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1 Introduction

This paper discusses the Bayes Linear Methodology (BLM) and the use of elic-
itation of experts in this context. When analyzing a system with an accurate
data collection and well de�ned relations, a statistician can accurately give in-
formation about the expectation of di¤erent components. When data and re-
lations are not easily gathered, like in processes that only come by rarely or
processes with complex structures, other methods of statistical analysis have to
be explored. Especially in case of decision making it is not easy to value the
expected payback.
When time and money are not important, extensive and time consuming

models can be used to model the process and these can help in making decisions.
But unlimited time and funding is never really the case so choices about the
type of approach have to be taken. In this paper, a model is discussed that can
calculate the expected output of the decisions at hand, with few exact details
about the underlying distributions of the variables of in�uence.
A model for a process like decision making can not be made without in-

terviewing specialists in �elds that cover di¤erent parts of the process. The
extraction of information from these experts is called elicitation. Because ex-
perts on the subject are rarely also statistician a procedure has to be started
between the people who know the subject and people who know how to value
this knowledge.
In the �rst section of this paper the fundaments of BLM are discussed. The

following section gives a description of problems with experts elicitation and
gives a framework for constructive use of expert judgement. This section is
followed by three suggested methods of elicitation. The �fth section describes
an approach to elicitation when the experts di¤er in opinion. This paper is
concluded with a summary of the topics.

2 Bayes Linear Methodology

The Bayes Linear Methodology approach provides a tool to express beliefs and
to combine judgement on uncertainty with observational data. Contrary to
Bayes Analysis, BLM does not use probability distributions for expressing these
judgements. These judgements are expressed by their expectations. This is
especially practical when dealing with large complex problems, where specifying
a full joint probability distribution would be a di¢ cult task because there are
a lot of factors that in�uence the problem. Using the expectation directly as
the basic quantity and specifying the expectation rather than a full probability
distribution has been the topic of several studies. A term often used for an
expectation elicited directly is prevision, introduced by Finetti, see [6]. Also
various operational de�nitions for prevision are proposed by Finetti. Because
BLM is often applied to very complex problems, choices have to be made about
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which aspect of our prior belief we want to quantify and to which detail we want
to do this. These choices depend on several aspects of the problem:

� the degree of interest in the di¤erent parts of the problem

� the ability to specify each aspect of uncertainty

� the amount of time and e¤ort that can be spent on the problem

� the detail of prior speci�cation that is necessary in order to extract the
information from the data

2.1 Why BLM

Bayesian theory can be of great value to a decision making model. The modelling
of a full probabilistic model however, can be a time consuming project. The
elicitation of quantities alone is hard because of the required detail of a full prior
distribution. When time is not su¢ ciently available or certainty of the expert
about details of the subject is small, the precise modelling will not automatically
lead to a model of which the output can be fully trusted. When there is only
certainty about the broad conclusion of the output, the detailed elicitation of
the experts seems super�uous. But the highly detailed model is necessary for
a full Bayesian methodology. BLM gives an opportunity to make a model with
less detailed elicitation and modelling. By only using the mean, variance and
covariance as input to the model, the process of elicitation is simpli�ed. Also
the complex approach of full Bayesian theory is avoided by using BLM.

2.2 The base of the BLM

In order to express the judgements the following model is used:
C = (X1; X2; X3; : : : ; Xn) is a collection of ordered random variables. These
random variables are the variables about which statements of uncertainty are
made. The collection C is called the base. For each pair (Xi; Xj) , withXi; Xj�C
the following will be speci�ed:

1. the expectation, E(Xi), giving a simple quanti�cation of the belief as to
the magnitude of Xi

2. the variance, V ar(Xi), quantifying the uncertainty in the judgements of
the magnitude of Xi (all elements Xi have a �nite prior variance)

3. the covariance, Cov(Xi; Xj), expressing a judgement on the relationship
between the quantities, quantifying the extent to which observations on
Xj may in�uence the belief as to the size of Xi

The size of C determines the detail of the analysis; by extending C it is
possible to obtain the full joint probability distribution of the elements of C. It
is appropriate for large problems to restrict the investigation to a collection that
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represents the prior belief structure. The formal structure in which the beliefs
are represented is formed with C. With the collection C the linear space hCi is
constructed. This space consists of all �nite linear combinations

h0X0 + h1Xi1 + : : : + hkXik

of the elements of C, where X0 is the unit constant and Xi is a subset of C
with k elements, with Xin being the n-th element of Xi The space hCi can be
viewed as a vector space in which each Xi is a vector and linear combinations
of vectors are the corresponding linear combinations of the random quantities.
Covariance de�nes an inner product (:; :) and norm over hCi, de�ned, for X;Y
in hCi to be

