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Abstract

Since CDO pricing issue attracts more attention these years, many researchers are
devoted themselves to the pricing model studies. In practice, standard Gaussian
copula model becomes the market standard in the financial filed. However, due
to its weakness of mispricing, many extension models are researches, such as
student t copula, Clayton copula, factor loading Gaussian copula, implied copula
approach etc. They all show improvements to the Gaussian copula in terms of
fitting to the market quotes, yet with different performances. This paper mainly
addresses the pricing models for CDO tranche available so far, and presents its
model comparisons with merits and disadvantages.
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1. Introduction

With the market of credit derivatives grows larger, collateralized debt obligations
(CDOs) as one of their most popular instruments also gain more interests both
from the market side and the academic side. Though it appears a dramatic
increase in the traded CDO contracts, unfortunately, achieving a precise CDO
tranche valuation is still a difficult and an open issue today.

This paper explores the vast area of the credit derivatives and the literatures on
the pricing models of collateralized debt obligations (CDOs). I aim at gaining
insight in the financial as well as mathematical foundation of the credit
derivatives and CDO pricing models. In order to obtain the fair premium of the
CDO tranche, the market standard pricing model---one factor Gaussian copula
model, and its various extension models (e.g. student t, double t, factor loading,
normal inverse copula, perfect copula etc) are presented. Besides considering the
model selection, I also discuss about the comparisons of model performances, its
advantages and weakness.

The rest of the paper is structured as follows: chapter 2 gives to a general
overview of credit derivatives. In particular, some of the most popular credit
derivative instruments are addressed. Chapter 3 focuses on the basic knowledge
about the synthetic CDO tranche and its valuation methodology using general
semi-analytic approach. Particularly, I discuss a few concepts and their
relationships, such as loss distribution, large portfolio approximation and default
correlation. They are crucial for calculating the fair premium of CDO tranche. In
chapter 4, I present the copula function and default correlation models (factor
copula model), which constructs a general framework for various pricing models
discussed in the next few chapters. Then, chapter 5 elaborates on the market
standard pricing model---one factor Gaussian copula model, including its
conditional/unconditional loss distribution functions, large portfolio
approximations and evaluation issues. It is argued that despite Gaussian copula
model is widespread deployed in the market nowadays; they do show many
shortcomings. Some of those even lead to serious consequence of huge
mispricing discrepancy. Subsequently, the possible reasons for mispricing are
also presented, such as the well-known correlation smile. Considering the
insufficiencies of the market standard model, various extension copula models
are presented in chapter 6, which aim at reproducing the correlation skew and fit
the market quote better. In chapter 7, model comparisons based on abilities of the
different models to reproduce market quotes are discussed. Finally, conclusions
are drawn in chapter 8. It shows that most extension models have improvements



compared to Gaussian copula models, particularly for the following three copula
models display best fit the market quote. They are ‘factor loading Gaussian
copula model’, ‘normal inverse Gaussian copula model’, and the implied copula
approach (or perfect copula).

2. Credit derivatives
2.1 Brief overview

Credit derivatives were introduced to the market at the beginning of the 1990’s.
Despite their short history, their uses have grown rapidly. They are now used not
only by banks, but also by various funds, insurance companies, and even
corporations.

By definition, ‘credit derivatives are a group of financial instruments that have as
their common main purpose the managing of credit exposures, and thus credit or
default risk” (Jonathan Batten, Warren Hogan, 2002).

As a very useful tool, credit derivative enable the investors to transfer and
diversity credit risk. Specifically, for the lenders, such as a commercial bank, who
want to reduce their exposure to a particular borrower, but are unwilling to sell
their ownerships of underlying assets to the borrower, credit derivatives
contracts may be a wise choice. Since it successfully realizes the function of
transferring the credit risk without actually transferring the ownership.

Credit derivatives come in many shapes and sizes, and there are several ways of
grouping them. Here I introduce the primary category: single-name versus
multi-name credit derivatives. Single-name credit derivatives are those involving
protection against the default by a single reference entity, such as a credit default
swap (CDS). Multi-name credit derivatives are the contracts that are contingent
on default events by a pool of reference entities. A simple example is the
portfolio default swaps, and the collateralized debt obligations (CDOs).

2.2 Instruments

In the vast area of the credit derivatives world, there are many types of products.
This chapter is devoted to the overview of several important credit derivative
instruments based on the background knowledge in Bomfim, A.N. 2005.



2.2.1 Credit default swap

Credit default swaps are the most common type of credit derivatives. It is a
contract between a protection buyer and a protection seller, whereby the buyer
pays a periodic fee (CDS premium) to the seller. In return, the seller will pay a
contingent payment to the buyer once credit events happen in the reference
entity.

To elaborate, in Figure 2.1, the CDS contract consists of 2 parties; one is the credit
protection buyer, the other is the protection seller. In its simplest form, the
protection buyer agrees to make periodic payments over a predetermined
number of years (referred to as the maturity of the CDS) to the protection seller.
In exchange, the protection seller commits to making a payment to the buyer in
the event of a default by a third party (referred to as the reference entity). This
payment needs a settlement choice specification upfront when entering the
contract. In case of a default, payments can be settled physically or in cash. In the
physically-settled situation, the protection buyer has the right to deliver a range
of defaulted physical assets to the protection seller, receiving the full face value
of the assets as payment. And the types of the deliverable assets should be pre-
specified in the contract. In the cash-settled situation, payments should be paid in
cash and are proportional to the notional amount. Nowadays, the cash settlement
is more commonly used in Europe than in the United States, where by far, the
majority is physically delivered (Bomfim, A.N. 2005).

CDS premium

\ 4

Protection buyer Protection seller

A

Contingent payments upon default

Referenced Entity

Figure 2.1 CDS structure



2.2.2 Asset swaps

The asset swap is a common form of a derivative contract!, in which, an investor
(asset swap buyer) can buy a fixed rate liability (usually a coupon bond) issued
by a reference entity and simultaneously enter an interest rate swap, where the
fixed rate and maturity date exactly match those of the fixed-rate liability. At the
maturity date, the investor of the asset swap effectively transfers the interest rate
(market) risk of the fixed rate liability to its asset swap counterparty (or dealer or
asset swap seller), retaining only the credit risk component. As such, we obtain
one important characteristic of asset swaps: allowing investors to take pure credit
positions. In other words, asset swaps can be used for investors who are willing
to take exposure to credit risk without worrying about the interest risks.

To elaborate, we can decompose the process into the following two parts:
» Purchasing the fixed rate bond at par value

Par value

A 4

Asset swap buyer Asset swap seller

A

Fixed rate bond

The investor (asset swap buyer) agrees to buy from the dealer (asset swap seller)
a fixed rate bond issued by the reference entity, paying for the par value
regardless of the market value.

> Entering the interest rate swap

Coupon payment

A 4

Asset swap buyer Asset swap seller

A

A

Coupon LIBOR + asset swap spread

Fixed rate bond

Figure 2.2 asset swap
The investor (asset swap buyer) pays for the dealer’s (asset swap seller) periodic
fixed rate payments, which are equal to the amount of the coupon paid by

150 far, there is still some disagreement on whether the asset swap is a credit derivative



reference bond (fixed rate bond). In return, the asset swap seller will make
variable interest rate payments to the investor, which is equal to the amount:
Libor plus asset swap spread?® In such a way, investor successfully transfers the
interest risk retaining merely the credit risk.

2.2.3 Total return swaps

A total return swap (TRS) is a contract that allows investors (the total return
receiver/buyer) to obtain all of the economic benefits of owning an asset without
actually holding that physical asset. It transfers the returns and risks on an
underlying reference asset from one party to another. A total return swap
involves a "total return buyer," who pays a periodic fee to a "total return seller";
meanwhile, the total return buyer will receive all the economic benefits of the
underlying reference asset in return. The term "total return" actually includes all
interest payments on the reference asset plus an amount based on the changes in
the asset's market value. At trade inception, one party, the total return buyer,
agrees to make the periodic payments of LIBOR plus a fixed spread to the other
party, the total return receiver/payer, and in return the buyers will get coupons
from some specified asset. At the end of the total return swap, the total return
buyer pays the difference between the final market price of the asset and the
initial price of the asset. Specifically, if the price goes up, the total-return buyer
gets an amount (pay a negative value) equal to the appreciation of the value, and
if the price declines, the buyer pays an amount equal to the depreciation in value.
If a credit event (like a default) occurs prior to maturity, the TRS usually
terminates, and a settlement is made immediately. (Lehman Brothers
International (Europe), March 2001)

Unlike the asset swaps, which essentially focus on the credit risk, a total return
swap exposes investors to all risks associated with the reference asset, like credit
risk, interest risk etc. In addition, an asset swap involves the actual purchase of
the asset, which is another difference between the asset swap and the total return
swap. Therefore, people may choose to make use of different credit derivatives to
diversity risks according to their actual needs.

In the following, the diagrams show how the total return swap works.
During swap:

2 Asset swap spread: The floating rate in such an interest rate swap is
conventionally quoted as a spread over short-term LIBOR.



