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Preface
As a compulsory part of the Master’s degree program Business Analytics at the
VU Amsterdam, this research paper is produced. This thesis is written based on
a research project regarding a specific problem statement. The input of this spe-
cific research involves the use of data. The purpose of this report is to demon-
strate the ability to describe a problem in a clear manner for the benefit of an
expert manager. In this research problem, the field of data mining has been ad-
dressed, which includes the main goal of predicting a certain event.

I would like to thank my supervisor Prof. dr. Sandjai Bhulai for guiding and
supporting me during this research.
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Abstract
Predicting malignant tumor cells

in breasts

by Larissa Westerdijk

Breast cancer is the most common cancer among women
in the Netherlands in 2016. The accuracy of visually di-
agnosed breast fine needle aspirates, however, is about
90%. It is, therefore, necessary to minimize this subjec-
tivity with digitized images of the fine needle aspirates
and machine learning techniques. In this research, the
presence of malignant tumor cells in breasts will be pre-
dicted for the Wisconsin Diagnostic Breast Cancer data.
Several machine learning methods, like logistic regres-
sion, random forest, support vector machine, and neu-
ral network, will be used to model this. The perfor-
mance of these models will be tested using the accu-
racy, as well as the AUC from the ROC curve, the sen-
sitivity, and the specificity. Finally, after optimizing the
four individual models, an ensemble will be created to
achieve an even more robust predictive model. The fi-
nal accuracy results are 0.9735, 0.9735, 0.9823, 0.9735,
and 0.9823 for the logistic regression, random forest,
support vector machine, neural network, and ensem-
ble models respectively. Especially the number of false
negatives need to be decreased, which is a recommen-
dation for future research.
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1 Introduction

Breast cancer is the most common cancer among women in the Netherlands.
Moreover, the IKNL (Integraal Kankercentrum Nederland) shows it is the most
common cancer after skin cancer occurring in this little country [13]. In the
Netherlands, 109,663 people are diagnosed with cancer every year, where 14,890
out of those people have breast cancer. This is equal to 13.6% of the total Dutch
cancer population. Each year the number of people who die because of breast
cancer is about 3,175. These are serious numbers that need to be decreased. To
accomplish this, it is essential to correctly detect and diagnose the patients as
early as possible. A visual diagnosis is executed by an assigned doctor and has
an accuracy of about 90%. This percentage, however, must and can be opti-
mized with the use of data about the breast cells.

In order to improve this accuracy, the diagnosis can be supported by the use
of digitized images made of the breast cells and machine learning techniques.
Computers are used to predict malignant (cancerous) tumor nuclei and there-
fore detect them. This process starts with taking fine needle aspirates of the
breast mass of women. This substance is stained under a microscope to high-
light the nuclei. The next step involves imaging a portion of the fine needle
aspirates in which the cells are well-differentiated and digitalizing these im-
ages. Subsequently, a computer system divides the individual cells in each of
the images by accurately specifying the boundary of each cell, which is shown
in Appendix A. It is necessary to convert all potentially important size, shape,
and texture characteristics of each cell out of the image into several features. Ex-
amples of these features are the radius and perimeter of the cell nucleus. Once
the data is ready, it can be used to build the predictive models to differentiate
malignant (cancerous) from benign (non-cancerous) cases.

The objective of this paper is to develop several machine learning models with
a better performance than the visual diagnosis of the doctors, and therefore
simultaneously minimize this subjectivity. These models are made to predict
the presence of malignant tumor cells in breasts. This research focuses on the
predictive models, processing the data by defining the features with computer-
based analytical techniques is outside the scope of this paper.

The remainder of this paper is divided into seven parts, which is covered in
Chapters 2 to 8. In the first part, the related work of this research is addressed.
The second part is about the description and analysis of the data. The third
part provides the methodologies used for building and evaluating the models,
such as the predictive models, the evaluation measures, and the experimental
setup. In the fourth part, the results of the performing models are demon-
strated, which includes the chosen features, the parameter settings, and the
performance values. This is followed by a short evaluation of the wrongly pre-
dicted cases. Finally, the paper ends with part six and seven covering the con-
clusion and discussion respectively.
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2 Related work

There has been a lot of research on medical diagnosis of breast cancer. Many of
those consider models that can predict whether the tumor is benign or malig-
nant. For predicting such a classification problem many techniques are avail-
able. Besides this, different kinds of explanatory variables can be used for pre-
dicting the presence of malignant tumor cells. A lot of researches, however,
have used one of the three different Wisconsin breast cancer datasets (Wis-
consin Breast Cancer (WBC), Wisconsin Diagnosis Breast Cancer (WDBC), and
Wisconsin Prognosis Breast Cancer (WPBC)).

All three datasets are used in the paper of Salama et al. [16], where each dataset
has different features trying to predict the outcome. For each of the datasets,
a multi-classifier was made using a selection of the classifiers decision tree,
Multi-Layer Perceptron, Naive Bayes, Sequential Minimal Optimization, and
Instance Based for K-Nearest neighbor. The highest obtained accuracies are
97.28%, 97.72%, and 77.32% for the datasets WBC, WDBC, and WPBC, respec-
tively.

Several studies used the WBC dataset for detecting breast cancer. In the study
of Karabatak et al. [11] breast cancer is detected based on association rules and
a neural network. The association rules are used for eliminating unnecessary
data and thus reducing the feature dimension. The neural network classifies
each record using those remaining features. The final model resulted in an
accuracy of 97.4%. Abbass [1] achieved an accuracy of 98.1% ± 0.5 using an
evolutionary artificial neural network approach. This approach is based on the
Pareto-differential evolution algorithm that is augmented with local search. In
Marcano-Cedeño et al. [14], an Artificial metaplasticity Multilayer Perceptron
algorithm is applied, obtaining a classification accuracy of 99.26%. Akay [2]
reached the highest accuracy of 99.51% using an SVM model combined with
feature selection.

Various other studies used the WDBC dataset, which is also used in this paper.
Wolberg et al. [18] applied two models, logistic regression and Multisurface
Method-Tree. These resulted in 10-fold cross-validated classification accuracies
of 96.2% and 97.5%, respectively. In the research of Mu et al. [15] support vector
machines, radial basis function networks, and self-organizing maps are applied
to detect breast cancer. The performance of different combinations of the classi-
fiers is compared based on 10-fold cross-validation. The average performance
accuracy is over 98%.
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3 Data

In this research, the Wisconsin Diagnosis Breast Cancer dataset is analyzed.
This section contains the description and analysis of the data.

3.1 Description

The dataset consists of features obtained from a digitized image of a fine nee-
dle aspirate of a breast mass. These features describe characteristics of the cell
nuclei present in the image. The ten real-valued features are computed for each
cell, and are defined as follows.

1. Radius. The average distance from the center of the nucleus to each of the
boundary points.

2. Texture. The standard deviation of the gray-scale values. A gray-scale
value represents the intensity of the shades of gray in each pixel of the
image.

3. Perimeter. The total distance of the boundary of the cell nucleus.

4. Area. The number of pixels on the interior of the boundary and adding
one-half of the pixels on the perimeter, to correct for the error caused by
digitization.

