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Abstract

Lung cancer is one of the four most common cancers in
the world. Early detection and diagnosis will increase the
survival rate. However, detection of early stage lung can-
cer in computed tomography (CT) scans is challenging and
time-consuming. Radiologists will experience pressure and
heavy workload considering the large number of scans they
have to analyze on a daily basis. Computer aided detec-
tion (CAD) systems that automatically detect and localize
lung nodules in CT scans can assist radiologists by offering a
useful second opinion. This will speed up the whole process.
However, a major problem in these CAD systems is the large
number of false positives. In this paper two CAD systems
are developed using 2D methods that reduce computational
complexity and computational cost. The aim was to achieve
a low number of false positives while maintaining a high sen-
sitivity. Two different machine learning models are applied
in the developed CAD systems. These models classify nodule
candidates into either nodule or non-nodule. The first model
is a Support Vector Machine (SVM) and the second model is
a Multi-Layer Perceptron (MLP). Both models have shown
good performance in classifying nodules that are not attached
to the thoracic wall (non-juxtapleural nodules) but bad per-
formance in classifying nodules that are attached to the tho-
racic wall (juxtapleural nodules). SVM achieved 93% sensi-
tivity, 86% specificity and 87% precision for non-juxtapleural
nodules and 45% sensitivity, 70% specificity and 60% preci-
sion for juxtapleural nodules. MLP achieved 86% sensitivity,
86% specificity and 86% precision for non-juxtapleural nod-
ules and 8% sensitivity, 95% specificity and 41% precision for
juxtapleural nodules. The developed CAD systems require
further development in juxtapleural nodules detection.
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1 Introduction

Lung cancer is one of the four most common cancers worldwide besides fe-
male breast, bowel and prostate cancer [1]. Moreover, the mortality rate has
increased over the years [2]. Survival from lung cancer is directly related
to detection of suspicious nodules at early stages. The lung cancer survival
statistics for the Netherlands in the period 2010-2012 [3] shows that the sur-
vival rate is significantly higher if tumors are detected at an early stage.

Radiologists nowadays use chest computed tomography (CT) scans to detect
lung tumors as it has a high sensitivity and low error rate. However, even
with these CT scans, it requires a certain amount of time and experience to
detect and label the lung tumors. This especially holds in early stages where
lung tumors are still small (1-2mm). Moreover, considering the large number
of cases that radiologists have to analyse on daily basis, they will experience
pressure and a heavy workload.

A solution to reduce this pressure and workload is to use computer aided
detection (CAD) systems that automatically detect and localize lung nodules
in CT images. These systems are helpful to assist the radiologists in the
process of lung tumors detection. They have many benefits such as reducing
the error rate of nodule detection, reducing the operation time and detecting
tumors that are overlooked by the radiologists. Several studies have shown
that CAD systems offer a useful second opinion [4, 5].

However, current CAD systems still produce many false positives (predict-
ing non-nodules as nodules) while the sensitivity is large (80%-90%) [6, 7].
Researchers have applied 3D methods that process the entire 3D nodule vol-
ume to reduce the false positives [8, 9, 10]. However, 3D methods have
higher computational cost and are operational more complex than 2D meth-
ods. Therefore, the aim of this paper is to develop a CAD system for lung
nodules detection using 2D methods that is able to achieve a low number of
false positives while maintaining a high sensitivity.

The structure of this paper has been divided into six parts. The first part
is a brief literature review. The second part provides a description of the
data and methodology used in the CAD system. The third part shows the
experimental setup applied to the CAD system. The fourth part presents
the results of the experimental setup. The fifth part is the discussion on the
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results and the final part is the conclusion for the developed CAD system.

2 Related Work

Computer Aided Detection (CAD) systems used in lung nodules detection
generally consists of four main stages [11]: preprocessing, segmentation,
structure/ROI (Region of Interest) analysis and classification.

The preprocessing stage is the process of improving the quality of the lung
image. The most common processes are reduction of noise and artifact (bugs
in image). Kim et al. [12] implemented smoothing to reduce noise through
median filtering. S.Sivakumar et al. [13] and Jaesung et al. [14] also used
this method to remove the noise from the image. Pu et al. [15], Gori et al.
[16] and Wei et al. [17] implemented Gaussian smoothing to eliminate the
image artifacts. Artifacts such as removing contour along the lung boundary
that is likely not the lung boundary.