Coupon from references asset

Total return > Total return
seller/payer buyer/receiver
Libor + fixed spread
At maturity:

Appreciation value of the reference assets

Total return »| Total return
seller/payer buyer/receiver

Depreciation value in the market

Figure 2.3 Total return swap

2.2.4 Credit linked notes

A credit linked note is a security issued by a special purpose company (bank,
etc.), designed to offer CLN buyers (investors/asset managers) periodic coupon
and principle payments unless defaults happen. Loosely, the CLN usually links
with CDS contracts, which realize the passing of the credit risk on a specified
reference entity (in the CDS part) onto CLN investors who are willing to bear
that risk in return for the higher yield it makes available.

For specific purposes, the investor who is willing to bear credit risks based on the
reference entities pays for the par value to the CLN issuers (special purpose
company or dealer) to buy the CLN. For the dealers who issue the credit linked
notes, meanwhile, enter into a CDS contract and sell protection against default by
the reference entity to the protection buyer. As such, in the process, the investor
pays for the par value and the CLN issuer/dealer pays a fixed- or floating-rate
coupon in return. Notice that the investors retain an exposure to the reference
entity, which means that in case a default happens, investors have to bear the full
brunt of the lose, including some or all of their coupon and principal, yet
receiving a sum of money based on the recovery rate. (Lehman Brothers
International (Europe), March 2001). Specifically, in the event a default takes
place, the dealer pays its CDS counterparty the value equal to the notional
amount multiplied by (1- recovery rate), and meanwhile the CLN is terminated
with the investors receiving only (notional amount * recovery rate).
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CDS Premium
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Protection buyer Dealer/bank/
< CLN issuer A
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rinciple
p p e
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/asset managers —

Figure 2.4 Credit linked notes

2.2.5 Collateralized Debt Obligation

A collateralized debt obligation (CDO) is defined as a structured financial
product backed by portfolios of assets. Those assets are called collateral, which
usually includes a combination of debt instruments or loans, such as bonds, loans,
asset-backed securities, etc. When the collaterals are loans, the CDO is called a
collateralized loan obligation (CLO); if they are bonds, it turns to be a CBO
(collateralized bond obligation). A CDO has a sponsoring organization, which
sets up a specially created company, namely a special purpose vehicle (SPV) in
order to hold the collateral and issue securities to investors. The sponsoring
organization may contain sponsoring banks and other financial institutions.
There are multiple tranches of securities issued by the CDO (SPV), offering
investors various maturity and credit risk characteristics based on the collaterals
assets. And according to the level of credit risk, tranches are then categorized as
senior, mezzanine, and subordinated/equity (from the lowest to the highest
degree of credit risk). If there are defaults or underperforms of the CDO's
collateral, the investor who buys the equity tranche has to first bear the loss, and
then the mezzanine and the senior tranche. In other words, the payments to
senior tranches take precedence over those of mezzanine tranches, and the
payments to mezzanine tranches take precedence over those to
subordinated/equity tranches. Essentially, by selling these securitized collateral
assets in the form of tranched securities, the issuer (SPV) transfers the complete
credit risk of the collateral pool to the investors. To elaborate, a simple CDO
example with a figure is made in the following.

11



Consider that a CDO issuer buys a portfolio of bonds as collateral, *which has a
total face value of, say 100 million euros. To fund the purchase of bond portfolios,
the issuers sell the debt obligation notes (tranche securities) to investors. In our
case, the CDO issuer is the SPV.

Coupon +principles

/

< | Senior tranche, E.g., 20%
Coupon +principles 20
SPV /CDO »  Coupon +principles
issuers -
- - | Mezzanine tranche
100 < E.g., 75%
Coupon + 75
principle 100
v Coupon +principles
Portfolio of bonds > Eoui o
(Collateral) < quity tranche, E.g., 5%
\_ 5
Investors

Figure 2.5 structures of simple cash CDO
Note that in Figure 2.5, all numbers are in million euros.

Given that the collateral comprise of the portfolio of bonds and the debt
obligation notes make monthly payments. Each month, the SPV receive the
payments (coupons) from the bonds and pass them through to the investors who
purchase the notes. In particular, the payments from the bonds have to first meet
the amount owed to the most senior notes/ tranche holder. And then the second
most senior notes/ tranche holder is paid up, and so on until the most junior
notes/ tranche holder receive their share of cash flow. In the event of a default by
the bonds in the portfolio, however, the most junior notes holder may receive
less than their total payments in the case of no defaults. Because the amount they
receive in the default situation is essentially the residual amount after the more
senior and junior investors are paid.

There are several ways to classify a CDO. Here I introduce the most widespread
category: the synthetic versus cash CDOs. So far, I have been discussing about
the cash CDOs. Cash CDOs expose investors to the credit risk by actually

3 As discussed above, we may call it a CBO. But this example would work just as well as a CLO.
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holding the collateral that is subject to defaults. By comparison, the synthetic
CDO holds the high quality or cash collateral that has little or no default risk. It
exposes investors to credit risk by adding credit default swaps (CDSs) to the
collateral. So the synthetic CDO is actually backed by serials of single name CDS.
A simple example with diagram is made as following.

Consider a commercial bank (as sponsoring bank in the diagram) with a bond
portfolio of 100 million euros, which can be seen as the reference assets.

A serial C+P
of CDS ~ "
CDO < ™ Senior
) cash tranche,
CDS premium flow 19.6 E.g., 20%
> N C+P
Sponsoring (¢ | SPV |4 -
bank 98 »| Mezzanine
Y Protection 7y 4+——] tranche
C+ 100 C+P 735 | E.g,75%
98
P
v v C+P
Portfolio of bonds AAA assets — | Equity
(Reference assets) (SPV collateral) 4+ tranche,
K 4.9 E.g., 5%
Investors

Figure 2.6 Synthetic CDO structure
Note that in Figure 2.6, all numbers are in million euros.
C+P : means coupon + principles

The bank wants to transfer its credit risks associated with the bond portfolio, but
is not willing to sell them to the SPV. In other words, the bank tends to sell only
the credit risk related to the bond portfolio (reference assets) and still keep the
bonds in its balance sheet. The transfer of the risk is carried out by a serials of
CDS, where the SPV is the counterparty and where the sponsoring bank buys a
protection of any loss in excess of, say, 2% of the portfolio. As in the cash CDO
structure, the SPV then issues the notes to various classes of investors (3 in the
example). In the synthetic CDO structure, however, because the premiums
payments by the sponsoring bank cannot fully compensate all the costs that the
SPV paid to the investors, another funding source is needed. To make up for the

13



shortfall, the SPV invests its proceeds of the notes issuing in high grade assets,
typically AAA-rated instruments, which then are employed as both the collateral
for the obligations towards the sponsoring banks and the supplements of the
coupon payments promised by the notes.

If no defaults happen, at the maturity date of CDO notes, the CDS is terminated
and the SPV then liquidates the collateral to repay the investor’s principles in full.
In the event of defaults, the CDO investors have to absorb all the defaulted
related loss in excess of the part retained by the sponsoring bank, in our example
2%. More details about the synthetic CDO tranches will be discussed in the next
chapter.

3. Synthetic CDO tranche and its valuation

In the previous chapter, I have discussed about several types of credit derivatives,
especially about the CDOs, the structure and principles of the cash versus
synthetic CDOs. In the rest of my paper, I would like to primarily focus on
synthetic CDOs, its basic knowledge, valuation methodology, pricing models
and model comparisons, etc.

3.1 Basic knowledge about CDO tranches

As we already discussed, a collateralized debt obligation is a financial instrument
that transfers the credit risk of a reference portfolio of assets. Specifically, issuers
of a CDO (the SPV) on one side, enter into a serial of single name CDS, provide
protection to the sponsoring entity (like commercial banks, etc.) on the default
risk of its reference entities; on the other side, SPV issue tranched securities (CDO
notes) to investors; in such a way the CDO then passes the default risk of the
protection buyers on to the synthetic CDO’s investors or call them tranche
holders.

The risk of loss or the defaults on the reference portfolio of assets is tranched into
different levels. In Table 2.1, an example of various levels of tranches expressed
in the form of percentage is displayed. The starting point and the ending point of
each tranche level are called the attachment point and the detachment point,
respectively. Note that on each level, the detachment point overlaps with the
next level’s attachment point. For a given tranche level investors (protection
sellers) purchase, they have to pay a payoff consisting of all losses/defaults that
are greater than a certain percentage (the corresponding attachment point), and
less than another certain percentage (the corresponding detachment point) of the
notional amount of the reference portfolio assets. In return for the protection, the

14



issuance buyers also pay premiums, typically quarterly, proportional to the
remaining notional amount of reference entities at the time of payment. The investors
who sell their insurance on the tranches could obtain that premium, which is
distributed to the tranches in a way that reflects the credit risk they are bearing
and that should be specified upfront. For example, the equity tranche which is
the riskiest might get 3,000 basis points per annum; the junior tranche might get
1,000 basis points per annum since it is less risky, the third one is even less and
SO on.

The following table shows standard tranche levels of a synthetic CDO and its
attachment/detachment points.