5. Smoothness. The difference between the length of a radius length and the
mean length of the two radius lines surrounding it, hence the local varia-
tion in radius lengths.

6. Compactness. The perimeter and area are combined using the formula
perimeter2

area − 1 to obtain a measure of compactness of the cell nuclei.

7. Concavity. The severity of concave portions of the contour. A high con-
cavity means that the boundary of the cell nucleus has indentations, and
thus is rather rough than smooth.

8. Concave points. The number of concave portions of the contour of the cell
nucleus.

9. Symmetry. The symmetry is determined by first finding the longest line
from boundary point to boundary point through the center of the nucleus.
Subsequently, the relative length differences between the lines perpendic-
ular to the longest line to the boundary in both directions are measured.
Attention should be given to nuclei where the longest line cuts through
the boundary because of concavity.

10. Fractal dimension. The fractal dimension is approximated by the ’coast-
line approximation’. The perimeter of the nucleus can be measured using
different lengths of measuring sticks. As this length increases, the total
length of the measured ’coastline’ decreases due to lower precision of the
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measurement. The theoretical fractal dimension is then determined by
dividing the logarithm of the observed perimeter L(s) by the logarithm of
the measuring stick length s. Plotting log(L(s)) against log(s) and deter-
mining the negative value of the slope results in an approximation of the
fractal dimension D [7]. Finally, the desired feature is determined by the
calculation D - 1.

The size of the nucleus is expressed by the features radius and area. The shape
is expressed by the features smoothness, concavity, compactness, concave points,
symmetry, and fractal dimension. The perimeter expresses both the size and
shape of the nucleus. A higher value of shape features corresponds to a less
regular contour and, therefore, to a higher probability of malignancy. For each
of the features the mean value, worst value (mean of the three largest values),
and standard error are computed for each image, resulting in 30 features of
569 images. When referring to the mean, worst, or standard error value of, for
example, the feature radius, this paper will mention radius, radius worst, or ra-
dius SE respectively. The mean and standard error of a feature x are determined
as follows.

Meanx = 1
N

N∑
i=0

xi,

Standard errorx = sd√
N

,

where N refers to the number of observations of the sample, xi refers to the ith

feature value of the sample, and sd refers to the standard deviation.

All features are recorded with four significant digits. Together with the ID num-
ber and the diagnosis the final dataset consists of 32 attributes.

3.2 Analysis

In order to know how to handle the data in the predictive models, some anal-
yses have been performed. The first observation of these data is the fact that it
has no missing values. Hence, no suitable method is needed to deal with such
a problem.

Some general analysis shows that 357 women have a benign tumor, while the
other 212 women have a malignant tumor. This means 37.26% of the data is our
main focus. This distribution of the data shows that the number of benign sam-
ples is not excessively more than the number of malignant samples. Because
the dataset is not unbalanced, there is no need to scale the dataset.

Each of the features has been analyzed to detect unusual values. This includes
calculating the minimum, maximum, mean, and median values. Plotting the
data in boxplots makes it easy to detect outliers. Most of the boxplots look like
the boxplot in Figure 3.1, which means some of the data points do not belong in
the box. This does not necessarily mean this feature has outliers that need much
attention. In the case of the boxplot in Figure 3.2 you could argue whether the
two highest points are outliers. Since each malignant tumor cell is unique and
might differ extremely from others in real life, here is assumed the dataset does
not have any outliers. Based on this assumption no instances are removed from
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FIGURE 3.1: Boxplot radius mean FIGURE 3.2: Boxplot concavity SE

the dataset.

An important part of the analysis is examining the correlation between the fea-
tures. The correlation measures the strength and direction of a linear relation-
ship between two features. Using two highly correlated features in a model
can reduce the performance. Also, since they have a strong relation, one of the
features is redundant. A correlation between two features does not necessarily
mean those two features have a causal relation. However, if two features have a
causal relation, they must be correlated. Here, only correlation has been tested
on the data. The two features radius and perimeter have a correlation of 0.9979,
which means they have a very strong positive linear relationship. The correla-
tion between compactness and concavity is equal to 0.8831, which means they
also have a strong positive linear relationship. Finally, the features symmetry
and perimeter have a correlation of 0.1830, which means they have no linear
relationship since a weak positive linear relationship corresponds to a mini-
mum correlation of 0.3. These differences in correlation are clearly visible in
Figures 3.3, 3.4, and 3.5, where the relation between compactness and concav-
ity, perimeter and symmetry, and radius and perimeter are shown respectively.

The relationship plots in Figure 3.5 show the obvious linear relationships, which
is also reflected in the correlation value of 0.9979 between radius and perimeter.
A less obvious but still visible straight line is the one between compactness and
concavity, shown in Figure 3.3. This difference in the level of linearity can also
be distinguished by the correlation of 0.8831, which is less than 0.9979. The
thicker-lined plot indicates a lower level of linearity. The plot that does not
show any linear relationship is the one in Figure 3.4, which is in accordance
with the low correlation value of 0.1830 between perimeter and symmetry.

Aside from the level of linearity, all correlation values show a positive number.
This means all relations are positive, and increasing the value of, for example,
the perimeter will correspond to an increasing value of the area.

Also the relationships between mean, SE, and worst are plotted for each of the
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FIGURE 3.3: Relationship between
compactness and concavity

FIGURE 3.4: Relationship between
perimeter and symmetry

FIGURE 3.5: Relationship between
radius, perimeter and area
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features individually. Further investigation has been done in cases of obvi-
ous linear relationships. It is concluded that whenever two features have a big
correlation, then the same applies to the ’worst’ version of these features. In
addition, also the level of linearity is high between the worst version of one of
those features and the mean version of the other concerning feature.

All the combinations of features with high level of linearity need to be kept in
mind during the feature selection.

Besides the relationships shown in the plots in Figures 3.3, 3.4, and 3.5, these
plots show which cases are benign (green) and which are malignant (red). None
of the plots have a clear division to divide the two groups. Therefore, more ad-
vanced models will be used to optimize such divisions. This is confirmed by ex-
amining the minimum and maximum values of each feature. In Table 3.1 these
values are shown for the feature radius. The minimum value of the malignant
cases is smaller than the maximum value of the benign cases, which concludes
overlap between the benign and malignant cases. If all the benign values would
have been below a certain number and the malignant values above this num-
ber, then the cases would have been easily separated and consequently easily
predicted.

Minimum Maximum
Benign 6.981 17.85

Malignant 10.95 28.11

TABLE 3.1: Values of radius

Overall the data is very clean, which means no preprocessing of the data has
been executed. Also no features have been engineered.

4 Methodology

This section explains the methods that are used in order to receive the desired
outcome. The aim of this research is to predict whether a tumor cell is ma-
lignant or benign. The diagnosis is the dependent variable (the target), which
leaves the remaining features as possible explanatory variables. Since the target
variable is categorical, this problem is considered as a classification problem.
A possible class label for this target variable is either ’benign’ or ’malignant’.
Classification is a supervised learning method, which means that the training
dataset consists of the correctly identified observations of the target variable.