After the preprocessing stage, lung segmentation is applied. This process
separates the lung lobe region from other tissues in the image by keeping the
lung lobe region and removing the rest. Applying this process is important
as it increases the accuracy and precision of nodule detection. Moreover,
it decreases the computational cost of detection. A simple segmentation
technique is thresholding. This technique converts a gray-scale image into
a binary image using a threshold where pixels greater than the threshold
are considered to be foreground and all other pixels are considered to be
background [18, 19]. Another segmentation technique is region growing used
by Aggarwal et al. [20] and Taher et al. [21] for lung tissue segmentation.
This technique determines object boundaries based on the homogeneity of
the image. It is an iterative process where neighboring pixels of initial seed
points are explored and determined whether they should be added to the
region.

Next, the stage of structure/ROI (Region of Interest) analysis is performed.
In this stage the characteristics of the regions are extracted. Characteristics
such as intensity values of pixels and morphological and texture analysis are
used for detection of lung nodules. Kim et al. [22] extracted features such as
shape, size, average and standard deviation of the nodule candidates. Ozekes,
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S. and Osman, O. [23] implemented 3D feature extraction. These 3D features
consist of 3D connected component labeling, straightness calculation, thick-
ness calculation, determining the middle slice, vertical and horizontal widths
calculation, regularity calculation and calculation of vertical and horizontal
black pixel ratios. All the characteristics of nodule candidates are then used
in the classification stage.

In the classification stage the nodule candidates are classified into nodules
or non-nodules using a classifier. Different classifiers have been used: an
automated rule-based classifier proposed by Li et al. [24], artificial neural
networks (ANN) used by Arimura et al. [25], Bayesian classifier used by
McCulloch et al. [26] and Support Vector Machine (SVM) used by Boroczky
et al. [27].

However, these four main stages are not always applied. Li et al. [28] pro-
posed a deep convolutional neural network for pulmonary nodule classifica-
tion. This method replaces the two components of feature extraction and
classification because the input of deep convolutional neural networks is ROI
pixel data directly without feature extraction and selection. However, in this
paper these four main stages are applied in the developed CAD system.

3 Data and Methodology

In this section, the data and methodology for the developed CAD systems
are described. The architecture of the stages of these systems are illustrated
in Figure 1. Details of each of these stages will be explained in the following
subsections.
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Figure 1: The architecture of the stages of the system.

3.1 Image Acquisition (Data)

Image acquisition refers to the process of acquiring lung CT images. These
images can be found in public and private databases. However, private
databases are not accessible for everyone which made the reuse of data for
research impossible. Therefore, public databases are more preferred for re-
search.

The Lung Image Database Consortium image collection (LIDC-IDRI) public
database [29] is used to obtain lung CTs. This database contains diagnostic
and lung cancer screening thoracic CT scans with marked-up annotated le-
sions of 1018 patients. Each folder includes DICOM images from a clinical
thoracic CT scan and an associated XML file. The XML file records the re-
sults of a two-phase image annotation process performed by four experienced
thoracic radiologists. In the first phase each radiologists independently ana-
lyzed each CT scan and marked lesions to one of three categories (”nodule
> or =3 mm,” ”nodule <3 mm,” and ”non-nodule > or =3 mm”). In the
second phase each radiologist independently analyzed their own marks along
with the anonymized marks of the three other radiologists to render a final
opinion.
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3.2 Image Pre-Processing

Image pre-processing has been performed to construct appropriate images
that are used for developing the CAD system.

The pre-process consists of two processes. The first process is the process of
converting the DICOM images into TIF format for easier processing. The
second process is the process of converting the results of the individual anno-
tations in the XML files to binary images. These binary images represent the
marked-up annotated lesions of each of the four radiologists for each slice.
Since we want to obtain a good overview of the location of the annotation
without losing any information of each radiologist, the four individual an-
notations are combined into one single annotation. This is accomplished by
taking the union of these individual annotations. An example of this process
is illustrated in Figure 2.

(a) (b) (c)

Figure 2: Image Pre-processing: (a) shows the the four marked-up annotated
lesions from the four radiologists, (b) shows the united annotation and (c)
shows the united annotation presented in the CT scan.