Reference Portfolio | Tranche level | Tranche name A D
1 Equity 0% | 3%
DJ iTraxx Europe: 2 Junior Mezzanine | 3% | 6%
Portfolio of 125 3 Senior Mezzanine | 6% | 9%
CDS 4 Senior 9% | 12%
5 Super Senior 12% | 22%

Table 3.1: standard structure of a synthetic CDO on DJ iTraxx Europe

A: represents attachment points

D: represents detachment points

Super-Senior: we use ‘super’ because its credit quality has to be higher than Aaa
at inception

Given that the successive tranches are responsible for 0% to 3%, 3% to 6%, 6% to
9%, 9% to 12%, and 12% to 22% of the losses/defaults (which is the case of the
synthetic CDO on DJ iTraxx Europe). If default of reference entities takes place,
loss occurs. The first tranche/Equity has to absorb all the losses until they reach
3% of the total notional principal; and if the total loss exceeds 3%, the second
tranche/ Junior Mezzanine has to bear the rest of losses until they reach 6%; the
third tranche/ Senior Mezzanine would then be responsible for the payoff
between 6% to 9% of the total notional amount; and so on.

DJ iTraxx instruction

The DJ iTraxx Investment Grade index (D] iTraxx index) is the main index in the
family of CDS index products, which, in Europe, consists of a portfolio of the top
125 names (125 investment grade European companies) in terms of CDS volume
traded in the six months prior to the roll. Each name is equally weighted in the
static portfolio. And a new series of DJ iTraxx Europe is issued every 6 months.
In the case of the iTraxx EUR 5 yr index, successive tranches are responsible for

15



0% to 3%, 3% to 6%, 6% to 9%, 9% to 12%, and 12% to 22% of the losses. We
should note that an index tranche is different from the tranche of a synthetic
CDO in that an index tranche is not funded by the sale of a portfolio of credit
default swaps. However, the method of pricing the tranche of a CDO ensures
that an index tranche is economically equivalent to the corresponding synthetic
CDO tranche. More information about DJ iTraxx may be found at
www.iboxx.com.

3.2 Valuation methodology of synthetic CDO tranche

After obtaining some ideas on CDO tranches, I would at this section introduce
how to price the CDO tranches. More precisely, how much should the SPV pay
as premiums (coupons) to the tranche investors* (protection sellers). Consider a
synthetic CDO; as long as no defaults take place, the SPV pays a regular
premium to the tranche holder. In the event of defaults, the investor has to bear
the loss. The next premium is then paid on the remaining notional amount,
which is original notional amount reduced by the loss amount.

3.2.1 Loss distribution introduction

Recall that the payment under default should absorb between the tranche level’s
attachment point A and the detachment point D.
Let  N(t): the cumulative loss on a given A-D tranche at time t; t=1,2---m
L(t): the cumulative loss on the whole reference entities at time t
We get
0 ifL(t) <A
N({t)=<Lt)-A IifA<L{t)<D
D-A if L(t)>D
Calculation of the portfolio loss L(t) and portfolio loss on a given tranche level
N (t) are important, since they are essential elements to decide the amount of
contingent payments (expected cumulative losses) as well as the cash flows
between the protection buyers and sellers, hence to obtain the premium of a
CDO tranche.
Consider N references entities/ companies /obligors with notional amount A, ,

recovery rateR;. LetB, =(1—R)A, i=12,---N , be the losses given the obligor i;

* Bear in mind that the CDO buyers or CDO investors are actually the tranche holders; they are standing the
role of the protection sellers or the risk takers. The protection buyers are usually the sponsoring banks ,yet
they are not directly paying the premiums to investors. They pay coupons to SPV, and it in principle is SPV
who pays the tranche premiums to investors.

16



Let 7, be the default time of company i;
Let

1if 7, <t .
H,(t) = . be a counting process,
0 otherwise

Define: H,(t) turns to be 1 when the default time of company i is smaller than

time t.
Thus the whole portfolio loss at time t is:

LO =Y BH,0

We assume that A and R, are the same for all obligors, then B, is constant.
Given the time t discrete loss of the reference portfolio L(t) with probability p, ,
t=12---m. The A-D CDO tranche suffers a loss of {min(L(t), D) - A}" with the
probability p,, t=12---m. Then the expected cumulative loss or contingent

payment on a given A-D tranche in the case of discrete loss distribution is

E[N (t 1 & . N
o = =GR S MR, D) - AR ()

In the case of continuous portfolio loss distribution function F(x), the expected

EL

cumulative loss or contingent payment on a given tranche is

EL o= ﬁ {] (x- MYdF (x) - [ (x- D)dF (x)} (3.2)
Proof:
S =ﬁ§{min(m), D) - A¥'p,

1 m
= —D AZ[L(t) '1{L(t)<D} +D '1{L(t)zD} - A] '1{min(L(t),D)>A} Py
- t=1

1 m
ﬁZ[(L(t) - A) '1{A<L(t)<D} + (D - A) '1{L(t)zD>A}]' Py
— At

:ﬁ{i(x — A)dF(x) + i(D — A)dF (x)}

=ﬁ{j\(x —A)dF(x)—i(x —A)dF(X)+_:[(D—A)dF(x)}

=ﬁ{i(x—A)dF(x)—i<x— D)dF ()}

Note that all expectations are calculated under the risk neutral measure Q and
the expectation values are smaller than 1 in the form of percentage (Davide
Meneguzzo,Walter Vecchiato (2004)).
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3.2.2 Pricing synthetic CDO tranche using General semi-analytic
approach

In the previous section, a few important variables and elements, such as the
contingent payments for a given tranche level A-D5 are already derived; this
section will focus on the popular valuation methodology --- General semi-
analytic approach. Its basic idea is within each trache to construct a premium
value so that the expected premium leg equals the expected protection leg.
Equivalently, if protection buyer pay for the fair premium to investors, the
present value of the spreads payment (‘premium leg’) should be equal to the
present value of the contingent payment EL , ,, (‘protection leg’) paid by the

protection sellers. EL , ;, is the variable we already obtained in the section 3.2.1.

Namely:

VPREM :VPROT
Let’s assume that
0<t, <t ---<t,

denote the premium payment dates.

The CDO contracts specify quarterly payments (four times a year) until the
maturity datet,,. The value of the premium leg V., of a given tranche is the

present value of all expected spread payments:

VPREM = iAti D(toiti—l)[l_ EL(A,D) (ti—l)] -S (3:3)

Where At;: At=1t-1

D(0, t;) : the discount factor for the time value until time t;

S: the fair premium/spread (annual basis), in basic point.
ELsp)(t) :the expected loss of A-D CDO tranche at time in term of

percentage

Accordingly, the protection leg is calculated as follows:

tIT]
Voror = | D{t, S)AEL 5, (5) (3.4)

fy

R Zm: D(to, t)[EL s 5 () = EL i ) (tiy)]

i=1

The fair premium S* can be obtained by solving equation Vygey =Veror

5 In this chapter, the valuation methodology is discussed for a given tranche level A-D.
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Thus

Zm:AtiD(tmti—l)[l_ EL(A,D)(ti—l)] S = i D(tO’ti)[EL(A,D) (ti) - EL(A,D)(ti—l)] (3.5)

i=1 i=1

Zm: D(tO’ti)[EL(A,D)(ti) - EL(A,D)(ti—l)]
"=+ (3.6)

iAL D(to!tifl)[l_ EI—(A,D) (ti—l)]

i=1

Equation (3.6) is a very compact representation of fair premium SS”. It shows that
once we know the expected cumulative loss on a given tranche level in question,
for example EL , ,, (), the fair premium S” is then straightforward. Unfortunately,

the loss distribution function F(x), which is a key element of EL,,(t) (see

equation 3.2) is not easy to derive. The main reason is the influences of the
default correlation between obligors. Different default correlations may result in
various shapes of loss distributions, and hence various forms of distribution
functions. For example, higher defaults correlation tends to lead to a fatter tail
loss distribution. Fatter tail (for example see figure 3.1, black line) means that
both low level of defaults and high level of defaults are more likely to take place
than the average default level. By comparison, a low default correlation (for
example see figure 3.1, blue line) tends to result in a skinny tail loss distribution
in that the average levels of defaults are more likely (Dominique and Julien ,
2005).

----- 0% Correlation
e 20% Correlation
e 5005 Correlation

ra

Probabality
=
o

0.05F

5 10 15 20
Percent of Maximum Portfolio Loss

(=)
m

Figure 3.1 Influences of default correlations on the portfolio loss distribution

19



Source: Dominique and Julien 2005

Consequently, the modeling of default correlation structure plays a crucial role in
calculating the loss distribution function, and hence pricing the tranche of a CDO.
Note that within the CDO pricing context, we have to not only consider about
the joint defaults but also the timing issue (the time to default), because premium
payment depends on the outstanding notional which is reduced during the
lifetime of the contract if obligors default. The purpose of the next chapter is to
present the standard default correlation model and necessary theory which are
essential to obtain the loss distribution in a CDO pricing context.

Default correlation

Default correlation, by definition, is the ‘phenomenon that the likelihood of one obligor
defaulting on its debt is affected by whether or not another obligor has defaulted on its
debts’. (Douglas Lucas (2004)). For easier understanding, default correlation
measures the tendency or the degree of two companies/names to default
approximately simultaneously. We have positive /negative default correlation,
which respectively means that if one goes to default, others are more /less easy to
default.