The data analysis in Section 3.2 showed that the dataset has no missing values,
has no outrageous outliers, and is not extremely unbalanced. Therefore, there
is no need to tackle these in a data preparation. Consequently, all the 569 origi-
nal observations are used to create the classifiers.

The models that are used for this classification are Logistic Regression (LR),
Random Forest (RF), Support Vector Machine (SVM), Neural Network (NN),
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and an ensemble. These models are explained in detail in Section 4.1, after
which Sections 4.2 and 4.3 explain the evaluation measures and the experimen-
tal setup, respectively.

4.1 Predictive models

All models that are to be explained below are suitable to solve the classification
problem in question.

4.1.1 Logistic regression

Regression is a statistical process that estimates the relationship between the
dependent (target) variable and the independent (explanatory) variables. Lin-
ear regression is the most basic type of regression, in which case the relation
between the dependent and independent variable(s) is linear. Logistic regres-
sion models can be thought of as extensions of linear regression models, and
hence, linear regression is explained first. The explanation has the same ap-
proach as de Gunst [8].

In general, there are n observed data points y1, ..., yn, which represent the real-
izations of the independent random variables Y1, ..., Yn. Besides this, there are
m explanatory variables for which the right coefficients vector β needs to be
found. The vector xi of length m+1 contains the intercept along with the ex-
planatory variables of the i-th observation. The linear regression model can be
described as follows.

(i) Yi ∼ N (µi, σ
2),

(ii) ηi = xTi β,

(iii) ηi = g(µi) = µi,

for i = 1,...,n, with β = (β0, ..., βm)T the coefficient vector for the intercept (β0)
and the explanatory variables. This representation seems quite difficult for such
a relatively easy model, but it ensures that the alteration to the logistic regres-
sion model is clear.

As is shown above, the model consists of three components, the random com-
ponent (i), the systematic component (ii), and the link function (iii). The ran-
dom component specifies the distribution of the target Yi. The systematic com-
ponent is the vector ηi, which consists of the predictors for each observation.
These predictors are formed by multiplying the values of the explanatory vari-
ables with the coefficient vector. The link function, denoted by g, is the link
between the random and the systematic component. More precisely, it speci-
fies the relation between the two by g(EYi) = ηi. Since the relation is linear ηi
equals µi.

In logistic regression (LR), however, the dependent variable is categorical. The
approach of logistic regression is part of a whole class of models, called general-
ized linear models (GLMs). They are called generalized linear models because
the systematic component remains the same, and hence the ηi are still linear.
The random component and the link function need to be adjusted, though, to
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transform the linear regression model into the logistic regression model. In the
linear regression model ηi and Yi can take any real number, meaning ηi, Yi ∈ R.
In logistic regression the target variables Yi can only take two values 0 or 1.
This means the following for the binomial random variables, 0 < EYi < 1. And,
therefore, the link function should ensure that it maps the interval (0,1) onto the
real line. Satisfying this condition results in the logistic regression model below.

(i) niYi ∼ Bin(ni, µi),

(ii) ηi = xTi β,

(iii) ηi = g(µi) = log µi

1−µi
,

for i = 1,...,n.

Relating the theory to this particular problem, the binary dependent variable
can take one of the two values ’benign’ or ’malignant’. Then the algorithm tries
to fit the best regression coefficient vector β to the given data.

4.1.2 Random forest

Random forest (RF) originates from the decision tree, since a random forest is
the result of various weak decision tree predictors added together. A random
forest on its own is, therefore, an ensemble of decision trees. This model is
able to describe nonlinear relations in data, which is needed for this specific
problem as is shown in Section 3.2. The input of a random forest model can
take both numerical and categorical variables. Probably the biggest advantage
of this model is the fact that it can be used for both regression and classification
problems. Here, the algorithm will be explained focused on classification.

Decision tree

Since a random forest consists of multiple decision trees, first, a short and gen-
eral description of a decision tree will be given. The basis of a decision tree is a
system based on a set of rules. Given the training dataset including the target
and features, the algorithm designs a set of rules. This same set of rules will be
used to perform the predictions on the test dataset. These rules can be visually
represented as a tree. The top of the tree is the first decision node, called the
root node. Each of the decision nodes corresponds to a feature. The bottom
of the tree consists of several so-called leaf nodes. Each leaf node corresponds
to a class label, which is ’benign’ or ’malignant’ for this specific problem. The
process of making these rules, and thus the decision tree, can be explained by
several steps. Here, the ID3 algorithm is used to explain how to generate this
decision tree from the dataset.

1. Calculate the entropy of each feature, using dataset S.
2. Split this dataset S into subsets using the feature with the highest infor-

mation gain.
3. Make a decision node containing this feature.
4. Recurse on the subsets using the remaining features until you find a leaf

node in all the branches of the tree.

14



The entropy of data X, H(X), is a measure of the irregularity of the data. High
entropy means X is from a uniform distribution, and low entropy means X
is from a varied distribution with peaks and valleys. The information gain,
IG(X|Y ), measures the decrease in entropy if you know the value of a feature.
These two measures are calculated with the following equations, where p(x) is
the proportion of the number of elements equal to x to the number of elements
in the set X.

Entropy H(X) is equal to Equation (4.1)

H(X) =
∑
x∈X
−p(x) log2 p(x) (4.1)

Conditional entropy H(X|Y ) is equal to Equation (4.2)

H(X|Y ) =
∑
y∈Y

pY=y ×H(X|Y = y) (4.2)

Information gain IG(X|Y ) is equal to Equation (4.3)

IG(X|Y ) = H(X)−H(X|Y ) (4.3)

The ID3 algorithm does not guarantee an optimal solution, since it can get stuck
in a local optimum. Also, a decision tree tends to overfit the training data.
These two disadvantages of the algorithm are not a big concern when using the
decision tree for the random forest. Using many of these weak learners together
in the random forest will make the final classifier stronger.

Random forest

Random forests are trained on different parts of the same training dataset. This
is what tackles the issue of overfitting that is common for decision trees. The
approach used to generate the random forest can be described in the following
steps.

1. Randomly sample n cases with replacement from the training data, where
the total number of training cases is n.

2. At each node:

(a) Randomly select k out of a total of m features, where k < m.

(b) Split the node on the feature with the best split.

(c) At the next node, iterate step (a) and (b).

3. Each tree is grown to the largest extent possible.
4. Iterate steps 1 to 3 until N number of trees are generated.

After creating the random forest, the model is used for the predictions. This
process starts with using the input features of the test dataset in each of the
decision trees in the forest. The classification of each individual tree counts as
one vote for the corresponding class. The final prediction is the classification
having the most votes.
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FIGURE 4.1: Visualization of random forest [3]

Important to ensure is the correlation between the N generated trees. The
higher these correlations, the higher the error rate of the random forest. There-
fore, the trees should be as uncorrelated as possible. By lowering the value of
k, the inter-tree correlation but also the strength of each individual tree goes
down. This is why the optimal value of k needs to be discovered. This optimal
value usually lies in an optimal range.