(X;Y ) = Cov(X;Y ); jjXjj2 = V ar(X)

The vector space hCi, with the covariance inner product (.,.), de�nes an inner
product space [C]. This [C] is called the belief structure with base C. Within
[C]; the length of any vector is equal to the standard deviation of the random
quantities. This space, [C], gives a minimal structure for the speci�cations
of the beliefs that su¢ ces for general analyses. The belief structure gives the
possibility to restrict the speci�cation to any linear subspace of this structure,
so that only aspects of the beliefs have to be speci�ed that can be measured
and that have a value to the research. With the given belief structure it is
possible to adjust the beliefs given observed data. All expectations, variances
and covariances can be adjusted after observations of data. These methods are
relatively easy to comprehend and to implement. The formal properties of this
approach follow from the linearity of the inner product structure. This is the
reason why the term Bayes Linear is used.

2.3 Adjusting beliefs by data

After the collection C has been identi�ed and the prior mean, variance and
covariance have been speci�ed, the prior beliefs can be adjusted using ob-
served data. Say that a subset of C, D = (D1;D2; :::; Dk) of observed ran-
dom quantities. With this realisation the prior beliefs about a subset of C,
B = (B1;B2; :::; Bm); can be changed to also contain this new information.

2.3.1 Adjusting expectation

The expectation of the random quantity X 2 B after observing D, denoted as
ED(X), is given by the linear combination

ED(X) = h
T
DD =

kX
i=0

hiDi;

with hi resulting from the minimization of
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E((X �
kX
i=0

hiDi)
2)

where D0 = 1:
The adjusted expectation is determined by the prior mean, variance and

covariance. If V ar(D) is full of rank then:

ED(X) = E(X) + Cov(X;D)[V ar(D)]
�1(D � E(D)) (�)

This expression for ED(X) can be attained with the values of hi by mini-
mization of the expression above, and then substituting hi with these values.
For illustration here the proof is given for equality (�) for one observation.
Proof.
ED(X) = mina;bE((X � (a+ bD))2)
E((X � (a+ bD))2) = E[(X � a� bD)(X � a� bD))]

= E[X2 � 2aX � 2bXD + 2abD + b2D2 + a2]
= E(X2)� 2aE(X)� 2bE(XD) + 2abE(D) + b2E(D2) + a2

= a2 + (�2E(X) + 2bE(D))a+ [E(X2)� 2bE(XD) + b2E(D2)]

= E(D2)b2 + (�2E(XD) + 2aE(D))b+ [E(X2)� 2aE(X) + a2]
The two last expressions are both convex in a and b so their minimum can

easily be computed . Recal that equation qx2 + rx + s �nds its minimum in
�r
2q :This leads to the following:

a = �(2E(X)+2bE(D))
2 = E(X)� bE(D)

b = E(XD)�aE(D)
E(D2) (��)

Now the values of a and b can be extracted. First the value for b is substi-
tuted. In the following the de�nitions V ar(D) = E(D2)� E(D)2 and
Cov(X;D) = E(XD)� E(X)E(D) are used.

a = E(X)� E(D)(E(XD)�a(E(D)
E(D2)

a = E(X)� E(D)E(XD)
E(D2) + a[E(D)]2

E(D2)

= E(X)

1�E(D)2

E(D2)

� E(D)E(XD)

(1�E(D)2

E(D2)
)E(D2)

= E(X)
E(D2)�E(D)2

E(D2)

� E(D)E(XD)
E(D2)�E(D)2

= E(X)E(D2)�E(D)E(XD)
V ar(D)

= E(X)[V ar(D)+E(D)2]�E(D)E(XD)
V ar(D)

= E(X) + E(D)2E(X)�E(D)E(XD)
V ar(D)
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= E(X) + �E(D)(�E(X)E(D)+E(XD)
V ar(D)

= E(X)� E(D)Cov(X;D)V ar(D)

Now a sustitute in (��).

b = E(XD)�(E(X)�bE(D))E(D)
E(D2)

b = E(XD)�E(X)E(D)
E(D2) + bE(D)

2

E(D2)

E(D2)� E(D)2b = Cov(X;D)