3.3 Image Segmentation

In this stage, the pre-processed CT scans are segmented in order to extract
nodule candidates. The image segmentation method used is thresholding.
This method uses a threshold to partition an image into a foreground and
background, where pixels below this threshold are transformed into black pix-
els (background) and pixels above or equal to this threshold are transformed
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into white pixels (foreground). Thus, it isolates objects by converting gray-
scale images into binary images. The threshold is computed using the Otsu’s
method [30]. This method chooses the threshold value that minimizes the
intra-class variance (the variance within the class). The intra-class variance
is defined as a weighted sum of variances of the two classes (foreground and
background):

σ2
w(t) = ωb(t)σ

2
b (t) + ωf (t)σ

2
f (t) (1)

Weights ωb and ωf are the class probabilities for a threshold t and σb and σf
are the variance of the two classes. Denote the range of intensity levels as [0,
L-1], then the weight probabilities for the two classes are given by

ωb(t) =
t−1∑
i=0

p(i)

ωf (t) =
L−1∑
i=t

p(i)

(2)

After the segmentation, a segmented image of the CT scan is obtained where
the white pixels represent objects (foreground) such as nodules, lung tissues,
blood vessels and thoracic wall and the black pixels represent air (back-
ground). An example is illustrated in Figure 3.
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(a) (b)

Figure 3: Image Segmentation: (a) shows the CT scan before segmentation
with the annotated nodule in green and (b) shows the CT scan after seg-
mentation where nodule candidates are presented in white pixels with the
annotated nodule in green.

3.4 Features Extraction

In this stage, features for each connected component (nodule candidate) in
the segmented CT scan image are extracted. These features give information
about the nodule candidate and they are divided into three categories: 2D-
shape based features, 3D-shape based features and texture based features.
2D-shape based features and texture based features are extracted from a
single slice in a CT scan whereas features in 3D are extracted from multiple
slices in a CT scan. Since nodule candidates are 3D objects, it is relevant to
use 3D features.

2D-shape based features

The shape based features are physical dimensional measures that characterize
the presence of a nodule candidate. The extracted 2D-shape based features
are: area, centroid, eccentricity, equivalent diameter, major axis length, mi-
nor axis length and perimeter. These features excluding centroid are the
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basic characteristics of geometric features and essential to recognize objects
in medical diagnosis [31]. The centroid is only used for creating the 3D-shape
based features and the target. The creation of 3D-shape based features will
be explained in detail in the next section and the creation of the target will
be explained in detail in section 3.5.1.

The extracted 2D-shape based features [32] are defined as follows:

1. Area: The actual number of pixels of the nodule candidate. It is ob-
tained by the summation of areas of white pixels in the binary image.

2. Centroid : The center of mass of the nodule candidate specified in co-
ordinate (x,y).

3. Eccentricity : The ratio of the distance between the focci of the ellipse
and its major axis length. The value is between 0 and 1, where an
object with eccentricity 0 represents a circle and 1 represents a line
segment.

4. Equivalent Diameter : The diameter of the nodule candidate computed

as
√

4∗Area
π

.

5. Major Axis Length: The length (in pixels) of the major axis of the
nodule candidate.

6. Minor Axis Length: The length (in pixels) of the minor axis of the
nodule candidate.

7. Perimeter : The distance around the boundary of the nodule candidate.
The perimeter P is measured as the sum of the distances between every
consecutive boundary points. In mathematical form,

P =
n−1∑
i=1

|BiBi+1|+ |BnB1| (3)

where, B = B1, ..., Bn is the set of boundary points.

3D-shape based features

After the 2D-shape based features are derived, the 3D-shape based features
from a single CT scan are extracted. First, the nodule candidates that corre-
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spond with each other in each slice of this scan have to be matched. Hereby
the 2D-features area for the thoracic wall and centroid for the other candi-
dates are used. Note that the thoracic wall is a possible nodule candidate
because nodules can be attached to this wall. These nodules are called juxta-
pleural nodules. An example of a juxtapleural nodule is illustrated in Figure
4.

Figure 4: Example of a juxtapleural nodule annotated in green.

The thoracic wall is a nodule candidate with the largest area, so the area can
be used as measurement to obtain the thoracic wall in each slice. However,
this measurement cannot be used for the other nodule candidates that are
not attached to the thoracic wall (non-juxtapleural nodules) as some of these
candidates have the same area. Therefore, the centroid is used as measure-
ment because the same nodule candidates in a single CT scan are likely to
have centroids close to each other in the slices. Thus, the euclidean distances
between the centroid of a nodule candidate X in a slice and the other nodule
candidates in each of the other slices are computed. Then the nodule candi-
date in each of the other slices with the smallest euclidean distance is high
likely representing the same nodule candidate X. However, this method is
not foolproof. Problem occurs when the same nodule candidate X is not vis-
ible in a slice which results in a false match. A solution is to use a threshold
α. When the smallest euclidean distance is smaller or equal to this threshold
α, then the nodule candidate is assigned as a correct match and the nodule
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candidate of a slice will be matched with the nodule candidate X. Other-
wise, it is assigned as a false match and the nodule candidates will not be
matched. In the end, all the nodule candidates in each slice of the single CT
scan are matched and the 3D-shape based features of these matching nodule
candidates are derived. The following 3D-shape based features are extracted:

1. Area mean: The average area of the matched nodule candidates. In
mathematical form:

µArea =
1

N

N∑
i=1

Areai (4)

where, Areai is the area of the nodule candidate in slice i with N the
total number of slices in the single CT scan.

