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Abstract 
This paper intends to give an overview of real-world and academical problems that can 
be successfully solved by using an evolutionary computing (EC) approach. A bird’s eye 
view is taken to do this whilst hard academical evidence proving the superiority of 
evolutionary algorithms (EAs) of other methods is still scarce. From this perspective a 
selection of problems that are currently investigated with evolutionary techniques are 
described and it is pointed out why EAs can work well on these problems. We conclude 
with a practical description of what the advantages and disadvantages of EAs are in real-
world problems and how their paradigm might be exploited further. 
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1. Introduction & acknowledgement 
This paper has been written for the “BWI werkstuk” course at the Free University (VU) 
in Amsterdam. This course is meant as a literature research in the final year of the study 
Business Mathematics & Computer Science1.  
 
After following the course “Evolutionary computing” (EC) taught by Guszti Eiben I 
became inspired by the way this (r)evolutionary approach tackles large, complex 
problems. The different viewpoint and the natural interpretation of such algorithms seem 
to be very flexible and capable of solving problems while remaining simple and elegant 
as an algorithm. In cooperation with Guszti Eiben the subject of reviewing promising 
applications of this powerful solver arose.  
 
Of course the list of problems for which evolutionary algorithms (EAs) are possible 
solvers laid out in this paper is not (at all) exhaustive. It intends only to give an 
impression of the sheer possibilities of using an evolutionary technique. Furthermore we 
will not go into implementation issues and specific EC-bound theory to keep the 
document open for people from outside the field of EC. In this paper we stress the 
possibilities and practical use of EC and not the shortcomings or theoretical background 
of EC. 
 
For people already familiar with the concept of EC the next chapter may be skipped. It 
sketches the history of EC, the basic concepts in building an EA and discusses the types 
of problems where to it can be applied. In chapter 3 we determine a scope for chapter 4. 
In this chapter a categorized list is given of promising application areas. For all of the 
categories we state the nature of the problem and how EC can be incorporated as a solver 
to get better solutions.  

 
1 Bedrijfswiskunde & Informatica (BWI) in dutch 
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2.    Explaining evolutionary algorithms 

2.1. A short history 
Evolutionary computing (EC) is a relatively new field in the Artificial Intelligence (AI). 
If we look at its history we see that around the forties and fifties the initial ideas for using 
an evolutionary approach for solving problems where developed. In the sixties these 
ideas materialized into different algorithmical structures all sharing an evolutionary 
component. Three different evolutionary streams formed all invented by separate 
researchers. Not in any specific order these where Evolutionary Programming (EP) by 
Lawrence Fogel, Genetic Algorithms (GA) by J. Holland and Evolution Strategies (ES) 
by I. Rechenberg/H. Schewefel. Though debated continuously throughout EC history 
which algorithm had the most potential as a problem solver, these streams displayed huge 
resemblances in their way of solving things but all of them had their own typical features 
and successful problem solving characteristics (see [4]). In the nineties Genetic 
Programming (GP) by J. Koza was born which can be seen as a generalization of GAs. 
Only from then on these four streams blended into one specific area in the AI, 
Evolutionary Computing. 
 
The main difference between these four types of Evolutionary Algorithms (EAs) is the 
representation they use to model decision problems, something that turned out to be vital 
for the effectiveness of the algorithm [8]. What they have in common is their approach to 
tackle problems by using the Darwinian principle of natural selection. As Darwin noticed 
in the mid nineteenth century, biological organisms seem to evolve over time. This 
evolvement or evolution seems to create environmentally adapted (and thus “better” or as 
Darwin proposed “fitter”) species, as each species would breed new generations. The 
adaptation process is accomplished through a process of mutation, crossover and natural 
selection (see also [5]). We will now show how EC adopted this principle to solve 
decision problems.  
 

2.2. The basic principles 
We will first describe the setup of a standard EA, valid for all the four streams within EC 
that we have identified. Thereafter we will work out the typical properties that make up 
such streams, but first some terminology. In each EA (hybrid, memetic, co-evolutionary, 
multi-objective or self-adaptive) there exists a population of individuals. Each individual, 
called a genome according to the biological interpretation of EC, forms a solution to the 
problem at hand. In this interpretation all the genomes together can also be referred to as 
the gene pool. If we, for example, have a problem that consists in finding a real number 
minimizing a certain function, individuals encode real numbers lying in the problem 
domain. Likewise, if for some municipal park an optimal type of tree is sought to plant, 
the individuals should consist of tree definitions. We call the way in which a solution is 
stored the representation of an individual. For the first example the representation seems 
straightforward, we would like to have reals representing reals. In the case of the park we 
see that the representation is ambiguous; we can define the trees by, for example, their 
latin names but we also can state their height, width, depth and surface for which they 
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effectively catch sun. Both representations are correct but, as might be obvious, can 
influence the performance of the algorithm drastically. 
 
Finding an exact/mathematical way of encoding a solution is only one of the two 
specifications needed to define a problem. The second specification is describing the goal 
or task of the problem. In EC creating a fitness function that maps all possible instances 
of the chosen representation to a single real number does this. This number now 
embodies the so-called fitness, correctness or quality of that solution. Fitness is a very 
general quantity and therefore each problem should have its own interpretation of how a 
solution’s quality is assessed. For example, if we face a constrained problem we do not 
need to alter the original (natural) representation of the problem to satisfy the constraint.  
We could simply merge it into the fitness function by subtracting an arbitrary fitness 
value from the original value if the constraint is broken. Another possible implementation 
of the constraint would be to prevent the creation of individuals who break the constraint.  
 
Having the problem defined we introduce Darwin’s “survival of the fittest”. As in 
biological processes we want our algorithm to have the ability to increase and decrease 
the diversity in the population (and thus solutions) as a whole. In Darwin’s evolution of 
species this can be seen as the birth and death of creatures belonging to that a particular 
species. In EC, we are going to manipulate the gene pool using genetic operators. These 
operators, as was the case with representation, need to be adjusted in order to be able to 
work correctly for a given problem. Note that this can be done in various ways but we 
will only give a brief description of the general characteristics of such operators and thus 
skip any implementation issues, see also [2] and [3]. 

• Recombination or crossover. Can be conceived as the birth of one or more 
offspring from two or more parents through exchanging or sharing information 
between the parents. The idea here is that the information that is under 
optimization built up in the parents should be exchanged in some way. Such 
information can be seen as several building blocks building towards an optimal 
solution. These building blocks are exchanged in order to find the set of building 
blocks creating the optimal solution. 

• Mutation. The random, undirected change of an individual. The mutation rate 
defines the mean differences before and after this transformation. A compromise 
between exploration and exploitation and thus respectively large and small 
mutation rates should be sought. Together with the recombination operator this is 
the main operator (re)introducing diversity in the population. Too large mutation 
rates will lead to erratic behavior of the algorithm and have a trial-and-error 
search performance whereas too small mutation rates will result in only finding 
local optima instead of the desired global optima.  

• Selection. The only diversity decreasing operator. This operator can be found at 
two stages in the algorithm: 

o Just before the recombination step there is a selection of which parents 
will create the offspring. In general it is thought that fitter parents create 
better offspring. 

o After the manipulation of some individuals there should be some selective 
pressure pressing the population as a whole towards a better population in 



 6 

the next generation. Roughly there are two ways of doing this. The (μ+λ)-
strategy selects the new generation out of the original population before 
any manipulation plus the offspring resulting from the mutation and 
recombination operators. The (μ,λ)-strategy has bigger selective pressure 
because this operator selects the population for the next generation only 
from the offspring generated by the genetic operators. Depending on how 
the genetic operators work this usually leads to a brand new population in 
each generation cycle the algorithm makes. 

 
How these operators work together can be seen in the following piece of generic pseudo-
code on how a standard EA works, taken from [2]. 
 
INITIALZE population with random candidate solutions 
COMPUTE FITNESS of each candidate 
 while not STOP-CRITERION do 
  SELECT parents 
  RECOMBINE pairs of parents 
  MUTATE the resulting offspring 
  COMPUTE FITNESS of new candidates 
  REPLACE some parents by some offspring 
 od 
 
The various streams within EC work corresponding to this main framework but all have 
their typical differences. We note that these differences are mere observations and that 
the specific kinds of EAs are not tied down to them. As the field of EC evolved these 
distinctions appeared and thus can be seen as helpful. We present a non-exhaustive list. 

• Genetic algorithms. Frequently have a bit string representation of fixed length but 
can as well have a real valued representation. Recombination is implemented 
through bit-exchanges between parents which is the main diversity increasing 
operator. The mutation operator, usually implemented as random bit-flips, is a 
secondary operator. Selection is mainly done by the parent selection mechanism. 

• Evolution strategies. Have a real-valued vector representation possibly extended 
with strategy parameters. It might have a recombination operator but the mutation 
is the main diversity increasing operator. Mutation is implemented by adding 
(multi-dimensional) normally distributed errors to the original individuals. On top 
of this a simple autoregressive model can be implemented in order to strategically 
vary the mutation rate (variance of the normal distribution) over the algorithm’s 
run time. A regression is created which, in the initial phase of the algorithm, 
focuses on exploration (large mutation rates) and refines this behavior towards 
exploitation (small mutation rates). Selection is aggressive and therefore usually 
using the (μ,λ)-selection strategy. 

