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Abstract

Vancomycin is widely used for infections with methicillin-resistant Staphylococcus
aureus (MRSA) [1] and therefore highly evaluated in research. However, little re-
search has been done to the use of Long Short-Term Memory (LSTM) networks for
predicting the vancomycin serum concentrations.

In this research, an LSTM model was built to predict the vancomycin serum con-
centrations of the first 24 hours after a vancomycin drug administration. Each dose
contains a history; the measurements since the previous dose, and a future; the van-
comycin serum concentrations for the next 24 hours. Therefore, the input of the
model is a set of sequences of measurements of variable length and the output of the
model is a single sequence with 48 time steps (30 minutes per time step).

The model was trained on 241 patients containing 3,231 vancomycin doses in
total and tested on 564 patients containing 6,733 doses in total. Since the training
data contains only 749 observations of the vancomycin serum concentrations, for
most predictions the real serum concentration was unknown. To prevent unrealistic
predictions, not only the error on the observations was calculated, but also an error
on the shape of the predicted sequence in which extra fluctuations and negative
predictions are penalized. NSGA-II, a Multi-objective Evolutionary Algorithm, was
chosen to minimize these two error functions.

A grid search was performed on a subset of the training data to find the best
model parameters. The final model was applied to the basic feature set (time step,
time since the previous dose, number of already administrated doses, current dose
size, serum creatinine concentration, admission body weight, admission age and
sex) with 4 neurons in the first LSTM layer and 2 in the second.

The final model was evaluated against a benchmark, which was equal to the
mean serum concentration (16.5 mg/L). The results showed that the LSTM model
was not significantly better than the benchmark for the error function on the ob-
served vancomycin serum concentrations. The most important reason for the low
performance suggested in this research is the low number of observed vancomycin
serum concentrations in the training data. Therefore, the model was not able to de-
tect the correlations between the features and the serum concentrations correctly.

Keywords: Long Short-Term Memory network, Evolutionary Algorithm, NSGA-II,
Therapeutic Drug Monitoring, Vancomycin, Pharmacokinetics, critically ill patients,
Deep Learning, Peak and Trough Levels
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1 Introduction

Vancomycin serum levels need to be within a certain range for patients at the Inten-
sive Care Units (ICU) of hospitals. Vancomycin is widely used for infections with
methicillin-resistant Staphylococcus aureus (MRSA) [1], which is a bacteria infection.
When the concentration of the medicine is too high, it is harmful to the patient, but
when it is too low it is not effective.

Choosing optimal doses requires knowledge of pharmacokinetics (the process
of absorption, distribution, metabolism and excretion of drugs within the human
body) and pharmacodynamics (the drug action: how the body is affected by the
drug). According to Marsot et al., several pharmacokinetic studies in various patient
populations use in particular nonlinear mixed-effects modelling, a commonly used
population-based modelling approach, to identify the covariates that could influ-
ence the dose-concentration relationship [2]. In 2000, Tolle et al. suggested artificial
neural networks as an effective replacement for those "complex computation mod-
els and/or cumbersome statistical prediction applications" [3]. They concluded that
their predictions for concentrations of the drug tobramycin by a neural network were
as good as or better than the predictions by statistical analysis methodologies done
with NONMEM R©, the current industry standard application for pharmacokinetic
data analysis [3].

In recent studies, the effectiveness of Machine Learning models for predicting
serum concentration levels is performed for vancomycin too. For example, Hu et al.
propose Machine Learning models (SVM and M5) to predict the vancomycin peak
(maximum concentration after dose administration, approximately examined after
1-2 hours) and trough (minimum concentration before next dose is administrated)
concentrations [4]. Since they limit their research to the peak and trough concentra-
tions, they leave out all other observations.

The goal of this research is to predict the vancomycin serum concentration in
the first 24 hours after administration at each moment in time, not limited to the peak
and trough concentrations. The motivation for this study is to give a complete insight
into the pharmacokinetics of vancomycin by a model for which no prior knowledge
is required and to investigate promising Machine Learning techniques for pharma-
cokinetic analysis.

For this research, a data set from the VU medical center (VUmc) in Amsterdam
was made available, which contains information about 800 patients. For each pa-
tient, there is information about the administrated vancomycin dose and the mea-
sured vancomycin serum concentration level. The number of doses and the number
of measurements are variable among the patients, as is the time between the doses
and between the measurements. Typical decisions made by clinicians include the
daily dose of the medicine and the time interval between administrations [4].

In this paper, a Long Short-Term Memory network is used to predict the serum
concentration level of vancomycin. This model takes time dependency into account:
it "remembers" when the doses were given and is able to detect correlations in fea-
tures that change over time. Therefore is LSTM a promising model for predicting
drug concentration levels of critically ill patients at the intensive care.

Because of the data quantity and structure, the model cannot be trained with
back propagation, which is the usual way of training a neural network. This will be
explained in more detail in Section 5.4. An alternative to finding the weights of the
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network that is used in this research is an Evolutionary Algorithm (EA), as suggested
by Risi et al. in 2015 [5] and Salimans et al. in 2017 [6].

To conclude if the proposed model is able to learn the change in vancomycin
serum concentration after administration of the antibiotic, the predictions of the
model are compared with the average serum concentration. This results in the fol-
lowing concrete research question:

Is it possible to predict vancomycin serum concentrations more accu-
rately with a Long Short-Term Memory network than taking the average
serum concentration?

In the next chapter, some medical background is given and the current model
is explained. After those preliminaries, we dive into the related work that is done
in Deep Learning and in the medical field. In addition, we look at applications of
Evolutionary Algorithms. In Section 4, the data is analysed and transformed. After
that, the LSTM model and the Evolutionary Algorithm are explained in Section 5.
The experimental setup is given in Section 6 and the results are shown in Section
7. Finally, the results are discussed and conclusions are made in Sections 8 and 9
respectively.
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2 Preliminaries

2.1 Therapeutic Drug Monitoring

When there is a very narrow line between the effectiveness of medicine and when
it becomes toxic (a narrow therapeutic window), it is very important to apply Ther-
apeutic Drug Monitoring (TDM). TDM refers to individualized drug doses in order
to keep the drug concentration level within the therapeutic window [7]. In TDM
knowledge of pharmacokinetics (PK) and pharmacodynamics (PD) is combined. PK
is the study of the processes of absorption, distribution, metabolism, and excretion
of drugs within the human body. In contrast, PD is the drug action: how the body
is affected by the drug. The goal of TDM is to use appropriate concentrations of
difficult-to-manage medications to optimize clinical outcomes in patients in various
clinical situations [8].

2.2 Pharmacokinetics

The serum concentration of the drug depends on when the dose was given to the
patient. First, there will be a peak (maximum concentration level after drug adminis-
tration) and after that, the concentration will decrease until a new dose is given. The
minimal serum concentration reached before a new drug administration is called the
trough concentration. Figure 2.1 makes this more clear.

FIGURE 2.1: Pharmacokinetic parameters. Simulated vancomycin
concentration versus time graph in hypothetical 60-year-old male
(bodyweight 70 kg, creatinine 80 µmol/L) following 2 g intravenous
(IV) loading dose and 1 g IV 12-hourly. Cmax, maximum concentra-
tion; Cmin, minimum concentration; AUC0−24, area under the curve

(24-h dosing interval). [1]

According to Rybak et al., the reference range for vancomycin trough levels is
10-20 µg/ml (15-20 µg/ml for complicated infections) and the reference range for
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vancomycin peak levels is 25-50 µg/ml [9]. The vancomycin peak levels are col-
lected one or two hours after completion of the intravenous vancomycin dose, and
vancomycin trough levels are collected just before the next dose is given [10].