2. Perimeter mean: The average perimeter of the matched nodule candi-
dates. In mathematical form:

µPerimeter =
1

N

N∑
i=1

Perimeteri (5)

where, Perimeteri is the perimeter of the nodule candidate in slice i.

3. Area variance: The variance of the area of the matched nodule candi-
dates. In mathematical form:

V arArea =
1

N − 1

N∑
i=1

|Areai − µArea|2 (6)

4. Perimeter variance: The variance of the perimeter of the matched
nodule candidates. In mathematical form:

V arPerimeter =
1

N − 1

N∑
i=1

|Perimeteri − µPerimeter|2 (7)

These features give information about the change of the nodule candidate’s
shape over the slices. The shape of lung nodules tends to be more changing
over the slices whereas the shape of blood vessels stays roughly the same over
the slices. This is because the original position of a cancer nodule is located
at a specific section in the lung. Thus, the cancer nodule is the most visible
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in the slice that represents this specific section whereas it becomes less visible
in slices that are further from this section. An overview of a blood vessel in a
CT scan is illustrated in Figure 5 and an overview of a nodule in a CT scan
is illustrated in Figure 6.

(a) Slice 1 (b) Slice 2 (c) Slice 3 (d) Slice 4 (e) Slice 5 (f) Slice 6

Figure 5: A blood vessel in a CT scan. Note that the structure of the blood
vessel is roughly the same on each slice. This indicates that the object is a
blood vessel running to the slices.

(a) Slice 1 (b) Slice 2 (c) Slice 3 (d) Slice 4 (e) Slice 5 (f) Slice 6

Figure 6: A nodule in a CT scan. Note that the structure of the nodule
starts to appear in slice 2 and gets larger, then start to diminish after slice
5.

Texture based features

Next, the texture based features of the nodule candidates are extracted using
Gray level co-occurence matrix (GLCM). GLCM is a second order statisti-
cal measure that is introduced by Haralick [33]. It investigates texture that
considers the spatial relationship with pixels by extracting statistical mea-
sures (texture based features) [34]. The extracted texture based features for
a GLCM with m rows and n columns are:

1. Contrast : The local variations in the GLCM. It computes the intensity
contrast between a pixel and its neighbor pixel for the whole image. In
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mathematical form:

Contrast =
m∑
i=1

n∑
j=1

(i− j)2 ∗ p(i, j) (8)

where, p(i, j) is the pixel of the GLCM at location (i,j).

2. Correlation: The joint probability occurrence of the specified pixel
pairs. In mathematical form:

Correlation =
m∑
i=1

n∑
j=1

(i− µi)(j − µj)p(i, j)
σiσj

(9)

where, µi, µj and σi, σj are the mean and standard deviations of GLCM
along row wise i and column wise j.

3. Energy : The textural uniformity. In mathematical form:

Energy =
m∑
i=1

n∑
j=1

(p(i, j)2) (10)

4. Homogeneity : The closeness of gray levels in the spatial distribution
over image. In mathematical form:

Homogeneity =
m∑
i=1

n∑
j=1

p(i, j)

1 + |i− j|
(11)

These features have shown to be useful in cancer detection [35, 36].

3.5 Classification

In this stage, the extracted nodule candidates in each slice are classified as
being a nodule or a non-nodule. The models that are used for this classifica-
tion are Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP).
These models are explained in detail in section 3.5.2.

