Web Services

Service
Reqguester

Written by:

Ran Yang

Business Mathematics and Informatics
Free University, Amsterdam

Service
Provider

Supervisor:
Prof. dr. R.D. van der Mei
Vrije Universiteit, Amsterdam

Preface

This paper has been written as the last assignment of my study Business Mathematics
and Informatics (BMI) at the Free University Amsterdam. The objective is to
investigate the available literatures in reference to a topic that should cover at least
two out of the following areas: business management, mathematics or computer
science.

Internet is playing an increasingly important role in daily life nowadays. People use
Internet as a medium for on-line banking, to order the latest books or CDs on-line, to
purchase a vacation package using an online travel agent, etc.. All these activities via
Internet have to do with Web services. Although people use the term “Web services”
very often, it is not always clear what Web services are and how Web services are
built. In this paper, | tried to give answers to these two questions based of the
available literature. In addition, I also investigated several QoS issues in Web services.
The subject of this paper was set in consultation with prof.dr. R.D. van der Mei of the
department of mathematics.

During the realisation of this paper, | have received excellent support from several
people. I am indebted to all of them. Especially, 1 would like to express my
appreciation and gratitude to my supervisor Rob for his constant guidance and advices.
He provided me with useful input and moreover his infectious enthusiasm has
certainly had its positive effect on my work.

Ran Yang

Delft, June 2005

Table of Content

1.

11
1.2

2.1
2.2
2.3
2.4

3.1

3.2

3.3

3.4
3.5

41
4.2
4.3
4.4

5.

Introduction

Background and motivation
Overview of this report

Web services

What are Web services

An example of Web services
Web services technologies
Web Services Architecture

Basic Web services technology

XML Fundamentals
3.11 Understanding XML
3.1.2 The Anatomy of an XML Document
3.1.3 The Infoset
3.14 Schema Languages
Understanding SOAP
3.2.1 Goals of SOAP
3.2.2 Structure and contents of a SOAP message
3.2.3 Processing Model
3.24 Binding SOAP to a Transport Protocol
WSDL
3.3.1 Introduction
3.3.2 The WSDL Document Structure
3.33 Binding WSDL to SOAP
uUDDI
What is .NET?

QoS for Web services

Understanding QoS for Web services

Analysis of response-time performance of the Web services

Charging Mechanisms
A model for minimizing the cost

Summary

Bibliography

Appendix A. Sample XML document

Appendix B. Sample XML schema fragment

10
11

13

13
13
14
14
14
14
14
15
16
17
19
19
19
20
21
23

25

25
26
29
29

33

35

37

39

Appendix C. A full WSDL 1.2 syntax in the W3C Working Draft 41

1. Introduction

1.1 Background and motivation

The term “Web Services” is coined firstly by Microsoft in 2000 when they are introduced as a
major component of .NET technology aimed at revolutionizing distributed computing. In 2002,
Web services became a hot new technology that provides a standard means of interoperating
between different software applications, running on a variety of platforms and/or frameworks.
Nowadays Web services have gained an enormous acceptance and a broad usage on different areas:
e-commerce, search engines like Google, etc.. Nevertheless, for most people it is not always clear
what Web services precisely are although they use them very often. It has been frequently
considered that every service available through the Web is a Web service. This is a common
mistake that leads to quite a lot of confusion when discussing Web services technology. In this
report, we try to give the reader a correct understanding of Web services.

In a typical Web services scenario, a business application sends a request to a service at a given
URL using the SOAP (simple object access protocol) over HTTP. The service receives the request,
processes it, and returns a response. The time it takes is denoted as the Response Time (RT). The
RT is one of the metrics included in a Web service’s QoS attributes [1, 2]. From a user’s point of
view, the RT determines the perceived end-to-end browsing quality. A quality is often related to
the cost. Shorter RT or faster service will be more expensive. For service providers it is important
to find out how to satisfy the customer at the lowest price. Therefore, we need to construct a
model for calculating the minimum cost while making the correspondent response time
acceptable.

1.2 Overview of this report

In Chapter 2, we describe first what Web services are, what technologies are required for Web
services, and how Web services are built. Chapter 3 discusses each Web service technology in
detail. In Chapter 4, we describe QoS issues in Web services. Finally, we present our conclusions
in Chapter 5.

2. Web services
2.1 What are Web services

The use of Web Services on the World Wide Web is expanding rapidly as the need for
application-to-application communication and interoperability grows. These Web services provide
a standard means of communication among different software applications, running on a variety of
platforms and/or frameworks.

In the general meaning, Web services are services offered via the Web. But there is a difference
between services in the software sense and services in the general sense, i.e., activities performed
by a person or a company on behalf of another person of company. Take as examples bookstores,
restaurants, or travel agencies. They all provide services. In some cases, a customer might even be
able to obtain such services through the web server of the company. Strange as it might seem at
first, this is not what Web services are about. A Web service is a software application with a
published a stable programming interface, not a set of Web pages. According to [3], a Web service
can be described as “a software application identified by a URI, whose interfaces and bindings are
capable of being defined, described, and discovered as XML artifacts. A Web service supports
direct interactions with other software agents using XML-based messages exchanged via
Internet-based protocols.” This definition states that Web services should be described and
advertised so that it is possible to write clients that bind and interact with them. In other words,
Web services are components that can be integrated into more complex distributed applications.

2.2 An example of Web services

An often-cited example of a Web service is that people purchase a vacation package using an
online travel agent [4]. As Figure 2-1 shows, the travel site uses Web services applications for
airline booking, hotel reservation, and car rental reservation. To locate the best prices on airline
tickets, hotels, and rental cars, the agency will have to poll multiple companies, each of which
likely uses different, incompatible applications for pricing and reservations. Web services aim to
simplify this process by defining a standardized mechanism to describe, locate, and communicate
with online applications. Essentially, each application becomes an accessible Web service
component that is described using open standards. An online travel service could thus use the
same Web services framework to locate and reserve package elements, as well as to lease
Internet-based credit check and bank payment services on a pay-per-use basis to expedite fund
transfers between customer, the travel agency, and the vendors.