• Evolutionary programming. Was traditionally concerned with evolving finite state 
automata designed for machine learning. Has the same representation and 
mutation technique as ES and uses no recombination operator at all. Unlike ES it 
uses a stochastic form of the (μ+λ)-selection strategy. 
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• Genetic programming. Has a tree-structure representation, resembling parse trees 
that can be naturally used to formulate logical expressions such a mathematical 
functions. Another interpretation of the tree structure can be that of syntactic 
expressions and thus making the individuals resemble computer programs. All the 
genetic operators are adapted to cope with the tree structure; further a similar 
approach is taken as in GA. 

 

2.3. When to use an evolutionary approach 
Surprisingly this relative simple framework seems to be able to approximate solutions of 
a very wide range of problems. First we note that the theoretical background of EC is 
small compared to that of other fields of science. The most interesting question that arises 
from the application of an EA is if it will succeed in finding the global optimum. It can be 
proven that a correctly formulated EA with certainty (probability 1) will indeed find this 
optimum. Though a nice theoretical result it does not serve much practical use because it 
does not take into account the convergence velocity. This velocity defines the speed of 
the algorithm convergence towards the global optimum (see [13]). For several streams 
within EC some convergence velocity theory work has been done but the results so far 
are not sufficient. The practical use of a convergence velocity theory is the mapping of a 
solution’s quality to the execution time of the algorithm. We see that there is as of yet no 
general framework wherein we could derive convergence velocity formulas for all 
problems where EAs are used as solvers. Currently these velocities are known for 
several, simpler, fitness landscapes but not for complex problems. Ironically for complex 
problems execution times are of major importance. For some this lack in theoretical 
background renders EC into a “trial-and-error” approach of solving problems. It is 
stressed that this is not the case, which might clear if we view paragraph 2.2, there is a 
clear push towards optimal solutions. In the author’s opinion this lack of theory results in 
a field that is very much problem-driven. This pull-factor comes from well-known 
unsolved2 problems in other fields, for example the Traveling Salesman Problem (TSP). 
These unsolved problems are usually of complexity class NP3 and have ambiguous 
solution methods. Heuristic and algorithms from other fields together with EAs come 
with their specific shortcomings like large execution times or non-optimal solutions. 
Because of their unsolved nature these problems are extremely interesting for researchers. 
The author also observed a small push-factor generated by EC. Because it finds its use in 
so many problem areas sometimes a problem is founded and accordingly solved by EC. 
Good examples of such foundation of new problems can be seen in paragraph 4.9.  
 
 
 
 
 
 
 

 
2 Unsolved should by no means be explained as that there are no methods (heuristics or algorithms) for 
solving these problems. Unsolved as meant here does mean that there is no overall accepted best method to 
use when dealing with these complex problems. 
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The question of when to use an EA extends the problem of not knowing much about the 
mathematical properties of an EA. In general we see that if a lot of mathematical 
understanding of a problem already exists and a good algorithm that calculates the 
optimal solution can be built, this is preferable over EAs. Unfortunately for a lot of 
problems, typically some much harder NP-hard or NP-complete decision problems3, 
algorithms like that are not present. In these cases approximating heuristics are used to 
give some indication of the optimal solution. The problem of these heuristics is that they 
implement some domain knowledge of the problem. This leads to a vast number of 
different heuristics for solving a vast number of different problems, for example adding a 
simple capacitation constraint creates a totally different problem (see 4.1.5.). A basic EA 
on the contrary is typically not problem related but uses a methodology which is much 
more general. This leads to a more flexible, easily implementable and adaptable way of 
solving problems.  
 
Though this does not promise us the perfect, unambiguous algorithm that can solve 
everything fast and accurate. As the No Free Lunch (NFL) theory states about “black-
box” optimizers [6]: “If some algorithm a1’s performance is superior to that of another 
algorithm a2 over some set of optimization problems, then the reverse must be true over 
the set of all other optimization problems”. In this light a random search method is 
intrinsically as good as any other method, like EC. It must be noted that this statement is 
only true when reviewing all optimization problems. Such statements do not hold when 
the problem has a structure (which it does have) and this structure is exploited. Through 
exploiting the structure the NFL theory does not hold because it is now only stated that an 
algorithm works better for problems which posses this specific structure. 
 

This means that EAs will have an average performance when implemented in basic form 
but can be strong(er) optimizers if the structure of the problems relates to that of the EA 
designed to solve it. The exploitation can be done in EAs via several means: 

• Representation. As mentioned earlier representation affects the quality of an EA 
drastically. For example when solving a tree-like problem, implementation of a 
binary string representation generally yields worse results than keeping a tree-like 
structure in the representation of the genome. The domain of the problem 
solutions is also intrinsically determined in the possible representations. This can 
be exploited to not only to avoid redundancy but also to adjust the performance of 
genetic operators. For example if integers are encoded into bit strings for the use 
within a GA this could be done directly by using a bin-to-dec calculator or one 
could use a construction method to create a maximal hamming distance between 
the encoded integers. For the latter approach it is proven that a bitflip mutation 
operator will work better and more smoothly. 

• Genetic operators. As direct results from the representation genetic operators 
should be adapted to handle such representation. For example the operators 

 
3 An NP or Non-deterministic Polynomial-time is the set of decision problems solvable in polynomial time 
on a nondeterministic Turing machine. This means that given a solution its correctness can be calculated in 
polynomial time. It is believed but not proven that this means that finding such solution cannot be done in 
polynomial time (for P-problems this solution can be found in polynomial time). See [7], NP,  complexity 
class P and NP. 
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should only create offspring that lies in the feasible solution domain. 
• Hybridization. The implementation of a domain specific operator that is known to 

work well on a specific problem. For example the use of a human expert to 
determine some initial values for the EA or running a local search algorithm after 
the use of a genetic operator to ensure an even chance on fitness for the offspring 
made by these genetic operators. Hybridized EAs are usually referred to as 
memetic algorithms. We see that their interpretation differs slightly from normal 
EAs. In memetic algorithms an individual is more than just a possible solution; it 
can be seen as an agent tactically finding a resolution method for the problem.  

• Codification. The translation between the phenotypic and genotypic features4 of a 
genome. For example if some ordered list is represented by a genome the ordering 
can be done at phenotypic or genotypic level. 

 
We conclude that EAs can certainly not be successfully applied to any problem. As 
Michalewicz mentiones in [8], instances of EAs that are not problem specific but general 
are said to be weak methods whereas problem specific instances are strong methods. We 
see that this is a logical result from the NFL theory. If we compare the ability to produce 
good results against the domain of problems where they are applicable to we see the 
following. 
 
Figure 1: comparison of the performance of four EAs against their domain (dom) with 
dom(EA4) Í dom(EA3) Í dom(EA2) Í dom(EA1) 

 
 
We will now first review possible application fields of EAs and try and point out why an 
EA has advantages/disadvantages. In our conclusions (chapter 5) we will wrap up the 
benefits of EAs into a final list of when to use EAs. 

 
4 Phenotype space is the set of possible solutions of the real problem. Genotype space is the set of possible 
solutions in the EA and thus consists of all possible representations. One genotype can generally be mapped 
to multiple phenotypes but not vice versa creating a 1:N mapping. 
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3. Scope 
Firstly, we will only state promising applications of EAs. It is not always trivial if an 
algorithm’s application is successful or if it has potential but we will try and give some 
criteria for preferring an algorithm over others. Of course these criteria are not exhaustive 
and are placed in random order: 

• The algorithm has a better performance 
• The algorithm has a lower complexity and consumes less computational resources 
• The algorithm is intuitively (more) correct 
• The algorithm is more robust 
• The algorithm’s performance can be explained and its output is human 

interpretable 
• The algorithm is easy to implement and thus has less development costs 

 
We see that several of these criteria are intrinsic to EAs, though we saw from the NFL 
theory that e.g. a better performance can never be guaranteed a priori. If there is indeed 
an EA that gives a good performance we note that this performance is not always proven 
to be consistent throughout various instances of the same problem. It is known that 
special instances of some problems prove to be harder/easier to solve than a general 
instance. This means that one canonical5 problem should be seen as a multitude of 
problems when some algorithm is solving it because only for a set of instances of 
homogenous algorithm behavior comparison is feasible. Generally not much theory exists 
on good classifications of problem types. The behavior of an EA depends solely on the 
form of the fitness surface it is exploring. Therefore to get a good grip on the quality of 
an EA one needs to classify this surface and have some sort of convergence velocity 
measure. We noticed that a sound, common-grounded methodology for describing fitness 
surfaces and theory on convergence velocity is non-existent (see [9]) and thus the 
comparative statements about success are hard to establish (e.g. “better performance”). 
 
Another way of establishing an algorithm’s success is mentioned in [10]. Here a more 
abstract view on how to define success is taken. It skips the technical comparison issues 
and argues that an algorithm is successful if it generates results competitive with a 
human-produced result. In [10] it is stated that some results can be some as human 
competitive if one or more of the following criteria is met: 

• The result was patented as an invention in the past, is an improvement over a 
patented version, or would qualify today as a patentable new invention. 