15



3.5.1 Target Creation

Before the models are able to classify the nodule candidates, they have to be
trained and the training requires a target output. Therefore, a target variable
was created to identify whether a nodule candidate is in fact a nodule or not.
In order to identify this, the united annotation was used as identifier. The
nodule candidate that has the closest centroid to the unit annotation was
indicated as a nodule. However, to be confident that this nodule candidate
was the annotated nodule, we took the intersection of the set of pixels location
of this nodule candidate and the set of pixels location of the annotation.
These pixels location are presented with linear indices. Next, the fraction of
intersection similarity was computed and this is given by:

Intersectionsim =
Number of intersected pixels

Total number of annotation pixels
(12)

We assumed that the fraction of intersection similarity must be at least 0.8
in order to be confident that the nodule candidate is in fact the annotated
nodule. The choice of a minimum fraction of 0.8 fraction instead of 1.0 is
because the annotation is a union of the annotations of the four radiolo-
gist which could have some deviation with the nodule candidate. However,
this deviation is small and does not have intersection similarity below 0.8.
The advantage of using the united annotation is that the representation of
the nodule in the annotation is guaranteed. The disadvantage is that the
united annotation does not always represent the precise boundary of the
nodule. However, this is not a problem as radiologists still have to evaluate
the detected nodule by the CAD system. Next, the target variable is created
where nodule candidates that are in fact nodules are assigned with value 1
and nodule candidates that are non-nodules are assigned with value -1.

3.5.2 Models

Support Vector Machine

Support Vector Machine (SVM) is a popular data classification method. It
is a supervised machine learning algorithm and takes a set of input data
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(features of nodule candidates) with corresponding output data (target vari-
able) and predicts the two possible classes (nodule or non-nodule) for each
given nodule candidate. These classes are separated by a hyperplane. SVM
seeks the hyperplane that maximizes the distance between each class and
the hyperplane. This hyperplane is known as a maximum-margin hyper-
plane, where margin is defined as the sum of the minimum distances from
each set to the hyperplane. Figure 7 illustrates a maximum-margin hyper-
plane. Besides the regular linear classification, SVM can perform non-linear
classification using a kernel function. This function maps the input into high-
dimensional features spaces which makes it linear separable. In this paper,
three different kernel functions are used: the linear kernel function, the radial
basis function (RBF) and the multilayer perceptron kernel function (MLP).

Figure 7: Maximum-margin hyperplane

Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is an Artificial Neural Network (ANN).
ANN is a computational model which structure and performance character-
istics are similar to those of the biological neural networks and is able to
learn complex transformation of inputs to certain outputs. The architecture
of a MLP is illustrated in Figure 8.
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Figure 8: Architecture of a MLP with a minimum of 3 layers (input, hidden
and output). The input later has 4 neurons, the hidden layers has 5 neurons
and the output layer has 1 neuron. Note that the MLP can contain multiple
hidden layers.

MLP consists of processing elements called neurons. These neurons are used
for the transformation from input to output and they are organized in layers.
Between these layers neurons are connected to each other, each with an
associated weight. The connections are always directed from lower layers to
upper layers. The output of each neuron c in the hidden layer(s) and output
layer is then a (non)linear function over the dot product of the weights of
the connections with the outputs of the neurons in the previous layer. In
mathematical form:

c = φ

(∑
i

wiai + b

)
, (13)

where ai are the inputs of the neuron, wi are the weights of the neuron and b
is the bias. φ is the (non)linear function, also called the activation function
as it determines the activation level of the neuron.

Next, the network is trained using a learning algorithm that updates the
weights such that the error between the value of the output neuron and the
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target value is minimized. Scaled Conjugate Gradient (SCG) learning algo-
rithm is used which is an iterative algorithm that searches along conjugate
directions. This algorithm is better and faster than the normal gradient
descent [37].

In the network for the classification of nodule candidates, the input neurons
in the input layer representing the features of nodule candidates are first
transformed using the logistic activation function. This transformation maps
the input data into a space where it becomes linearly separable represented
in the hidden layer(s). Next, the hidden layer to output layer transform the
linear separable inputs into a probability output value using again the logistic
activation function. This probability output value represents the probability
of being a nodule.

3.5.3 Unbalanced Dataset Handling

The unbalanced dataset problem occurs in lung nodule classification as the
number of non-nodule samples is much larger than nodule samples. In our
dataset, the proportion of nodule classes is extremely low (0.58%). Train-
ing on such an unbalanced dataset will result in a model that is unable to
predict the nodule class as the model is more biased towards the majority
class. In order to combat this problem, the dataset is re-sampled by under-
sampling the majority class. The majority class (non-nodule) samples are
randomly removed from the dataset until the proportion between the ma-
jority class and the minor class is equal. The choice for a fully balanced
dataset is made to ensure that the models will not be affected by any fac-
tor of unbalancing. However, randomly removing the majority class samples
can cause unbalancing in the nodule type samples (juxtapleural nodules and
non-juxtapleural nodules). Therefore, the dataset is first divided into two
datasets. The first dataset contains only juxtapleural candidates and the
second dataset contains only non-juxtapleural candidates. In these datasets
37.77% of the samples are juxtapleural nodules and 62.23% of the samples are
non-juxtapleural nodules. Next, the non-nodules samples are undersampled
in both datasets until the proportion between majority class and minor class
are equal. Thus, an equal proportion in juxtapleural non-nodule samples and
juxtapleural nodule samples in the first dataset and an equal proportion in
non-juxtapleural non-nodule samples and non-juxtapleural nodule samples
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in the second dataset. Next, these two balanced datasets are aggregated into
one dataset that contains 20704 samples from 874 patients. This balanced
dataset is used for training and testing the models.