V ar(D)
E(D2) b =

Cov(X;D)
E(D2)

b = Cov(X;D)
V ar(D)

Hence the minimum of a+ bD is given by

a+ bD = E(X)� Cov(X;D)
V ar(D) E(D) +

Cov(X;D)
V ar(d) D

= E(X) + Cov(X;D)
V ar(D) [D � E(D)]: �

This adjusted expectation obeys the following properties for any X, X1, X2
and constants c, d:

ED(cX1 + dX2) = cED(X1) + dED(X2)

E(ED(X)) = E(X)

2.3.2 Adjusting variance

De�ne [X=D], the adjusted version of X given D, as

[X=D] = X � ED(X)

this is also called the �residual �form of X. This quantity has the following
properties:

1. E([X=D]) = 0

2. Cov([X=D]; ED(X)) = 0
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Now X is written as

X = [X=D] + ED(X)

The variance of X, V ar(X), can be split

V ar(X) = V ar([X=D]) + V ar(ED(X)):

The variance here is written as the sum of the variance of the expectation
plus the variance. V ar(ED(X)) is exactly the reduction of the variance be-
fore observing D: Therefore, the variance of X after observing D is equal to
V ar([X=D]). The adjusted variance of X follows from this

V arD(X) = V ar([X=D]) = E((X � ED(X))2)

In relation to the prior mean, variance and covariance, V arD(X) is repre-
sented as

V arD(X) = V ar(X)� Cov(X;D)[V ar(D)]�1Cov(D;X)

Exact proofs of the equalities in this section can be found in [1].

3 Elicitation and expert judgement

Elicitation is the process of capturing knowledge and beliefs about uncertain
quantities and form a probability distribution for those quantities. Often elic-
itation is concerned with formulating a probability distribution for quantities
when there is no data. This situation arises in decision making, where uncer-
tainty needs to be expressed as a probability distribution in order to derive
expected utility. Elicitation can be viewed as a process between a facilitator
who assists the expert in formulating the knowledge in probabilistic form. The
facilitator acts on behalf of the decision maker, who after the facilitator sum-
marized the results, makes a decision based on these results. Within the Bayes
statistics the knowledge of the expert can be seen as the prior knowledge.
The use of this knowledge is not new. Halfway into the previous century

the knowledge of experts was also seen as a valuable collection of information.
About that period two methods were developed for mobilizing this information.
Now known as classical approaches to expert analysis, the scenario analysis and
the Delphi method stood their ground for two decades; a small description is
given.

Scenario analysis. A scenario can be de�ned as a hypothetical sequence of
events constructed for the purpose of focusing attention on causal processes
and decision points. In scenario analysis, trends and predictable in�u-
ences are used to extrapolate a surprise-free scenario. This scenario serves
as a base for creating alternative situations by varying di¤erent aspects
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in this scenario. In this manner it is possible to tell how exactly a hy-
pothetical situation came about. It is also possible to identify actors and
the steps they can make to prevent, divert or facilitate the process. The
problem here is that the result is not a probability distribution, but an
analysis of the di¤erent situations and probability theory is not a part of
the analysis.

The Delphi method. In this method a monitoring team de�nes a set of is-
sues and selects a set of respondents who are experts on the issues. In
general the respondents do not know who the other respondents are, and
the responses are anonymous. A preliminary questionnaire is sent to the
respondents for comments. These are then used to establish a de�nitive
questionnaire. This questionnaire is then sent to the respondents and their
answers are analyzed by the monitoring team. The set of responses is then
sent back to the respondents, together with the median answer and the
interquartile range, the range containing all but the lower 25% and the
upper 25% of the responses. Now the experts are asked if they want to
revise their initial predictions. When a respondents predictions remain
outside of the interquartile range he is asked to give arguments for the
predictions. The revised predictions are then processed in the same way
as in the �rst responses, and arguments for outliers are summarized. This
process is iterated typically three or four times. The responses on the
�nal round generally show a smaller spread than those of the �rst round,
and this is taken to indicate that the experts have reached a degree of
consensus. The median values on the �nal round are taken as the best
predictions.

3.1 Problems with elicitation

When eliciting probabilities, one has to take in account how a person assesses
the probability of an event. In the �eld of psychology there has been a great
deal of interest in elicitation. It appears that judgements of persons highly
depend on only a few mental operations, these are called heuristics. Heuristics
can provide somewhat e¤ective results but they can also lead to severe errors.
In the following three of these heuristics will be discussed.