• The result is equal or better than a result that was accepted in a peer-reviewed 
scientific journal.  

• The result is equal to or better than a result that was placed into a database or 
archive of results maintained by an internationally recognized panel of scientific 
experts. 

• The result is publishable in its own right as new scientific result – independent of 
 

5 A canonical form is a form (taken from [11]) 
reduced to the simplest and most significant form possible without loss of generality 

  conforming to orthodox or recognized rules 
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the fact that the result was mechanically created. 
• The result is equal to or better than the most recent human-created solution to a 

long-standing problem for which there has been a succession of increasingly 
better human-created solutions. 

• The result is equal to or better than a result that was considered an achievement in 
its field at the time it was first discovered. 

• The result solves a problem of indisputable difficulty in its field. 
• The result holds its own or wins a regulated competition involving human 

contestants (in the form of either live human players or human-written computer 
programs). 

 
This represents a clear vision on when an algorithm / solution method outperforms 
another. A list of twenty-four results is given in [10] all of which satisfy one or more of 
the above criteria. We will not use this approach however in the following categorization 
of promising EAs. Selecting application areas with this definition of success as criterion 
seems very time-consuming. One must first be familiarized with the field to determine an 
algorithms behavior compared to others. Then ambiguous properties like “difficulty” of a 
problem or scientific acceptance need to be fulfilled or a patent should be equaled or 
perfected. All of these criteria do not seem to be acquired in a reasonable amount of time 
and are a mere extension of common-grounded beliefs in science.  
 
Secondly, we intend to discriminate application of EAs in academic problems versus 
real-world problems. As we saw the problem-types in EC are mostly defined by a pull-
mechanism from other science fields. We can explain this behavior by supposing that the 
field of EC needs to prove itself amongst other known methods. A proof can be 
formulated in two ways. We distinguish the strong, theoretical proof of its success and 
the empirical or practical proof. A theoretical proof gives a sound explanation why 
algorithm a works better than algorithm b, given certain properties of both. From the 
specifications of the algorithms and the knowledge about them a mathematical 
interpretation can be given of the quality of an algorithm’s capability of solving a 
problem. In reality such proofs are scarce. Usually lower and upper bounds of the 
solutions given by them are known but no further proof can be found. This is the case for 
EC as well. Thus a practical proof of an algorithm’s use should be established made 
through standardized experimenting and comparing the results. Unfortunately the 
practical proof is less suitable for solving academical problems because of the lack of 
sound explanation of the ECs behavior and the gained success. We can see this because 
as a rule of thumb the solution method should be strongly correlated with the given 
problem. In other words if we have a theoretical or academical problem a, we should try 
and solve a in the paradigm where it is stated in to yield scientifically justifiable results. 
This seems to explain the observed tendency in EC of using a practical proof method on 
practical or real-world problems. This does not mean that a categorization cannot be 
made within the problem range where EC is applied to nor that EC is solely applied to 
solving real-world problems. Though as figure 2 might point out our intended 
differentiation seems infeasible for EC:  
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Figure 2: The correlation of the push and pull factors in EC and their problem domains 
on the scale of all problems. 
 

Scale of all problems 
 

 
 
 
 
 
 
 
 
 

 
In the next paragraph we will categorize some of the problems found in EC literature by 
an ad-hoc categorization. The categorization classes we will be stated in some general 
form though as we noted most of the instances in such category will have a real-world 
character. Mind that some instances would definitely fall into more than one category but 
to avoid redundancy will be stated in the class most applicable. The ad-hoc nature of the 
classes can be explained by their overlapping canonical form (for example a data-mining 
application can be interpreted as a static signal processing application or a timetabling 
problem can as well be interpreted as a scheduling problem/graph coloring problem) but 
apparent differences in the motivation behind the research of such problems should in 
those cases make them fall into a certain category. For example if a Brazilian school’s 
timetable is being constructed (see timetabling 3) it is indeed apparent where facing a 
timetabling problem.  
 

Academical 
Well defined canonical 
problems. Known in a 
variety of different 
fields of research. 
 

Real-world 
Form of a problem 
solved frequently in 
organizations giving 
direct added value. 
 

EC 
Application (realized only on test 
cases) of an algorithm to some form 
of canonical problem seen in the 
real world though generalized or 
simplified to fit the problem at 
hand. 

←push of EC       pull on EC→ 
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4.    Categorization of EC research 

4.1. Combinatiorial optimization 
Of all subfields in EC research combinatorial optimization (CO) is arguably the largest 
and most important. It focuses on optimization of combinatorial problems thus problems 
where an optimal combination is sought. These problems are well known in various 
scientific fields like discrete mathematics and operations research. CO is a widespread 
problem field because a lot of real-world applications fall in this category. These 
problems usually have a NP-hard or NP-complete complexity class. Not necessarily5 this 
means that these problems are therefore hard to solve but practically if the problem would 
be attacked by an exact brute force method (which is completely enumerating all the 
possible solutions) the performance of such algorithm would be exponential to the 
problem’s input size. Considering the number of problems that reside in this category 
(see also [12]) we adopt a further classification. 
 

4.1.1. Scheduling  
Scheduling and timetabling problems can be viewed as different instances of the same 
problem. The problem of both is planning a sequence of operations using scarce 
resources in which the goal is planning all these operations with minimal cost. Usually 
this cost factor is calculated through the current planning scheme’s usage of a resource 
(like time or number of personnel) or the breaking of constraint within the scheme. 
Formally we could view this problem as finding an optimal permutated triple {R,O,C} 
where R are the resources need to complete the operations O and C the optimality 
criteria. The different domain knowledge and different types of constraints that needs to 
be implemented in the problems in order to fulfill the optimality criteria cause differences 
in the two problems. In timetabling problems, for example, there exists a determined 
number of time-slots which can be filled up. Scheduling problems have a more sequential 
nature where the amount of time available is not defined. 
 
Apart from these differences and resemblances we will roughly divide scheduling and 
timetabling by what they plan. Where in case of scheduling this usually is ‘machine 
operations’ and for timetabling, logically, timetables (see 4.1.2.). For scheduling the 
interpretation of the planning problem is finishing n products or jobs for which several 
operations on different machines are required. Usually there exist two constraints 
considering precendence and operation types which a solution must fulfill in order to be a 
feasible schedule. Firstly a certain operation can only be done on specific machine(s). For 
simplicity usually a one-on-one relation is modeled (thus exactly one machine for one 
operation) which might be extended to some M-to-N relation. Secondly it is likely that 
there exists an ordering in the sequence of the operations that need to take place before 
the job is finished. In scheduling this is interpreted as a directed task graph G=(T,A) 
where T are the tasks or operations needed and A are the directed arcs which indicate the 
precedence within the tasks (scheduling 1). Problems where this precedence in operations 
is the same for all the jobs being processed are usually referred to as Flow Shop problems 
(see scheduling 2,5,7). If precedence is present these problems are called the harder Job 
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Shop problems (scheduling 3,4,6,7). For further classifications within the field of 
scheduling see scheduling 7. 
 
There exist a wide variety and enormous size of scheduling problems in real-world 
applications and corresponding with that a lot of research has been undertaken to tackle 
these problems. EC is becoming a more and more accepted application to use for these 
problems because it yields fast and robust results. We note that speed in these algorithms 
is becoming more important due to globalization and corresponding increase in number 
of machines, operations and jobs to be optimized. Furthermore seemingly small changes 
in the problem structure (for example do we have one or two machines capable of 
handling a certain operation) can change the problem and algorithmical results 
drastically. Therefore a range of other, non-EC related, means of solving scheduling 
problems exist all which work well on their own small range of specific problem 
instances. We see that in EC usually less discrimination exists between these different 
instances because an EA is thought to be general enough to solve them uniformly. 
Uniformly means that an EA can incorporate several algorithms and can coordinate when 
to use which to generate an optimal resolution method. We see that if an EA is hybridized 
and fine-tuned to one specific real-world case (see scheduling 8) the results can be very 
competitive and the execution time is generally reduced when compared to other means 
of solving. 
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4. E. Hart and P. Ross. A systematic investigation of GA performance on Job Shop 
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shop scheduling, rescheduling, and open-shop scheduling problems. In S. Forrest, 
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7. H.L. Fang. Genetic Algorithms in Timetabling and Scheduling. PhD thesis, 
Department of Artificial Intelligence. University of Edinburgh, Scotland, 1994. 

8. Nutech case studies for instance the scheduling of oil extraction for 
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9. N. Urquhart, K.J. Chisholm, B. Paechter. Optimising an Evolutionary Algorithm 
for Scheduling. In S. Cagnoni, Real-world Applications of Evolutionary 
Computing, p. 307-318, 2000. 

 

4.1.2. Timetabling 
The interpretation of a timetabling problem is one of a planning problem where a 
timetable needs to be optimized. The timetable under optimization should satisfy a set of 
hard and soft constraints. These constraints can include a variety of features the timetable 
must posses. For example in a school’s timetable one can construct a soft constraint 
stating it is preferable to have some diversity in the subjects of daily courses or that 
scholars should not have lunch all at the same time because this would overcrowd the 
lunchroom. Hard constraints can be modeled likewise. A very common hard constraint is 
to restrict the application of some resource. As in scheduling there should be a one-to-one 
relation of resources (e.g. a classroom, a professor) to operations (e.g. a class of students). 
Furthermore it is common to include a hard constraint stating that all the operations must 
be handled and thus for example that all the students have to attend a predetermined 
amount of classes. 
 