4 Experiments

In this section the evaluation methods and the experimental setup for the
models are described.

4.1 Evaluation methods

To obtain the performance of the models, a validation method and an eval-
uation metric are needed. The 5-fold cross-validation validation method is
used. This validation method randomly partitions the patients in the dataset
into 5 equally folds. Each time, one of these 5 folds is used for testing and
the other 4 folds are used for training until all the folds have been tested
once. With k-fold cross-validation it shows how well the models perform on
data from new patients.

The confusion matrix is used as evaluation metric. The terminology of the
confusion matrix is as follows:

1. True Positive (TP): Correctly predicting a nodule as a nodule.

2. True Negative (TN): Correctly predicting a non-nodule as a non-nodule.

3. False Positive (FP): Predicting a non-nodule as nodule.

4. False Negative (FN): Predicting a nodule as non-nodule.

From this confusion matrix, three performance measures are computed:

1. Precision: The proportion of correct predicting nodule cases. The
equation is given by:

Precision =
TP

TP + FP
(14)
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2. Sensitivity : The proportion of nodule cases that were correctly classi-
fied. The equation is given by:

Sensitivity =
TP

TP + FN
(15)

3. Specificity : The proportion of non-nodule cases that were correctly
classified. The equation is given by:

Specificity =
TN

FP + TN
(16)

These three performance measures are used to measure the performance of
the models in the experimental setup. Sensitivity is used as primary outcome.
The reason is that sensitivity is more important than specificity in CAD
systems as predicting a false negative is much worse than predicting a false
positive. Moreover, precision is included as it gives information about the
false positive findings and the relevance of the detected nodules. This is
relevant because a high false positive rate is one of a major problem in CAD
systems [38].

4.2 Experimental setup

The dataset is split in a train set and a test set. The train set consists of 80%
of the total number of patients (700) and the test set consists of the remaining
20% of patients (174). Next, three experimental setups are applied.

The first experimental setup is the parameter settings. We have experi-
mented with different parameter combinations for both models using 5-fold
cross-validation on the train set. In the Multi-Layer Perceptron model, the
parameters are the number of hidden layers and the number of neurons in
each layer. In the Support Vector Machine model, the parameter is the
different kernel functions.

The second experimental setup is the features importance. First, the feature
categories are varied in the MLP model to detect the importance of each
feature category for classifying nodule candidates. Next, the importance of
each individual feature is explored. This is done by removing each individual
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feature as input feature for the MLP model and observe how this influences
the performance of the model. Again 5-fold cross-validation on the train set
is applied.

The last experimental setup is the comparison between the two models. Both
models are evaluated on the test set using the optimal parameters found in
the parameter settings.

5 Results

In this section the obtained results for the models are presented. Section
5.1 describes the result for the different parameter settings in both models.
Section 5.2 describes the result for the different selected features in the MLP
model and in section 5.3 the two models are compared.

5.1 Parameter settings

The first parameter setting is the threshold α for matching the same nodule
candidate in each slice of a single CT scan. This threshold α is set to 5 and it
is chosen based on manually observing the position of the nodule candidates
in different slices.

Next, the performance for different number of hidden layers and their size
(number of neurons) in each layer is investigated. 5-fold cross-validation is
used on the train set and the average performance measures over these 5-
folds are taken. Multiple runs have been considered. Moreover, the input
features and the output threshold of the model are kept fixed during the tests
to avoid influence from external factors. The result is shown in Figure 9.
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Figure 9: Average precision, sensitivity and specificity against different num-
ber of hidden layers and neurons using 5-fold cross-validation, all input fea-
tures and 0.1 output threshold over 10 runs.

We observe that the model requires more than two hidden layer as the sensi-
tivity is improving when the number of hidden layers is increased. However,
increasing the number of hidden layers above 4 layers is irrelevant as the
performance starts to decay and overfit. The best performance is acquired
with 4 hidden layers with 20 neurons at each layer. Moreover, increasing
the number of neurons in 4 hidden layers is not necessary because the per-
formance starts to decrease. Furthermore, the precision and specificity are
relatively constant over the different number of hidden layers and neurons.