Besides peak and trough, half-life is another important medical term. A serum half-
life is the time that is required to eliminate half of the initial concentration of the
medicine. Burton et al. stated: "in patients with normal renal function, the usual
serum half-life of vancomycin is 6 to 10 hours, whereas in patients with end-stage
renal disease, the half-life may approach 7 days" [11]. Typically the creatinine clear-
ance and glomerular filtration rate (GFR) are measured in order to estimate the renal
function [12, 13].

2.3 NONMEM R©

NONMEM R© is the standard for predicting PK parameters [3]. This is also the com-
puter program that is used by the VUmc. NONMEM R© is designed to fit general sta-
tistical (nonlinear) regression-type models to data [14], such as the nonlinear mixed-
effects model. It is widely used for administration of drugs. This method "is based
on the principle that the individual pharmacokinetic parameters of a patient popu-
lation arise from a distribution that can be described by the population mean and
the interindividual variance" [15].
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3 Related Work

3.1 Nonlinear mixed-effects models

As already mentioned in the introduction, nonlinear mixed-effects models are used
in several pharmacokinetic (PK) studies. A nonlinear mixed-effects model incorpo-
rates both fixed effects as random effects. Fixed effects are parameters that are based
on the population and are assumed to stay the same for each prediction. In contrast,
random effects are specific for each individual of the population. [16]

The advantage of nonlinear mixed-effects models is that they can cope with small
samples sizes and sparse data sets [16]. However, a disadvantage is that you need
to specify a structural model, which could be a one-, two-, or multicompartment
model. Such a compartment model defines how the drug is transmitted within the
human body. The number of compartments in the model represent the number of
sections in the body where the concentration is assumed to be uniformly equal.

Marsot et al. reviewed 25 articles about the pharmacokinetics of vancomycin, which
all use a nonlinear mixed-effects model [2]. The scope of 15 articles was pediatric
patients and the scope of the other 10 articles was adults. They concluded that "in
neonates and infants, the pharmacokinetics of vancomycin were mainly described
by a one-compartment model, whereas in adults, a two-compartment model was
preferentially used" [2]. Furthermore, many covariates were tested, but in almost all
models were only three covariates found to be important: age, creatinine clearance
and body weight.

In 2011, Roberts et al. suggested a nonlinear mixed-effects model, which con-
sisted of a one-compartment linear model with combined proportional and additive
residual unknown variability [17]. The model was implemented in NONMEM R©.
They used a bootstrap approach in which the parameters creatinine clearance (L/h)
and the volume of distribution(L/kg) were bootstrapped. The volume of distribution
was described by the total body weight and clearance by 24-hour urinary creatinine
clearance, normalized to body surface area. Their scope was the same as the scope
of this research: a population of critically ill patients. They showed promising re-
sults with an r2 of 0.60. Therefore, this model is one of the models VUmc is currently
using to predict the vancomycin serum concentrations.

3.2 Machine Learning

Various Machine Learning models are already used in the medical domain. For ex-
ample, Long Short-Term Memory (LSTM) networks are used to predict heart failure
onset by Choi et al. [18] and to classify 128 diagnoses by Lipton et al. [19] in 2017.
According to Lipton et al., clinical medical data, especially in the Intensive Care
Unit (ICU), consist of a multivariate time series of observations. They transformed
the data by re-sampling the time series to an hourly rate and used forward- and
back-filling to fill the gaps created by the window-based re-sampling [19].

Less Machine Learning models are used to predict vancomycin serum concen-
trations. One research was already mentioned in the introduction: Hu et al. use a
support vector machine (SVM) and a model-tree-based regression technique (M5),
with and without bagging, to predict patients’ peak and trough concentrations [4].
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For their study, data of 1,099 clinical cases were collected from a major tertiary med-
ical center in southern Taiwan. The benchmark in their research consists of estimated
peak and trough concentrations of a one-compartment model. According to their con-
clusions, both models achieve a prediction accuracy significantly higher than that by
the one-compartment model.

Machine Learning techniques are more extensively used for predicting tobramycin
concentration levels, which is another medicine for the treatment of bacterial infec-
tions. For example, Tolle et al. [3] and Chow et al. [20] estimated the concentration
levels of the drug tobramycin by applying Artificial Neural Networks. Both papers
used a statistical regression-based model in NONMEM R© as a benchmark. For the
study of Tolle et al. [3], 622 data points were available, each containing a serum
concentration level of the drug tobramycin. The best results were obtained for pre-
dicting peak and trough concentrations separately. Their final model was better than
the benchmark model, however, the difference was not significant. In contrast, the
study of Chow et al. did show a significant difference. They concluded that their
model was better than NONMEM R©because the average absolute errors of the Neu-
ral Networks were 33.9% and 37.3% and 39.9% for NONMEM R© [20].

Furthermore, Brzaković et al. predicted serum concentration levels of the drug
topiramate [21]. They used Counter-Propagation Artificial Neural Networks (CPANNs)
combined with a Genetic Algorithm (GA). Their scope was limited to 78 adult epilep-
tic patients with 118 topiramate serum levels in total. In addition, those patients
were at least 7 days on stable dosing regimen and therefore steady-state was as-
sumed. They concluded that topiramate dose, renal function (eGFR) and carba-
mazepine dose significantly influence the topiramate serum levels by respectively
a relative importance of 0.7500, 0.2813 and 0.0625.

A lot research is done to the PK of several medicines. However, we did not find
any PK analysis with a LSTM network, which makes this research special.
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4 Data Exploration and
Transformation

The data used in this research is supplied by the VU medical center (VUmc) in Am-
sterdam. The data contains records about the admission of a patient at the ICU (one
record per patient) and records of measurements over time (zero, one or multiple
per patient). There is data available about 1,083 patients in total.

4.1 Filters

278 unique patients needed to be filtered out of the dataset. They were removed
because at least one of the following conditions held, see Table 4.1.

Reason
Number of

patients
Dose was not intravenous 29 (2.7%)
Extreme low dose administrated (less than 100 mg) 11 (1.0%)
Extreme high dose administrated (more than 9,999 mg) 1 (0.1%)
No observed vancomycin serum concentrations 127 (11.7%)
Vancomycin serum concentration observed before first dose 170 (15.7%)
Younger than 18 4 (0.4%)
Missing value for gender 12 (1.1%)
The body length (cm) smaller than the body weight (kg) 20 (1.8%)

TABLE 4.1: Applied filters.

Since this research is specific about predicting the vancomycin serum concentra-
tion after intravenous dose administration, all patients with non-intravenous doses
were removed from the dataset. According to the intensivists of the VUmc, doses
of less than 100 mg are very likely falsely marked as intravenous and are therefore
removed too.

The third condition (extreme high doses) was used, because such high doses are
very unlikely to happen according to the intensivists of the VUmc, and it is not clear
if they actually happened, happened with another quantity or did not happen at all.

Fourthly, since we aim to predict the serum concentrations, all patients without
observations are removed from the dataset, because we cannot evaluate the perfor-
mance of the model on these patients. Besides, patients with an observed serum
concentration value before the first dose was given are removed too, because this
indicates a previous administrated dose which is not in the dataset.

On top of that, patients younger than 18 are removed too because there are only
a few (4) and the pharmacokinetics of vancomycin can be different in children [22].
In addition, patients with a missing value for sex are excluded from the dataset,
because according to Beierle et al. it is "undoubtedly necessary" to include the dif-
ference between men and women in the clinical drug development process [23].

Finally, there were some errors made in the body length and body weight fields
of the dataset. Since it is very unlikely to have a smaller body length (cm) than
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body weight (kg), and since the size of the body does affect the pharmacokinetics of
vancomycin [23], these patients are removed from the dataset too.

After applying the above mentioned filters, 805 patients are left in the dataset.

4.2 Feature overview

83 variables are included in the provided dataset of the VUmc. To decrease the
number of features for the model, possibly relevant features were selected in collab-
oration with the intensivists of the VUmc. This resulted in a set of 12 features to
predict 1 target feature (vancomycin serum concentrations), see Tables 4.2 and 4.3
for an overview.