Because of the fixed time-slots laid out in the problem’s constraints the timetabling 
problem can also be viewed as an assignment problem where resources and operations 
are assigned to each other. This viewpoint lets the problem be translated into a set 
covering problem which is formulated as finding a subset of columns in a zero-one mxn 
matrix A. This should be done in such a way that the columns cover all the rows of the 
matrix at a minimum cost, calculated by multiplying A with a cost-vector (see 
timetabling 2,9). It also leaves room for modeling the problem as a graph colouring 
problem (see scheduling 10 and 4.1.3.) 
  
As for scheduling problems, variety and size of the different timetable problem instances 
is huge. The timetabling problem finds its practical application in schools (colleges, 
universities, high school, see timetabling 3,4,5), flight scheduling, re-scheduling (see 
timetabling 7,8), employee scheduling to satisfy employee contracts and minimal staffing 
levels (see timetabling 1,2,6,9) and various other problems where resources need to be 
allocated on a timed basis. For timetabling problems EC earns its advantage over other 
methods due to the same factors as the scheduling problems but also inherits the same 
constraints of its generalized application. EC is usually a less time-consuming approach 
to tackle these problems since they can be very complex to model. EC provides a robust 
and generic ability to handle constraints and model the problem making it a flexible 
algorithm with potential. 
 

1. P.V.G. Bradbeer, C. Findlay, T.C. Fogarty. An ambulance crew rostering system. 
In S. Cagnoni, Real-world Applications of Evolutionary Computing, p. 267-276, 
2000. 

2. E. Marchiori, A. Steenbeek. An evolutionary algorithm for large scale set 
covering problems with application to airline crew scheduling. In S. Cagnoni, 
Real-world Applications of Evolutionary Computing, p. 367-381, 2000. 
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problem - preliminary results. In E.J.W. Boers et al., Applications of 
Evolutionary Computing, p. 431-440, 2001. 
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6. M. Gröbner, P. Wilke. Optimizing employee schedules by a hybrid genetic 
algorithm. In E.J.W. Boers et al., Applications of Evolutionary Computing, p.463-
472, 2001. 

7. T. Grosche, A. Heinzl, F. Rothlauf. A conceptual approach for simultaneous 
flight schedule construction with genetic algorithms. In E.J.W. Boers et al., 
Applications of Evolutionary Computing, p. 257-267, 2001. 

8. M. Love, K.R. Sorensen, J. Larsen, J. Clausen. Disruption management for an 
airline - rescheduling of aircraft. In S. Cagnoni et al., editors, Applications of 
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covering problems. In S. Cagnoni et al., editors, Applications of Evolutionary 
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10. Tatties II program by Ben Paechter is an evaluation version of a simple timetable 
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http://www.dcs.napier.ac.uk/~benp/summerschool/summerschool2.htm 

 

4.1.3. Graphs 
In the mathematical graph-theory founded in discrete mathematics several real-world 
problems find a matching interpretation. In general we think of a graph problem as the 
pursuit of some goal, for example an optimal route, in a graph G = (V,A). As we noted 
earlier some scheduling problems can be modeled as directed graphs but are not 
categorized here because of the coherency within scheduling problems and the sheer 
number of specific scheduling problems. Neither will we state any arc routing problems 
here (see 4.1.5) for the same reasons. This leaves us with the following non-exhaustive 
set of graph problems: 

• Graph coloring. One wishes to color the vertices V of G with a minimum number 
of colors, such that no two adjacent vertices receive the same color. If now k 
colors where needed for the coloring we see that the problem is equivalent to 
finding a disjunct, non-empty, partitioning of size k of the vertices in G. Because 
the partitions are disjunct the partitioning can be adopted to solve a simple 
timetable problem, interpreting the colors as available time slots and the arcs A as 
the constraint that a one-on-one relation between all the time-slots and 
resources/operations exists. Solving the coloring problem then gives the number 
of time-slots needed to plan all these events (see scheduling 7 and graphs 2,5,6). 
The technique of graph coloring can be generically applicable to assignment 
problems where the colors represent the resource that needs to be assigned, for 
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example mobile telephone networks or a navy fleet. It seems that an EA in its 
canonical form is not capable of solving coloring problems because of the 
symmetry of the solution space. The symmetry renders the standard genetic 
operators useless. In hybridized form with applicable genetic operators an EA 
does seem capable of solving coloring problem (see graphs 7,9). 

• K-connectivity. This problem arises typically from physical network optimization 
problems. The world is becoming more interconnected and thus a network’s 
number of nodes that need to be connected increases as well as the amount of data 
passing through these nodes. The optimization problem lies in minimizing the 
cost of adding connections in the network in order to keep up with the 
enlargement of the network as a whole together with the resulting communication 
costs in the network. If we translate this problem to a graph problem this means 
creating a k-connectivity graph where a k-connectivity graph is defined as a graph 
in which at least k arcs must be removed in order to disconnect the graph.  
Typical examples of such networks are telephony networks, intra-nets, the 
internet or power generators in the US. There exists some fair results of the 
application of EAs to such problems (see graphs 1,3,8) though the form of the EA 
needs to be adapted (again especially its genetic operators) to fit the problem 
possibly making EAs not the most natural approach. 

• C-means clustering. The problem consists in finding c non-empty clusters of 
vertices in a graph where each vertex is assigned to exactly one cluster. The 
criteria for the belongingness of a vertex to one of the c clusters can be adapted to 
the practical problem at hand. The problem is difficult because solutions found 
are often degenerated partitions in which amount of data points per cluster is 
unequally spread. A balance between minimal sensitivity and local extrema 
should be pursued. The clustering problem is frequently faced in exploratory data 
analysis where some abstraction of the data is sought in order to make better 
assessments of its meaning. For example in data-mining this technique can be 
used to derive classifications of explanatory variables and in image analysis to 
find correlating features (see also 4.3 and 4.6). In general some segregation is 
sought which is appropriate for the data at hand. EAs seem to be a powerful, fast 
solver for these problems (see graphs 4) because of its adaptability and flexibility. 
The balance in the segregation that is sought can be regulated the parameters of 
the EA. Given a good fitness function the algorithm might even be able to meta-
evolve its own strategic parameters to do so. 
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3. I. Ljubić, G.R. Raidl. An evolutionary algorithm with stochastic hill-climbing for 
the edge-biconnectivity augmentation problem. In E.J.W. Boers et al., 
Applications of Evolutionary Computing, p. 20-29, 2001. 
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4.1.4. Knapsack 
The interpretation of this problem is that a knapsack needs to be filled with items but only 
a limited amount of weight can be fitted into it. The goal is to fit as much profit in the 
knapsack as possible. Thus from the set of all items given their amount, weight and profit 
they generate we need to select an optimal item set. Next to the main goal of maximizing 
the profit in the knapsack other constraints can be formulated. Usually the amount of 
constraints in knapsack problems is high thus making the feasibility of finding any 
solution an important topic (see knapsack 2). This problem can be applied in every real-
world problem where for a scare resource a practical upper bound is known and an 
optimal allocation is sought. For example if an investor wants to invest a certain amount 
of money in three possible projects he would like to invest it in such a way that an 
optimal (expected) profit is generated. An alternate constraint for this example would be 
setting a maximum amount of money that can be invested in each project separately. We 
can also identify the multi-dimensional knapsack problems where not one but n 
knapsacks are filled making the problem much harder (see knapsack 3). EC should only 
be applied for such complex problems, heavy constrained or extremely large, because for 
those problems few heuristics exist. EAs seem very capable of handling such problems 
compared to other methods (see knapsack 1,3). 
 

1. J. Levenhagen, A. Bortfeldt, H. Gehring. Path tracing in genetic algorithms 
applied to the multiconstrained knapsack problem. In E.J.W. Boers et al., 
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2. J. Gottlieb. On the feasibilty problem of penalty-based evolutionary algorithms 
for knapsack problems. In E.J.W. Boers et al., Applications of Evolutionary 
Computing, p. 50-59, 2001. 

3. S. Khuri. The zero/one multiple knapsack problem and genetic algorithms. In E. 
Deaton et al., editors, Proceedings of the 1994 ACM Symposium of Applied 
Computation, p. 188-193, 1994. 
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4.1.5. Arc routing 
Arc routing problems are probably the most famous combinatorial optimization problems 
around. Strictly the problem is a graph problem but is categorized separately here because 
of the amount of the research in this field. The most common arc routing problem is the 
Traveling Salesman Problem (TSP), which is the problem of finding the shortest closed 
tour through a given set of n cities visiting each city exactly once. In a graph these cities 
can be seen as the vertices of the graph and the arcs as the possible routes between cities. 
The length or weight of each arc is interpreted as the distance between the cities it 
connects. In a standard TSP a closed tour should be found and the weights of the arcs 
should equal their geometrical lengths and that thus the problem can be drawn 
accordingly in Euclidian space making it a Euclidian-TSP. Of course the modeling of 
practical problems may require the use of open tours or non-Euclidian metrics for the 
lengths of the arcs. As a generalization of the TSP there exists the multiple TSP (mTSP). 
An mTSP differs from a standard TSP by letting k instead of one sales agents travel past 
the n cities creating k separate cycles in the graph. The problem of mTSP is again find k 
closed circuits visiting all the n cities while minimizing the path weights. mTSP is a 
variant of the k-TSP problem where it is also required that all the closed circuits have one 
common base city. 
 