Judgement by representativeness. Several errors can be made when elicit-
ing a conditional probability, for example: what is the probability event
X will generate an event Y (P (Y jX)). People intuitively compare the
features of X and Y and then they will let the probability depend on the
similarity between these to events. An error that often appears in this
kind of elicitation is that the unconditional probability of Y is not taken
into account. For example, if people are asked after given a description of
a personality, what a more likely profession is for this person, people tend
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to only compare the character to the job and look for the most similar-
ities. What is not taken into account is the fraction of people that have
this profession.

Judgement by availability. When persons are elicited to estimate the fre-
quency of an event, the ease with which they can recall an event in�u-
ences the frequency or probability that they will give to an event. This
is a result of the person remembering more easily the occurrences that
have a greater frequency. Also events that happened recent to the elicita-
tion could be given a greater frequency because of the fast access of this
event. An example of this is the question: Is a randomly chosen English
word more likely to start with an �r�or to have an �r�as the third letter?
Because words that begin with an �r�are remembered fast and better a
greater probability will be given to these words. But there are less words
that start with an �r�than words that have an �r�on the third place.

Judgement of anchoring and adjustment. This widely used strategy is used
when a initial value (anchor) for a random quantity is given and then the
person adjusts this to obtain a �nal estimate. The problem here is that
the person is likely to make a to small adjustment. This phenomenon of
making too small an adjustment is called anchoring.

Next to these intrinsic errors in the way people tend to remember things,
other in�uences have to be taken in to account.

Law of small numbers. People tend to think that a sample of a population
has the same characteristics as the population itself, even if the sample is
very small.

Hindsight bias. When a person has already seen the data it is possible that
he or she updates the opinion on basis of that data. When an event has
already happened people tend to think it was more likely then it actually
was.

Overcon�dence. There is a tendency to ignore the tail of a distribution func-
tion.

For further reading about bias in opinion see [7] and [8]

3.2 Guidelines for structured elicitation

An expert�s opinion can be useful in making risk analysis but it is not a source
of rational consensus. Experts may di¤er a lot in their opinion and unstructured
use of their opinion, also given the previous principles of bias of experts and the
use of heuristics, is therefore not constructive in a risk analysis. A European
commission set out to make a methodology, see [5], in order to get a constructive
use of expert opinion. The following principles were identi�ed:
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Reproducibility. It must be possible for scienti�c peers to review and if neces-
sary reproduce all calculations. This entails that the calculational models
must be fully speci�ed and the ingredient data must be made available

Accountability The source of expert subjective probabilities must be identi-
�ed. Accountability to the decision maker enhances quality and credibility
and must be insisted upon. The decision maker should be able to trace
every subjective probability to the name of the person or institution from
which it came.

Empirical control. Expert probability assessments must in principle be sus-
ceptible to empirical control. A methodology for using expert opinion
should incorporate some form of empirical control, at least in principle. It
must be possible to evaluate expert probabilistic opinion on the basis of
possible observations.

Neutrality. The method for combining or evaluating expert opinion should
encourage experts to state their true opinions. A poorly chosen method
of combining/evaluating expert opinion will encourage experts to state
an opinion that di¤ers with their true opinion. A known example is the
technique used by Delphi. Here the expert is �punished�when he deviates
strongly from a median value and the expert is �rewarded� when the
opinion is changed towards the median.

Fairness. All experts are treated equally, prior to processing the results of
observations

3.3 Eliciting Variance

In most Bayesian research it is necessary to elicit variance. Experiments have
shown that it is di¢ cult for many people to understand the idea of variance
and also to give an indication of this. A way of eliciting variance is to ask an
interval so that direct assessment is not necessary. When several assumptions
on the underlying distribution are made, this way of extracting the variance can
be e¤ective. Here two ways of extracting an interval are discussed.

Fixed interval method For a random quantity X all possible outcomes are
divided by the facilitator in several disjunct intervals. The expert is asked
to point out the interval that is most likely to obtain X and to assign
a probability to this interval. After this the interval second most likely
is asked and so on. These subjective probabilities are then transformed
under the constraint that their sum must be one. Now the variance can
be extracted from the data.

Variable interval method Here the expert is asked to partition the outcome
space himself. By a line of questioning like: at what point is it equally
probable that X is greater or less then the value of this point. In this man-
ner the space is divided in two disjunct intervals and again the question is
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asked for both intervals. The advantage of this method is that the expert
only deals with equal probabilities, which are easier to comprehend.