Binary features
Attribute name Yes No
Sex = male 522 64.75% 283 35.25%

TABLE 4.2: Basic statistics of the binary features.

Numerical features

Attribute name unit mean
standard
deviation

range

mean
number

of records
per

patient
Age years 62.64 14.66 18 - 92 1
Body weight kg 78.33 14.66 35 - 160 1
Vancomycin dose mg 912.75 245.86 100 - 2000 16.77

Serum creatinine
µmol/L 128.10 95.03 1 - 1192 37.36

CVVH-substitute ml/h 1787.83 1048.55 0 - 4700 7091.83
CVVH-filtrate ml 168.96 137.52 0.07 - 2660 159.56
Dialysis filtrate ml 1343.09 903.73 40 - 4000 2.58
Urine volume ml 132.49 111.89 1 - 4000 375.51
Glasgow Coma Scale 8.70 3.84 3 - 15 31.20
PEEP cmH2O 8.86 3.28 0 - 38 4560.50
O2% 43.79 11.56 0 - 205 4566.40
Vancomycin serum
concentration

mg/L 16.12 8.67 1.1 - 77.4 2.84

TABLE 4.3: Basic statistics of the numerical features.

From the 12 features are the three features sex, age and body weight recorded at
the moment of admission to the ICU. The feature vancomycin dose indicates how
much and when vancomycin was administrated. The serum creatinine is regularly
measured: 37 times per patient on average.

In addition, features about the renal function were included, because these fea-
tures are important for the elimination of a drug from the body. For example CVVH-
substitute and CVVH-filtrate represent respectively the substitution fluid and the ul-
trafiltrate of the CVVH (continuous veno-venous hemofiltration) process. However,
an alternative to hemofiltration is hemodialysis, which results in the next variable
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(dialysis filtrate). The last feature about the renal function is the amount of urine that
was collected by for example a catheter.

Finally, the last three features are selected to give a broader view of how ill a
patient is. The Glasgow Coma Scale is a neurological scale to measure objectively how
conscious a patient is. Secondly, PEEP and O2% are features about how much a
patient is assisted with breathing. PEEP (positive end-expiratory pressure) assists
the respiration by supporting the regulation of the respiratory rate and O2% is the
supplied amount of oxygen during ventilation.

4.3 Statistics

Table 4.2 shows that approximately 65% of the patients are men and 35% are women.
These patients are between 18 and 92 years old, see Table 4.3. However, the majority
is between 50 and 80 years old, see Figure 4.1a. Therefore, we can conclude that the
dataset is biased to older patients.

(A) The distribution of age. (B) The distribution of body weight.

FIGURE 4.1: Age and body weight of the patients in the dataset.

According to Beierle et al. [23], body weight is one of the important features for
the pharmacokinetics of vancomycin. Therefore, it is interesting to see how body
weight is distributed for the patients in the dataset. This is shown in Figure 4.1b.
The distribution looks approximately normally distributed with a mean around 80
kg. In order to test this hypothesis, a normality test was performed. The p-value
of the Shapiro-Wilk test is 4.7 ∗ 10−11 which is smaller than alpha 0.05, therefore the
hypothesis that the distribution of body weight is normally distributed is rejected.

4.3.1 Length of stay

For all patients we can calculate the time between the first dose administration and
the last measured variable, to indicate the length of stay. The results are visualized
in Figure 4.2.
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FIGURE 4.2: Distribution of the length of stay since the first adminis-
trated dose vancomycin.

The average length of stay is 19.4 days. However, the distribution is very right-
skewed (Figure 4.2), which means that most patients stay for a shorter period than
19.4 days. Moreover, 31% of the patients leave within one week, 53% within two
weeks and 67% within three weeks.

4.3.2 Doses and measurements

Before a vancomycin serum concentration can be observed, a vancomycin dose is
given to the patient. On average 17 doses are given per patient, but 50% of the
patients got 12 doses or less, see Figure 4.3a.

(A) The distribution of the
number of doses per patient.

(B) The distribution of the time
between doses.

(C) The distribution of the size of
the vancomycin doses.

FIGURE 4.3: Distributions of the records about vancomycin doses.

The size of the doses are between 100 and 2,000 mg, but 1,000 mg is most com-
monly used (65.70%), see Figure 4.3c. In Figure 4.3b, the time between doses is
shown. The time between doses is on average 20 hours and the median is 12 hours.
Furthermore, we can clearly see a pattern in the time between doses: there is a peak
at 12, 24, 36 and 48 hours.

Since the goal of this research is to predict the vancomycin serum concentrations,
it is relevant to see how many observations are available in the dataset. In Figure
4.4a is shown that most patients got very few observations of the vancomycin serum
concentration. One observation per patient occurs most frequently, and 50% of the
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patients have two or fewer observations. On average, there are 2.84 observed values
available per patient.

(A) The distribution of the num-
ber of observations per patient.

(B) The distribution of the time
between observations.

(C) The distribution of the size of
the observed vancomycin serum

concentrations.

FIGURE 4.4: Distributions of the records about the real vancomycin
serum concentrations.

In the distribution of the time between the observations is again a clear pattern
shown: a peak is shown every 24 hours, see Figure 4.4b. In Figure 4.4c, the size of the
observed vancomycin serum concentrations is shown. The average observed serum
concentration is 16.1 mg/L.

The measurement of the vancomycin serum concentration takes most often place
after approximately 12 or 24 hours, see Figure 4.5. This figure is very similar to Fig-
ure 4.3b with the time between doses. Therefore we can conclude that most measure-
ments in the data correspond with vancomycin trough levels: obtained just before
the next drug administration.

FIGURE 4.5: The distribution of the time between a vancomycin dose
and a serum concentration.

4.4 Dataset preparation

The goal of this research is to predict the vancomycin serum concentrations for the
next 24 hours after the drug is administrated. Therefore we can split the dataset in
a historical set (the input of the model), which contains all measurements that are
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available at the moment of the administration, and a future set (the output of the
model), which contains the observed serum concentrations after the dose adminis-
tration.

Since all measurements are obtained at different moments in time, the records
are split into intervals of 30 minutes [24]. This is the same approach as used by
Lipton et al. [19]. For the historical dataset, time steps of -30 are taken from the
moment of the current dose administration, until the previous dose administration.
And for the future dataset, all observed serum concentrations related to the doses
in the historical dataset are taken and split by time steps of +30 minutes since the
drug administration. This is visualized in Figure 4.6. By creating the time steps in
this way, we ensure that there is no overlap between the historical and the future
dataset.

FIGURE 4.6: Abstract visualization of the historical and future
dataset.

The records about the admission of the patient in the intensive care, for example,
the age and the weight, are the same at each time step for a patient and are there-
fore duplicated for each time step in the historical dataset. For the time-dependent
features, it is possible that there are multiple measurements within an interval of 30
minutes. If this occurs, the mean value of these measurements is taken.

All time steps with a missing value can be split into two groups. The first group
contains values that are missing because they do not exist, for example, values of the
vancomycin dose can be missing when the patient did not get it at that moment in
time. These values are imputed by zero. The second group are values that are miss-
ing because they were not observed in that time step, for example, the serum creati-
nine observations. These values are linearly interpolated per patient [19]. However,
when there is no measurement of a certain feature for a patient, it cannot be inter-
polated. If this occurs, the median value of all known values is taken. This seems
a reasonable choice: most missing values exist because the clinician did not expect
this value to be abnormal. There is explicitly chosen for the median, and not for the
mean because the value should be robust for extremes in the dataset.

