible by four. 

Unfortunately, we cannot compute the values for the greedy and DP model for      and     , 

because of the large computation time. But it is striking that the reduced DP model gives higher values 

than the greedy and the DP model. This means that the reduced DP model seems to perform worse than 

the other two models. The optimal value of the reduced DP model is an estimation because we do not 

know which slot the patient really prefers and gets assigned. We expect that the true values of the 

reduced DP model are lower, because you add up costs of placing in another cluster and costs of placing 

inside the cluster. But we do not know how much lower they will be. Further research is necessary to 

make strong conclusions about the performance of the reduced DP model.  

N M Greedy model DP model Reduced DP model 

8 7 1.4589 1.3499 1.878 
12 10 1.4966 1.352 2.3344 
16 14   3.3922 
20 17   3.7131 
Table 12: Optimal values of reduced DP model  
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4. Conclusion and recommendations 
 
The purpose of this research paper was to investigate what the best way was of planning patients with a 

preference in an outpatient department. Three models were implemented: the greedy model, the 

dynamic programming and the reduced dynamic programming model. The results show that the DP 

model always gives a lower value and thus lower costs than the greedy model. Therefore we can 

conclude that the DP model is actually better than the greedy model.  

Since a patient of type 2 needs two slots, logically you want to keep two slots free next to each other. 

The model indeed shows this behavior. Since the patient of type 2 is a new patient, which is really 

important to a hospital, this is probably the point where the DP model is better than the greedy model. 

As there are more patients of type 2 and the refusal costs become higher, the DP model becomes even 

more better than the greedy model. Besides, sometimes it is advantageous to refuse a patient at the 

beginning of the planning process. Apparently it is beneficial to keep these slots free for future patients. 

Adding another patient type and the option to refuse patients, clearly influences the planning process.  

Because of the exponentially increasing calculation time of the DP model, the reduced DP model was 

developed. The reduced DP model does not remember for each slot if it is occupied or not, but it splits 

the schedule up in clusters. Next, for each cluster is remembered how many slots are occupied in this 

cluster. This way, the calculation time is greatly reduced. Unfortunately the values returned by the 

reduced DP model are higher than those of the greedy and the DP model. The values of the reduced DP 

model are an estimation. They do not represent the actual costs. Because the reduced DP model does 

not know which slots are exactly occupied it is difficult to compute the actual costs. An expansion of the 

program is necessary, which we have not achieved because of lack of time. Therefore it is recommended 

to expand the program in future research. For a schedule of eight or twelve slots, divided in clusters of 

size four, this must be possible to compute. We expect that the actual costs may be lower than they are 

now, because there are two types of costs added up: the costs of placing a patient in a cluster that he 

does not prefer plus the expected costs of placing the patient in the cluster. Future research will have to 

show how low the actual costs are. 

Based on the results of this research, we would advise the outpatient department to do more research 

for the reduced DP model. The results show that the profit you can get by using the DP model could be 

around 47%. We do not know what the exacts costs of the reduced DP model are, but after further 

research it can be decided to implement the reduced DP model if it turns out to be more profitable. This 

really depends on the refusal costs and the distribution between patients of type 1 and of type 2. In 

addition, it may be useful to take with you what the costs are of empty slots at the end of the day. The 

number of time steps are now chosen such that the schedule is at least 95% full at the end of the day. 

Moreover, the program can be extended for multiple days. Then the patient will not be refused, but 

shifted to the next day. If all this is taken into account in the improved model, it may turn out to be that 

the reduced DP model is better than the greedy model. 
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Appendix A: strategy per cluster 
 

Number of taken slots = 0: 

1 2 3 4 

     

 

 Type 1:  give the slot he/she prefers 

 Type 2:  give slot 1 + 2 or at slot 3 + 4, depending on the preference 

Number of taken slots = 1: 

1 2 3 4 

     

 

 Type 1:  give slot 2 or slot 4, depending on the preference  

 Type 2:  give the two slots closest to the preference 

1 2 3 4 

     

 

 Type 1:  give slot 1 

 Type 2:  give slot 3 + 4 

1 2 3 4 

     

 

 Type 1:  give slot 4 

 Type 2:  give slot 1 + 2 

1 2 3 4 

     

 

 Type 1:  give slot 1 or slot 3, depending on the preference 

 Type 2:  give the two slots closest to the preference 

Number of taken slots = 2: 

1 2 3 4 

     

 

 Type 1:  give the slot closest to the preference 

 Type 2:  give slot 3 + 4 
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1 2 3 4 

     

 

 Type 1:  give the slot closest to the preference 

 Type 2:  give slot 1 + 2 

Number of taken slots = 3: 

1 2 3 4 

     

 

 Type 1:  give slot 1  

 Type 2:  refuse 

1 2 3 4 

     

 

 Type 1:  give slot 2 

 Type 2:  refuse 

1 2 3 4 

     

 

 Type 1:  give slot 3 

 Type 2:  refuse 

1 2 3 4 

     

 

 Type 1:  give slot 4 

 Type 2:  refuse 

Number of taken slots = 4: 

1 2 3 4 

     

 

 Type 1:  refuse  

 Type 2:  refuse 
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Appendix B: Binary representation 
 

Index Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 

0      
1     X 
2    X  
3    X X 
4   X   
5   X  X 
6   X X  
7   X X X 
8  X    
9  X   X 

10  X  X  
11  X  X X 
12  X X   
13  X X  X 
14  X X X  
15  X X X X 
16 X     
17 X    X 
18 X   X  
19 X   X X 
20 X  X   
21 X  X  X 
22 X  X X  
23 X  X X X 
24 X X    
25 X X   X 
26 X X  X  
27 X X  X X 
28 X X X   
29 X X X  X 
30 X X X X  
31 X X X X X 

 

An ‘X’ implies that the slot is occupied. As you can see there are       different possible schedules. 

 