Airline VWeb service

SOAP Business Database
logic access
HTTP Access Hotel Web service
user SOAP
interface Business Database
logic access
SOAP Car rental Web service
Business Database
logic access

Figure 2-1: Under the Web services model, the travel site implements only the user interface, invoking
airline, hotel and car rental reservation services via SOAP.

2.3 Web services technologies

After describing what Web services are, we now discuss what technologies are required for Web
services. For more details, we refer to [5, 6].

To understand what technologies are required for Web services, we need to understand a typical
Web service interaction first. The basic Web service architecture models the interactions between
three roles: the service provider, service discovery agency, and service requestor. The interactions
involve the publish, find, and bind operations. See Figure 2-2. In the first step, to make a Web
service available to potential clients, a Web service provider must register information about itself,
the services it offers and how to invoke them, in a Web Service Registry using universal
description, discovery, and integration (UDDI). The description of services and how to invoke
them is normally written in Web Service Description Language (WSDL). Secondly, a client who is
looking for a service to meet its requirement searches in a registry. To discover a service, a client
sends out an “availability of services” request over the network. The Web Service Registry replies
with details of advertised Web Services and how they should be called, in a standard format
(usually WSDL). Requests and responses are normally sent using the SOAP protocol (formally
known as the Simple Object Access Protocol). After successfully finding multiple matches, it
chooses a service. The client then chooses a service based on its preferences. The client then
downloads the service description and binds with that to invoke and use the service. The
communication between client and remote Web services is generally carried out by the exchange
of SOAP messages over a transport protocol, for instance HTTP.

10

Discovery
Agencies

Publish

Figure 2-2: The basic Web services architecture.

2.4 \Web Services Architecture

When analysing Web services architectures, two different aspects must be considered. According
to [5], the first aspect is related to the fact that Web services are a way to expose internal
operations so that they can be invoked through the Web. Such an implementation requires the
system to be able to receive requests through the Web and to pass them to the underlying IT
system. Such an infrastructure is referred as internal middleware for Web services. Much of the
internal middleware for Web services today revolves around packing and unpacking messages
exchanged between Web services and converting them into the format supported by the underlying
middleware. The term internal architecture is correspondingly used to refer to the organization and
structure of the internal middleware. The other facet of Web services architectures is represented
by the middleware infrastructure whose purpose is to integrate different Web services. Such an
infrastructure is referred as external middleware for Web services. The term external architecture
is correspondingly referred to the organization and structure of the external middleware. The
external architecture has three main components:

o Centralized brokers. These are analogous to the centralized components in conventional
middleware that route messages and provide properties to the interactions (such as
logging, transactional guarantees, name and directory servers, and reliability).

e Protocol infrastructure. This refers to the set of components that coordinate the
interactions among Web services and, in particular, implement the peer-to-peer protocols
whose aim is to provide middleware properties in those B2B settings where a centralized
middleware platform cannot be put in place due to trust and privacy issues.

e Service composition infrastructure. This refers to the set of tools that support the
definition and execution of composite services.

Figure 2-3 illustrates an internal and an external architecture of Web services, along with
corresponding middleware support.

11

Company A (provider)

Web service

I/- Web service interface \|

N

Access to intermal systems

T
(,_.(’_F internal
7- architecture

| middleware |

internal | internal
SErvice SErvViCE

\;f:i;ernnl

architecture

Ry

Company D (client)

G

e

Web
service

Web
service
Web
service

Company €
[provider)

|' ‘Web Web |
service service

Company B (provider)

middleware support.

12

Figure 2-3: Web services require an internal and an external architecture, along with corresponding

3. Basic Web services technology

In previous chapter, we have shown that basic Web services architecture today is based on three
components: the service requester, the service provider, and the service registry, thereby closely
following a client/server model with an explicit name and directory service. Such architecture
illustrates quite well the basic infrastructure necessary to implement Web services: a way to
communicate (SOAP), a way to describe services (WSDL), and a name and directory server
(UDDI). SOAP, WSDL and UDDI are nowadays the core of Web services. The Table 3-1 lists a
brief description and purpose of each. The details of each one are described in following sections.

Purpose Description

SOAP | Packaging | Simple Object Access Protocol. An XML-based protocol for encoding
messages sent between a Web Service method and a client. Encodes the
arguments passed to a Web Service method as well as any values
returned by the method to the client.

WSDL | Description | Web Service Description Language. An XML-based protocol for
describing a Web Service. AWSDL document provides the signatures of
a Web Services' methods as well as other information about the data
types involved in the Web Service. By referencing the WSDL, client
code can use the Web Services' types and methods.

uDDI Discovery | Universal, Description, Discovery, and Integration. An XML-based
protocol for creating Web Service registries those applications can use
to locate Web Service descriptions.

Table 3-1: The purpose and a brief description of SOAP, WSDL and UDDI.
3.1 XML Fundamentals

Table 3-1 shows that all Web services specifications are based on XML. In this
section we discuss how the core Extensible Markup Language (XML) technologies on
which Web services are built work, such as the XML Information Set, XML 1.0, and
XML schema. For details, we refer to [7].

3.1.1 Understanding XML

XML is a text-based format that provides mechanisms for describing document structures using
markup tags (words surrounded by '<' and ">'). As the use of XML has grown, it is now generally
accepted that XML is not only useful for describing new document formats for the Web but is also
suitable for describing structured data. XML is preferable to previous data formats because XML
can easily represent both tabular data (such as relational data from a database or spreadsheets) and
semi-structured data (such as a Web page or business document). This has led to the widespread
adoption of XML as the lingua franca of information interchange. Besides being able to represent
both structured and semi-structured data, XML has a number of characteristics that have caused it
to be widely adopted as a data representation format. XML is extensible, platform-independent,
and supports internationalization by being fully Unicode compliant. The fact that XML is a

text-based format means that when the need arises, one can read and edit XML documents using
standard text-editing tools.