If we interpret the cities being visited not by sales agents but by for example delivery 
trucks we wish to also model a limit of the number of goods the truck can carry. For this 
purpose the capacitated TSP is constructed where the standard TSP was not capacitated. 
Of course an arbitrary number of other constraints can be set up, making the solving of 
the problem generally harder. One can also try to make a large, difficult TSP problem 
easier. It is know that touring cities very close to each other can be solved with a simple 
nearest neighbor algorithm equally well as with a complex TSP. Especially for clustered 
data a combination of simple and complex approaches works very well. One of those 
methods is called the street based routing method. If for example we need to optimize the 
delivery of mail to all the households in a suburb we could model this as a TSP with a 
high number of cities but this would make the problem needlessly complex. Because we 
know that all the households in one (part of the) street will be very close to each other it 
is spilled computational time to let the TSP algorithm approximate the optimal route for 
those households. We much rather apply a simpler algorithm to the intra-street 
households and the more complex TSP on the inter-street optimization. This is what has 
been done in street based routing where the intra-street mini-problems are solved by a 
deterministic procedure (see arc routing 1,3). 
 
Applications of arc routing problem can be found in abundantly in real life. The physical 
routing problem includes indeed the traveling salesman but in general everything that 
needs to pass along several points on a map in preferably the fastest or shortest way like 
mail, packages, garbage collections, deliveries of supplies, picking of orders within a 
warehouse, public transport, routing of network traffic etc. (see for example arc routing 
4). In practice a TSP problem can, apart from the different models described above, also 
have a dynamic component whereas the situation changes the algorithm quickly 
computes the optimal strategy for the changing conditions. Especially in routing network 
traffic and delivery of supplies this feature can be a must-have (we would think of nodes 
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in the network being deleted/created or a priority supply which must be handled 
immediately). This is where EC can provide extra functionality over other algorithms. 
We can roughly state that optimal values calculated by EAs and non-EAs are more or less 
the same for any standard TSP problem. Though the computation time in EC is very 
scalable compared to other methods. At any time during an EAs execution the optimum 
so far can be given together with an arbitrary set of other possible solutions making 
dynamic TSPs possible. Also because of this feature a major increase in the number of 
cities would not have disastrous effects on the computation time making such problem 
still solvable in reality, something which is definitely not the case for several other ways 
of solving.  
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Salesman Problem. Department of Information Technology and Production 
Economics, University of Vaasa, 2000. 

 



 21 

4.2. Design 
One can think of a vast number of things, conceptual or physical, that need to be designed 
or might be designed better. In the case of physical design one might think of architects 
designing buildings or industrial designers designing all sorts of everyday objects. What 
happens in such designs is that a number of design issues are being solved 
simultaneously. We separate functional design dealing with the use and functionalism of 
the designed object, aesthetic design dealing with the appearance of an object and the 
construction design identifying the materials the object should be made of and how it 
should be built. We note that construction design enables as well as constrains the other 
design factors. For example an architect may have come up with some wild aesthetically 
very correct design that is not feasible to build physically. This is a typical example of a 
construction design’s constraining nature. Furthermore we see that the fitness of a 
construction design is completely determined by accepted laws in nature (gravity, law of 
effect etc.) and could be expressed in mathematical terms. On the contrary in functional 
and surely ethical design the fitness cannot be determined univalenty.  
 
Conceptual designs have a much broader scope then physical design because they 
embrace ideas instead of physical things. Aesthetical, functional and constructional 
factors still exist in such design but should be interpreted differently. For the intended 
constructional factors we still observe its objective, univalent nature because 
constructions of concepts always exist in some paradigm (they are for example stated in a 
language) and usually refer to and/or make use of existing conceptual frameworks (if 
someone would want to prove a new mathematical theorem one would use old, proven 
theory to do so). 
 
If we would apply an EA to a design problem we need to be able to determine the fitness 
of a structure, preferably on an unambigious and deterministical way. In EC therefore a 
design problem is a problem of optimizing the construction of a design. Of course what 
type of structure or idea is optimized determines the base for fitness evaluation wholly 
(see also 4.8 and 4.9 for a completely opposite approach to fitness). For the construction 
of possible solutions suitable building block are combined with some means of 
connecting them. Thereafter their fitness should be calculable. 
 
A good example of a conceptual design would be designing an ARMA model. In such 
model a balance between the Moving Average (MA) and Autoregressive (AR) 
components is sought. Putting these together in the ARMA formula creates a (time-) 
series prediction model. In these models the fitness is evaluated by, of course, their 
predictive behavior together with the generality of the model. Adding components will 
always increase predictive behavior in ARMA models but is only until some extent 
valuable to maintain generality (see design 3). Designs in computer science can also be 
optimized. If we see a program running on a computer as a black box we see that it is 
feeding the computer machine code and getting output back from it. We might want to 
optimize the program to create better output. A good example of computer program 
design is the design of a protocol for communication between computers. Such protocols 
should be able to let computers communicate and minimize the response times and 
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number of faults while doing this. It also should avoid network congestion or network 
collapse and thus be robust. Such a protocol can be seen as a program and thus as a mere 
piece of machine code that can be (and certainly needs to be) optimized (see design 
3,4,5). In these articles this approach did not yield the intended results, which is 
competing with current protocols, but they did come up with working protocols. This 
means that the method being used is viable for later success.  
 
For physical design the optimization goal usually lies in natural features of a design such 
as strength, hardness, aerodynamicy or speed. In airplane design for example, 
aerodynamics plays a vital role. Planes fly by using an airfoil (wing) to generate an 
upward lift caused by differences in airspeed on the upper and lower side of the airfoil. It 
is known that at different altitudes different types of air are found (different amount of 
oxygen, air-pressure) and thus different wings should be designed to make the best use of 
these different properties (see design 1). This makes the design difficult because only one 
airfoil can be used which subsequently needs to fulfill all these requirements. 
 
We see that constructional design problems are still hard to solve because they are in 
general also hard to model correctly (especially conceptual design problems). In terms of 
intuition the use of EC does seem applicable in this field because its interpretation in 
biology is similar. In real life creatures created through evolution also can be seen as 
smart designs certainly capable of performing certain tasks. Furthermore if a design 
problem is stated clearly we see that solution domain is usually theoretically infinite and 
practically thus huge. This property makes an EA suitable too because of its known 
ability to handle these out-of-bound problems very well. 
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4.3. Image analysis 
The analysis of images is important for the mechanisation of processes. The problem lies 
not in seeing images but solely in interpretating images. Humans rather unconsciously 
perform this task on a day-to-day basis but formally describing this task in order to 
implement it in computers seems a very complex matter. Mechanization is needed 
because for some problems the quantity of the images that need to be reviewed is too 
much to be done economically by humans themselves. Also we could think of some 
qualitative expert knowledge that is needed to perform the analysis task. Because such 
experts might be scarce and not always accurate a computer can assist in such analysis.  
 
The problem of precision vs. generality seems to be key question for these type of 
problems. An algorithm should be general enough to see “the big picture”, that is 
identifying certain objects which spread out over a substantial area of the image though 
also be precise enough to identify the outlines of such objects and identify small 
anomalies. In image analysis we can separate feature-based methodes, voxel intensity 
based methods and image filters. Image filters (see image analysis 4) do not interpret the 
data in an image but pre-process the picture before the main algorithm will interpret it. 
Constructed methods for image analysis usually rely on perfect pictures but of course this 
can never be achieved by modern technology because there is always a certain physical 
limit to the pixel-count in a picture. The picture should then be filtered in order to 
emphasize areas or intensity levels in pictures to make analysis more accurate. 
 
Feature-based methods search for features in an image. This is usually done through 
comparing known template images with the image being interpreted. This can be done in 
numerous ways. If for example we look at a production line producing beer in glass 
bottles one would need to check for stains or tears in the bottles. Because of the amount 
of bottles this cannot be done manually. If we have a template of a good beer bottle then 
the algorithm calculates the differences between the beer bottle image being reviewed 
and the template. If the correlation exceeds a certain bound the analyzed beer bottle 
should be carefully checked (see image analysis 1). For this simple problem the key lies 
in learning an algorithm the differences between the two images. 
 
In voxel intensity based methods there exist no template images. This is necessary if the 
exact form of the phenomenon we want to analyse is not known a priori. Also for pictures 
on different scales (see image analysis 2) this can be useful. We see that the problem’s 
difficulty increases dramatically if no a priori knowledge is available. The algorithms in 
this category label certain points in the pictures that the algorithm finds of interest. A 
point of interest is a point where the coloring of the image is different than points lying 
next to it or points that are more or less identical to points already labelled interesting 
which lie in the neighborhood making that point likely part of the same object. We see 
that in hospitals this method can be of value raising the accuracy of detecting diseases. In 
a hospital we could find images from x-ray tomography (CT-scans), Magnetic-resonance 
imaging (MRI-scans), mammograms, single-photon-emission tomography (SPECT-
scans) or positron-emission tomography (PET-scans). Detection of diseases on these 
pictures (like cancer) can be hard, even for an expert eye, because it involves noticing 
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minor details. Therefore automated image analysis can be used to assist these experts (see 
image analysis 5,6). 
 