A random forest can deal with missing values. Also, the algorithm can be used
for feature engineering. This means the algorithm can identify the most impor-
tant features out of all the available features.

One big difference exists between the decision tree and random forest algo-
rithm. This difference is the reason why not all the individual trees in the ran-
dom forest end up being the same. Creating an individual tree for a random
forest is a little different than for a decision tree. Instead of finding the root
node and other decision nodes by using the information gain, these nodes will
be found randomly as is shown in the steps above.

4.1.3 Support vector machine

A support vector machine (SVM) is a linear classifier which is based on margin
maximization. For this particular problem, the data needs to be classified into
two groups, ’benign’ and ’malignant’. The SVM accomplishes this classifica-
tion by constructing a hyperplane that separates the data space into two areas,
called classes. Depending on the number of input features, this hyperplane is
constructed in a certain dimensional space. An SVM can be linear or nonlinear,
with separable and non-separable cases. The extension from the linear to the
nonlinear case is achieved by the use of the kernel trick.

Figure 4.2 shows a linear SVM which is separable. All negative samples are on
one side of the optimal hyperplane and all positive samples are on the other
side. Both maximal margin hyperplanes are optimized to be as far away from
each other as possible and still separate the classes. The data points touching
the maximal margin hyperplanes are called the support vectors. Because of
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FIGURE 4.2: Maximum margin hyperplane

demonstration purposes, this construction is relatively easy. However, most
advanced problems are not linearly separable. In those cases, a kernel can be
used, which is the radial basis function (RBF) kernel in this research. Linearly
non-separable data in the original dimension might be linearly separable in a
higher dimension.

This means a transformation or mapping is needed. The dataset is given in di-
mension N and it is, therefore, necessary to find a transformation ϕ : RN → RM

such that the transformed data is linearly separable in RM , where M > N . The
decision boundary is then linear in the dimension M, which is achieved by mak-
ing use of the higher-dimensional space, and is non-linear if you transform the
boundary back to dimension N. However, the transformation into a higher di-
mension can easily lead to serious computational and memory problems. This
is why kernel functions are used. Such a kernel function k(x, z) is a function
k : RN × RN → R with the aim to indicate the similarity between two inputs
x and z. It implicitly computes the similarity between the two input vectors in
RM without explicitly transforming vectors x and z to this higher dimension.
Now no extra memory is needed and only minimal extra computation time is
needed to compute all pairwise k(x, z). This is called the kernel trick. [12]

In this research, the RBF kernel is used and is as follows.

k(x, z) = ⟨ϕ(x), ϕ(z)⟩ = e−
∥x−z∥2

2σ2 (4.4)

The kernel parameter sigma σ needs to be tuned to get an optimal performance
from the final model. For the given training set {(xi, yi) | xi ∈ RN , yi ∈
{−1, 1}, i = 1, ..., n} of a binary classification problem, each hyperplane should
satisfy the following equation.

yi((w · xi) + b) ≥ 1− ξi, (4.5)

where w is the corresponding weight, b is the intercept term, and ξi ≥ 0 is a
slack variable.

In order to get the optimal hyperplane in dimension M that will separate the
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space in two regions, the following formula should be minimized subject to
Equation (4.5).

1

2
∥ w ∥2 + C

n∑
i=1

ξi, (4.6)

where C > 0 is a constant that determines the balance between complexity and
classification accuracy and should be tuned. [17]

4.1.4 Artificial neural network

An artificial neural network (ANN) has its name due to the fact that it has cer-
tain performance characteristics in common with biological neuron networks.
The neurons are the elements where the information processing occurs. The
needed signals are transported between the connecting neurons, where each
connection has an associated weight. This weight will be multiplied with the
signal being transmitted. Once the signal reaches the neuron, an activation
function is applied to the input to determine the output. The activation func-
tion used in this research is sigmoid, which gives a value between [0,1]. In
mathematical form, this transformation in each neuron is as follows.

o = S

∑
j

wjij + b

 , (4.7)

where o is the output of the neuron, wj are the weights of the neuron, ij are
the inputs of the neuron, and b is a possible bias term. The sigmoid activation
function S is as follows.

S(x) =
ex

ex + 1
(4.8)

FIGURE 4.3: Architecture of a neural network

An example of the architecture of an artificial neural network is shown in Fig-
ure 4.3. Neural networks exist in many different kinds. In general, there are
three different classes of network architectures, single-layer feed-forward neu-
ral networks, multi-layer feed-forward neural networks, and recurrent neural
networks. The architecture that has been used for this problem is the single-
layer feed-forward neural network, since a higher level of complexity is not
needed for this specific problem. This means the neural network has an input
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layer, one hidden layer, and an output layer, as is shown in Figure 4.3. Feed-
forward means that the signals are only transmitted in forward direction, not
in forward and backward direction as in a recurrent neural network.

The objective during training a neural network model is to assign suitable
weights to the connections, in order to obtain a minimum error between the
output value and target value. All weights are randomly initialized and must
be optimized in such a way that the model leads to accurate classifications.
Backpropagation can be used for determining the optimal weights. The num-
ber of neurons in the hidden layer should also be optimized. The number of
input neurons and output neurons, however, are fixed. The first is equal to the
number of features used and for this specific problem the latter is equal to one,
since the output is the diagnosis of the tumor cell. The other parameter that
should be determined is the decay. The weight decay is important for prop-
erly updating the new weights. Weight updating is applied as shown in the
following equation.

wi ← wi − η
∂E

∂wi
− ηλwi, (4.9)

where η is the learning rate, E is the error function, and λ is the decay parameter.
This error function E(w) needs to be minimized.

4.1.5 Ensemble

An ensemble in the field of data mining is an approach that combines multi-
ple predictive models with the aim of improving the predictive performance.
Multiple types of ensemble methods exist, the easiest method of which is ma-
jority voting in case of a classification problem. Here the method stacking has
been used. Stacking begins by training multiple individual models, which are
typically different types of models. These models are used to make predic-
tions on another part of the data. The ensemble model is trained using those
predictions and it learns how to best combine the predictions of the individ-
ual models. Preferably, the predictions resulting from the individual models
should have a correlation lower than 0.75, when a stacking method is applied.
The main idea of an ideally low correlation is that highly correlated poor classi-
fiers can override the answers of the better classifiers, which should be avoided.

The chosen ensemble method in this research is a random forest model. Since
all the inter-correlations are lower than 0.75, the input of this combiner are the
output predictions of all the individual models LR, RF, SVM, and NN. To make
the final model even more robust, some of the original input features can be
used as input in the ensemble model.

A final ensemble model resulting from combining several predictors generally
shows a better performance than the individual models, which is achieved by
mixing the strengths and diversity of the individual models together.

4.2 Evaluation measures

To evaluate the performance of the different models, evaluation measures are
needed. These measures are based on the confusion matrix, which uses the
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abbreviations below. Here, it is important to note that correctly predicting the
malignant cases is the aim of this research. Hence, predicting malignant is pos-
itive. When a binary prediction is made, four different types of outcomes are
possible.