4.4.1 Sequences

By creating the historical and future datasets, data were grouped per drug adminis-
tration per patient. In this way, for each dose, we can find records of known values



Chapter 4. Data Exploration and Transformation 13

in the historical dataset, and records we would like to predict in the future dataset.
Remark that the records in the historical and future datasets are sequences.

Each sequence in the historical dataset and in the future dataset is related to a
vancomycin dose. Therefore, the same number of sequences are available in the two
datasets as the total number of doses, which is equal to 13,503. However, for this
research, we are only interested in sequences (or doses) that happen before the serum
concentration was observed. Therefore, the data was cut off after the last observed
serum concentration of each patient, which resulted in a decrease of 3,539 sequences
without removing observed vancomycin serum concentrations. The final datasets
contain information about 9,964 sequences (or doses), which is 12.38 sequences per
patient on average. Of these 9,964 sequences contains approximately 78% (7800) zero
observations, 21% (2054) one observation and 1% (110) more than one observation
for the vancomycin serum concentration.

4.4.2 New features

By creating the time intervals of 30 minutes within the sequences, a new feature
called sequence time was created. For the historical dataset, this feature includes only
negative numbers and zero, and for the future dataset only positive numbers.

Besides the already mentioned features in Tables 4.2 and 4.3, other historical fea-
tures can be created. The time since the previous dose might help the model to under-
stand the relation with the previous sequence. In addition, count doses might help
the model to understand how many sequences (or doses) occurred before. This re-
sults in a historical dataset of 9,964 sequences with 15 features. In each sequence,
one record of data corresponds to one time interval of 30 minutes. This results in
357,973 records in total, which is 35 records (17.5 hours) per sequence on average.

The future dataset contains 9,964 sequences too. However, this dataset contains
for each time interval of 30 minutes within one sequence only one feature: the van-
comycin serum concentration. Since there are only a few observations per patient
available, most of these intervals contain a missing value.
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5 Models

The goal of this research is to predict the vancomycin serum concentration at each
point in time in the first 24 hours after a dose administration. The predictions are
therefore time-dependent. In addition, the provided input data consists of multivari-
ate time series, as for example the measurements of serum creatinine. Since a Long
Short-Term Memory network takes time dependency of variables into account, this
model is a good candidate for predicting vancomycin serum concentrations.

LSTM networks are a special type of neural networks. In order to make clear
what LSTM networks are, artificial neural networks and recurrent neural networks
will be introduced first.

5.1 Artificial Neural Network

An artificial neural network (ANN) is the traditional neural network which contains
an input layer, one or more hidden layers and an output layer [25]. Each layer con-
tains nodes, or neurons. Each node in each layer is connected to each node in the next
layer [25], this is called full connection between layers. Each connection (or arc) has
a numerical weight that specifies the influence between two neurons. While training
an ANN, the input and output values are known. Therefore we can set the weights
of the model in such a way that the predicted value by the model is closest to the
actual value.

FIGURE 5.1: A multilayer perceptron, as an example of a feedforward
neural network [26].

There are many variants of ANNs. ANNs with cycles are referred to as feedback,
recursive, or recurrent, neural networks and ANNs without cycles are referred to
as feedforward neural networks (FNNs) [26]. In an FNN, as the name suggests, the
input patterns are (implicitly) connected with the output by only forward connec-
tions. A well known example of a FNN is the multilayer perceptron [26], of which an
example is shown in Figure 5.1.
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5.1.1 Activation Functions

Each neuron has input signals and an output signal. The output of a layer is used as
input for the next layer, see Figure 5.1. Therefore, each neuron has to combine the
input signals to an output signal. This is done by calculating the weighted sum of
the input values plus a bias and applying an activation function φ [27]. This is given
by the following formula (Formula 5.1).

Yk = φ(∑
i
(wik ∗ xi) + bk) (5.1)

In this formula Yk and bk represent respectively the output signal and the bias of
neuron k, wik is the weight of the connection between input i and neuron k and xi is
the value of input i.

The simplest activation function is linear: φ(x) = x. This means actually that no
activation function is used. A linear equation is easy to solve, but it is very limited
in complexity. Other, more common, activation functions are shown in Table 5.1 and
in Figure 5.2.

Name Formula Range
linear x (-∞, ∞)
hyperbolic tangent tanh(x) = e2x−1

e2x+1 (-1, 1)
logistic sigmoid σ(x) = 1

1+e−x (0, 1)
rectified linear unit max(0, x) [0, ∞)

TABLE 5.1: Formulas of activation functions. [27]

FIGURE 5.2: Different neural networks activation functions. [27]

For more information on activation functions, please refer to the work of A.
Graves [26] and U. Karn [27].

5.2 Recurrent Neural Network

ANNs, have no persistence, which seems like a major shortcoming according to C.
Olah [28]. Recurrent neural networks (RNNs), a type of ANNs, are designed to
use the sequential information between observations, for example, time-dependent
observations. To accomplish this, the RNN has a recurring connection to itself [25].
In this way the nodes are interconnected [29] and it gives the RNN a sense of time
context [25]. To picture this, we can unroll the recurrent connection, which is shown
in Figure 5.3 [28].



Chapter 5. Models 16

FIGURE 5.3: Structure of a recurrent neural network (left) and struc-
ture of an unrolled recurrent neural network (right). [28]

In Figure 5.3 Xt represents the inputs of time step t. The A’s represent a chunk
of a neural network and ht the output of time step t [25, 28]. The arrow between
two time steps, the recurring connection, indicates the hidden state of the model.
Because of the recurring connection, the model is able to detect sequential patterns
in the historical observations and will use this knowledge in the prediction of the
next time step.

FIGURE 5.4: The vanishing gradient problem for recurrent neural net-
works. The shading of the nodes in the unfolded network indicates
their sensitivity to the inputs at time one (the darker the shade, the
greater the sensitivity). The sensitivity decays over time as new in-
puts overwrite the activations of the hidden layer, and the network

’forgets’ the first inputs. [26]

This brings us to the fundamental problem of RNNs: when the time between
the historical event and the current time step grows, the RRN does not succeed to
connect this information properly [28]. This vanishing gradient problem arises because
the derivatives of the activation functions within the network are often between 0
and 1, which goes to 0 when they are multiplied many times, which occurs while
applying the chain rule in the back propagation method [25]. This causes earlier
layers to learn very slowly compared to later layers [25], see Figure 5.4. Information
on back propagation can be found in the work of Goodfellow et al. [30].

5.3 Long Short-Term Memory Network

LSTM networks are a special kind of recurrent neural networks. The repeating
chunks shown in Figure 5.3 by A, are almost the same as the neurons in an ANN: the
weighted sum of the recurrent inputs is added to the weighted sum of the inputs and
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bias of Equation 5.1 [28]. However, the repeating chunks, LSTM blocks, in an LSTM
network are more complex. An LSTM block is developed to overcome the problems
faced by standard RNNs. This is done by the introduction of a new state called cell
state [25], which is sometimes referred to as memory cell. The internal structure of
an LSTM block is shown in Figure 5.5. Besides this cell state, the figure shows three
kinds of gates and a block input and output. These components are briefly described
below.

FIGURE 5.5: LSTM building block.
Adaptation of the diagram of S. Yan [31].

5.3.1 Forget gate

Each gate has the same structure as the calculations in a hidden layer of an ANN: it
calculates an output signal by applying an activation function over the input signals.
The activation function "activates" the neuron with a value close to one and does not
"activate" it with a value close to zero.