Next, the performance for the different Kernel functions in SVM is explored.
The average performance measures of the 5-folds in the train set over 10 runs
are taken and the result is shown in Figure 10.
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Figure 10: Average precision sensitivity and specificity for different Kernel
functions using 5-fold cross-validation and all input features over 10 runs.

MLP kernel has the lowest sensitivity (0.06) of all the three kernel func-
tions. This indicates that MLP kerel is not suitable for classifying lung
nodules. RBF and linear kernel have a specificity of 0.80 and 0.87, respec-
tively. This shows that linear kernel performs better at predicting non-nodule
cases. However, the sensitivity of RBF (0.75) is larger than the linear kernel
(0.64) showing that RBF is better at predicting nodule cases. Thus, we ob-
serve a trade-off between sensitivity and specificity. However, the difference
between specificity is smaller than the difference in sensitivity and the differ-
ence between precision is small (0.78 for RBF and 0.83 for linear). Moreover,
sensitivity is the primary outcome. Therefore, RBF is preferred.

5.2 Features Importance

The sensitivity for different feature categories is observed in the MLP model.
The result is shown in Figure 11.
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Figure 11: Sensitivity for different feature categories using MLP with 4 hid-
den layers and 20 neurons at each layer with 0.1 output threshold and 5-fold
cross-validation over 10 runs.

We observe that all three feature categories contribute in classifying nod-
ule candidates. However, the most important category is 2D-shape based
features as the sensitivity decreases from 0.58 to 0.51 when 2D-shape based
features are excluded from the model. Moreover, excluding 3D-shape based
features and texture based features result in a decrease in sensitivity.

Next, each individual feature is evaluated by observing the decrease in sensi-
tivity when this individual feature is eliminated from the model. The result
is shown in Table 1.
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Eliminated feature Sensitivity decrease

Correlation -10.76%
Perimeter -9.13%
Equivalent Diameter -8.32%
Area -6.67%
Minor Axis Length -5.75%
Eccentricity -5.61%
Area mean -3.98%
Homogeneity -3.68%
Energy -3.38%
Major Axis Length -3.10%
Area variance -3.05%
Perimeter variance -2.57%
Perimeter mean -1.96%
Contrast -1.47%

Table 1: Sensitivity decrease for each feature using MLP with 4 hidden
layers and 20 neurons at each layer with 0.1 output threshold and 5-fold
cross-validation over 10 runs.

We observe that correlation is the most important feature as eliminating
correlation result in a sensitivity decrease of 10.76%. Moreover, the 3D-
shape based features perimeter mean and variance have a less important
degree than area mean and variance. The reason could be that area gives a
better indication about the change of nodule shape over the slices as shown
in Figure 6. Furthermore, perimeter, equivalent diameter and area are all
important 2D-shape based features.

5.3 Model Comparison

The SVM model and the MLP model are evaluated on the test set over
100 runs using the optimal parameters found in section 5.1. Moreover, the
performance of the models in classifying juxtapleural nodule candidates (nod-
ules attached to the thoracic wall) and non-juxtapleural nodule candidates is
investigated. First, the nodule candidates are categorized into either juxta-
pleural nodule candidates or non-juxtapleural nodule candidates. Next, the
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performance measures in the two categories are computed for both models.
The result is shown in Table 2.

All nodules
Model Precision Sensitivity Specificity
SVM 0.79 0.75 0.80
MLP 0.84 0.55 0.89

Juxtapleural nodules
Model Precision Sensitivity Specificity
SVM 0.60 0.45 0.70
MLP 0.41 0.08 0.95

Non-juxtapleural nodules
Model Precision Sensitivity Specificity
SVM 0.87 0.93 0.86
MLP 0.86 0.86 0.86

Table 2: The average model performance over 100 runs on the test set: SVM
with RBF kernel and MLP with 4 hidden layers, 20 neurons at each layer
and 0.1 output threshold.

The choice of 0.1 output threshold in MLP is because this threshold gave
the best result in terms of sensitivity without having high negative effect on
specificity and precision.