• TP (True Positive): predicting malignant, while it is malignant

• FP (False Positive): predicting malignant, while it is benign

• TN (True Negative): predicting benign, while it is benign

• FN (False Negative): predicting benign, while it is malignant

Each of the predicted cases belongs to one of the four categories above. The
total number of occurrences in the categories are used to calculate the following
evaluation measures.

1. Accuracy: The proportion of correctly identified cases. The corresponding
equation is as follows.

Accuracy =
TP + TN

TP + FP + TN + FN
(4.10)

2. Sensitivity: The proportion of correctly identified positives with respect to
all positives, also called the true positive rate (TPR). The corresponding
equation is as follows.

Sensitivity =
TP

P
=

TP

TP + FN
(4.11)

3. Specificity: The proportion of correctly identified negatives with respect
to all negatives, also called the true negative rate. The corresponding
equation is as follows.

Specificity =
TN

N
=

TN

TN + FP
(4.12)

4. AUC: The area under the curve, which is referring to the receiver oper-
ating characteristic (ROC) curve. It is created by plotting the sensitivity
with respect to the false positive rate (FPR). The total area under the re-
sulting plotted line is the performance measure AUC. This false positive
rate is given by the following equation.

FPR = 1− specificity =
FP

TN + FP
(4.13)

The ROC curve is used to visualize the performance of a binary classifier.
It is the result of plotting the TPR on the y-axis versus the FPR on the x-
axis for every possible classification threshold (between 0 and 1). At each
classification threshold a proportion of the positives and a proportion of
the negatives is correctly predicted. By plotting these proportion values
for the different thresholds, the ROC curve is created in the graph. The
ideal situation is when the classifier can separate the two classes com-
pletely, resulting in a ROC curve like the green one in Figure 4.4. This op-
timal predictor will have an AUC value of 1. Obviously, in many real life
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situations this does not occur. A more realistic level of the ROC curve is
towards the blue curve, shown in this Figure 4.4. Subsequently, the AUC
value is calculated by taking the part of the area that is under the curve,
which can be at minimum 0 and maximum 1. The larger the area under
the ROC curve the better the classifier. The dashed line on the diagonal
represents the ROC curve of a random predictor, with a corresponding
AUC value of 0.5.

FIGURE 4.4: ROC curves

A note about this figure is that the smoothness of the curve is for demon-
stration purposes. The ROC results of the created models will look less
smooth.

In this research, the focus is on improving the accuracy. This value needs to be
maximized to optimize the models, which is the objective in the experimental
setup. However, another important value to monitor for this specific problem
is the number of false negatives. Predicting the nucleus as being benign, while
it actually is malignant is obviously the worst that can happen. Therefore, the
false negatives need to be as low as possible. In terms of the evaluation mea-
sures above, this means the sensitivity needs to be as high as possible.

4.3 Experimental setup

The models are implemented in R, a software package and programming lan-
guage designed for statistical and data analytical purposes.

In order to do a fair evaluation of a model with certain chosen features and
parameters, the data is divided into different sets. This division has split the
whole dataset in a training, validation, and test set of 60%, 20%, and 20% re-
spectively. Each of the four individual models, LR, RF, SVM, and NN, are
trained on the training dataset. These trained models are validated on the vali-
dation set, which will give the prediction accuracy for this particular set of data.
Since the ensemble model is based on the predictions of the other models, this
model cannot be trained on the training dataset. The predictions of the other
models, together with some features are added together in a new dataset. Let
us call this dataset, dataset S. Set S now has the same number of instances as
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the validation dataset. The ensemble model is trained on dataset S and has,
therefore, 66.67% less data to train on. Finally, all five models are tested on the
test dataset. These performance measures are compared and based on those
comparisons can be concluded which model is the best.

10-Fold cross validation is used during training each of the models. This vali-
dation procedure randomly divides the dataset into ten equally sized sets. Each
of the ten sets is used as a test set. The remaining nine sets are used for train-
ing and creating the classifier. The obtained ten estimates are averaged. This
method is repeated 10 times for each model being trained. The final 10-fold
cross validation accuracy is the average value of the 10 individual accuracies.
The accuracy resulting from the 10-fold cross validation should approximately
be the same as the accuracy resulting from testing on the validation set. More
specifically, these values can definitely not differ more than 10% from each
other, since this would indicate that the training or validation set is biased and
is not a good representative for the whole dataset. If they do not approximately
have the same value, the model might be overfitting or underfitting.

Besides splitting up the dataset, preprocessing of the data, feature selection,
and parameter selection are necessary steps to optimize the performances of
the models. The last step of this research is to compare the different models
using the evaluation measures resulting from testing on the test set.

4.3.1 Preprocessing data

For each of the models is investigated whether preprocessing the data will re-
sult in a better performance. The performance of some models increases when
all features are in a similar range. This can be achieved by normalizing or stan-
dardizing the data. Normalizing a dataset means all numeric features will be
scaled into the range [0,1]. This transformation on a certain feature X is done
by the following formula.

Xnew =
X −Xmin

Xmax −Xmin
(4.14)

Standardizing a dataset means transforming the features to have a mean of 0
and a variance of 1. This transformation is done by the following formula,
where µ is the feature mean and σ is the feature standard deviation.

Xnew =
X − µ

σ
(4.15)

By trial and error it has been decided to use data standardization for the RF,
SVM, and NN models. The data of both the LR and ensemble models do not
need any preprocessing.

4.3.2 Feature selection

Selecting adequate features is of great relevance for the overall classifier perfor-
mance. Different methods have been used to discover the feature importance
and subsequently do a suitable feature selection for each of the models. These
methods should be performed solely on the training dataset, since performing
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them on the whole dataset leads to prediction bias. The final selection of fea-
tures chosen for each model is based on trial and error of different combinations
of the output of these methods. The methods are explained below.

Medical background

A first approach to determine the important features is by considering the med-
ical side. The visual characteristics of a malignant cell nucleus compared to a
benign cell nucleus are obviously different. In literature the most distinguish-
ing visual features of malignant cells and nuclei are irregular size, irregular
shape, lower level of cells sticking to each other, cells compacted within smaller
area, haphazardly arranged cells, much darker color of the nucleus, and high
ratio of nucleus compared to the whole cell [4] [6]. The dataset only consists of
information about the size and shape. Since both are mentioned as important
in the literature, all features are considered significant based on the medical
analysis.

Correlation

Testing the correlation between the features is important, because including
highly correlated features might worsen the final model. Particularly because
many of the features in this specific problem are similar, features can be redun-
dant.

Recursive feature elimination

Recursive feature elimination (RFE) is a backward feature elimination that re-
sults in a list of features, which should be used as predictors. It uses a random
forest algorithm to test different combinations of features. The evaluation mea-
sure for these tests is the accuracy. The method starts with all the features (po-
tential predictors) in the first test model. The test results in the corresponding
accuracy and the feature importance ranking. The lowest ranked features are
removed from the next models to be tested. This continues with all the subse-
quent models. The subset of features that results in the highest accuracy is the
output of the RFE method.

If one feature is eliminated after each model test, this has a corresponding fea-
ture ranking in each step. The features that are ranked the highest, and there-
fore eliminated last, are individually not necessarily the most relevant. Only
together this subset of features is optimal in some sense [9]. Therefore, remov-
ing several features at a time might be preferential.