The real advantage of EAs comes in play when the voxel intensity based methods are 
used for analysis. Because of their domain independent knowledge, like EAs, they can be 
used for all kinds of image analysis jobs (see also image analysis 2,3) focussing on the 
recognition of objects. The flexibility of EC enables the voxel intensity method to learn 
to perform a certain analysis correctly. Especially fine-tuning the parameters of the EA 
does this. These parameters intrinsically tell the EA how to perform its search function 
and how to evaluate a fitness value making the trade-off between generality and 
precision. This makes the EA capable of performing a very specific job though the 
original modelling of the algorithm can still be said to be problem domain independent. 
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4.4. Decision support systems / controllers 
A decision support system can be viewed as follows. 
 
Figure 3: a schematic decision support system 

 
We see that the system generates actions based on (sensor) input that is processed by 
some algorithm capable of making decisions; hereafter we will call such system a 
controller. We can view this process as an ongoing decision process with or without 
feedback. Feedback controllers are called closed-loop controllers and controllers without 
feedback open-loop controllers. We can also discriminate in the use of human 
intervention in the decision process. Naturally we see that for critical, complex 
applications more human intervention and guidance is required then for standard 
controlling functions. For applications where a large number of decisions are required in 
a short time frame human intervention can only be limited. 
 
Open-loop controllers make decisions on the same input each time a decision cycle is 
made. The decision algorithm can be stochastic so the output would not be the same for 
each cycle but will have some of the same overall properties. Closed-loop controllers 
show a very different behavior. In each decision cycle where a decision is made and a 
corresponding action is performed this action changes the sensor inputs of the next 
decision cycle. Thus the decision algorithm will respond to altering conditions in the 
system as a whole. As a rule of thumb therefore closed-loop systems are used if a lot of 
decisions need to be made throughout time and where the system undergoes a certain 
dynamic. Because open-loop systems would not perform well under changing external 
conditions they are used in more static environments. Typically in these evironments 
decisions are taken less frequently. Corresponding to the amount of decisions both types 
of controllers have to take in a run of several cycles ,the complexity of the decisions to be 
made is usually higher in an open-loop controller than it is in closed-loop controllers. 
This goes hand in hand with the amount of human intervention in the system. For open-
loop controllers the output of the decision system is a mere guidance for the user who 
will make the decision based not only on the output of the controller. In closed-loop 
controllers the controller makes the decision by itself and the user would only be warned 
and possibly interfere if some dangerous system state would emerge and thus the 
controller is much more unsupervised than is the open-loop controller. 
 
We find the application of controllers all throughout everyday life. Simple examples of 
such systems are sliding doors, elevators, cruise control in cars, peripheral controllers in 
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computers, routers, VCRs, traffic lights, camera’s etc. All of these everyday examples 
work on feedback and thus seem to us humans to be automatic processes. Because all of 
these examples seem to work fine, the role of EC lies in the decision problems that are 
much harder to control. The hardness of such problems for the open-loop controllers 
usually lies in the lack of knowledge of the correlation between input signals and the 
desired output. For the closed-loop controllers the problem is a large amount of input data 
and the small timeframe in which a decision should be made. For the first case a 
simulation could be written in order to predict the output of a certain decision. For the 
latter case usually a frame-work of rules is derived from historical data which is then 
projected on new input signals. We now observe a categorization problem. On one hand 
we see that the system has learned from former input data in order to make its choices at 
the moment needed, we could thus say this is actually learning (see 4.5 for a definition). 
On the other hand we see that a set of rules is generated from historical data and that 
typically the number of input variables is large. This knowledge-generation is usually 
called data-mining (see 4.6). We again note that the categorization here is ad-hoc based, 
though we intend to categorize applications here where both the statical component (data-
mining, a one-time generated set of rules) and the dynamical component (learning from 
prior events) are integrated. We will try to analyze the two components separately in the 
next two sections (4.5 and 4.6). 
 
We see that in the case of motorway control these two components interact with each 
other. We see that the circumstances on motorways can change rapdily from very scarce 
and high speed traffic at night to very dense traffic at peak hours, usually around 8 am 
and 5 pm. To be able to control traffic detection, prediction of journey times or traffic 
lights the system needs to be very adaptable to changing situations (see also decision 
support systems 2,3,5). In the case of robotics (see decision support systems 4) the 
feedback and thus dynamic nature is apparent. If we would want the robot to walk using 
its feet it must continously re-balance itself in order to achieve the goal not to fall but to 
move. It does this through the use of its equilibrium sensors. The problem at hand again 
needs an adaptable algorithm in order to deal with previously unencountered problems 
but even more needs to be computationaly quick. As all humans learn through experience 
losing your balance (and consequently falling if the situation is not dealt with) can take 
place in a single second.  
 
The advantage of using EAs for these types of problems is their natural implementation 
of learning and their robustness. The learning component is accomplished by storing a 
population in the algorithm. Theoretically the population as a whole should contain fitter 
solutions (in the case of a controller, “actions”) as the EA progresses. For a system under 
control we can say it is a system which can only be in a finite number of states, for 
example the robot can be in balance, out of balance with tendency to fall backwards, 
forward etc. Now we see that each state has its own optimal response, respectivly go in 
the desired direction, put one feet backward, forward etc. Such (simplified) examples can  
directly be translated into the population where the population contains a collection of 
those (near-)optimal state-bound actions and wherein optimal moves for certain states are 
continously sought but where the other moves from different states are still preserved. In 
a sense we could call this mechanism a sort of experience building. 
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4.5. Machine learning 
A lot of areas in AI are related to the technique of machine learning, therefore the use of 
the term has become broader and broader as the field of AI expands. As we saw earlier 
decision support systems are said to learn when feedback of a controller’s actions is given 
back to it and the controller adjusts its output to it. Extending this discussion EC can as 
well be viewed as a learning tool in the way we explained in 4.4. It is not the author’s 
intention to view machine learning like this, we will only review applications here that 
explicitly learn an EA a concept.  
 
To learn something we must first ask ourselves what learning is. Learning can be 
interpreted as simply the gaining of knowledge, though this prolonges the question to 
what knowledge is. We can separate knowledge roughly into two categories namely 
declarative knowledge and procedural knowledge. Declarative knowledge find its use 
(apart from the discussion whether knowledge has use at all) in giving information about 
things (for instance, that “A” is the first letter of the alphabet). Procedural knowledge 
gives information on how to do things (for instance, following steps A,B and C will dig a 
hole). Apart from only gaining knowledge learning has the vocation that it is done at least 
partly by the entity (here the computer) rather than entirely by a teacher or knowledge 
provider (see [7], “machine learning”). The term learning normally implictly refers to the 
learning of humans. The main objective in learning is the learning itself and the ability to 
reproduce the learned patterns. Sometimes the behavior emitted by a cognitive system6 is 
seen as the goal of learning though strictly this is not the ultimate, but merely a practical, 
goal of learning.  
 

 
6 A system which has cognition. Cognition can be seen as a mental process in any form of creature like 
most naturally humans, animals, aliens and even non-life forms like computers. It is defined as the ability 
to learn or investigate something. 
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As for all EA instances in learning there should always be a task stating what should be 
learned, a certain quantification defining if the learning went well and a representation for 
knowledge. In the most generally accepted case the task is learning a concept and the 
representation of knowledge is rule-based (see learning 2,5). We see that knowledge is 
attained if by applying the rules on input data the rules discriminate well between 
negative and positive instances of the concept which can be any concept of choice. These 
rules can be generated using first-order logic, as formulated in the REGAL system (see 
machine learning 4), which indicate that if certain events in the input occur 
simultaneously this results in a certain reaction. By adjusting these rules to fit the desired 
output the system is trained.  
 
We can also learn a computer how to operate certain (simulated) architectures, for 
example we can learn a computer how to move a (simulated) arm by using a couple of 
virtual muscles (see learning 1,3). In learning 3 the arm is a real prosthetic arm used to 
help disabled people. The arm receives input from the user’s and the arm then needs to 
learn what the user means with this input and act accordingly. What is learned is only the 
meaning of the users input, not learning the consequenences of the emitted behavior. In 
learning 1 we see a similar approach for moving a simulated baby’s arm towards some 
predefined spot. Without knowing the spot and even without knowing there is such a spot 
at all the algorithms starts moving the arm and should learn how to get to the sweet spot 
and stay there. 
 