4. Copula Function and default correlation model (factor

copula model)

As is shown in the previous chapter, default correlation that determines the loss
distribution has been a key element for pricing a CDO tranche. In this chapter, I
would like to discuss the default correlations, which are modelled using the
factor copula proposed by Li (2000). Before directly discussing the model details,
we may first look through the short review of the concept and properties of a
copula function, based on which the underlying principle of default correlation
model/ factor copula model is built.

4.1 Definition and Basic Properties of Copula Function
LetU,, U,,...U_  be m uniform random variables; p be the correlation parameter.
Definition: The joint distribution functionC(u,u,,---u,,p), denoted with C is
called a copula function, if

C(u,u,, Uy, p)=PU, <u,U, < u, U, <u,)
For the copula function, an important property is called Sklar’s Theorem, which

shows that any multivariate distribution function F can be written in the form of
a copula function. In addition, the theory clearly reveals that copula may well
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link the marginal probability into a joint distribution.

Sklar’s Theorem: If F(x,X,,---X,) is a joint multivariate distribution function
with univariate marginal distribution functions F(x,), F(Xx,),---F(X,), then there

exists a copula function C(u,,u,,---u,,) such that

FO4 %, %) = C(F(x), F (%), - F(x,,))
If each F, is continuous then C is unique. Thus, copula functions provide a

unifying and flexible way to study multivariate distributions.

4.2 Default correlation model (factor copula model)

A concise theoretic description of the term” default correlation” is presented in
the previous section 3.2.2. Now, we start from model’s point of view, there are
two types of default correlation models suggested, namely reduced form models
and structural models. Duffie and Singleton (1999) and Merton's (1974) already
gave the specific description. Considering that the two models are quite
computationally time consuming when they are used for pricing products,
naturally, we come up with an idea of using the factor copula to model the
default correlation. The principal underlied is to make use of the property of the
copula function, which is that the factor copula created joint probability
distribution for the times to default of many companies/obligors to be
constructed from several marginal distributions. This default correlation factor
copula model is introduced by Li (2000) and is very popular with the participants
in the market. Essentially, the advantage of the copula model lies in its creation
of a tractable multivariate joint distribution for a set of variables given the
marginal probability distributions for the variables (Hull and White 2004). In the
following, the modeling details are introduced.

Consider a portfolio of N companies/obligors and assume that the marginal
probabilities of defaults are known for each company/obligor.

Define:

t,:  The time of default for the i" obligor

Qi(t): The cumulative default probability function (cdf) obligor i will
default before time t ; that is, P(t <t) i.e. the cumulative

distribution function of
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To generate an one-factor standard copula model® for default time t; , we define

a latent random variables X, (1 <i<N)

X :piY"‘\/l_piz "G (4.1)
Where the variable X can be thought of as a default indicator variable for the i"

obligor: the lower the value of the variable, the earlier a default is likely to occur.
Each X, has two stochastic components. The first Y is a common factor which is

the same for all x;, while the second &, is an idiosyncratic component affecting
only ;. Both the two factors & and Y have independent zero-mean unit-variance
distributions. The correlation with the market is represented by p, and it is in a

range of [-1, 1). Since the equation has defined a correlation structure between
the x;, dependent on a single common factor Y. The correlation between X, and

X; is pip;.

Let us look at the general one factor copula model a bit deeper. Under the
standard copula factor model framework: X, = pY +1-p? -¢, ; if we let theeg,’s

and Y’s be standard normal distributions, a Gaussian copula then results.
Generally, any distributions can be used for ¢ ’s and Y’s providing they are

scaled so that they have zero mean and unit variance in order to meet the
requirement in the general framework. Each choice of distributions results in a
different factor copula to model the default correlation structure, and thus
resulting in different methods to derive loss distribution functions for pricing
CDO tranche. The choice of the copula models decides the nature of the default
dependence structure.

Suppose p;(y) refers to the cumulative default probability, or specifically, the

conditional probability of i"" company that go to default before time t, then how
to calculate it? How can we derive the formula from the standard one factor
copula model framework?

Under the one factor copula model, X, is mapped to t; using a percentile-to-
percentile transformation technique. This means that when xi is small, the time t;
before default is also small. For example, the 7% point on the X distribution is

mapped to the 7% point on the t; distribution; and so on.

¢ Here the one-factor standard copula model is the general copula model framework we use to model the
default correlation. All the other copula models including the Gaussian copula model and those introduced
in the following chapters are built based on the framework.
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Define
Fi: The cumulative density function of X; i.e. cdf of X;

H: The cumulative density function of ¢ (assuming that the &

is identically distributed)
Then, in general the point X; = X is mapped to t; =t where

x=F QO] =K (42)
or equivalently

t= Qiil[Fi (x)] (4.3)
Note that in some paper, x = F,"'[Q,(t)] is considered to be a threshold and is often given
a notation K or C etc. In the rest of my paper, 1 use K by default.

Observing the copula model shown in equation 4.1, we may find that it
essentially defines a default correlation structure between the t,’s in the form of

X;, while maintaining their marginal distributions. In other words, in order to

construct the default correlation structure, we do not have to define the
correlation structure between the variables of interest (like time to default t.’s)
directly by using the reduced form models or structural models, which greatly
increase the computation complexity. With he help of the factor copula model,
typically one factor copula model, we may use mapping technique to map the
variables of interest (like t;) into other more manageable variables (like X;’s) and

then define a default correlation structure between those manageable variables.

Let H be the cumulative distribution function of &, we can deduce that

P(x <x|Y =y)=P(pY +\/1_pi2 & <x|Y =y) (4.4)
— P(gi <ﬂ

Y =y)
\/1_pi2
. [F.l[Q. (t)]p.Y]
| \/l_pi2

Therefore, the cumulative probability of the i" default by time t, conditional on
the common factor y is

PE <t]Y = y)=P(x <x|Y =y) = P(s, < XZ2 |y = y) (4.5)
1_Pi2
" [F. CIORY ]_ o)
1-p
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For simplicity, we denote P(t, <t|Y =y) with p,(y). Note that the conditional
cumulative probability of one obligor” default p;(y)is a key input to calculate the

loss distribution. The detailed derivation process of the conditional and
unconditional loss distribution functions calculated from p,(y), will be presented

in the next chapter in loss distribution context.

5. One factor Gaussian copula model

Given the standard default correlation models in the previous chapter, I will in
the following introduce the current market benchmark model-One factor
Gaussian copula mode. And based on the standard model, the procedures to
derive the unconditional /conditional loss distribution functions are addressed.

5.1 One factor Gaussian copula model set up

Suppose a portfolio of reference assets consists of N obligors/companies.
Recalled that Gaussian copula is actually resulted by defining thee;’s and Y’s
being standard normal distributions in the standard copula model. In the
Gaussian copula model, the latent variable x; is given by

X =pY+l-p°-& i=12,---,N (5.1)

Where X, : latent random variable, following the standard normal
distribution, namely, x,~N(0,1); i=12,---,N
X: Gaussian vector, X= (X, X,,..., X ), following multivariate

normal distribution, namely, X~ N (0,X)

Y: common factor
& Idiosyncratic factor; i=12,---,N
P Correlation parameter with market, for simplicity, we may

assume that p= p 1=12,---,N

Both Y and ¢; follow the standard normal distributions

Since the default time t; , i=12,---,N, are modelled from the Gaussian vector X,
the default times are given by t= Q,'[F.(x)]. In the case of Gaussian copula
model (using the same principal we already discussed in the section 4.2)
t= Qi_l[q)i (X1 (5.2)
with Q. be the cdf of t. and ®, be the cumulative normal distribution function of
X;; Q" is just the general inverse function of Q,. Thus X, is given by
X=0,[QM]=K i=12,-N (5.3)
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The cumulative probability of the i" default by time t, conditional on the
common factor Y is
Pt <t|Y =y) =P(x, <x|Y =Y) (5.4)

- P(‘c"i <M

Y =Yy)
\/1_Pi2

=‘D.[q)li[Qi(t)]_piY] i=1,2,---, N

\/1_Pi2

=pi(Y)

5.2 Loss distribution

Before discussing the two types of loss distributions (conditional and
unconditional), let us look at two assumptions for simplicity.

First, we assume that the portfolio is composed of sets of N homogeneous debt
instruments, i.e.

p=p (5.5)
O, [Q(1)]=07'[Q ()] =K, i=12,---,N
p.(Y)=p(Yy)

This assumption ensures that all entities represented in the portfolio have the
same default probability over the time period of interest.

Second, we assume that each entity represented in the portfolio corresponds to
an equal share of the portfolio, or we call it equally weighted homogeneous
portfolio. It guarantees the proportional relationship between the number if
defaults and the percentage of default related loss. For example, in a portfolio of I
reference entities, the probability of m defaults among the reference entities is
equivalent to the probability of m/I % default related loss in the portfolio.