Genetic algorithm

Genetic algorithm (GA) also has a list of features as result, which should be
used as predictors. However, the exact list might be different and is generated
differently. The approach of the genetic algorithm is inspired by Darwin’s evo-
lutionary principles of natural selection. The aim of this heuristic is to optimize
a population of individuals. In each iteration, the fitness of each individual is
determined, after which the genetically fittest individuals are designated to be
the ones producing the next generation. Eventually, after a specified number
of iterations the ’fittest’ individuals remain. This concept can also be applied to
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non-evolutionary purposes, like feature selection in machine learning.

In case of usage for feature selection, the individuals are subsets of features.
These are indicated as binary vectors, 1 meaning the corresponding feature is
used and 0 meaning the corresponding feature is not used [5]. The fitness val-
ues of the individuals are calculated using an appropriate performance mea-
sure, which in this case is the classification accuracy. The algorithm selects two
subsets of features, randomly picks a point to split the corresponding binary
vectors, adds the first part of one vector to the second part of the other vec-
tor (and vice versa), and finally randomly mutates the resulting binary vectors
according to predetermined probabilities of crossover and mutation.

4.3.3 Parameter selection

Also parameter tuning is needed for each of the five models in order to op-
timize the performances. In other words, several combinations of parameter
values are tested to find the optimal parameter settings. R has two options to
systematically search for the optimal parameters, which are as follows.

1. Tunelength. This method automatically tries several various parameter
values. This is called random search. The tunelength indicates the num-
ber of different randomly generated values for each model parameter.

2. Tunegrid. This method needs human input about which parameter values
for each parameter need to be tested. This is called grid search.

The result of both methods is the combination of parameter values that have the
best performance. Here, the method tunelength is used for RF and SVM and
tunegrid is used for NN. The setting for tunegrid is a certain set of parameter
values. The final settings used for tuning are given below.

• Logistic regression: no parameters to be tuned

• Random forest: tunelength = 9
ntree = 250

• Support vector machine: tunelength = 9
kernel = svmRadialSigma

• Neural network: decay = {0.5, 0.1, 0.01, 0.001}
size = {6, 7, 8, 9, 10, 11, 12}

• Ensemble: no parameters are tuned

For random forest this means that the parameter ntree, which is the number
of trees to grow, is set to a fixed value of 250. We chose this value, because
experiments have shown that more trees do not significantly improve the per-
formance. The parameter mtry is the number of variables randomly sampled
as candidates at each split. The final value of mtry is determined by taking one
of the nine randomly chosen values that has the best performance.

The support vector machine is used with the Gaussian Radial Basis kernel func-
tion and has the two parameters sigma and cost. Nine random values for cost
and six random values for sigma are drawn and all combinations are tested.
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That is the result of choosing a tunelength of nine in combination with kernel
’svmRadialSigma’. The parameter sigma is the inverse kernel width. The pa-
rameter cost is the cost of constraints violation, which is the C-constant of the
regulation term in the Lagrange formulation.

Since this problem does not have a high complexity, a neural network with one
hidden layer is sufficient. Therefore, this parameter is fixed to one. The remain-
ing parameters are determined using tunegrid. The parameter decay, which is
the term in the weight update rule that causes the weight to decay in propor-
tion to its size and avoids overfitting, has been tried with the values 0.5, 0.1,
0.01, and 0.001. The parameter size, which is the number of nodes in the hid-
den layer, has been tried with the values 6, 7, 8, 9, 10, 11, and 12.

The parameters that should be determined for the ensemble are the same as for
the random forest model, ntree and mtry. However, these parameters are set to
a fixed value of 500 and 2, for ntree and mtry respectively. The number of vari-
ables randomly sampled as candidates at each split is equal to 2, because this is
the default value when seven features are used. The number of trees should be
chosen carefully, since a high performance of the individual models might lead
to overfitting when the number of trees is very high. However, taking 50 trees
caused a lower accuracy than taking 500 trees. Therefore, this higher number
of trees is chosen.

These tuning settings lead to the optimal parameter values. Those optimal pa-
rameter values are used in the final models, which will be listed in Section 5.2.

5 Results

In this section, the obtained results of the used models are presented. These
results will be evaluated in Section 6.

5.1 Chosen features

After performing several feature selection methods and trying several subsets
of features, the final classifiers are constructed using the following subsets of
features.

• Logistic regression: perimeter + concavePoints + radiusSE +
fractalDimensionSE + textureWorst +
areaWorst + smoothnessWorst +
compactnessWorst
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• Random forest: areaWorst + concavePointsWorst +
perimeterWorst + radiusWorst +
concavePoints + textureWorst +
texture + concavityWorst + areaSE +
concavity + area + smoothnessWorst +
radius + perimeter + symmetryWorst +
compactnessWorst + perimeterSE +
radiusSE + compactness + smoothness +
concavitySE + fractalDimensionWorst

• Support vector machine: all original features are used

• Neural network: texture + perimeter + concavePoints +
radiusSE + perimeterSE + fractalDimensionSE
+ textureWorst + areaWorst +
smoothnessWorst + compactnessWorst

• Ensemble: LRprediction + SVMprediction +
RFprediction + NNprediction +
smoothnessWorst + texture + areaWorst

The support vector machine model does not need any prior feature selection.
The performance of the model does not significantly improve when selected
features are used.

The final ensemble model is constructed with three original features next to the
predictions of the four individual models. One negative consequence of using
three extra features is a lower AUC value. However, the three most important
features are still used because this should make the model more robust.

5.2 Parameter settings

The final parameter values are the result from either the tunelength or tunegrid
procedure within R. These values are as follows.

• Logistic regression: -

• Random forest: ntree = 250
mtry = 2

• Support vector machine: kernel = RBF
sigma = 0.023178803
cost = 2
(number of support vectors = 75)

• Neural network: size = 9
decay = 0.01

• Ensemble: ntree = 500
mtry = 2
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5.3 Performances

The five models are evaluated on the test set using the selected features and
the optimal parameter values mentioned in Sections 5.1 and 5.2. The validation
set and test set performance accuracies are compared with the 10-fold cross
validation accuracies in Section 5.3.1 to check the overall performance of the
models. In addition, the performances between the models are compared in
Section 5.3.2.

5.3.1 Reliability of models

In Table 5.1 the 10-fold cross validation, validation set, and test set accuracies
are presented. It is important for each of the models to have these three val-
ues close to each other, as explained in Section 4.3. From these results can be
concluded that the values are significantly close enough, and therefore reliable.
The blue colored cells in the table represent the best performance value for all
three the cross validation, validation set, and test set. Thus, the support vector
machine model has the best cross validation performance, the random forest
has the best performance on the validation set, and both the support vector
machine and ensemble model have the best performance on the test set.