4 Elicitation of mean, variance and covariance

Although the BLM, in comparison to standard Bayes analysis, can reduce the
e¤ort needed to analyse complex situations, it still requires the analyst to make
speci�cations of moments. Here are three possible ways of doing so:

� Parametric �tting: Assessing joint quantiles for uncertain quantities, and
then �tting a distribution from some parametric family and deriving the
appropriate moments.

� Constructing Bayes linear graphical models: these graphical models relate
the quantities of interest to other quantities for which we may more easily
specify the moments.

� Analogous data set: Consider a data set or sets that have a similar char-
acter to the variable under discussion, and subjectively determine appro-
priate adjustment factors for mean and variance.

In this chapter these methodologies will be discussed. Next to this method
another approach on �nding mean and variance will be brought to attention.
Parametric �tting and Bayes linear graphical models are the main subjects of
this section because these methods are more complex. This sections ends with
a brief notion on analogous data sets and the three-point approximation.

4.1 Parametric �tting

Complex elicitation methods usually impose a structure on an expert�s opinion.
Often it is assumed that the knowledge of the expert can be well-represented by
some member of a speci�ed family of distributions. Members of the family are
distinguished by parameters (called hyperparameters) and the elicitation task
then reduces to choosing appropriate hyperparameter values to capture the main
features of the opinions. The family of distributions is typically chosen so that
it facilitates following analysis if data becomes available. For many models this
does not stand in the way of the research. Usually the family o¤ers enough
�exibility and can represent a variety of opinions through suitable choice of
hyperparameters.
Through elicitation the values hyperparameters can be obtained. Prede�ned

structures link the hyperparameters to the parameters of family of distributions.
In order to deal with potential �elicitation errors�, the hyperparameters are
exposed to operations like averaging.
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An example of an imposed structure is that of the normal linear model.
The joint quantiles are �rst assessed and after that, they are �tted in a normal
distribution with the following the prior structure:

Y jX;�; �2 � N(XT�; �2);

�j�2 � N(b; �2R�1);

1=�2 � �2�=w�

Here P (Y j X;�; �2) represents the probability of interest, Y , given the ob-
servations of X; �; �2: The hyperparameters b; R;w and � are the parameters
that have to be elicited. By eliciting probability judgements about quantities
from the predictive distribution, the values can be derived. After this step, av-
eraging is used to handle errors that could occur during elicitation. For a more
elaborate discussion see [2] and [3].

4.2 Bayesian graphical model

A Bayesian graphical model is a representation of the joint probability distrib-
ution for a set of variables. The structure of a Bayesian graphical model is a
graph consisting of nodes and edges, with the nodes representing the variables.
The values of the variables are referred to as states. The edge between node
A and B indicates a direct in�uence between the state of A and the state of
B. The belief about a variable A with states a1; :::; an is a probability function.
The speci�cation of the Bayesian graphical model consists of a set � of possible
functions over the sets of variables.

Bayesian network. A Bayesian network is a directed acyclic graph. A di-
rected edge represents a causal impact. The essential property of the
model is that it re�ects conditional independence relations.

De�nition 1 Two states A and B are independent if knowledge of A does not
change the belief about B. A and B are conditionally independent if given C they
are independent whenever the state of C is known. In other words:

P (AjB;C) = P (AjC):

In the Bayesian graphical model three types of relations are identi�ed. These
connections in the network are characterized as serial, diverging and converging,
see Figure 1.
The conditional independence relations can be read from the directed acyclic

graph through the following rule:
Two nodes A and B in a directed acyclic graph are independent if for all

paths between A and B there is an intermediate node C such that either
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Figure 1: Relations in a graphical model.

� the connection is serial or diverging and the state of C is known

� the connection is converging and neither C nor any of its descendants
have received evidence. Receiving evidence means that the information
�owing through the graph reaches the node. Because the node does not
necessarily receive all the information, the graph represents causal impact,
the term evidence is used.