We see from the examples above that the learning problem is general in nature. The 
definition of knowledge can be implemented in numerous ways into algorithms and the 
representation of knowledge is ambigous because of different types of knowledge. We 
see that EAs also have a general nature and thus might prove to be well at solving such 
problems. The difficulty of using EAs for these problems is the representation of 
knowledge in the algorithm. As in done in learning 3 we could evolve series of logic 
gates who instantly give a solution to the problem. We see that the knowledge is fully 
represented by such gates and that from the arrangenment of logical operators created by 
the EA a certain knowledge or rule(s) can be extracted. Though if a learning problem 
would increase drastically in complexity this method may not work anymore or yield 
uninterpretable logic gate constructions. In learning 1 we saw that the knowledge lay in 
the performed actions of the hand. As in standard EAs a series of possible actions 
(solutions) was generated and by reviewing their simulated behavior the algorithm 
learned which action to take. This method seems to yield searching all the possible 
actions and finding the best action to implement. The interpretation of knowledge 
attained while doing this seems non-existent. According to the author the most preferable 
approach to deal with learning problems in EA (and definetely a promising one) is the 
use of the REGAL system which encodes each genome as a logical rule (see learning 
2,5). The REGAL system then uses a distributed approach to identify a set of rules for the 
task to be learned at hand. A supervising algorithm controls the distributed EAs to 
accommodate cooperation amongst them. The interpretation of each distributed EA is 
that it will find a niche in the set of rules generated so far and will create a new rule to 
increase the fitness of the set of rules as a whole. Therefore the population in each 
specific distributed EA is competing for the creation of new rules as well as the 
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distributed EAs amongst each other. Because of the clear representation of knowledge 
through a rule-based system this seemes the best algorithm to implement knowledge. 
This is confirmed by similar AI applications which usually also apply rule-based systems 
to implement knowledge. The extra evolutionary approach of the REGAL method could 
make it a serious competing algorithm for these type of problems. 
 

1. S. Delepoulle, P. Preux, J.C. Darcheville. Selection of behavior in social 
situations. Application to the development of coordinated movements. In E.J.W. 
Boers et al., Applications of Evolutionary Computing, p. 384-393, 2001. 

2. F. Neri. A study on the effect of cooperative evolution on concept learning. In 
E.J.W. Boers et al., Applications of Evolutionary Computing, p. 414-420, 2001. 

3. J. Torresen. A dynamic fitness function applied to improve the generalisation 
when evolving a signal processing hardware architecture. In S. Cagnoni et al., 
editors, Applications of Evolutionary Computing, p. 267-279, 2002. 

4. A. Giordana, F. Neri. Search-intensive concept induction. Journal of Evolutionary 
Computation, vol. 3, no. 4, p. 375-419, 1995. 

5. F. Neri. Evolutive modeling of TCP/IP Network traffic for intrusion detection. In 
S. Cagnoni, Real-world Applications of Evolutionary Computing, p. 214-223, 
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4.6. Data-mining 
Data-mining is the practice of searching large amounts of data for patterns. If found these 
patterns are translated into (usually rule based) knowledge or as a mathematical model. It 
can be seen as a learning algorithm because analysis might result in a set of rules though 
this is not the same learning as sketched in paragraph 4.5. In data-mining we either start 
analyzing a list of explanatory variables in order to predict a certain effect (implemented 
as a nominal class variable like “success”/”fail”) which is called supervised learning or 
we apply unsupervised learning where such an explanatory variable does not exist and 
where we are only interested in knowledge extraction. In this context we see that data-
mining is not learning with respect to a predefined concept but is finding knowledge for 
the sake of explanation/prediction.  
 
The demand for data-mining applications exploded in the early nineties, together with the 
rise of internet and the increased use of the computer as an information system where all 
data in a business chain is gathered in order to analyze the chain as separate parts or 
preferably as a whole. The need is apparent because of the huge amounts of data this 
generates and no clear sense of their meaning is present. 
 
Originally data-mining is not an evolutionary technique but EC can still be applied very 
well to these problems. Either in canonical form, hybridized or in combination with 
specific data-mining techniques like bagging or boosting. If we compare the fields of 
data-mining and EC we see numerous similarities. Like EC, a data-mining technique is 
also used on an ad-hoc, rule of thumb, basis where not much theory exists on when and 
how to use certain building blocks making up the algorithm. As in EAs the 
parameterization in data-mining is a very important fine-tuning phase. We see that this is 



 30 

the first main application of EAs in data-mining. As theory on data-mining does not 
supply us with a sound methodology on how to parameterize a model efficiently EAs can 
be used to do this.  
 
A more challenging task for EAs is to guide the search for knowledge in a data-mining 
problem. A too straightforward way of doing this would be using a GP to try and identify 
a mathematical function describing the data. Of course this approach is not useful in real-
world problems where we face the difficulty of multiple regressions within a set of 
explanatory variables, noisy data and nominal attributes sometimes mixed with numeric 
attributes. The generally accepted way to implement knowledge for these problems is 
rule-based knowledge. This can be done in the form of a tree which classifies the data 
according to some characteristics represented in the nodes of the tree or by if-then 
constructs. An EA can now implement solutions as the total set of rules in each 
individual, just one rule per individual or in a tree structure like in GP. For the 
implementation of these rules the genetic operators and their interpretation certainly 
needs to be altered in a similar way as in paragraph 4.5.  
 
The practical applications consist of several applications in the health sector (see data-
mining 2,3,4) where patient diagnosis is one of the most important domains. For several 
diseases like cancer or hepatitis it proves very hard for doctors to make a sound diagnosis 
with the data they gather. Computers might be able to help if for a given set of input 
variables like age, MRI scans or family disease history they can extract some knowledge 
of when the disease in question is likely to exist. Furthermore we can think of 
examination of general patient features, marketing, consumer decision-making and 
epidemiologic surveillance.  
 
Other applications areas are found where data is gathered and an interpretation is sought, 
like student course performance or in businesses like stock markets and car 
manufacturers (see data-mining 1,5,6). We see that EC works well in data-mining too 
because of its flexibility. We note that EC is not purely a data-mining technique and 
therefore only through hybridization it can be (very) effective. We see that an EA usually 
fulfills the role of supervisor in the knowledge search process. In such a role it can 
regulate different data-mining building blocks and respective parameters in order to fit 
the data-mining process to its task. Furthermore we see that data taken from real-world 
situations always has considerable noise in them. Through some statistics we observe that 
EAs are well capable of handling such data (data-mining 2). 
 

1. P.L. Hsu, R. Lai, C.C. Chiu. The hybrid of association rule algorithms and 
genetic algorithms for tree induction: an example of predicting the student course 
performance. To appear in the Journal of Expert Systems with Applications, 
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2. K.C. Tan, Q. Yu, C. M. Heng, T.H. Lee. Evolutionary computing for knowledge 
discovery in medical diagnosis. Artificial Intelligence in Medicine, vol. 27, no. 2, 
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4.7. Geometrical optimization / search 
Geometrical optimization is explained here as searching a space defined by some metric, 
usually Euclidian. The goal is placing a number of points in this space based on 
optimality criteria defined for the points their simultaneous behavior. This means that not 
the properties of all the separate points need to be optimized but the combination of 
points as a whole. We are aware of the fact that a lot of problems can be defined in such a 
context but we are only interested in applications where the point-like nature is apparent 
by a problem’s description. Of course one could interpret a solution of a set of optimal 
points as the carcass of a design, or even an image analysis where the points represent 
features in an image. It should be clarified that the context of these problems is different 
(or extended) from that of placing points in an optimal way.  
 
A well-known application of these problems lies in the field of drug/molecule design. 
The object here is configuring atoms, molecules or clusters of molecules in a certain 
predefined way. This definition embraces the goal for which this task needs to be 
performed. This can be for example the design of a drug that needs to fit on a certain 
receptor in order to work properly. For practical use of such configurations the created 
substance needs to be in a stable energetic state otherwise it will react and loose its 
desired features. Physical laws, either classical or quantum mechanical, have the ability 
to predict the energetic potential level a molecule is in by calculating the force fields 
caused by atoms that reside in each others attraction field.  
 
In this case the placements must be done on a 3D-map which means that if a lot of atoms 
need to be placed (which is especially the case in drug design) the search space would 
explode. On top of that the more exact quantum mechanical calculation of energetic 
potential is complex and takes considerably more to time than conventional calculations. 
In drug design sometimes the problem is therefore simplified by identifying building 
blocks for which it is known that their energetic state is approximately zero. Through this 
aggregation the number of object that need to be rearranged can be decreased and with it 
the original problem’s complexity (see geometrical optimization 1).  
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Other applications for these problems can be found in placing physical items on a map in 
a certain position, which is relative to each other. We see that for example this needs to 
be done at airports where airplanes need to be placed at certain specified positions or at 
finding lucrative locations for placing pubs, bar and restaurants (see geometrical 
optimization 2). 
 
Typically these geometrical placements have a lot of constraints imposed on them 
making them complex problems. Also, especially in the case of molecular design, the 
number of placements and the precision of the placement is a huge though essential 
problem. EAs are proven to be very successful in these applications because of their 
adaptability in implementing problems with large search spaces. In the case of molecular 
design using a quantum mechanical calculation procedure no practical method has being 
developed as of yet. To enhance computational power an EC approach can be used in a 
distributed form, which is certainly needed if these problems are to be solved some time 
in the future, and is therefore an advantage of EC. 
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Application of genetic algorithms in nanoscience: cluster geometry optimization. 
In S. Cagnoni et al., editors, Applications of Evolutionary Computing, p. 92-101, 
2002. 