5.2.1 Conditional loss probability
Considering that the obligors X; in the portfolio is impendent of, yet conditional
on the common factor Y, and that only two outcomes are possible for obligors X;,

default or not default respectively. Therefore, we may assume the obligors follow
a binomial distribution. Given the conditional cumulative probability for obligor
X, ’s default p,(y), we may write the conditional loss probability function
(conditional probability density function) that totally i companies go to default by
applying the binomial distribution

P(X =i[Y =y) =(Nj pi(y)' Q- pi(y)" (5.6)
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N . .
=(i j p(y)' @-p(y)"™
With

p(y)=P(g < 'OY) q{q)l[Q.(t)]pY}

J1-p* J1-pf

i

Note that p,(y) means the conditional probability of obligor x,’s default and it
has already been derived in equation (5.4). Under the homogeneous portfolio
assumption, the probability of i out of N entities which go to default is equal to

the probability of the loss L, being the amount L = ﬁ A(l-R)

5.2.2 Unconditional loss distributions

To derive the expression for the unconditional loss probability, we just need to
do integration over the common factor Y

400

P(X =i)= [ P(X =i|Y = y)d(y)dy (5.7)

Where ¢(-) is the probability density function of standard normal distribution,
because Y is following standard normal distribution.

Substituting equation 5.6 and 5.4 in equation 5.7, we obtain the following
expression for the unconditional probability of i defaults in the portfolio

P(X =i)= | m p(y) - p(Y)™ g(y)dy 53)

—00

Iu(N—.)- { [q) %py} {1—@1{@ [jl‘(t%py” #(y)dy

Therefore, the unconditional loss distribution function of defaults

P(X sm):Zm:P(X =) (5.9)

= o N! . cD_l[Qi(t)]_piY | _ cD_l[Qi(t)]_piY "
_.Zo:[oi!(N—i)!{q)[ -2 ]Hl ‘D[ f-p? ]} (y)dy

Note that for Gaussian copula model, by assumption, p,= p holds for all the

obligors.
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5.3 The large portfolio approximation for the one factor model

The calculation of the unconditional loss distribution in equation (5.9) is
computationally trivial, especially for a very large N. In order to overcome this
problem, Vasicek (1987) proposed the large portfolio approximation approach,
which is a convenient and efficient way for approximation when the N tends to
be .

Let x be the fraction of defaulted entities in the portfolio, then
Fu(X) = p(X <x) (5.10)

 Frt o] 90 ol Q0L

Define ®7'[Q,(t)] = K,, and CD[M] =m. with p = p holds for all the

\ll_piz

obligors, we have
1- pCD_l(mi) - K,

Y= N (5.11)
Hence

Fy (X) = p(X SX) (5.12)

[ L J1-p®(m)-K,
N»ooz.[ ||(N |)| { mi} dCD[ \/; ]
Since
& i N-i 0 ifXSmi
N%z '[ "(N l)' M {1 otherwise )

The cumulative distribution function of loss of large portfolio is given by
F(x) = p(X <x)

—ppi=2 q\)/_%(x) —Ki (5.14)

It is easy to see the expression of loss distribution function F(x)using large

portfolio approach displayed in equation (5.14) is much compacter and handier
than the one shown in equation (5.9). With the above expression, we may easily
calculate the expected tranche losses and then the corresponding CDO tranche
premium.
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5.4 Evaluation of the Gaussian copula approach

Gaussian factor copula model has been widespread applied for the valuation of
types of instruments and already become a current industry standard. Its
attractiveness of pricing CDOs is evident due to simplicity and straightforward
application, which merely requires simple and fast numerical integration
techniques (Guegan, Dominique and Houdain, Julien, 2005). However, it is
argued that the assumptions for this model are too strong. For example, the
model assumes the correlation parameter with market (compound implied
correlation) p,= p holds for all the obligors, recovery rate is also constant etc.

Recently many researches reveal that several serious drawbacks do exist in
Gaussian copula model, which tend to result in mispricing the tranche spreads.
Thus it might not be an ideal method to price the tranche of CDO. In the
following, two categories of the shortcomings are discussed.

5.4.1 Correlation structure

Under the Gaussian copula model, a flat correlation structure is drawn due to the
constant correlation parameter p, assumption. But a flat correlation structure is

not sufficient to reflex the heterogeneity of the underlying assets (e.g. X; ).
Accordingly, since one single number pp couldn’t explain well the complex
relationship between the default times of different assets like x;x; thus it is

obviously not appropriate to use Gaussian copula model, especially its constant
implied compound correlations p of traded tranches.

Implied correlation
Mashal et al. (2004) define the implied correlation (the correlation parameter p,)

of a tranche as the uniform asset correlation number that makes the fair or theoretical
value of a tranche equal to its market quote. In other words, Hull and White (2004)
for example define the implied correlation for a tranche as the correlation that
causes the value of the tranche to be zero. Implied correlations do exist within each
tranche yet generally not uniquely defined. In addition, tranche spreads are not
necessarily monotone in correlation. Therefore, we may observe the market
prices that may not be attainable by just one choice of constant correlation
parameter as Gaussian copula does (Svenja Hager and Rainer Schobel, 2005).
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Tranche [0,3] [3,6] [691 |1[9,12]
Market quote 27.6% | 1.68% |0.7% | 0.43%
Gauss p=21.9% | DINOM | 2.95% | 1.05% | 0.42%
Gauss p=4.2% | 43.1% ||NGBH | 0.1% | 0.005%
Gauss p=87.9% | - MR | 135% | 1.14%
Gauss p14.8% | 332% |2.68% | (OGN |0.2%
Gauss p=223% | 27.3% |2.96% |1.07% | oeE |
Gauss p =30.5% 21.6% | 3.05% |1.35% | 0.67%

Table 5.1 Implied correlations from Gaussian copula

The table 5.1 displays the implied correlations parameters from the Gaussian
copula, and we may observe the p does exist in every tranche and also not
unique, such as in the tranche [3, 6], p=4.2% and p=87.9% result in the same
premium 1.68%.

5.4.2 Correlation smile

As the market quotes on CDOs become more readily available, researchers are
able to calibrate their model parameters to those real market quotes. Under the
chosen model, using the correlation matrix, we may compute the spreads for
each traches. And from these spreads the implied correlation can be derived. In
the real market, quotations available indicate that different tranches on the same
underlying portfolio trade at different implied correlations, which in the
following figure 5.1 resembles a smile skew, called correlation smile. However, it
is not the case under the standard Gaussian model, which expects the compound
correlation being equal for every single tranche and thus the Gaussian copula
model doesn’t lead to a smile skew yet a flat structure. From the table 5.1, we
may also observe the implied correlations for each tranche are not the same. Such
problems are mainly due to the simplifying assumptions that the correlations as
well as the recovery rates and CDS spreads are constant and equal for all obligors.

The correlation smile in Figure 5.1 plot below shows a lower default time
correlation on the mezzanine tranche than on the equity and senior tranches. So,
we can conclude that the degree of default clustering assumed by the market
appears to be higher for the equity and senior tranches. Quotations available in
the market indicate that different tranches on the same underlying portfolio
trade at different implied correlations. It might be that the Gaussian copula
model could not accurately reflect the joint distribution of default times.

29



Correlation Smile

0L3s

0.3

025

LS

Compound Caonielalion

LS

o \; 1‘3 1‘5 2‘3 2‘5 3‘[
Detachment point

Figure5.1: Compound Correlations plotted against the detachment level of the

tranches. Quotes on standard tranches on the D] CDX basket are used from the

18th of October 2004. (Source: Van der Voort, M., 2005)

Different explanations have been searched for the correlation smile. One of the
explanations could be that the different groups of investors (protection sellers i.e.
hedge funds for equity tranches; banks and security firms for mezzanine
tranches) hold different views about the correlations across tranches. Another
possible explanation is that the uncertainty of how to select the optimal model
for valuing credit risk correlations in the view of the market participants might
be as well reflected in the correlation smile. Although the index tranche market
has grown over the last years, prices are very like to be influenced by the local
conditions. Moreover, supply and demand imbalances on the market might also
induce the shape of the correlation smile, because for example the mezzanine
tranches are extremely popular among investors.

In sum, using the standard market model with only single asset correlation
parameter is very likely to result in a mispricing problem when valuing
premiums of CDOs. Considering the existence of such problems and drawbacks,
many researchers are working on the extensions of the standard Gaussian copula
models, trying to produce models that may duplicate the smile skew and fit the
market quotes better.
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6. Extensions to the Gaussian model and its comparisons
There has been much interest recently in simple extensions of the Gaussian one-
factor model in order to match the "correlation smile" in the CDO market.
Gregory and Laurent (2004) propose a correlation structure built from groups
specifying intra and inter group correlation coefficients and they introduce some
dependence between recovery rates and defaults. Hull and White (2005)
recommend the use of a double Student-t one-factor model. Andersen and
Sidenius (2005) introduce random recovery rates and random factor loadings in
the model. Burtschell, Gregory and Laurent (2005) propose a comparative
analysis of the previous CDO pricing models and illustrate the fact that these
models should be improved. In the following, I will review some typical
extensive models in details.