3.1.2 The Anatomy of an XML Document

Appendix A shows a sample XML document that represents a customer order for a music store.
The document begins with the optional XML declaration that specifies what version of XML is
being used and character encoding used by the document. This is followed by the xml-stylesheet
processing instruction, which is used to bind a style sheet containing formatting instructions to the
XML document for use in rendering it in a more attractive manner in user applications such as
Web browsers. Processing instructions are generally used to embed application-specific
information in an XML document. For instance, most applications that process the contents of the
above document would ignore the xml-stylesheet processing instruction. On the other hand,
applications used for displaying XML documents such as a Web browser would use the
information in the processing instruction to determine where to locate the style sheet that contains
special instructions for displaying the document.

3.1.3 The Infoset

The XML Infoset is a tree-based hierarchical representation of an XML document. An XML
document's information set consists of a number of information items, which are abstract
representations of the components of an XML document. There are information items representing
the document, its elements, attributes, processing instructions, comments, characters, notations,
namespaces, unparsed entities, unexpanded entity references, and the document type declaration.
The XML Infoset is an official attempt to define what should be considered to be significant
information in an XML document. For example, the infoset does not distinguish between the two
forms of empty element. So “<test></test>" and “<test/>" are considered equivalent according to
the XML Infoset. Similarly, the kind of quotation marks used for attributes is not considered
significant.

3.1.4 Schema Languages

An XML schema language is used to describe the structure and content of an XML document. For
instance, a schema can be used to specify a document that consists of one or more compact-disc
elements which each contain a price, title, and artist element as children. During document
interchange, an XML schema describes the contract between the producer and consumer of XML
since it describes what constitutes a valid XML message between the two parties. Although a
number of schema languages exist for XML, from DTDs to XDR, the one that currently rules the
roost is the W3C XML Schema Definition Language typically abbreviated as XSD. Appendix B
shows a sample schema fragment that describes the items element in the sample document in the
previous section.

3.2 Understanding SOAP

3.2.1 Goals of SOAP

Simple Object Access Protocol (SOAP) is a protocol that underlies all interactions among
Web services. The main point of SOAP is to provide a standardized way to encode different
protocols and interaction mechanisms into XML documents that can be easily exchanged across

14

http://www.w3.org/TR/xmlschema-1/

the Internet. In particular, it specifies the following [5]:

e A message format for one-way communication, describing how information can be
packaged into an XML document.

e A set of conventions for using SOAP message to implement the Remote Procedure Call
(RPC) interaction pattern, defining how clients can invoke a remote procedure by sending
a SOAP message and how services can reply by sending another SOAP message back to
the caller.

e A set of rules that any entity that processes a SOAP message must follow, defining in
particular the XML elements that an entity should read and understand, as well as the
actions these entities should take if they do not understand the content.

e Adescription of how a SOAP message should be transported on top of HTTP and SMTP.

3.2.2 Structure and contents of a SOAP message

SOAP exchanges information using messages. These messages are used as an envelope where the
application encloses whatever information needs to be sent. Each envelope contains two parts: a
header and a body. See Figure 3-1. The core of the information the sender wants to transmit to the
receiver should be in the body of the message. The body is the actual message being conveyed.
Any additional information necessary for intermediate processing or added value services (like
security, etc.) goes into the header. Figure 3-2 illustrates a sample notification message expressed
in SOAP. The message contains a SOAP header block with a local name of alertcontrol and a body
element with a local name of alert. In this example an intermediary might prioritize the delivery of
the message based on the priority and expiration information in the SOAP header block. The body
contains the actual message payload, in this case the alert message.

SOAP envelope

SOAP header

Header block

SOAP body

Body block

Figure 3-1: Schematic representation of a SOAP message.

<env:Envelope xmins:env="http://www.w3.0rg/2003/05/soap-envelope">
<env:Header>
<n:alertcontrol xmlIns:n="nhttp://example.org/alertcontrol">
<n:priority>1</n:priority>
<n:expires>2001-06-22T14:00:00-05:00</n:expires>
</n:alertcontrol>

15

</env:Header>
<env:Body>

<m:alert xmIns:m="http://example.org/alert">

<m:msg>Pick up Mary at school at 2pm</m:msg>

</m:alert>

</env:Body>
</env:Envelope>
Figure 3-2: SOAP message containing a SOAP header block and a SOAP body

3.2.3 Processing Model

SOAP defines a processing model that outlines rules for processing a SOAP message as it travels
from a SOAP sender to a SOAP receiver. Figure 3-3 illustrates a SOAP messaging scenario, where
multiple intermediary nodes sit between the initial sender and the ultimate receiver and intercept
SOAP messages.

HTTP TCP MSMO SMTP
— + + ¥ + :]
Initial I SOAP SOAR SOAR Uirmate
SOAP [T A Node Node Node o SO0AP
Sander T Receiver
cliernt message intermediaries endpaint

Figure 3-3: Sophisticated SOAP messaging
While processing a message, a SOAP node assumes one or more roles that influence how SOAP
headers are processed. Roles are given unique names so they can be identified during processing.
When a SOAP node receives a message for processing, it must first determine what roles it will
assume. It may inspect the SOAP message to help make this determination. The SOAP
specification defines three roles, informally called none, next, and ultimateReceiver:

o If ablock is assigned to a none role, it means that such a block should not be processed by
any node receiving the message.

o If a block is assigned to the ultimateReceiver role, that block is solely intended for the
recipient of the message, not for any intermediate node.

e If a block is assigned to the next role, every node receiving the message can process that
block. This is because every node receiving a message is the “next” one in the chain of
nodes processing the message. The ultimateReceiver is also included in the set of next
nodes.