2. J. Pfalzgraf, K. Frank, J. Weichenberger, S. Stolzenberg. Design, implementation, 
and application of a tool for optimal aircraft positioning. In S. Cagnoni, Real-
world Applications of Evolutionary Computing, p. 382-394, 2000. 

 

4.8. Arts 
We see that the creation of art is not really a problem but a human desire as a form of 
expression. If art is seen as the expression of the author’s emotion it seems very unlike 
that computers can in any way produce images, sounds or texts that can be seen as art. 
Though if art is seen as the creation of something in some medium that has a certain 
aesthetical value it might be argued if computers are capable to create art. Apart from this 
philosophical discussion we observe that there is a need for computerized art and that 
some people seem to like a computer’s “creativity”. We will continue to use the words art 
and creativity to describe the artificial counterparts of the same phenomena humans 
express. 
 
The creativity the computer uses to reproduce art is the same creativity (or better 
stochastic transformations) EAs use to search a solution space. It can be said therefore 
that each EA embraces this creativity although in art applications it is poured in a 
medium making it directly audible or visible. The crucial aspect of making art with EAs 
lies in the fact that the fitness function cannot be interpreted as a deterministic, 
unambiguous function. In the paradigm of artificial art the goal lies in making 
aesthetically correct pictures, sounds etc.. Because, according to common-sense, a 
computer has no aesthetical values this can only be done by humans. Thus a human 
should perform each fitness evaluation in the algorithm. This means that the aesthetic 
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properties of the art being created are representing the user’s own aesthetic values, 
creating a very “personal” piece of art. 
 
Making computerized art in this novel way certainly stresses the creativity and versatility 
of an EA. Judging by the commercial success such applications have and the availability 
of them on the web, artificial art seems to be successful though you really need to 
experience it yourself to find out (arts 1 and 3 are links to visual arts where arts 6 is a link 
to musical arts and arts 7 is a link to evolutionary poetry, the other links are here for 
reference). 
 

1. A number of links to evolutionary art applications can be found at URL: 
http://www.accad.ohio-state.edu/~mlewis/aed.html 

2. A.L. Wiens, B.J. Ross. Gentropy: evolving 2D textures. Computer and 
Graphics Journal, vol. 26, p. 75-88, 2002. 

3. J.I. van Hemert, A.E. Eiben. Mondriaan art by evolution. URL: 
http://www.wi.leidenuniv.nl/~jvhemert/mondriaan 

4. A.E. Eiben, R. Nabuurs, and I. Booij. The Escher evolver: Evolution to the 
people. In P.J. Bentley and D.W. Corne, editors, Creative Evolutionary 
Systems, pages 425-439, 2001. 

5. Peter J. Bentley, David W. Corne, editors. Creative Evolutionary Systems. 
Morgan Kaufmann, 2002 

6. Genetic music, the makers of the genetic music client that enables users to 
create their own genetic music. URL: http://kyselak.hfg-
karlsruhe.de:8080/genetic-music/index.html 

7. David Rea’s genetic poetry site where user from all over the internet can vote 
on which poems will be kept in the poetical gene-pool. URL: 
http://www.codeasart.com/poetry/darwin.html 

 

4.9 Other 
As explained in paragraph 4.8 EC involves creativity. Typically the algorithm uses this 
creativity to solve a problem but from time to time authors use it to find awkward, 
interesting applications. As in art, there is no doubt about it that they have a use in the 
real world… 
 

1. H.O. Nyongesa. Generation of time-delay algorithms for anti-air missiles using 
genetic programming. In E.J.W. Boers et al., Applications of Evolutionary 
Computing, p. 243-247, 2001. 

2. N.R. Harvey, S. Perkins, S.P. Brumby, J. Theiler, R.B. Porter, A.C. Young, A.K. 
Varghese, J.J. Szymanski, J.J. Bloch. Finding golf courses: the ultra high tech 
approach. In S. Cagnoni, Real-world Applications of Evolutionary Computing, p. 
54-64, 2000. 

3. H.-S. Kim, S.-B. Cho. Application of interactive genetic algorithm  to fashion 
design. Engineering applications of Artificial Intelligence vol. 13, no. 6, p. 635-
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4. M. Köppen, B. Nickolay, H. Treugut. Genetic algorithm based heuristic measure 
for pattern similarity in Kirlian photographs. In E.J.W. Boers et al., Applications 
of Evolutionary Computing, p. 317-324, 2001. 

5. Conclusions 
We conclude that the list of problems EC can solve is extremely large. We see that an EA 
is not only an optimization method (though it still is its main application area) but can 
search, learn or in general be creative7. As is shown in each paragraph of chapter 4, we 
have identified some properties of EAs that are complimentary to other algorithms used 
to solve the mentioned problems. If we sum them up we see a familiar list arising: 

• Creative. Though artificial it exists clearly in the internal workings of an EA and 
in its way of tackling problems.  

• Adaptable. Additional constraints can be implemented straightforward into an 
EA. In representations virtually any kind of structure can be implemented. Also, 
unlike many other methods, multiple objectives and mixing of continuous and 
discrete parameter can be implemented without loss of structure. 

• Easily hybridized. EC should preferably be seen as a paradigm instead of a strict 
algorithm. In can consistently incorporate other non-EC related algorithms to 
improve performance. Such EAs are called memetic algorithms where an 
evolutionary process directs other search methods behavior creating an optimal 
resolution method. Because of the adaptable nature of EAs they are compatible 
with just about any other algorithm. 

• Capable of handling “out of range” problems. Fitness surfaces are searched 
efficiently through balancing exploration (roughly searching general characteristic 
of the fitness surface) versus exploitation (local optimization in order to find the 
global optimum). It is even possible to explicitly or implicitly tell the EA when 
the balance should be shifted towards either of the search types. This can be 
utilized to solve so-called “out of range” problems that are impossible to solve via 
direct analytical techniques. This includes for example problems with many 
variables, many local optima or moving goal posts. 

• Robust. Because EAs are population based the cope very well with noisy, 
inaccurate or incomplete data. 

• Implicit parallelism. Unlike many other methods an EA can easily be distributed 
over multiple processors spreading the total load and thus creating a more 
efficient and powerful algorithm. Because of their population based approach one 
can co-evolve separate species and ultimately combine the best individuals. 

• Cheap to implement, modular. The implementation of an EA consists mainly in 
building blocks regulated by parameters. Representation of a problem is 
independent from the solving method of the problem, see also easily hybridized. 
Usually EAs are implemented in JAVA and are highly object oriented increasing 
portability and reusability. 

 
Looking at all these nice characteristics one might think we are dealing with the perfect 
algorithm. Apart from some fine-tuning and implementation issues, it is said to be 

 
7 We refer to paragraph 4.8 for a small discussion on the validity of calling a non-human creative 
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problem domain independent and thus the advantages sketched above can be 
accomplished fairly quickly. Though this description is widespread throughout EC 
research we stress that such statements are paradoxical. It is true that a standard EA, as 
we can simply see in paragraph 2.2, is problem domain independent. And besides that it 
does seem true that EAs have all the features sketched above. The paradox lies in the fact 
that on the one hand we see that if we apply a standard EA to a hard problem in the real 
world we see that it most definitely will fail in achieving good solutions. On the other 
hand if we face an easy or medium-sized problem the EA generally does produce good 
results but still we would still prefer other means of solving such problems over EAs. 
Appropriate other means usually have the advantage of being deterministic, extensively 
researched, samples of implementations are available and the solving method is seen as 
straightforward. Combining these two findings we see that EAs find their practical use in 
hard real-world problems and that for such problems domain independency just cannot be 
accomplished. The algorithm would give fair results but conventional means of solving 
would probably outperform such EAs in multiple ways. Therefore we tend to see the 
pursuit of domain independent EAs as a nice philosophy on a “solver of everything” but 
without any practical use if such algorithms always are a second-best choice. A nice 
quote on this from Guszti Eiben is “Evolutionary Algorithms are the second best solver 
for any problem” meaning that the best solvers are always domain dependent but an 
evolutionary domain independent approach still comes in second best. 
 
The use of hybridisation is one of the key possibilities of implementing domain 
knowledge into EAs and we observe a definite increase in the use of this method. The 
author believes that through the use of knowledge (in the form of representations, 
heuristics or algorithms) that is already attained by other fields of science large 
performance gains can be made with relatively few resources. Because these heuristics 
have been practically proven to work for those specific kinds of problems it can be 
ensured that they would also work in an EC context. Because there always is 
convergence in EAs the hybridized result will work comparable if not much better than 
the original heuristic.  
 
Theoretically through hybridization, fine-tuning of the algorithm and the creation of an 
optimal set of EA building blocks an EA can be the best algorithm for a (large) set of 
narrowly defined problems. We note that this scenario has not taken place as of yet. This 
is caused partly due to the problems that arise whilst trying to academically justify that 
the results of an EA are better and together with this problem the problem of how a 
problem is defined (see 2.3, no free lunch theorem) or practical problems with other 
justifications (see 2.3, human competitive results). Furthermore due to the fact that the 
potential of EAs has not yet being used to its full extent, or better: EC can evolve much 
more. The author believes that this potential is certainly present. 
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