6.1 Student t copula model
In student t approach, the vector X= (X, X,,..., X ) follows a student t distribution

with u degrees of freedom. For simplicity, we consider the symmetric situation

X =p WY +y1-p w-g (6.1)
:\/W(piYh/l—piZ-gi) i=12,---,N

Where Y, &: independent Gaussian random variables

W:  has inverse Gamma distribution with the parameter u/2

(01‘E ~ 72) and w is independent of X,
w

Cov(x, % )=(=5)pp; (42) 62)

We denote by T the cdf of standard univariate student t distribution, thus the
default time t is given by

t = Qi_l[-ﬁ (Xi )] (6-3)

Equivalently
X = 1:i_l[Qi t)]=K, (6.4)
Accordingly, the cumulative probability of the i" obligor’s default by time t,
conditional on the common factor Y is
R(y)=P(t <t]Y =y)
=P(x, <x|Y =Y)

=P(pY W +1- p* W -5 <K/ |Y = y)
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p.YJVV
J——p. Nk
K, p,Y\/VV
:I-_Piz\/W

= O(—LE— (6.5)

6.2 Double t copula model

Define latent random vector X= (X, X,,..., Xy ), which modelled the default times
t,i=12-N

N (6.6)
u
Where Y, &: both follow student t distribution with degree of freedom
Uand U respectively

pi p, 20

It is noted that student t distributions are not stable under convolution, though
two main factors Y, & both follow t-distribution, X didn’t. Thus the copula

associates with (X, X,,..., Xy) is not a student copula , which distinguish itself

with student t copula model.
Simply, default time is given by

Equivalently §=Q R ()]
X = Fiil[Qi t)]1=K, (6.7)
Where Q,:  the cumulative distribution function of t,
F:  the cumulative distribution function of X,

Accordingly, the cumulative probability of the i" obligor’s default by time t,
conditional on the common factor Y is
R(y)=P(t <t[Y =Y) (6.8)
=P(x <x|Y =Yy)

_p(=2 Z)Wp.v +\/1—pf(”u+2>-si <K |Y =)

u-2
K-—( )1/2

oY

=P(g < =
\ll_piz(T)
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u-2
K- Y

\/:I-_pi2 (Uu:z)

=Ti(

)

6.3 Clayton copula model

Define a random variable L, following a standard Gamma distribution with
shape parameter % where>0,ie. L~ F(%) .

The probability of density function of L is given by

f(x)= Lle‘X xEN0 . x>0 (6.9)
(=
()
We denote by y the laplace transformation of L
w(y)= | f(0edx=(L+y) ™" (6.10)

0

Let u,,u,,---u, be independent uniform random variables, and independent of L

The Clayton factor model is written as

K=yl (6.11)
Then the default time t, are given by

L= Qiil(xi)
Or equivalently

X =Q(t) (6.12)

The cumulative probability of the i" obligor’s default by time t, conditional on
the common factor Y is
PM)=P(x <x|L=1) (6.13)
Inu,

=Py (=) <QOIL=D

=exp(l-(1-Q 1))
Gregory & Laurent [2003] and Laurent & Gregory [2003] have been considering
this model in a credit risk context.

6.4 Normal inverse Gaussian model

Normal inverse Gaussian distribution (NIG) is a special case of the group of
generalized hyperbolic distributions (Barndorff-Nielsen). They are stable under
convolution in certain conditions and the cumulative density function (cdf),
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probability density function and inverse distribution function can still be
computed sufficiently fast. Kalemanova et al has applied the normal inverse
Gaussian models to the CDO pricing recently and proved a good fit to market
data.

6.4.1 Definition and properties of the NIG distribution

The normal inverse Gaussian distribution is a mixture of normal and inverse
Gaussian distributions.

Definition: a Non-negative random variable Y has inverse Gaussian (IG)
distribution with parameters > 0 and g > 0, ie. y~I1G(«,/f,y), if its density
function satisfy

———yPep(— ) ify>0
fio(Yia, B) =4 2np 2

0 otherwise

—(0{ B y)2 )
y (6.14)

Definition: A random variable X follows a normal inverse Gaussian (NIG)
distribution with parametersa, § , n,y,i.e. X ~NIG(«, f,1,7,X), if

XI(Y=y)~ N7+ BY.Y) (6.15)
and Y ~ IG(yA,A%) with A:=.a’-p*

satisfy constraints
0 flka and >0
Denote by f (X, 8.,17,7) , Fus(X,a,8,17,7) the density function and the

cumulative distribution function of X ~ NIG(«, £,7,7,X) respectively. We have

Aexp(yA + B(X—n)) 2 2
fus (X, Bi.7) =& K (a2 - (x=n)?)  (6.16)
Ayt —(x—n)?

where K, (W) = %J.exp(—%w(t +t™)dt is the modified Bessel function of the third
0

Kind. The density function relies on four parametersca, § , 7,7, with « related to
steepness, £ influencing the symmetry, and 7,y respectively to location and
scale.

Next I will introduce two important properties of NIG distribution. One is called
“scaling property”, which is given by
X~ NIG(@, 7,7 0) = X ~ NIG(, 2. o) (617)
c C
where c is a constant.
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The second property is about NIG distribution’s stability under the convolution
situation. Let X, Y, T be independent random variables

X ~NIG(a, B,1,7,,%); Y ~ NIG(a, 8,17,,7,,Y)

=T=X+Y ~NIG(e, 8,1, + 1,7, + 13,1) (6.18)
The mean and variance of a random variable X ~ NIG(«, £,7,7,X) are given by
EQ)=n+y Zﬁ -
a” -p
2
Var(x) :—Za =
a -p

1
Jny

Kurt(x) =3[1+ 4(£)2](i)
a ny

skew(x) = 3(2)(
(04

6.4.2 Normal inverse model set up

X, =pY +V1_pi2 " &

where p; : constant correlation parameter, i =12,...N

&,Y: independent NIG random variables satisfy

Y - Nle(a,ﬁ,%,a)
a -p
\ll_Piz \/1_,0i2 _\/1_pi2 af 1-p,
& ~ NIG( a, B, ,
Pi Pi Pi \/0(2 - p? Pi
Note that the NIG implied common factor Y is different from Gaussian common
tactor’.

Using the two properties we discussed in 6.5.1, we get

Xi - NlG(l,ﬁl_iL’ﬁ) (619)
o A N e A
For simplicity, we denote probability distribution function of %, i=12,..N

FNue(X11,£v—iL,£) with F

P P PiNai-p7 P

function of F - (X).
NIG(ivl_p_pi)

G(1)(x) . Hence, & has distribution
NIG(—
Pi

The default time is given by

7 For a more detailed description, see Guegan, Dominique and Houdain, Julien, 2005.
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t=Q7[F . (%]

NIG( )

equivalently
X= Fl;i(i) [Ql (t)] = Ki (619)

then the conditional probability of the i" obligor/company that defaults before
time t is given by
p(t; <t|Y)=pi(y)

=p(pY +y1-p" <K |Y =Y)
K Y
= p(g <=2
l_pl
(Ki _piY
w2 1-p/°

=F ) (6.20)

The large portfolio approximation is given by (according to the section 5.3)

w1m>P4(*u)K

F, (0 = P(X 3) = Feol A (621)
Pi

6.5 Stochastic correlation Gaussian models

Define a latent random variablex,, i=12,---,N

X =B/ (pY +\/l_pi2 -&)+1-B)(pY +\/1_/_7i2 ‘&) (6.22)

=[Bp +1-B)AIY +{1-[Bp +(1- B)A T -4

Where B:  Bernoulli random variables,
Y, ¢ :

.. standard Gaussian random variables, and independent of

each other and also B,

p., p;: correlation parameters with market, 0< p, < p, <1

In the above stochastic correlation Gaussian model, it is a convex sum of one
factor Gaussian copulas, involving a mixing distribution over factor
exposures p,, p, . In our case, there are here two states for each obligor/name, one

corresponding to a high correlation and the other to a low correlation (Burtschell,
Gregory and Laurent (2005)).We denote by p = Ber(B, =1) thenl— p =Ber(B, =0).
Hence, we have a factor exposure p, with probability p and p, with probability
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(1- p). In addition, the marginal distributions of X, are Gaussians.
The default time is given by
= Qi71[®i (x:)]
Note that the default times are independent conditionally on Y, then, the

conditional cumulative default probabilities is
R(y)=P(x <x|Y =Yy) (6.23)

_ p.q)[cbl[Q. (t)]p.Y]+ o). q{ch[Q. (t)]ﬁ.Y]

6.6 Random factor loading (RFL) model

The random factor loading model is introduced by Andersen and Sidenius. Its
underlying idea is to make factor loadings, basing on the factor models, being
functions of the system/common factors themselves. Interpreting the systematic
factor as the “state of market” with its value being high in good time and lower in
the bad time, the RFL model may mimic the well-known empirical effect that
equity (and thereby asset) correlations are higher in a bear market than in a bull
market (Andersen, L. and Sidenius, J. (2004))

6.6.1 Model set up
X =p Y)Y +v,-&+m, (6.24)
Where pi:  factor loading, with d-dimension
Y,&: Y is a d-dimension variable i.e. Y = (Y,,..., Yy), i=12,---,N

Both are independent random variables with zero mean and
unit variance

V,,m;: they are set so that X, has zero mean and unit variance
distribution
Let F' be the cdf of Y, thenv,, m, are given by
vi=\1-Var(p,(Y)Y) =1- [ (o (Y)Y)’dF' (Y)+m, (6.25)
e
m, =—E[p,(Y)Y]=—[ p(Y)YdF"(Y) (6.26)
R

The default time t; is given by

= Qi_l[FiX(Xi)]
Equivalently, we get
X = Fiix[Qi (ti )= K, (6.27)
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Where F* is distribution function of X, Q. is t.’s, K. is a threshold value.