Figure 5.5 shows how the previous cell state (memory cell) is updated by the
multiplication with the output of the forget gate. The forget gate is the special part
of the LSTM block because it enables the network to "reset" [32]. When the output
of the forget gate is close to zero, "little memory" will go through because of the
multiplication. In contrast, when the output of the forget gate is close to one, almost
everything will be kept in memory.
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The forget gate gets the input of the current time step t, xt and the output of the
previous time step t − 1, ht−1 as input, see Figure 5.5. The weighted sum of these
inputs are taken and a bias (b f ) is added. After that the logistic sigmoid activation
function (σ) is applied, which is mentioned in Section 5.1.1. This results in Function
5.2 [31, 32], with Wx f input weights and Wh f recurrent weights:

ft = σ(Wx f xt + Wh f ht−1 + b f ) (5.2)

Note that ft is between 0 and 1, because of the logistic sigmoid activation func-
tion. This is in line with its purpose as explained: close to zero for forgetting and
close to one for remembering.

5.3.2 Input gate

Besides forgetting, the memory cell is able to remember new information. This is
done by the input gate and the block input. The block input is the information to be
added and the input gate decides how much of this information should be added to
the memory.

The input gate gets the same input as the forget gate (xt and ht−1). The weighted
sum of these inputs is taken and a bias bi is added. After that, the logistic sigmoid
activation function (σ) is again applied, which ensures an output range of (0, 1).
Almost no new information will be added to the memory when the output of the
input gate is close to zero and when the output is close to one, almost all information
will be added to the memory. This results in Function 5.3 [31, 32], with Wxi input
weights and Whi recurrent weights:

it = σ(Wxixt + Whiht−1 + bi) (5.3)

Before the block input reaches the merge with the input gate, the hyperbolic
tangent activation function (tanh) is applied, which squashes the input to the range
(-1, 1) [32, 33], this ensures the stability of the memory cell and the possibility to add
negative changes to the cell state [34]. This results in Formula 5.4 [31, 32], with Wxz
input weights and Whz recurrent weights:

zt = tanh(Wxzxt + Whzht−1 + bz) (5.4)

The new memory state is a combination of the memory that is not forgotten
( ftct−1) and the new information (itzt). This is shown by Equation 5.5 [31, 32]:

ct = ftct−1 + itzt (5.5)

The summation in Equation 5.5, instead of multiplication, makes the LSTM block
not suffering from the vanishing gradient problem, but "remembering" over a long
distance.

5.3.3 Output gate

After updating the cell state, the hyperbolic tangent (tanh) is again applied, which
makes the range again (-1, 1). This output is multiplied with the output of the output
gate, which structure is again similar to the structure of the previous gates, see Equa-
tion 5.6 [31, 32]. This calculation results in the final block output, which is shown in
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Equation 5.7 [32].

ot = σ(Wxoxt + Whoht−1 + bo) (5.6)

ht = ottanh(ct) (5.7)

5.4 Neuroevolution

In order to make the LSTM network useful, the weights in the LSTM blocks should
be optimized during the training phase of the model. In Section 4, we created a
historical and future dataset of sequences, both with one row per 30 minutes. In
addition, we mentioned that not every row in the future dataset has an observed
value for the vancomycin serum concentration. So, the target is not known in every
row, which is problematic for the standard method for optimizing the weights of
a neural network: backpropagation [6, 30]. Backpropagation is therefore not a good
method for this specific case.

5.4.1 Evolutionary Algorithms

The basic idea behind neuroevolution is to train the network with an Evolutionary
Algorithm (EA), which is a class of stochastic, population-based search methods
inspired by Darwinian evolution [5, 35].

Algorithm 1 General outline of an evolutionary algorithm [36]

Initialization
repeat

Recombination
Mutation
Evaluation
Selection

until Termination criterion fulfilled

The general framework of Evolutionary Algorithms consists of initialization, re-
combination, mutation, evaluation and selection [36], see Algorithm 1. During the
initialization the first generation is created, which consists of one or more individu-
als. For each individual the objective function value, the fitness, is evaluated. After
initialization, the so-called evolution loop is entered, which consists of the recombi-
nation, mutation, evaluation and selection operators [36]. In this loop, new individ-
uals (offspring) from the parent population are created by recombination. Mutation
is used to create variation among the new individuals. Finally, the offspring is eval-
uated and individuals are selected to be the parent generation of the next iteration
of the evolution loop.

Search space

Since the Evolutionary Algorithm is used to optimize the weights of the LSTM net-
work, individuals in the EA will represent one possible set of weights for the LSTM
network. All possible solutions for the weights of the LSTM network define the
search space. In order to limit the search space, a minimum and maximum value
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for the weights must be given. Remark that the size of the search space is equal to
Sn with n the number of weights in the LSTM network and with S ⊂ R between
the minimum and maximum value. So, the complexity of the problem increases
exponentially while adding weights to the LSTM network, for example by adding
neurons or extra layers.

Objective space

The goal of this research is to predict the vancomycin serum concentrations for every
30 minutes between the moment of a drug administration until 24 hours afterwards.
Since there are only a few observed serum concentrations per patient available, and
we know that the predicted concentration is only allowed to go up after the ad-
ministration, and when reaching the peak level it is only allowed to decrease, but
can never become negative, we could use two objective functions: one for the fit on
the observed values (F1) and one for the shape of the predicted sequence (F2). This
results in a two-dimensional objective space.

Definition Domination [37]:

A solution x(1) is said to dominate the other solution x(2), if both the following
conditions are true:

1. The solution x(1) is no worse than x(2) in all objectives. Thus, the solutions
are compared based on their objective function values (or location of the
corresponding points on the objective space).

2. The solution x(1) is strictly better than x(2) in atleast one objective.

Above another term is introduced: domination, as defined by Deb in 2011 [37].
For each individual, the corresponding point in the objective space is calculated by
using the objective functions (F1) and (F2). Figure 5.6 visualizes these points and
the area they dominate. If the point of the individual is not dominated by any other
individual, the point is in the set of non-dominated points, shown by the orange points
in Figure 5.6.

FIGURE 5.6: Objective space defined by two minimization objectives
(objective1 and objective2). The orange curve represents the Pareto-
optimal front. The non-dominated points are shown in orange and

the points they dominate are shown in blue.

Since F2, the objective for the shape of the predicted sequence limits the model in
the way it can fit the observations (F1), there is some kind of trade-off between the
two objectives. This results in the so-called Pareto-optimal front, which contains only
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non-dominated points in the objective space, see orange line in Figure 5.6. The idea
behind this front is that there is no better solution in one direction without the costs
of the other. For more details of Pareto optimality, please refer to the work of Ehrgott
in 2005 [38] and Miettinen in 2012 [39].

5.4.2 Multi-objective algorithms

Multi-objective algorithms are designed to optimize (minimize or maximize) multi-
ple objective functions. The goal of such an algorithm is to find both a set of solutions
which lie on the Pareto-optimal front and a set of solutions which are diverse enough
to represent the entire range of the Pareto-optimal front [37].

NSGA

The non-dominated sorting genetic algorithm (NSGA) [40] was one of the first Evo-
lutionary Algorithms with the ability to find multiple Pareto-optimal solutions in
one single simulation run. However, the main disadvantages were (1) a high compu-
tational complexity of non-dominated sorting which was used in every generation
and (2) the lack of elitism (which can help preventing loss of good solutions once
they are found) [41].

NSGA-II

In 2002, Deb et al. proposed an improved version of NSGA: the NSGA-II [41].
NSGA-II uses elitism and an explicit diversity preserving mechanism, and it empha-
sizes non-dominated solutions by using fast non-domination sorting. The advantage
of the explicit diversity preserving mechanism is that it does not require any user-
defined parameter for maintaining diversity among population members, for which
parameter σshare was needed in NSGA. First, the mechanism defines a density esti-
mation: the crowding distance value. The crowding distance value di is the distance
in the objective space around point i, which is not occupied by any other solution
in the population [37]. Therefore, the lower di, the more "crowded". Because of the
second goal of multi-objective algorithms, diversity, solutions with a higher di are
preferred.