Model 10-fold CV Validation set Test set

LR 0.9664 0.9646 0.9735
RF 0.9589 0.9823 0.9735

SVM 0.9772 0.9735 0.9823
NN 0.9717 0.9735 0.9735

Ensemble 0.9734 - 0.9823

TABLE 5.1: Accuracies of 10-fold cross validation & validation
set & test set

The reliability of the model performances can also be tested with confidence
intervals. A confidence interval can determine whether the achieved perfor-
mance value can be trusted, since it shows which values the mean accuracy will
be between in 95% of the cases. The confidence intervals are originating from
the 10-fold cross validation. Since the 10-fold cross validation is performed
10 times, it produces 100 accuracy values. The confidence intervals are deter-
mined using bootstrapping. Based on these 100 values, 1000 times a sample of
100 accuracies is made with replacement. For each sample the mean is calcu-
lated, resulting in 1000 times a mean accuracy value. Then, the 2.5% and 97.5%
quantiles are taken from these 1000 values, which results in the 95% confidence
intervals shown below.

• Logistic regression: [0.9606, 0.9721]

• Random forest: [0.9529, 0.9648]

• Support vector machine: [0.9728, 0.9815]

• Neural network: [0.9656, 0.9773]

• Ensemble: [0.9654, 0.9814]
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From these intervals, it can be concluded that the 10-fold cross validation ac-
curacies are reliable, since the intervals are narrow. Hence, the cross validation
accuracy is accurate. This, together with the cross validation accuracy, valida-
tion set accuracy, and test set accuracy being significantly close to each other,
means the overall results are accurate.

5.3.2 Model comparison

The five models are compared based on the accuracy, sensitivity, specificity,
and AUC. The accuracy has been used for optimizing the models as good as
possible. After determining the final parameters and features, all the models
are tested on the test set. The corresponding performance values are shown in
Table 5.2.

Model Accuracy Sensitivity Specificity AUC

LR 0.9735 0.9524 0.9859 0.996
RF 0.9735 0.9286 1 0.9908

SVM 0.9823 0.9524 1 0.996
NN 0.9735 0.9286 1 0.9946

Ensemble 0.9823 0.9524 1 0.9856

TABLE 5.2: Model performances on test set

Again, the blue colored cells indicate for each performance measure which
model performs best. All values are close to each other, and many are even
the same. This becomes more clear when visualizing it in a bar chart like Fig-
ure 5.1. A reason for these similar performance values, which should be taken
into account, is the number of instances in the test set. A test set containing only
113 instances and models performing quite similar will often result in the same
performance values. More variation would occur if the data set was larger. A
performance accuracy of approximately 0.9823 means in this case that 2 out of
113 are misclassified. Having a dataset of 500 instances could have 8 or 9 mis-
classified to approximately get the same accuracy.

FIGURE 5.1: Model performances on test set

There is not one model with overall distinctive performances. One might argue
that the models support vector machine and ensemble are the most remarkable
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ones, since they have the highest performance measure in 4⁄4th and 3⁄4th of the
time respectively. However, all performances are close to each other. Also the
performances of testing on the validation set shows similar performance val-
ues. These values are presented in Appendix A. Moreover, those results even
show that different models have the best performance values. The accuracy of
the random forest model resulting from testing on the validation set is, for ex-
ample, higher than the accuracy of the support vector machine. However, this
is the other way around for the accuracy from testing on the test set.

Other visualizations of the performance values of the validation and test set are
presented in Appendix A.

6 Evaluation

Since the models are almost similar in their performances, it is interesting to
evaluate the wrongly predicted cases in this section. The accuracies resulting
from testing on the test set either have a value of 0.9735 or 0.9823, which corre-
sponds to 3 or 2 cases misclassified, respectively. For evaluation purposes, the
cases in the test set are numbered and the misclassified cases per classification
model are presented below.

• Logistic regression: {18, 28, 88}

• Random forest: {18, 28, 78}

• Support vector machine: {18, 28}

• Neural network: {18, 28, 30}

• Ensemble: {18, 28}

Clearly, cases 18 and 28 are hard to predict, since all the models predict these
two wrong. Both of them are false negatives: they are actually a malignant cell
nucleus, but are predicted as benign. The worst situation is saying that a tumor
is benign, when it is actually malignant. These false negatives should, there-
fore, be minimized.

Combining all four individual models together in the ensemble obviously can
prevent the occurrence of wrongly predicting the cases 30, 78, and 88. This does
not apply to the cases 18 and 28, which is why these should be further analyzed
in future research. It could be examined whether these two are hard to predict
because of possible abnormal feature values or because of some other reason.
What are the characteristics? What is the ’distribution’ of the wrongly predicted
cases? Is it possible to adjust the data in order to predict them correctly? This
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specific investigation to identify the wrong predictions is not in the scope of this
research, but is definitely needed in future research to optimize the models.

7 Conclusion

From the results it can be concluded that all five models obtain very promising
performances in classifying the possible breast cancer. All models are opti-
mized based on the accuracy, hence the final model should at least have the
highest accuracy. Selecting the best-suited model for this specific problem also
depends on the sensitivity value, because it is important to have a low number
of false positives. The tumor cell nuclei are best predicted by the support vector
machine and the ensemble. Both have the highest performance values for ac-
curacy, sensitivity, and specificity. However, the support vector machine is the
model which also has the highest value for the AUC. Therefore, the support
vector machine model is recommended to use for this specific problem.

Since all the models easily have performance values over 90%, it can be con-
cluded that the features have a high predictive power. This not only might be
a reason why all models have such high but also significantly similar perfor-
mances. Thus, during further research into this problem, all five models are
suitable to optimize towards extremely high performance values.

All five models outperform the visual diagnosis of a human being, which is
about 90%. Especially the support vector machine and the ensemble models
can be very useful for determining and detecting malignant tumor cells in this
dataset. These efficient models make very accurate decisions, which is why
these decisions are encouraged to support the final decision of the doctors next
to the visual diagnosis. Experience and expertise are always important to main-
tain in the decision-making process. Despite the high performances of the mod-
els, they should not replace the doctors but only support their final decision.

8 Discussion

Even though the performance of the models outperforms the visual diagnosis,
there are still improvements to be made. As is highlighted in Section 2 ’Related
work’, other researches have similar or even better performances.

The most important improvement to be made is decreasing the number of false
negatives. The models have little difficulties with correctly predicting the ma-
lignant cells (positives). The number of false negatives is highest compared to
the false positives, while these are most important to predict correctly. There-
fore, the models should be further developed for a higher malignant cells de-
tection. One approach to achieve a decrease in the number of false negatives
could be to optimize the models according to the sensitivity instead of the ac-
curacy, since decreasing the number of false negatives results in an increasing
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sensitivity.

A different approach to improve the models is to analyze the incorrectly pre-
dicted cases, as already mentioned in Section 6. Examining the wrong pre-
dictions could clarify why this part of the data is so hard to predict. Do they
have some specific connection? Do they have the same characteristics? If those
questions can be answered with yes, that means the models can be adjusted to
handle these exceptions.