Then the individual conditional default probability (default by time t, conditional
on Y) is given by
pi(y)=p( <t[Y =y) (6.28)
= p(Xi < Ki |Y :y)
=P <x]Y =y)
_ Fig(Fi_X[Qi (ti)];pi (Y)Y - mi)

Unconditional probability of the i" obligor that defaults before time t is
p(t <t) = p(x <X) (6.29)

I:iix[Qi (ti)] — P (Y)Y -m |Y)]
V.

=E[p(¢ <

_ J‘ Fis(Fiix[Qi ®KI-p (Y)Y —m, YdFY (Y)
R¢ Vi
Note that it is advantageous in practice, to deal with p,(Y)in ‘separable structure’,
which means that
oY) = [pi,l(Yl)’ e Pid (o)l
Its merit reflect in the simplification of the mean and variance computation, for
instance

Var(p,(Y)Y) = ZVar(pm (YY)

COV(pi (Y) 'pj (Y) Y) = Zcov(pi,s(Ys) 'pj,s(Ys) Ys)

s=1

6.6.2 Gaussian copula with RFL

As is shown in section 6.6.1, equation 6.24 is the general RFL model differing in
the functional relationship between systematic factors (Y;) and loading (0,), as

well as in the choice of distribution for factors and residuals.
For illustration, we consider a specific example, building on the Gaussian copula
model. Specifically,

X =p (Y)Y +V,-& +m, (6.30)
Where &,Y;: both follow the standard normal distribution, and are

independent of each other, j=1,2,...d, i=12,---,N
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P Often written as p, for simplicity and it is the factor loading,

N*d matrix. We define it to be a two point distribution, which is
given by

v a; ﬁﬂg%
AI=1, otherwise

ij
With a; and b , both matrix being positive constant, ¢, € R

j 7

Vv,,m;: the same formula as the general one

For better understanding, we may think of that as a regime-switching model
where the loading takes the value a; with probability ®(6,), and value b; with a

probability [1-®(g;)]. If ;> b;, the factor loadings decrease in Y; and thus,
intuitively, the asset values couple more strongly to “the economy” in bad times

than in good times.

By using the Gaussian copula with RFL model, we may not only crudely mimic
an empirical dependence of correlation on the broad market condition, but also
generate a base correlation skew when a;> b, . To elaborate, consider in the view

of senior tranche investor. This investor will only experience losses on his
position when several names/companies default together (or consider it to be
extreme loss outcomes---both very high and very low levels of defaults).
Generally, high values of correlation parameters/factor loadings tend to result in
fatter tails of distribution, which mean the extreme loss outcomes. In our case,
the systematic factor Y should be low, and then the factor loadings will be high,
making it appear to senior investor that correlation is high. For the equity tranche
holder on the other hand, who is likely to bear losses even in scenarios where
systematic factor Y is not low, the effective factor loading will appear as a
weighted average between a; and b;. Hence the world will thus look as if

correlations are of average magnitude to them. Evidently, if a;= by, it is back to

the constant factor loading of Gaussian case.

Calculation of v, and m,
In the Gaussian copula with RFL model: v,, m, are set so that x; has zero mean

and unit variance distribution.

m, = ~E[p,(Y)Y] == _[-8,0(6;) + b;e(6,)] (6.31)

j=1

v,=y1-Var(p,(Y)Y) = /1— .d V; (6.32)
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Where V; = ai?[q)(eij) - 9ij¢(9ij )]+ bi?[eij(ﬁ(eij) +1- (D(eij - [_aij(P(‘gij) + bij(”(‘gij)]2 and I

denote Var(p, ;(Y;)Y; ) with V; (we assume the separable structure).

Proof: using the lemma below, we may get

Elpo;(Y;)Y;]1= E(aijle <0, Yj 7t bijle -0, Yi)

= _aij(D(‘gij) + bij¢(9ij)

Elp, ; (Yj)ijz] = E(ai?l(j <6, sz + bij?le ~0; sz)

= aj[CD(HU) - eijq)(eij N+ biJ?[‘gij(D(eij) +1- CI)('9ij )]
Then

Var(pi,j (Yj )Yj )= E[pi,j (Yj)ijz] '{E[pi,j (Yj )Yj]}2
From the ‘separable structure’ method,

Var(p (V)Y) = YVar(o, (1),

i=

Lemma: for a standard Gaussian variable x and arbitrary constants a and b, we
have

ElyX) =1, (0(@) ~ 0(b))

EL X)) =1, (@(b) - B(a)) +1,., (3p(a) - b (b))
Particularly,

ElwX) = —9(b)

E(l.,x") =ap(a) +[1- ©(a)]

E(L,,X") = @(b) —bo(b)

E@..X) =¢(2)

Individual conditional and unconditional default probability
Assume that the dimension of systematic factor Y d=1, then the individual
conditional default probability is given by
p(t, <t/Y)=p(x <K, /Y)
Ki—p (Y)Y —m,
V.

= (s, < ) (633)

Ki B (ailYSHiY + bi1Y>€iY) - mi)
V.

=

i

Similarly, the unconditional probability of i obligor that defaults before time t is
(the same principle presented in the section 5.3 within Gaussian copula model
context, which is to calculate the integrals over the common factor Y)

p(t <t) = p(x <K)) (6.34)
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(- )

.0
\/vi \/v +b ' \/vi2+bi2)

Proof: By using the notation and lemma below, we may get
p(t; <t) = p(aly,Y +bl, .Y +&v, +m <K;)
Ki—(al ,Y+bl, ,Y)-m,

K. —m a.
_(D 1 1 ,0“ 1
2(\/vi2+ai2 \/vf+a )

=E[p(s <— I
— E[a( Ki _(ai1Y<9,Y:bilY>9,Y)_mi N
:chp(L) (Y)dY + I@(M) (Y)dY
and
I@(M) (Y)dY = J-(I)(M) (Y)dY - I@(M) (Y)dyY

Notatlon. ®,D,,p denote respectively the standard Gaussian density function,

the standard Gaussian cumulative distribution function and the standard
bivariate Gaussian cumulative distribution function. And the K, is a threshold

value.
Lemma: For arbitrary real constants a, b and c

b
Nal +a2

j ®(ax +b)2p(x)dx = @, (

T(D(ax +b)p(x)dx = d(

b a’
N +a2 Ji+a?’ «/1+a

j D(ax+b)p(x)dx = D, ( —38

,C; )
? «/1+ a’?  +J1+a

6.6.3 The large portfolio approximation
Consider the individual conditional default probability in Equation ...

aY b >9Y
b (y) = ool Vfl* )~ (6.35)

Let the loss X be the fraction of the defaulted entities in the portfolio and it is
given by p,(y). Then the large portfolio approximation is given by
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hIliLrgol— F,(X) = l!llmo p(X >x)
= P(p-(y)>X)

=AY = e (6.36)

_pps
=P(p, (Y)Y <K, —v.®(x)—m))

For simplicity, we denote Q(x) = K, —v,®*(x) —m,, then
hlligl p(X > x)
=Plo. (Y)Y <Q(x),Y <81+ P[p. (Y)Y <Q(x),Y > 6]
=P[aY <Q(x),Y <61+ P[bY <Q(x),Y > 6]

{cb[mm( 2 o100 [@(Q(X)) cb(a)]J

Therefore, the cumulative loss distribution for the random loading model is

given by
F.(x)=1-lim p(X > x) (6.37)
[cb[mm(g(x) O+, 0T d)(@)]J
6.7 Perfect copula

Implied copula approach or so called “perfect copula’ is proposed by Hull and
White 2006. This is a ‘“perfect model * in terms of its exact fit to the market quotes.

6.7.1 Implied hazard rate paths

Before presenting the specific approach, let us recall the one-factor copula and its
implied hazard rate paths. In the chapter 4.2, we derive that

P(x, <X|Y =y)=P(pY +{1-p° & <x|Y =)
Hi[F.l[Q.(t)]p.Y] s

\/1_Pi2

where H,is the cumulative distribution function of &;.

Therefore, the cumulative probability of the i" default by time t, conditional on
the common factor y is
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P(, <t]Y =y)=P(x <Y = y) = P(5, <2=2L |y = y)

-H [ Fiil[Qi O1-pY ]
| \/1_Pi2

=pi(y) (4.5)

Now, instead of formulating the models in terms of conditional cdf p,(y), we
may use conditional hazard rate. Let 4 (t|y) be the hazard rate at time t

conditional on common factor Y for obligor i. Then we model the cumulative
default probability by assuming that defaults occur according to Poisson process.
The relationship between the hazard rate and the cumulative default probability
is then

pi(y) =1-exp[-[ 4 (s| y)ds]

or equivalently

A(t]y) =P/t (6.38)

1-pi(y)
The equation (6. 38) in conjunction with (4.5) can be used to calculate the hazard
rate as a function of time t conditional on Y. thus that function is denoted by
hazard rate path. The probability that 4,=4(t|y) is f,. The calibration problem is

to choose the appropriate set of 4 and its corresponding f,. In the Hull and

White 2006, the details about the specific method for calculating 4, and g, as

well as some discussions of the hazard rate path on different models are
presented.