SOAP headers target specific roles through the global actor attribute (the attribute is named role in
SOAP 1.2). If the actor attribute isn't present, the header is targeted at the ultimate receiver by
default. The following SOAP message illustrates how to use actor:

16

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<wsrp:path xmlns:wsrp=http://schemas.xmlsoap.org/rp
soap:actor=http://schemas.xmlsoap.org/soap/actor/next soap:mustUnderstand="1"
>

Figure 3-4: a part of SOAP message

Since the wsrp:path header is targeted at the next role and marked as mandatory
(mustUnderstand="1"), the first SOAP node to receive this message is required to process it
according to the header block's specification, in this case WS-Routing. If the SOAP node wasn't
designed to understand a mandatory header targeted at one of its role, it is required to generate a
SOAP fault, with a soap:MustUnderstand status code, and discontinue processing. The SOAP
Fault element provides the faultactor child element to specify who caused the fault to happen
within the message path. The value of the faultactor attribute is a URI that identifies the SOAP
node that caused the fault. If a SOAP node successfully processes a header, it's required to remove
the header from the message. SOAP nodes are allowed to reinsert headers, but doing so changes
the contract parties—it's now between the current node and the next node the header targets. If the
SOAP node happens to be the ultimate receiver, it must also process the SOAP body.

3.2.4 Binding SOAP to a Transport Protocol

In this section, we discuss how a SOAP message is going to be transported through the network.
Typically, SOAP is associated with HTTP but it can also be used with other protocols such as
SMTP (e-mail). For instance, when SOAP is used over HTTP, what is being sent is the SOAP
envelope within an HTTP request. The identification of the ultimate receiver’s address is not part
of a SOAP message. This is resolved by including the SOAP message as part of an HTTP request
or as part of an SMTP message. IN the case of HTTP, the URL of the target resource describes the
receiver of the SOAP message. Similarly, in SMTP, the “to” address in the email header also
describes the SOAP receiver. Figure 4 illustrates many of the SOAP HTTP binding details.

POST /path/bank.asmx HTTP/1.1
Content-Type: text/xml

S0APAction: "urn:banking:transfer"
Content-Length: nnnn Request

<socap:Envelope...

HTTF/1.1 200 OK
Content-Type: text/xml
Content-Length: nnnn

<soap:Envelope. ..

Response
HTTP/1.1 500 Internal Server Error
Content-Type: text/xml
Content-Length: nnan

<soap:Envelope..

Figure 3-5: the SOAP HTTP binding

17

The Content-Type header for both HTTP request and response messages must be set to text/xml
(application/soap+xml in SOAP 1.2). As for the request message, it must use POST for the verb
and the URI should identify the SOAP processor. The SOAP specification also defines a new
HTTP header called SOAPAction, which must be present in all SOAP HTTP requests (even if
empty). The SOAPAction header is meant to express the intent of the message. As for the HTTP

response, it should use a 200 status code if no errors occurred or 500 if the body contains a SOAP
Fault.

18

3.3WSDL

3.3.1 Introduction

WSDL stands for Web Services Description Language. It is an XML-based language for
describing Web services: specifying the location of the service and the operations (or methods) the
service exposes, and how to access them.

3.3.2 The WSDL Document Structure

A WSDL document is just a simple XML document. It defines a web service using the major
elements: <portType>, <message>, <types>, <binding>.

WSDL Ports: The <portType> element is the most important WSDL element. It defines a web
service, the operations that can be performed, and the messages that are involved. The <portType>
element can be compared to a function library (or a module, or a class) in a traditional
programming language.

WSDL Messages:The <message> element defines the data elements of an operation. Each
message can consist of one or more parts. The parts can be compared to the parameters of a
function call in a traditional programming language.

WSDL Types: The <types> element defines the data type that is used by the web service. For
maximum platform neutrality, WSDL uses XML Schema syntax to define data types.

WSDL Bindings: The <binding> element defines the message format and protocol details for each
port.

The main structure of a WSDL document looks like this:

<definitions>
<types>

definition of types........
<[types>

<message>
definition of a message....
</message>

<portType>
definition of a port.......
</portType>

<binding>
definition of a binding....

</binding>

</definitions>

Figure 3-6: The main structure of a WSDL document
A WSDL document can also contain other elements, like extension elements and a service element
that makes it possible to group together the definitions of several web services in one single

19

WSDL document. For a complete syntax overview go to the Appendix C. Below, we give a
simplified fraction of a WSDL document:

<message name="getTermRequest">
<part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">
<part name="value" type="xs:string"/>
</message>
<portType name="glossaryTerms">
<operation name="getTerm">
<input message="getTermRequest"/>
<output message="getTermResponse"/>
</operation>

</portType>

Figure 3-7: Simplified fraction of a WSDL document.

In this example the <portType> element defines "glossaryTerms” as the name of a port, and
"getTerm" as the name of an operation. The "getTerm" operation has an input message called
"getTermRequest” and an output message called "getTermResponse”. The <message> elements
define the parts of each message and the associated data types. Compared to traditional
programming, glossaryTerms is a function library, "getTerm" is a function with "getTermRequest"
as the input parameter and getTermResponse as the return parameter. In this example, the
request-response type is used as the operation type. Apart from that, WSDL defines another three
operation types. The table below gives a brief description of each.

‘Type |Definition

‘One—way |The operation can receive a message but will not return a response
‘Request-response |The operation can receive a request and will return a response
‘Solicit-response |The operation can send a request and will wait for a response
‘Notification |The operation can send a message but will not wait for a response

Figure 3-8: Operation types
3.3.3 Binding WSDL to SOAP
Below we give an example of binding WSDL document to SOAP by using the request-response
operation example mentioned in the previous section.