We observe that SVM performs better than MLP for all the nodule cate-
gories. The reason is the bad performance in detecting juxtapleural nodules
for MLP (0.08 sensitivity). This shows that MLP is unable to classify jux-
tapleural nodule candidates while SVM is still able to classify 45% of the
juxtapleural nodule candidates correct. This result shows that both models
have difficulties in detecting juxtapleural nodules. However, both models
have good performance in detecting non-juxtapleural nodules with 0.93 sen-
sitivity for SVM and 0.86 sensitivity for MLP. Moreover, the precision in
both models are large, 0.87 and 0.86 for SVM and MLP, respectively. This
shows that the number of false positives is low in both models. Furthermore,
the specificity in both model is large. These results have shown that both
models are able to make a clear distinction between nodules and non-nodules
for non-juxtapleural nodule candidates.
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Next, the 95% confidence interval of these test results is derived. The result
is shown in Table 3.

All nodules
Model Precision Sensitivity Specificity
SVM [0.78 0.79] [0.74 0.75] [0.79 0.80]
MLP [0.80 0.89] [0.51 0.58] [0.88 0.90]

Juxtapleural nodules
Model Precision Sensitivity Specificity
SVM [0.59 0.61] [0.43 0.45] [0.69 0.71]
MLP [0.36 0.46] [0.06 0.10] [0.93 0.96]

Non-juxtapleural nodules
Model Precision Sensitivity Specificity
SVM [0.86 0.87] [0.93 0.94] [0.85 0.86]
MLP [0.81 0.90] [0.81 0.90] [0.85 0.86]

Table 3: 95% confidence interval of the model performance over 100 runs
on the test set: SVM with RBF kernel and MLP with 4 hidden layers, 20
neurons at each layer and 0.1 output threshold.

We observe that the 95% confidence interval for SVM is smaller than MLP
in all the nodule categories and performance measures. This indicates that
SVM is more accurate in classifying nodule candidates than MLP. However,
MLP is still accurate as the confidence intervals are relatively small.
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6 Discussion

The aim of this paper was to develop a computer aided detection (CAD)
system for lung nodules detection using 2D methods. In these systems two
machine learning techniques were implemented: Support Vector Machine
(SVM) and Multi-Layer Perceptron (MLP). SVM performed better than
MLP, it achieved a sensitivity of 75% while MLP achieved a sensitivity of
55%. Moreover, SVM is more accurate than MLP as the 95% confidence
intervals are smaller in SVM. However, the performance of only detecting
non-juxtapleural nodules are good in both SVM and MLP systems. They
achieved 93% and 86% sensitivity for SVM and MLP, respectively. Moreover,
both systems have a low false positive rate: precision of 87% and 86% for
SVM and MLP, respectively. The problem of both systems is the detection of
juxtapleural nodules. SVM achieved 45% sensitivity and MLP only achieved
8% sensitivity. The reason is the Otsu segmentation method that was used.
This method was unable to segment juxtapleural nodule candidates from the
thoraric wall. This resulted in providing the thoraric wall as juxtapleural
nodule candidates for the models which made it difficult for the models to
detect juxtapleural nodules. This shows that the segmentation of nodule
candidates plays a crucial role in building a good CAD system.

Besides nodule candidates segmentation, features extraction is also impor-
tant as it gives the characteristics of the nodule candidates. The result has
shown that 2D-shape based features, 3D-shape based features and texture
based features are all important features. Texture based features are impor-
tant in identifying objects in medical images [39] and shape based features
are important as nodules are usually small round or oval-shaped while lung
tissues are usually flat-shaped.

Since the developed CAD systems have difficulties in detecting juxtapleural
nodules, we recommend future studies to focus more on this part of nodule
detection. Other segmentation methods might be able to separate the nod-
ule from the thoracic wall that could lead to better performance. Another
recommendation is to apply 3D lung nodule candidate detection instead of
2D lung nodule candidate detection for juxtapleural nodules. The reason is
that the lung nodule candidates become more visible in 3D which makes it
easier to segment.
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7 Conclusion

Both developed computer aided detection (CAD) systems (SVM and MLP)
have shown that they were able to detect lung nodules that are not attached
to the thoracic wall (non-juxtapleural nodules). These systems have achieved
a low number of false positives (high precision) while having a high sensitiv-
ity for non-juxtapleural nodules detection. However, this does not hold for
detecting lung nodules that are attached to the thoracic wall (juxtapleural
nodules). The developed CAD systems have difficulties in detecting juxta-
pleural nodules. Therefore, these systems should be further developed in
juxtapleural nodules detection.

Despite that CAD systems could make huge improvements in lung cancer
detection in the future, these systems should not replace radiologists or be
used for final interpretation. The reason is that experience and expertise
are always needed. Therefore, CAD systems should always remain as second
opinion for the radiologists. CAD systems are supposed to assist radiologists
and not supposed to replace them.
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