FIGURE 5.7: NSGA-II procedure [41].
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Main loop The initial population (Pt) is randomly generated. After that, the first
offspring (Qt) is created from it by parent selection (binary tournament selection), re-
combination (simulated binary crossover) and mutation (polynomial mutation) [41]. Pt
and Qt are combined into Rt, which has a size of two times the initial population
size. Rt is sorted by the fast non-dominated sorting procedure, where all members
are classified and put into fronts. The first front contains the non-dominated points,
the second front contains the non-dominated points when removing the first front,
and so on. Now, the size of Rt will be reduced to the initial population size, by select-
ing the fronts one by one. If too many members belong to the next selected front, the
members in that front are sorted according to their crowding distance in descending
order (preferring diversity), and the top members are taken such that the size of Rt
is again equal to the initial population. The visualization in Figure 5.7 makes this
more clear.

The NSGA-II is one of the most popular Evolutionary Algorithms for solving
multi-objective problems [42]. It has only 6 parameters: (1) the population size, (2)
the number of generations to evolve, (3) the crossover probability, (4) the distribution
index for crossover, (5) the mutation probability and (6) the distribution index for
mutation. The number of generations is the termination criteria of the Evolutionary
Algorithm, see Algorithm 1. The population size is the number of individuals in
the population at the end of each evolution loop in Algorithm 1. The crossover
probability (in general between 90% and 100% [43]) refers to the probability with
which parents are recombined to create new individuals. The distribution index
for crossover controls the perturbation in the recombination operator. The smaller
the value of this control parameter, the larger the perturbation and vice versa [43].
Usually, this parameter is set to 10.0 [43]. The same parameters are present for the
mutation operator. For the mutation probability, a value of 20% or less is commonly
used [42, 44, 45], and for the distribution index for mutation, a value between 5 and
50 [41, 46].

5.4.3 Fitness function

As already mentioned, in the EA two objective functions, or Fitness functions, are
optimized. One for minimizing the difference between the observed values and the
predicted values by the LSTM network, and one for minimizing the error on the
shape of the predicted sequence. In this way, two errors E1 (for the difference with
the observations) and E2 (for the shape of the sequence) can be calculated for each
predicted sequence.

There are several measures of the goodness of fit which represent how good
the model performs. The mean absolute error and the mean square error are most
widely used.

Mean Absolute Error

The mean absolute error (MAE) is a simple error function in which the mean is taken
over all absolute errors. The Formula 5.8 shows the MAE in which ei is the ith error
made.

MAE =
1
n

n

∑
i=1
|ei| (5.8)
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Mean Square Error

The mean square error (MSE) is very similar to the MAE, but now the square of
the error is taken instead of the absolute value, see Formula 5.9. For an unbiased
estimator, the MSE represents the variance of the error.

MSE =
1
n

n

∑
i=1

(ei)
2 (5.9)

By calculating the MSE (Formula 5.9), the square of the error is taken before
the mean. This results in bigger weights for bigger errors and smaller weights for
smaller errors. In contrast to the MAE, where all errors have the same weight.

In this research, it was chosen to define the errors E1 and E2 in the following way. E1
is defined as the MSE of the difference between the real serum concentrations and
the predicted serum concentrations. The MSE was chosen, because big errors on
these predictions can have serious consequences for the patient, and are therefore
emphasized more in the error function. E2 is defined as a summation of multiple
types of errors, which are all related to the shape of the predicted sequence.

The first error type of E2 is the sign error. This error refers to the number of
changes in the sign (positive or negative) of the change in the predicted serum con-
centrations over time. Since we expect that the serum concentration will increase
after a drug administration (positive sloop) and after the peak concentration only
will decrease (negative sloop), the number of changes in sign should be one. If this
is not the case, the sign error will be equal to the number of times it is more or less.
In other words: the absolute value of the difference between the number of changes
and 1.

The second error type of E2 is the positive after negative error. This error refers to
the number of times that the sloop of the predicted serum concentrations increases
after it started decreasing. The predicted sequence should be a smooth function that
only increases in the beginning and decreases at the end. Therefore the positive after
negative error counts the number of positive sloops after the first negative sloop in
the predicted sequence.

The third error type of E2 is the negative before positive error and is very similar
to the positive after negative error. The only difference is that this metric counts
the number of negative sloops before the first positive sloop occurs in the predicted
sequence. This error is calculated because after an administration the serum concen-
tration should immediately go up.

The last error type of E2 is the negative error. This metric counts the number of
negative serum concentrations in the predicted sequence. This error captures our
knowledge that the vancomycin serum concentration of a patient can never become
negative.

Error E2 is calculated by summing all error types together. This is done, because
these error types all represent fundamental errors in the predictions, and therefore
all have the same weight. Finally, to get the total error over all sequences F1 and F2,
we can simply take the mean over the errors E1 and E2 of all sequences.

5.4.4 Metrics of performance

Since multiple models will be compared for parameter optimization, a global metric
needs to be defined which combines F1 and F2. A metric that is often used for this
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purpose is the hypervolume indicator. This metric calculates the volume of the area
that is dominated by the non-dominated front of the final population in the Evolu-
tionary Algorithm, see the grey area in Figure 5.6.

Since both F1 and F2 can grow until infinity by definition, we need a reference
point that is not exceeded by any individual of any model. In Figure 5.6 this ref-
erence point could be for example (20, 7). It is important to use the same reference
point for all models to ensure comparability of the hypervolumes.
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6 Experimental Setup

The goal of this research is to predict the vancomycin serum concentrations in the
first 24 hours after a vancomycin drug administration by an LSTM network. The
predictions are based on all the historical records of the patient before the current
dose. For this purpose, the historical dataset was created in Section 4. The predic-
tions of the model will be compared with the real values in the future dataset, which
was also created in Section 4.

FIGURE 6.1: Abstract visualization of multiple input features of vari-
able length, and a single output feature of static length.

Since the length of the input sequences (historical dataset) depends on the time
between vancomycin drug administrations, it is not a static value. However, the
number of predictions is set to 48 (24 hours by steps of 30 minutes), which is a static
number. Therefore, the input sequence length (historical dataset) and the output
sequence length (the predictions) are usually not the same, see Figure 6.1. In addi-
tion, the input sequence consists of multiple features, while the output has only one
feature: the vancomycin serum concentrations.

6.1 Training and test set

As mentioned in Section 4, there are in total 9,964 sequences available. Some of these
sequences will be kept separated in a test set, the others will be used for training the
model. Since the sequences of the same patient relate to each other, the train/test
split is made on the patients.

Number of
patients

Number of
sequences

Number of
observations

Number of
historical
records

Training set 241 30% 3,231 749 125,067
Test set 564 70% 6,733 1,539 232,906
Total 805 100% 9,964 2,288 357,973

TABLE 6.1: Training and test records.
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There are 805 patients in the dataset in total. These patients are split into a train-
ing set and a test set by respectively 30% and 70%. These percentages are chosen in
this way because the first runs indicated a long running time. To be able to finish
the research in time, the number of patients in the training set was decreased to only
30% of the data. See Table 6.1 for the real numbers.

The splitting was done is a stratified fashion, where the patients were selected
based on their average serum creatinine level. According to the intensivists of the
VUmc, the serum creatinine plays the most important role in the clearance of van-
comycin. To be able to stratify based on a numerical feature, the average serum
creatinine levels were split into intervals of 50 µmol/l.

6.1.1 Exploration and validation set

Besides the test dataset, another independent dataset is needed for the evaluation
of different parameter settings. Therefore, the training set was split in a smaller
training set, which we will call the exploration set, and a validation set. For this the
same approach is used as for the train/test split, however now only 5% will be used
in the exploration set, and from the other 95% will only ten patients be selected for
the validation set. This results in 206 and 105 sequences respectively, see Table 6.2.
These small numbers were chosen because there is limited time available for this
research.