<message name="getTermRequest">
<part name="term" type="xs:string"/>
</message>

<message name="getTermResponse">
<part name="value" type="xs:string"/>

20

</message>
<portType name="glossaryTerms">
<operation name="getTerm">
<input message="getTermRequest"/>
<output message="getTermResponse"/>
</operation>
</portType>
<binding type="glossaryTerms" name="b1">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<operation>
<soap:operation
soapAction="http://example.com/getTerm"/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

Figure 3-9: Binding WSDL to SOAP.

In this example the binding element has two attributes - the name attribute and the type attribute.
The name attribute (you can use any name you want) defines the name of the binding, and the type
attribute points to the port for the binding, in this case the "glossaryTerms" port. The soap:binding
element has two attributes - the style attribute and the transport attribute. The style attribute can be
"rpc” or "document”. In this case we use document. The transport attribute defines the SOAP
protocol to use. In this case we use HTTP. The operation element defines each operation that the
port exposes.For each operation the corresponding SOAP action has to be defined. You must also
specify how the input and output are encoded. In this case we use "literal”.

3.4 UDDI

UDDI is a platform-independent framework for describing services, discovering businesses, and
integrating business services by using the Internet. It is a directory for storing information about
web services and a directory of web service interfaces described by WSDL. It is built into the
Microsoft .Net platform. Its communications are realized via SOAP. The ultimate goal of UDDI is
to streamline online transactions by enabling companies to find one another on the Web and make
their systems interoperable for e-commerce. The core of UDDI revolves around the notion of
business registry, which is essentially a sophisticated naming and directory service. In particular,
UDDI defines data structures and APIs for publishing service descriptions in the registry and for
querying the registry to look for published descriptions.

UDDI is often compared to a telephone book's white, yellow, and green pages. The project allows
businesses to list themselves by name, product, location, or the Web services they offer. The UDDI

21

Project is a joint initiative of concerned businesses that want to advance Internet-based computing.
The UDDI member companies have come together to develop an open specification and
implementations of a universal business registry that is capable of integrating electronic commerce
sites. This specification will be submitted to a formal standards body. The UDDI Business
Registry is operated as a distributed service. It contains information about businesses and the
services they offer. The information is organized as follows:

e Business Entity: A business entity represents information about a business. Each business
entity contains a unique identifier, the business name, a short description of the business,
some basic contact information, a list of categories and identifiers that describe the
business, and a URL pointing to more information about the business.

e Business Service: Associated with the business entity is a list of business services offered
by the business entity. Each business service entry contains a business description of the
service, a list of categories that describe the service, and a list of pointers to references
and information related to the service.

e Specification Pointers: Associated with each business service entry is a list of binding
templates that point to specifications and other technical information about the service.
For example, a binding template might point to a URL that supplies information on how
to invoke the service. The specification pointers also associate the service with a service
type. (A service type is defined by a tModel. Multiple businesses can offer the same type
of service, as defined by the tModel. A tModel specifies information such as the tModel
name, the name of the organization that published the tModel, a list of categories that
describe the service type, and pointers to technical specifications for the service type such
as interface definitions, message formats, message protocols, and security protocols.)

Access to and from the UDDI Business Registry is performed using SOAP. However, a service
registered in the UDDI Business Registry can expose any type of service interface. Figure below
illustrates how UDDI works.

SW companies, standards

bodies, and programmers &"m Marketplaces,
populate the registry with search engines,
descriptions pf different o1 and business apps
types of services) guery the registry
| to discover
services at other

@ . companies
nn UDDI Registr
Service Type ¢

Registrations 5.

Business

Businesses Registrations

populate i E

the registry

with 3. Registry operator assigns

descriptions of a unique identifier to Business uses this
the services each service and business data to facilitate
they support registration

easier integration
with each other over
the Web

Figure 3-10: UDDI flow chart.

22

3.5 Whatis .NET?

NET is the Microsoft Web services strategy to connect information, people, systems, and devices
through software. It is built on the following Internet standards: HTTP, XML, SOAP and UDDI.
Integrated across the Microsoft platform, .NET technology provides the ability to quickly build,
deploy, manage, and wuse connected, security-enhanced solutions with Web
services. .NET-connected solutions enable businesses to integrate their systems more rapidly and
in a more agile manner and help them realize the promise of information anytime, anywhere, on
any device. The Microsoft platform includes everything a business needs to develop and deploy a
Web service-connected IT architecture: servers to host Web services, development tools to create
them, applications to use them, and a worldwide network of more than 35,000 Microsoft Certified
Partner organizations to provide any help you need. For more details about .Net technology, we
refer to [8].

23

4. QoS for Web services

4.1 Understanding QoS for Web services

With the proliferation of Web services as a business solution to enterprise application integration,
the quality of service (QoS) offered by Web services is becoming the utmost priority for service
provider and their partners. Due to the dynamic and unpredictable nature of the Web, providing
the acceptable QoS is really a challenging task. In addition to this, the different applications that
are collaborating for Web Services interaction with different requirements will compete for
network resources. The above factors will force service providers to understand and achieve Web
Services QoS. Also, a better QoS for a Web service will bring competitive advantage over others
by being a unique selling point for service provider. The Web Services QoS requirement mainly
refers to the quality, both functional as well as non-functional, aspect of a Web Service. The major
requirements for supporting QoS in Web services are as follows [9]:

Availability represents the probability that a service is available.

Accessibility represents the degree it is capable of serving a Web service request.

Integrity is the quality aspect of how the Web service maintains the correctness of the
interaction in respect to the source.

Performance is the quality aspect of Web service, which is measured in terms of
throughput and latency. Higher throughput and lower latency values represent good
performance of a Web service. Throughput represents the number of Web service requests
served at a given time period. Latency is the round-trip time between sending a request
and receiving the response.

Reliability represents the degree of being capable of maintaining the service and service
quality.

Interoperability is the quality aspect of the Web service in conformance with the rules,
the law, compliance with standards, and the established service level agreement.

Security is the quality aspect of the Web service of providing confidentiality and
non-repudiation by authenticating the parties involved, encrypting messages, and
providing access control.