There are also other issues that might have affected the performances. The five
models are suitable to be compared, because all classifiers are trained with the
same training set and tested with the same test set. However, comparing the
five models with each other also has its disadvantages for this specific problem.
One issue to take into account is the size of the total dataset, which is relatively
small. Since the dataset needed to be divided into training, validation, and
test sets, the test set does not contain a lot of instances. Therefore, there is a
strong probability that the models will have the same accuracy. Hence, in fu-
ture research it would be advisable to collect more data to make a more accurate
distinction between the model performances.
A larger dataset also has a positive effect on the training performances of the
models. Especially the ensemble has little data to train with, since it should be
trained on the predictions of the other four individual models.

Another issue is the dependence of the final performance values on the specific
training and test set. One test set might be easier to predict than the other. Per-
haps testing on another test set would have resulted in higher performances.
Those different performances might have resulted in another model having the
highest values, which was actually the case with testing on the validation set.
The fact that the outcomes are close to each other, and the different outcomes
of testing on the test and validation set, means there is not one model which is
obviously performing best. Again, the distinctions between the model perfor-
mances might be bigger and clearer when larger data sets were used.

One last discussion point is the AUC value of the ensemble. This value is lower
than the AUC value of all the other models, while it is expected to be at least as
high as the best performing model. The reason for this is unclear and not part
of this research. Therefore, it is advised to address in future research in order
to improve the model performances.
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Appendix A

FIGURE A.1: Specifying the boundary of each
cell in digitized image [10]

Model Accuracy Sensitivity Specificity AUC

LR 0.9646 0.9286 0.9859 0.9953
RF 0.9823 0.9762 0.9859 0.9926

SVM 0.9735 0.9762 0.9718 0.992
NN 0.9735 0.9524 0.9859 0.979

TABLE A.2: Model performances on validation set

FIGURE A.3: Accuracies of 10-
fold cross validation & validation

set

FIGURE A.4: Model perfor-
mances on validation set
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FIGURE A.5: ROC curve of lo-
gistic regression model

FIGURE A.6: ROC curve of
random forest model

FIGURE A.7: ROC curve of
support vector machine model

FIGURE A.8: ROC curve of
neural network model

FIGURE A.9: ROC curve of en-
semble model

33



References
[1] Hussein A Abbass. “An evolutionary artificial neural networks approach

for breast cancer diagnosis”. In: Artificial intelligence in Medicine 25.3 (2002),
pp. 265–281.

[2] Mehmet Fatih Akay. “Support vector machines combined with feature
selection for breast cancer diagnosis”. In: Expert systems with applications
36.2 (2009), pp. 3240–3247.

[3] David Carrasco. Random Forest - Modeling the Titanic voyage with R. May
2017. URL: https://blog.datatons.com/2017/05/16/random-
forest-titanic-voyage/.

[4] Characteristics of Benign and Malignant Tumors. 2018. URL: http://www.
healthhype.com/characteristics-of-benign-and-malignant-
tumors.html.

[5] K.M. Faraoun and A. Rabhi. “Data dimensionality reduction based on
genetic selection of feature subsets”. In: (2006).

[6] Features Of Malignant Cells. URL: http://ozradonc.wikidot.com/
rb:features-of-malignant-cells.

[7] Fractal Dimension. 2003. URL: http://paulbourke.net/fractals/
fracdim/.

[8] M C M de Gunst. Statistical models. 2013.

[9] Isabelle Guyon et al. “Gene Selection for Cancer Classification using Sup-
port Vector Machines”. In: Machine Learning 46.1 (Jan. 2002), pp. 389–422.
ISSN: 1573-0565. DOI: 10.1023/A:1012487302797. URL: https://
doi.org/10.1023/A:1012487302797.

[10] Image showing Xcyt in use. URL: http : / / pages . cs . wisc . edu /
~street/saves/xcyt1.gif.

[11] Murat Karabatak and M Cevdet Ince. “An expert system for detection of
breast cancer based on association rules and neural network”. In: Expert
systems with Applications 36.2 (2009), pp. 3465–3469.

[12] Eric Kim. “Everything You Wanted to Know about the Kernel Trick”. In:
(2015). URL: http://www.eric-kim.net/eric-kim-net/posts/
1/kernel_trick_blog_ekim_12_20_2017.pdf.

[13] KWF en borstkanker - KWF Kankerbestrijding. 2018. URL: https://www.
kwf.nl/kanker/borstkanker/pages/default.aspx.

[14] Alexis Marcano-Cedeño, Joel Quintanilla-Domnguez, and Diego Andina.
“WBCD breast cancer database classification applying artificial metaplas-
ticity neural network”. In: Expert Systems with Applications 38.8 (2011),
pp. 9573–9579.

[15] Tingting Mu and Asoke K Nandi. “Breast cancer detection from FNA us-
ing SVM with different parameter tuning systems and SOM–RBF classi-
fier”. In: Journal of the Franklin Institute 344.3 (2007), pp. 285–311.

34

https://blog.datatons.com/2017/05/16/random-forest-titanic-voyage/
https://blog.datatons.com/2017/05/16/random-forest-titanic-voyage/
http://www.healthhype.com/characteristics-of-benign-and-malignant-tumors.html
http://www.healthhype.com/characteristics-of-benign-and-malignant-tumors.html
http://www.healthhype.com/characteristics-of-benign-and-malignant-tumors.html
http://ozradonc.wikidot.com/rb:features-of-malignant-cells
http://ozradonc.wikidot.com/rb:features-of-malignant-cells
http://paulbourke.net/fractals/fracdim/
http://paulbourke.net/fractals/fracdim/
http://dx.doi.org/10.1023/A:1012487302797
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1023/A:1012487302797
http://pages.cs.wisc.edu/~street/saves/xcyt1.gif
http://pages.cs.wisc.edu/~street/saves/xcyt1.gif
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick_blog_ekim_12_20_2017.pdf
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick_blog_ekim_12_20_2017.pdf
https://www.kwf.nl/kanker/borstkanker/pages/default.aspx
https://www.kwf.nl/kanker/borstkanker/pages/default.aspx


[16] Gouda I Salama, M Abdelhalim, and Magdy Abd-elghany Zeid. “Breast
cancer diagnosis on three different datasets using multi-classifiers”. In:
Breast Cancer (WDBC) 32.569 (2012), p. 2.

[17] Yongchao Wang and Juanying Xie. “Granular Computing Combined with
Support Vector Machines for Diagnosing Erythemato-Squamous Diseases”.
In: Health Information Science. Ed. by Siuly Siuly et al. Cham: Springer In-
ternational Publishing, 2017, pp. 56–68. ISBN: 978-3-319-69182-4.

[18] William H Wolberg et al. “Computer-derived nuclear features distinguish
malignant from benign breast cytology”. In: Human Pathology 26.7 (1995),
pp. 792–796.

35


	Preface
	Abstract
	Introduction
	Related work
	Data
	Description
	Analysis

	Methodology
	Predictive models
	Logistic regression
	Random forest
	Support vector machine
	Artificial neural network
	Ensemble

	Evaluation measures
	Experimental setup
	Preprocessing data
	Feature selection
	Parameter selection


	Results
	Chosen features
	Parameter settings
	Performances
	Reliability of models
	Model comparison


	Evaluation
	Conclusion
	Discussion
	Appendix A
	References