Number of
patients

Number of
sequences

Number of
observations

Number of
historical
records

Exploration set 12 1.5% 206 46 7,165
Validation set 10 1.2% 105 31 3,943

TABLE 6.2: Exploration and validation records.

6.2 Features

15 features were selected in Section 4 based on the suggestions of the intensivists
of the VUmc. The features dose size, serum creatinine concentration, admission
weight, admission age and sex are present in almost every model [2, 23] and are
therefore included in the basic feature set (Table 6.3). In addition, the sequence time,
the time since the previous dose and the number of doses already administrated
were included too, because these features can help the model to detect the sequential
patterns.

The other features were selected in the extended feature set, because they give a
broader view on how ill the patient is. Since we do not know if these features can
help the model in predicting the vancomycin serum concentrations, the features are
kept separated from the basic feature set. While optimizing the parameters of the
model, the best feature set will be selected. An overview of the basic and extended
feature set is given in Table 6.3.
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Basic feature set Extended feature set
Sequence time Sequence time

Time since previous dose Time since previous dose
Number of doses administrated Number of doses administrated

Vancomycin dose size Vancomycin dose size
Serum creatinine Serum creatinine

Body weight Body weight
Age Age
Sex Sex

CVVH-substitute
CVVH-filtrate
Dialysis filtrate
Urine volume

Glasgow Coma Scale
PEEP
O2%

TABLE 6.3: Basic and extended feature set.

6.3 Scaling

According to LeCun et al., convergence in fitting the weights of a neural network is
usually faster if the average of each input variable over the training set is close to
zero and the variance is close to one [47]. The z-score is one of the most commonly
used techniques for scaling and does exactly this. The formula is shown by Equation
6.1, with x the unscaled value, u the average value, s the variance of the values and
z the scaled value. The scaling is applied for all numerical features, including the
target feature, the observed vancomycin serum concentrations.

z =
x− u

s
(6.1)

6.4 The model

The model consists of an LSTM network. As mentioned in Section 5, the weights
of the network were fit to the training data using a Multi-objective Evolutionary
Algorithm.

6.4.1 The LSTM network

The LSTM network should be able to map a multivariate time series of variable
length to a single feature sequence of 48 time steps. This is done by the use of two
LSTM layers and a dense layer. The first LSTM layer gets as input the multivariate
time series of variable length. This layer uses the sequential information to pre-
dict the important information for the next time step in the dimension equal to the
number of neurons in this LSTM layer. In this part, the model should learn which
sequential information is necessary for the predictions of the next 24 hours. The
number of neurons will be chosen in a grid search.

The important information found by the first LSTM layer needs to be scaled up
to the output length, which is done by repeating the information over 48 time steps.
Now all information is in the right place, a second LSTM layer is used to estimate the
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right pattern in the predicted sequence. By definition, the LSTM network uses the
sequential information over the predictions, so it uses its prediction of the previous
time step, to predict the next time step. This layer combines the information of the
first LSTM layer and the sequential information to a sequence with at each time step
the dimension of the number of neurons of the second LSTM layer. Finally, an output
layer combines this information to only one prediction per time step.

This whole procedure is visualized in Figure 6.2, with N1 the number of neurons
in the first LSTM layer, N2 the number of neurons in the second LSTM layer and Tin
the number of time steps between the previous and the current dose.

FIGURE 6.2: Model procedure.

To use the full history of a patient, the hidden state of the first LSTM layer is only
reset after completing all sequences of the patient. This is not the case for the second
LSTM layer, because the predicted time steps are not necessarily contiguous. When
Tin of the next sequence is smaller than 48 time steps, the predictions of this and the
next sequence will overlap, and when Tin of the next sequence is bigger than 48 time
steps, there will be a gap between the predictions of this and the next sequence. This
is not problematic while resetting the hidden state of the second LSTM layer after
each prediction.

6.4.2 The Evolutionary Algorithm

In this research no attempt is made to find the best parameters of the NSGA-II al-
gorithm, instead, the default parameters were used [48], which are in line with the
recommended parameter values described in Section 5.4.2. The selected parameter
values are shown in Table 6.4.

Parameter name Value
Crossover probability 0.95

Distribution index for crossover 10
Mutation probability 0.01

Distribution index for mutation 50

TABLE 6.4: NSGA-II parameter settings.

The number of individuals per generation is set to 40 because it should be big
enough to have diversity in the population but it should be small enough to limit
the computation time.

The number of generations of the Evolutionary Algorithm will be investigated
by comparing the results on the exploration and validation set for each generation
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between 0 and 1000 generations for both objective functions on a single run. Based
on these results, the number of generations will be selected as the minimal number
that the algorithm needs to converge on the validation set because there is a limited
amount of time for this research. This number of generations will both be used in
the grid search and in the final model.

6.5 Grid search

To select the best parameters of the model, a grid search was performed. The fol-
lowing parameter settings will be trained on the exploration set and evaluated on
the validation set, see Table 6.5. Since the Evolutionary Algorithm is stochastic, each
grid search setting will be used five times. The parameters with the biggest mean
hypervolume will be chosen, as explained in Section 5.4.4.

Parameter name Evaluated values
Feature set basic, extended
Number of neurons in first LSTM layer 2, 4, 8
Number of neurons in second LSTM layer 2, 4, 8

TABLE 6.5: Grid search parameters and evaluated values.

Only small numbers are selected for the number of neurons in the LSTM layers
because the complexity of the multi-objective problem for the Evolutionary Algo-
rithm increases exponentially while the number of weights increases in the network,
as explained in Section 5.4.1. By limiting the number of neurons, the complexity of
the model is limited and the running time is kept manageable.

6.6 The benchmark

The best parameters found by the grid search are selected in the final model. In
addition, the final model will be trained on the full training set and evaluated on the
test set. To conclude how the final model performs, the results are compared with
the results of a benchmark. The benchmark used in this research predicts always
the mean vancomycin serum concentration for each time step. In this case, the mean
serum concentration is calculated over the training set and evaluated on the test set.

6.7 Implementation

All implementation is done in PythonTM, which is a common programming lan-
guage in data science. For the implementation of the Evolutionary Algorithm, the
package Pygmo is used [48].

Everything is implemented on one Windows 10 laptop with the following speci-
fications: 2,20 GHz Intel R© CoreTM i7-8750H with 16GB RAM.
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7 Results

As described in Section 6, first the number of generations of the Evolutionary Algo-
rithm is investigated. After that, the grid search is performed and the best model
parameters are selected. Finally, the model with the best parameters is compared
with the benchmark.

7.1 Number of generations

The smallest error per generation, based on one run, on the observations and on
the sequence shape are shown on both the exploration set and validation set in Fig-
ures 7.1a en 7.1b respectively. The used model was arbitrarily selected and uses the
extended feature set and has four neurons in both the first and second LSTM layer.

(A) F1 (B) F2

FIGURE 7.1: Fitness on exploration and validation set over the gener-
ations.

There is a lot of noise in the observation-fitness on the validation set, see Figure
7.1a. For almost all generations, the mean square error on the observations fluctuates
between 15 and 30 mg/L for each sequence on average. The error on the shape of
the predicted sequences in the validation set remains approximately the same after
250 generations. Therefore, the number of generations is set to 250.

7.2 Grid search

As already mentioned in Sections 5 and 6, the performance of the parameters in the
grid search are compared by the mean hypervolume over five runs. The results can
be found below.
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Feature set N1 N2
mean hypervolume

(scaled to 0-1)

standard deviation
hypervolume
(scaled to 0-1)

basic 2 2 0.9957 0.00203
basic 2 4 0.9884 0.00359
basic 2 8 0.9553 0.03662
basic 4 2 0.9963 0.00115
basic 4 4 0.9395 0.06263
basic 4 8 0.9802 0.00611
basic 8 2 0.9926 0.00748
basic 8 4 0.9841 0.01582
basic 8 8 0.9822 0.00819

extended 2 2 0.9945 0.00254
extended 2 4 0.9717 0.04583
extended 2 8 0.9848 0.01610
extended 4 2 0.9875 0.01383
extended 4 4 0.9887 0.00973
extended 4 8 0.9810 0.01136
extended 8 2 0.9941 0.00295
extended 8 4 0.9863 0.01005
extended 8 8 0.9251 0.03642

TABLE 7.1: Results after 250 iterations and 5 runs each.