[10] proposes a QOS stack that addresses various issues that are present in different layers of the
Web Services stack, which is depicted in Figure 4-1.

Web Services Stack

FPrasentation Layer: Conposite Savices and Others
Client

HTML App Service Service

Logie Lapy. Web Services Dew and hianagrement QOS Stﬂ-Ck

T .

Business and Services Management |||
{Policies, contert petformance, ate) B

Services Integration and Coordination L Intﬁgﬂt?

{Serwce brokess, orchestration, ete)

P
Sl

Services Deployment and Management - R
(Funtime containers, repositories, stc.) l Mﬂﬂﬁgem‘ﬂﬂt] F E
Services Develo pment o C
(IDEs, toollats, eto) [Framework] R J
Datz Lager. Coromon Infras tructire M R—
Core Web Services Standards ¥ Interoperabiiy || A I
(SOATF, WSDL, UDDIL, etc) [— N 4
B i gl Reliabiity] c ¥

Common Intermmet Protocols - [ﬁocesmbﬂlt? l E

I:‘I'CP,-"]._FJ HTTP_, ate)) " [ﬁvaﬂab:ht}r J

Figure 4-1: The layers of a Web Services stack

4.2 Analysis of response-time performance of the Web services

In this section we use the example of the travel site for purchasing a vacation package described in
Section 2.2 to analyze the response-time performance of the Web services. The response time is
defined as the time between sending a request and receiving the response. The QoS of the travel
site may be strongly affected by the QoS of the various Web services it uses. Figure 4-2 shows a
Web service flow graph (WSFG) whose nodes are either Web sites or Web services. A directed
edge between nodes a and b indicates that a uses the services of b. The label on the edge (a, b),
called the relative visit ratio, is the average number of times node b is visited per visit to node a.
So on average, each travel booking request to the travel site generates V, requests to the airline
Web service, Vy, requests to the hotel Web service, and V. requests to the car rental Web service.
Denote Rra as the response time of the travel site based on the response time of the three Web
services it uses, which are denoted by Ry, Ry, and R. respectively. According to [2], it is easy to
establish a lower bound on the response time Ry 0n the response times of the three Web services it
uses:

RTA = maX{Va Ra’vh Rh ’Vc Rc} (4-1)

To see the usefulness of this equation, suppose that the response time of the airline, hotel, and car
rental Web services is 0.05 sec, 0.07 sec, and 0.01 sec, respectively, and that on average, each
travel site request will visit the airline Web service 4 times, the hotel Web service twice, and the

26

car rental service only once. So, using Equation (5.1), we have

R;, = max{0.2,0.14,0.01} = 0.2 sec (4.2)

Requests
from other sites

Alrline
Web
service

Hotel
Web
service

Requests
from other sites

Travel site

Requests

Requests
from other sites

from users service

Figure 4-2. Web service flow graph. Arrows link the travel site to other Web services.The labels on the
links indicate the average number of times a Web service is invoked per request to the travel site.

Equation (4.2) says that in order for the travel site to decrease the lower bound on its response
time, it would need to use a better airline Web service, because this is the Web service that limits
the minimum response time of the travel site. Alternatively, the travel site could try to reduce the
number of times it has to invoke the airline Web service per transaction.

Assume R,, Ry, and R are independent variables and all exponentially distributed with the same
mean S. Based on (4.1), the probability that the Rra is t seconds or less can be expressed as
follows:

P(Ry, <t) = p(R, <t)p(R, <t)p(R, <t). (43)
This is equal to

P(R, <t) = (1—e’5‘)3. (4.4)

In real life, to guarantee the response time performance of Web services, the travel site may send
requests to Web services concurrently. These Web services have the same functionality, but the
quickest reply is accepted. Another benefit to do this is if there are some Web services failed, then
the request can still be handled without delay. Also there is the situation that in order to invoke a
certain Web service, part information need to be achieved first from other Web services.

Consider the situation that you are driving on the highway. The destination is still far away, but
you are exhausted and the gasoline is almost run out. In order to find out the information about
hotels and gas stations nearby, you send the request via your PDA to the service provider to
achieve all available hotels and gas stations within 5 km. As the first step, the service provider has
to find out where you are by using the location Web service. After that, the service provider uses
the gas station Web service and the hotel Web service to get a list of hotels and gas stations you
asked for. Assume there are two location Web service providers and two hotel web service
providers. The diagram is shown in Figure 4-3. Denote R, R.1, Ri2, R, Ruyi, and Ry as the
response time of the service provider, location Web service 1, location Web service 2, gas station
Web service, hotel Web service 1, and hotel Web service 2 respectively. To simplify the problem

27

we assume:

e R, Ri2, R, Rui, and Ry, are independent and are all exponentially distributed with the
same mean S.
e Each request to the service provider generates only 1 request to all Web services.

Location
Web service 1

e

N Location
Web service 2
Service > Gas station
provider Web service
> Hotel
Web service 1

Hotel
Web service 2

Figure 4-3: A Web service example for finding available hotels and gas stations

Then it is easy to verify that
R= min(Rle RL2)+ maX(RG) min(RHv RHZ)) (4.5)

Based on (4.5), the probability that R is t seconds or less can be derived. At first, we denote:

X =min(R,,R,,), (4.6)

Y= min(RHl’ RHZ)' (4.7)
and

Z =max(Rg,Y). (4.8)

Then we have,

PR<t)=P(X +Z <t). (4.9)

This is equal to

P(R<t)= J: j;_x f, (x)f, (z)dzdx, (4.10)

28

where fx(x) and f(z) represent the distribution function of X and Z respectively.