6.7.2 Implied copula approach

In the previous section in the equation (6. 38), we have seen that the hazard rate
paths of obligors are implies by the factor copula model and determined by cdf
of common factor Y. Each hazard rate path may represent a future environment
so that the set of hazard rate paths may form a distribution of the future
environments. Bear in mind that the distribution of the future environments are
the key to price the tranche of CDOS8. Therefore, instead of specifying a copula as
we did in the previous chapters, we specify the distribution of the future

8 the distribution of the future environments are so critical for pricing , since in the valuation process, we
have to calculate in a tranche the expected premium leg and default leg for a particular future environment,
and then integrated those expected cash flows over the distribution of the future environments.
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environments directly. In this sense, it is more advisable to focus on the practical
implementation process rather than defining the general models. As introduced
in the Hull and White 2006, three general steps are given.

For simplicity, we assume
e All the obligors have the same set of hazard rate path
e The hazard rate is constant along each hazard rate path

Suppose there is a number of different 5-year default rate, and the number
denoted by n is sufficiently large®. Empirically, it is necessary to include some
high default rates and also low default rates. Thus the steps are as follows:
1. Derive the hazard rate path according to each 5 year default rate.
2. Based on the hazard rate path we derive, calculate the present
value of premium leg and default leg for each CDO tranche.
3. Select the probabilities S, to each hazard rate path so that the

unconditional expected cash flow of each CDO tranche are zero.
A criticism for the processors is that the solution is not unique, because there are
potentially many different distributions of future environments that may fit for
the observed market data. In order to avoid any ambiguity by using the
approach, Hull and White 2006 has already standardized its implementation in
some ways, for those readers who are interested in may look through their paper
‘“perfect copula’.

So far, besides all those models we reviewed above, there are still several
alternative approaches to improve the performance of Gaussian copula model,
such as Marshall-Olkin copula in Andersen and Sidenius 2004, random recovery
approach in Andersen and Sidenius 2004, etc. With all these models in hand, the
problem now arises, that is which of those models the company should
eventually select to employ in the real market. The aim of next chapter is to
present model comparisons so far based on the performances of abilities of the
different models to reproduce market quotes via the DJ iTraxx index.
Consequently, one may have some criteria and clues to make judgment on the
various models.

° Usually, n should be larger than 50.
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7. Comparison of various pricing models

In this chapter, some concise model comparisons based on the performances of
abilities of the different models to reproduce market quotes via the DJ iTraxx
index are presented.

Under the one factor Gaussian copula model, it assumes a flat default correlation
structure over the reference portfolio and all the integrals in the pricing formulas
can be computed analytically. Mainly due to its obvious advantage of simplicity,
this model has become the market standard. However, the existence of the well
known correlation smile shows that Gaussian model fails to fit the prices of
different CDO tranches simultaneously thus couldn’t be an accurate model for
CDO valuation. The main explanation of this phenomenon is the lack of tail
dependence. Many researchers have proposed different ways to bring more tail
dependence into the model and nearly most of them, to some degree, make a
better fit to the market data. Such as Student t copula in O’Kane and Schloeg],
double t distribution in Hull and White, Marshall-Olkin copula and Gaussian
copula with factor loading in Andersen and Sidenius, etc.

According to the Burtschell, Gregory and Laurent 2005, performances of several
models (including Gaussian copula model, stochastic correlation extension to
Gaussian copula, Student t copula model, double t factor model, Clayton copula
and Marshall-Olkin copula) are compared.
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Figure 7.1: implied compound correlations of various models
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Graph 7.1: distribution functions of conditional default probabilities
Source: Burtschell, Gregory and Laurent 2005

Comparisons are made starting from the benchmark one factor Gaussian copula.
It is obvious to see from the figure 7.1, a flat correlation in the one factor
Gaussian copula model associated with a given premium. However, the real
market quotes corresponding to each tranche are different and produce a smile
skew, which just proof the inaccuracy of the valuation of the standard copula
model. In addition, Clayton and Student ¢ copulas are both seen to be quite close
to Gaussian and thus do not create any correlation smile. They are not precise
modeling instruments either. The Marshall-Olkin copula associated with large
probabilities of simultaneous jumps leads to strikingly different results and a
dramatic fattening of the tail of the loss distributions. Furthermore, the stochastic
correlation copula can achieve a reasonable skew, close to that observed in the
market (Burtschell, Gregory and Laurent 2005). Last, the double t copula produce
a good fit to the market quote.

From Hull and White (2004), it is theoretically and numerically proved that
double t distribution copula where both the market factor and the idiosyncratic
factor have student t distributions / heavy tails provides a good fit to iTraxx and
CDX market data. It is natural to believe that double t copula may possibly be an
ideal choice for pricing the tranche of CDOs. However, it has to be noted that it is
not possible to compute the distribution function of asset returns analytically
because of the lack of stability under convolution. This leads to a dramatic
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increase of computation time and makes it impossible to use this model for some
important applications in practice (Kalemanova et al). Considering this problem,
Kalemanova et al has introduced the Normal inverse Gaussian (NIG) copula
model. The NIG distribution still has higher tail dependence than the Gaussian
distribution. In addition, it is stable under convolution under certain conditions.
From the Kalemanova et al, The employment of the NIG distribution does not
only bring significant improvement with respect to computation times but also
more flexibility in the modeling of the dependence structure of a default
structure.

Copula models with random recovery rate (RR) and random factor loadings
(RFL) are introduced by Andersen and Sidenius 2004. They both conform better
with the observed phenomena (correlation smile) than standard Gaussian model.
For the random recovery rate copula, it is shown to produce a heavy upper tail in
portfolio loss distributions, however, its effects on generating a skew in tranche
values is small and the RR approach is unlikely to become an efficient method.
By comparison, factor loading approach did much better in this respect. At
reasonable parameter levels, RFL approach is capable of generating correlation
skew very similar to the observed data in the market.

Implied copula approach is produced by Hull and White. This approach is
slightly different from other copula models (like student t, Clayton, RFL etc) in
that they directly specify the distribution of the future environments (hazard rate
paths) instead of specifying the copula models as other models do. The outcome
of this approach is perfectly good since the model can be exactly fitted to the
market quotes for the actively traded CDO tranches. In addition, the model is
more intuitive than the base correlation model.

47



8. Conclusion

This paper gives an overview of the vast areas of credit derivatives and different
products in the market, especially the CDO. For reference, I also address the
issues about the CDO tranches, loss distribution and large portfolio
approximation etc. Basic valuation methodology and the default correlation
model framework are discussed in details.

In order to obtain the fair premium of CDO, standard market benchmark model--
-Gaussian copula model is introduced. Mainly due to the existence of the
correlation smile, however, the Gaussian copula model couldn’t obtain relatively
accurate spreads results. Thus various extension models aiming at improving the
performances of fitting the market quotes arise. Nowadays, a good many
extension models, such as student t copula, double t copula, stochastic Gaussian
copula, Clayton, normal inverse Gaussian copula, RFL Gaussian copula, implied
copula model etc, are already introduced in the academic area and nearly all of
those models provide a better performances than the industry standard one.
Hence companies may select and construct their models based on its own
specific requirements and situations. According to Burtschell, Gregory and
Laurent 2005, we consider the assessment methodology based on the matching of
basket default swap spreads and CDO tranches. For the pricing purpose, once
correctly calibrated, student t and Clayton copula models provide similar results
as the Gaussian copula models. The Marshall-Olkin copula leads to strikingly
different results and a dramatic fattening of the tail of the loss distribution. The
double t lies in between and performs well. In addition, it is found out that
Copula models with random factor loading (RFL) as well as Normal inverse
Gaussian (NIG) copula model can obtain quite similar correlation smile close to
market quotes and considered to be two good pricing models. Impressively, the
implied copula model has achieved a perfect fit to the real market price and thus
becomes a precise model in some situations. However, there are still limitations
of those models. For example, for the RFL model, it is argued that the specific
parameterizations and model examples used in the paper were rather simplistic,
therefore work remains in uncovering parameters and functional forms that best
describe the market; for the perfect copula model, it doesn’t involve the dynamic
evolution of hazard rates or credit spreads and thus not appropriate for some
instruments, like valuing an one-year option on a five-year CDO because this
depends on hazard rates between years one and five conditional on what we
observe happening during the first year. Further researches may be based on
improving those problems.
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Here it should be kept in mind that the market is at its inception period and all
modelling work are inevitably based on a quite limited set of observations, which
may not fully representative. Moreover, parameters and models will require
revision all the time. Therefore, with the development of the economic market
more information about dependence on spread level, maturity, correlation skew
etc, will be available. Thus in return, more realistic and hedged performances can
be achieved, which leads to further extension and more sophisticated models
(Andersen, L. and Sidenius, J. (2004)).
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