Table 7.1 shows no significant improvement on the mean hypervolume for the
extended feature set compared to the basic feature set. According to the results for
the different number of neurons in the second layer, a lower number (2) seems to be
better than a high number (4 or 8). For the number of neurons in the first layer, this
is less clear. According to Table 7.1, the highest mean hypervolume is obtained for
the basic feature set with four neurons in the first LSTM layer and two in the second
LSTM layer. Therefore, these parameters are chosen in the final model.

7.3 Final model

The final model is trained on the full training set (30% of the patients) for 250 gener-
ations and will be evaluated on the test set (70% of the patients). For the benchmark,
the average is taken over all observed vancomycin serum concentrations in the train-
ing set, which happens to be approximately 16.30 mg/L. The results are shown in
Figure 7.2.

Since the final training of the weights of the LSTM model results in 40 fits in the
last generation in the Evolutionary Algorithm, the best fit should be chosen based
on the preference of the objectives. In this research, a preference for the fitness of
the shape is assumed, because all errors on the shape are not possible in practice.
Therefore, the model with the minimal shape error is chosen, see the blue dot in
Figure 7.2.

According to Figure 7.2 and Table 7.2, both objective values (the prediction error
and shape error) are smaller for the LSTM model, which suggests that the LSTM
model outperforms the benchmark. In order to test the hypothesis that the mean
prediction error on the sequences is smaller for the LSTM model than for the bench-
mark, a t-test can be performed. This test is applied with threshold level of α=0.05.



Chapter 7. Results 32

FIGURE 7.2: Results of the final LSTM model and benchmark on the
test set.

The p-value was found to be 0.6211, which is bigger than α. Therefore, the null-
hypothesis that the means are the same is not rejected, so the LSTM model is not sig-
nificantly better in predicting the vancomycin serum concentrations than the bench-
mark. Despite the fact that the shape error is less for the LSTM model, the model
performs no better on the observations than predicting the mean vancomycin serum
concentration for every time step.

Model Observation error Shape error
Hypervolume
(scaled to 0-1)

Benchmark 15.79834 1 0.98394
LSTM 15.07980 0.00238 0.99698

TABLE 7.2: Results of the final LSTM model and benchmark on the
test set (6,744 sequences).

(A) The benchmark performance. (B) The LSTM model performance.

FIGURE 7.3: Predicted vancomycin serum concentrations versus real
observations. The diagonal indicates perfect predictions.
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FIGURE 7.4: Predicted sequence of patient in test set.

For perfect predictions, all dots should be located on the diagonal of Figures 7.3a
and 7.3b. However, the dots of the LSTM model seem to show the same kind of
horizontal lines as the benchmark, which suggests predicting mean serum concen-
trations per sequence ’type’. In Figure 7.4, besides the observed vancomycin serum
concentrations, the benchmark and model predictions are shown. This Figure con-
firms the suspicion that the LSTM model predicts a mean serum concentration per
sequence ’type’, instead of a serum concentration per time step. Only in the first
three hours, there is some change in predicted serum concentration, but after that,
the predictions remain constant.

By looking at Figure 7.3b, two ’types’ of sequences can be distinguished. The
first ’type’ results in predictions of approximately 25 mg/L, and the second ’type’
results in predictions of approximately 15 mg/L. When we split the sequences in
sequences with a mean serum concentration bigger than 20 mg/L (sequence ’type’
1) and smaller or equal to 20 mg/L (sequence ’type’ 2), we find the following differ-
ences, see Table 7.3.

Parameter
Sequence
’type’ 1

Sequence
’type’ 2

Number of sequences 6187 546
Mean predicted serum concentration 16.519 23.424

Mean dose size 939.567 767.125
Mean body weight 80.077 67.904

Percentage male 69.64% 39.93%
Mean age 60.603 65.908

Mean serum creatinine 93.800 211.529

TABLE 7.3: Differences in parameters of the predicted sequence
’types’.

From Table 7.3 can be observed that most sequences belong to ’type’ 1 and that
these sequences mainly concern patients with higher body weight (80 kg) than the
patients of sequence ’type’ 2. Since men are on average heavier (82 kg) than women
(71 kg), we are not surprised to see a difference in the percentage being men too
(70% versus 40%). Finally, a difference in mean serum creatinine of the two sequence
’types’ is found too. The mean serum creatinine of sequences of ’type’ 2 are approx-
imately twice as high as of sequences of ’type’ 1: 93.8 versus 211.5 µmol/L.



34

8 Discussion

In this research, an LSTM model is used to predict vancomycin serum concentrations
in the first 24 hours after a vancomycin drug administration. For this purpose, two
datasets were created: one historical dataset with the measurements until the drug
administration, and a future dataset with records of the observed serum concentra-
tions. For the historical dataset, it was decided to fill in the missing values with the
median value, but it would probably be better to impute these values by values pro-
vided by domain experts because these values were assumed to be normal. In other
words, if they were assumed to be different, they would be measured. Therefore, it
might not be a good idea to use the measurements for imputing missing values.

The final model scores only slightly better than predicting the mean value (the
benchmark). However, this was not found significant, for which multiple reasons
can be given.

First of all, there where only a few observations available in the data. Which
resulted in zero (78%) or only one (21%) observation for most sequences. Therefore,
it is not strange that the model predictions show an (almost) straight line.

Secondly, most observed vancomycin serum concentrations were measured right
before the next dose was given. This means that the observations are biased to the
expectations of the intensivists because they decide on the daily dose of the medicine
and the time interval between administrations [4]. When the intensivist expects a
slow elimination of the drug, the next administrated dose (and possible observation)
will be later than when the intensivist expects a normal drug elimination.

Thirdly, the long run analysis for the number of generations was only performed
on a single run. It would be better to perform multiple runs because of the stochastic
nature of the Evolutionary Algorithm. In addition, the grid search was only per-
formed for a limited number of options, on a little amount of data and for only a few
(5) iterations. Therefore, the best parameters may not be found. However, due to the
limited amount of time for this research, it was not possible to expand the long run
analysis and the grid search.

The model in this research was trained by an Evolutionary Algorithm, which
resulted in applying the model on each sequence for each individual in each gener-
ation. Since the individuals in a generation are independent, it would be possible to
run the computations of each individual in parallel. However, this was not imple-
mented in the used package. Therefore, it might be a good idea to use a different
implementation of the Evolutionary Algorithm, in order to speed up the training
phase.

8.1 Future Work

In this research, a dependency between consecutive sequences was assumed. How-
ever, it would be interesting to investigate the effect of resetting the state after each
sequence of a patient. If there is no significant difference in the prediction error,
there is no specific advantage of using an LSTM above the usage of other Machine
Learning algorithms.

Future work could be done by applying the model on a dataset with more ob-
servations to investigate if the model is able to detect the sequential pattern of the
pharmacokinetics of vancomycin.



Chapter 8. Discussion 35

Finally, it would be useful to compare the final results of the LSTM model with
results from NONMEM R©, because that program is the current standard for phar-
macokinetics.
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9 Conclusion

The LSTM model proposed in this research was not able to predict the vancomycin
serum concentrations in critically ill patients more accurately than the benchmark,
which predicted always the mean serum concentration. The most important reason
for the low performance suggested in this research is the small number of observa-
tions per sequence (interval between two doses). Therefore, the model was not able
to learn how the vancomycin drug was eliminated by the body over time.
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