According to the first assumption, it is easy to verify that X and Y are both exponentially
distributed with the mean 2S. The distribution of Z can be calculated via the follows steps.
Because

P(Z <x)=P(Rs < x)P(Y <x), (4.11)
we get
P(Z<x)=1-e" - 475" (4.12)

According to (4,12), we get the distribution of Z as follows:
f,(x)=Se* +2Se?%* —35e*", (4.13)
Combining (4.10) and (4.13), we get the probability that R is t or less as follows.
P(R<t)=e[-2e® +3e® —2tSe® —2]+1, (4.14)

4.3 Charging Mechanisms

Before selling a Web Service, Web services publishers need to decide how they are going to
charge for it. [11] lists some simple charging structures outlined below:

Charge per call |A customer buys a set number of calls to one of Web Services. Every time a
(Prepaid) Web service is called by this customer, the call is registered. When the customer
runs out of calls, s/he is automatically notified and asked to buy more.

Charge per A customer pays for unlimited use over a period of time. S/he pays to have
month access to a Web Service for a particular period of time: one month, three months,
(Subscription) |six months, or one year. Once that period ends, the customer is notified and
asked to confirm that s/he wants another month’s usage or, depending on our
arrangement, automatically charge their account for another period of time.

One-off charge |The customer makes a one-off payment for unlimited use of Web Service for the
(Prepaid) lifetime of that Web Service. The lifetime might only be a few months: for
instance, with the case of a news feed for a specific Olympic games.

No charge The Web Service is free for a specific period. This could be for the lifetime of
(Freeware) the Web Service or for a shorter trial period.

Web services publishers don’t have to use only one of the above charging methods for Web
service. They could combine any of the above methods to make alternative payment schemes. For
instance, they could start with the ‘No charge’ method for a trial period before using the ‘Charge
per call” method.

4.4 A model for minimizing the cost

29

In Section 4.2, we discussed the response time without taking the cost into account. But
sometimes the service provider has to pay the cost for some Web services. Normally shorter
response time or faster server will be more expensive. In this section we develop a model for
minimizing the cost while considering an acceptable response time. We use the example described
in Section 4.2 about finding available hotels and gas stations via Web services. To simplify the
problem, we assume that there is just one location Web service and hotel Web services are not
considered. See Figure 4-4.

Location request Location Web service
Return the location coordinator

Give the location coordinator

Service
Provider

/

List the gas station Gas station Web service

Figure 4-4: A Web service example for finding available gas stations

The variables used in this example are defined as follows,

Cp:

the average time between the service provider receives the request from the user and the
service provider gets the lists of the gas station.

the mean Response time of the location Web service.

the mean Response time of the gas station Web service.

the minimum cost

Cost of visiting the location Web service every time.

Cost of visiting the Gas station Web service every time.

To simplify the problem, in this example we make the following assumptions:

Both Web services use “charging per call” method.

For each complete request, the service provider generates one request on average to both
the location Web service and the Gas station Web service.

The time interval between receiving the location coordinator from the location Web
service and forwarding it to the gas station Web service can be ignored.

R should not exceed r seconds to get a satisfying QoS.

In general, shorter response time or faster service will be more expensive. Therefore, we
assume

30

C, =i, where a>0, (4.15)
I:QL

and
b
Cpo =—, where b>0. (4.16)
Rp

Then we have the following expressions for minimizing the cost while taking the acceptable
response time into account.

min (C, +C;) (4.17)
under the conditions

R, +Rp <t

R, =20,R; 20.

Substituting (4.15) and (4.16) into (4.17), we have

min (2 + 2 (.18
R, R,

where
R.+Rp <
R, =20,R; 20.
From Figure 4-5, it is easy to know that the solution of (4.18) must lies on the linear line
R.+R,=r. (4.19)
It can be proved by apagoge. Suppose that under that linear line, there exists a point (R’., R’p) that
can get the minimum cost. Then a point (R., Rp) can be found on the linear line which holds that
R’L< RL and R’p< Rp. See figure below. This follows that the cost corresponding to (R., Rp) is

lower than the minimum cost. This is infeasible. Therefore the best solution must be found on that
linear line.

Rp

0.2

0.2 R,

Figure 4-5: Condition ar

Hence, (4.18) can be converted to

31

. a b
min (—+
R, r—-R,

) (4.20)

By setting the differential of the equation expressed in (4,20) to zero, we get the following
conclusion: when

R =————, 4.21
“ 1+4b/a (4.21)

and

R, =

— .22
1++/alb (4.22)

the minimum cost is achieved. That is equal to

_a+b+2y/ab
EEE—

C (4.23)

This minimum cost is based on “charging per call” mechanism. This mechanism is suitable if the
times that the service provider uses a Web service are limited. But if the service provider must
invoke a Web service frequently, is it not better to take a subscription? Consider the month June,
July, and Augustus. In these months, the amount of people on the way increased dramatically
because most people are on holiday. This may cause the increasing of the number of requests
mentioned in our example. In this case, which decision should the service provider make, “charge
per call” or “charge per month”? At first, let us assume:

e The number of requests to use the Web service illustrated in Figure 4-4 is distributed
according to a Poisson distribution with the parameter 1.

e The cost of subscription is M euro per month.
e The QoS is guaranteed by the subscription.
e The cost for “charge per call’ is C euro per time. C is expressed in (4.23)

It is easy to retrieve that if the number of times the Web service invoked is lower than M/C, then
using “charge per call” mechanism is more economical. That implies if

P(x < %) >0.5, (4.24)
then it is better to take “charge per call”.
For instance, suppose that g =15, using the cumulative Poisson distribution table (4.24)
follows the result:

M. 14, (4.25)
C

This result implies that if M >14C , for the case that x# =15, “charge per call” is our

preference. Otherwise it is better to chose “charge per month”.

32

5. Summary

In this paper we first describe what Web services are, how they are built. We have followed the
W3C definition of a Web service, described as “a software application identified by a URI, whose
interfaces and bindings are capable of being defined, described, and discovered as XML artifacts.
A Web service supports direct interactions with other software agents using XML-based messages
exchanged via Internet-based protocols”. Web services can be characterized by an internal
architecture, defining its connection with the local information systems, and an external
architecture, defining how Web services discover and interact with each other.

Secondly, we discussed what technologies are required for Web services. Then we described each
required Web service technology in detail. In Web services model, Web service providers use the
Web Services Description Language (WSDL) to describe the services they provide and how to
invoke them. The service providers then register their services in a public service registry using
universal description, discovery, and integration (UDDI). Application programs discover services
in the registry and obtain a URL for the WSDL file that describes the service. Then the
applications can invoke the services using the XML-based simple object access protocol (SOAP).

Finally, we discussed the QoS issues of Web services and charging structures. The Web services
QoS requirement mainly refers to the quality, both functional as well as non-functional, aspect of
a Web service. This includes performance, reliability, integrity, accessibility, availability,
interoperability, and security. In our paper, we focused on the response time performance of a
Web service. We built a model to calculate the probability that the response time Rra is t seconds
or less. Apart from that, we discussed various charging mechanisms: charge per call, charge per
month, on-off charge, and no charge. After that, we built another two models for finding out how
to satisfy the customer at lowest price and when the “charge per call” mechanism is better than
“charge per month” respectively.

Bibliography

[1]

[2]

[3]
[4]

[5]
[6]
[7]

[8]
[9]

E.M. Maximilien and M.P. Singh, “A Framework and Ontology for Dynamic Web Services
Selection,” IEEE Internet Computing, vol. 8, no. 5, 2004, pp. 84-93.

D.A. Menascé, “QosS Issues in Web Services,” IEEE Internet Computing, vol. 6, no. 6, 2002,
pp. 72-75.

W3C. Web Services Architecture Requirements, http://www.w3.org/TR/wsa-regs, Oct. 2002.
F. Curbera et al., “Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and
UDDI,” IEEE Internet Computing, vol. 6, no. 2, 2002, pp. 86-93.

G. Alonso, F. Casati, H. Kuno and V. Machiraju, “Web services, concept, Architectures and
Applications”, 2004.

D. McDonald, University of Strathclyde, “Web Services Technologies Report for the JISC
Technology Watch Service”, http://www.jisc.ac.uk/uploaded documents/tsw_03-04.doc.
http://msdn.microsoft.com/webservices/understanding/xmlfundamentals/default.aspx
http://www.w3schools.com/ngws/default.asp.
http://www-106.ibm.com/developerworks/library/ws-quality.html?n-ws-1172.

[10] http://www.developer.com/services/article.php/2027911
[11] http://www.webservicesarchitect.com/content/articles/clark03.asp

Appendix A. Sample XML document

This sample is a customer order for a music store

<?xml version="1.0" encoding="is0-8859-1" ?>
<?xml-stylesheet href="orders.xsl"?>

<order id="0rd123456">
<customer id="cust0921">
<first-name>Dare</first-name>
<last-name>Obasanjo</last-name>
<address>
<street>One Microsoft Way</street>
<city>Redmond</city>
<state>WA</state>
<zip>98052</zip>
</address>
</customer>
<items>
<compact-disc>
<price>17.55</price>
<artist>Baby D</artist>
<title>Lil Chopper Toy</title>
</compact-disc>
</items>

<!I-- Always go the extra mile for the customer -->
<special-instructions xmiIns:html="http://www.w3.0rg/1999/xhtml/">
<html:p>If customer is not available at the address then attempt leave package at
one of the following locations listed in order of which should be attempted first
<html:ol>
<html:li>Next Door</html:li>
<html:li>Front Desk</html:li>
<html:1i>On Doorstep</html:li>
</html:ol>
<html:b>Note</html:b> Remember to leave a note detailing where to pick up the package.
</html:p>
</special-instructions>
</order>

Appendix B. Sample XML schema fragment

<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element name="items">
<xs.complexType>
<xs:sequence>
<xs:element ref="compact-disc" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="compact-disc">
<xs:.complexType>
<xs:sequence>
<xs:element name="price" type="xs:decimal" />
<xs:element name="artist" type="xs:string" />
<xs:element name="title" type="xs:string" />
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

Appendix C. A full WSDL 1.2 syntax in the W3C Working Draft

<wsdl:definitions name="nmtoken"? targetNamespace="uri">
<import namespace="uri" location="uri"/> *
<wsdl:documentation /> ?
<wsdl:types> ?
<wsdl:documentation /> ?
<xsd:schema /> *
</wsdl:types>
<wsdl:message name="ncname"> *
<wsdl:documentation /> ?
<part name="ncname" element="gname"? type="gname"?/> *
</wsdl:message>
<wsdl:portType name="ncname"> *
<wsdl:documentation /> ?
<wsdl:operation name="ncname"> *
<wsdl:documentation /> ?
<wsdl:input message="gname"> ?
<wsdl:documentation /> ?
</wsdl:input>
<wsdl:output message="gname"> ?
<wsdl:documentation /> ?
</wsdl:output>
<wsdl:fault name="ncname" message="gname"> *
<wsdl:documentation /> ?
</wsdl:fault>
</wsdl:operation>
</wsdl:portType>
<wsdl:serviceType name="ncname"> *
<wsdl:portType name="gname"/> +
</wsdl:serviceType>
<wsdl:binding name="ncname" type="gname"> *
<wsdl:documentation /> ?
<-- binding details --> *
<wsdl:operation hame="ncname"> *
<wsdl:documentation /> ?
<-- binding details --> *
<wsdl:input> ?
<wsdl:documentation /> ?
<-- binding details -->
</wsdl:input>
<wsdl:output> ?
<wsdl:documentation /> ?
<-- binding details --> *

</wsdl:output>
<wsdl:fault name="ncname"> *
<wsdl:documentation /> ?
<-- binding details --> *
</wsdl:fault>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="ncname" serviceType="gname"> *
<wsdl:documentation /> ?
<wsdl:port name="ncname" binding="gname"> *
<wsdl:documentation /> ?
<-- address details -->
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

42

	Vrije Universiteit, Amsterdam