The set of potential functions � for a Bayesian network consists of con-
ditional probability tables, for each variable A with parents pa(A) the condi-
tional probability P (Ajpa(A)) is speci�ed. The main theorem behind the use of
Bayesian networks as models for reasoning under uncertainty is the following:

The chain rule for Bayesian networks. When collection U contains one or
more elements of the collection of states, P (U) is the product of the spec-
i�ed conditional probability tables: P (U)= �A�U P (Ajpa(A)):

A direct representation of P (U) may not be possible, while the size of the
Bayesian network is manageably small.
For the calculations of P (U) all the P (Ajpa(A) have to be speci�ed. For

example, in the �gure of the relations, for the serial relation P (A), P (B), P (C),
P (BjA) and P (CjB) have to be speci�ed. For the diverging relation P (A),
P (B), P (C), P (BjC) and P (AjC) have to be speci�ed, and for the converging
relation P (A), P (B), P (C), and P (CjA;B) have to be speci�ed.
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4.3 Approximations

4.3.1 Analogous data set

This method is a followup method to the ones described in the previous sections.
When an analogous data set to the data set at hand exists several adjustments
can be made to this existing set. These adjustments can consist of shifting the
expectation or resizing the variation. Because there already is a distribution,
little research has to be done about the shape or family of the distribution.

4.3.2 Three-point approximation

Another simple tactic to approach the extraction of moments is the three-point
approximation. Although this method only gives estimates for the expectation
and variance, it can still be very useful. This method is based on empirical
observations in estimating parameters.
The approximations are all based on three of the distributions. The most

commonly used points are the 0.025, 0.975, 0.05, 0.095 quantiles, the median and
mode. Several relations of the mean and variance to these points are proposed.

5 Combining expert judgement in the BLM

In this section the handling of judgements of multiple experts when their opin-
ions di¤er is discussed, based on [9]. In many Bayesian models expert assess-
ments are treated as observational data, so that it requires a prior speci�cation
and a likelihood function constructed by the analyst. In problems where BLM
is appropriate it is not unlikely that the analyst has little knowledge about
the subject and is unable to specify a prior distribution. Also the analyst is
burdened with the choice between a number of experts that di¤er in opinion.
When the experts have all given coherent beliefs concerning the random

quantities a linear pool can be constructed with these beliefs. Using the prop-
erties of Marginalisation, Zero Preservation and Strong Setwise Function, see
[4], it can be shown that specifying the linear pool is equivalent to the Strong
Setwise Function Property. From this proof it is derived that if experts each
provide a coherent set of expectations, the decision maker is also coherent.

5.1 Performance-based weighting

Performance-based weighting (PBW) consists of deriving weights from perfor-
mance on seed variables. The performance on these seed variables is translated
to a combined assessment for other variables. The seed variables should of
course closely resemble the other variables. The classical model for constructing
a linear pool is the model of Cooke, see [4]. This model combines PBW with
probability assessment. Experts are elicited a number of quantiles about mul-
tiple random quantities, some of them have realisations known by the analyst,

14



the seed variables. These seed variables are used to de�ne two quantities for
each of the experts, calibration score and information score. These scores are
used to create a weight per expert with the property that it is a scoring rule.
Calibration score is a way of measuring the degree to which an expert is

able to assess a quantile. Information score is a way of measuring the degree
to which a expert can give a sharp uncertainty assessment. This information is
a relative quantity depending on the position of the expert in the judgements
of all experts. The product of the calibration and the information score gives a
weight for each expert. All opinions of the experts whose weight falls within a
predetermined interval are normalised, weights that fall outside of this interval
are set equal to zero.

5.2 Weighting scheme

A base for a scoring rule can be seen as the following:
When for seed variables X1; :::; Xn the expectation is assessed by a1; :::; an,

a penalty function can be de�ned as
�(a1; :::; an) =

X
j

cj(xj � aj)2;

with xj being a realisation of random quantity Xj and cj being the weight
of the opinion of the expert. Note that '() can be seen as a loss model.
Now for each expert separately the value of ' is calculated. Next, a cut-

o¤ value, � � 0 , is chosen and each expert j with 'j � � will be given the
value zero for his weights. For each other expert i that remains, the score is
the di¤erence between the cut-o¤ and the penalty, � � 'i. These values are
then normalized and this results in an individual weight for each expert. The
cut-o¤ value � is a value chosen from the interval (min('1; :::'n),1) so that the
combined distance of all ' is minimized.
When the analyst constructs a linear pool like, this several statements can

be made about the weighted scheme.

1. The expert with the smallest loss is always present in the linear pool

2. The analyst loss i.e., the scaled quadratic deviation from the realisation,
is always smaller than or equal to the loss of any expert

3. The loss of the analyst is always equal to or less than the loss obtained
when equal weights are applied

4. The weighted scheme provides a continuous mapping from the expert re-
sult to a vector of expert weights

6 Summary

In this paper we tried to give a comprehensive overview of the aspects involved
when constructing a decision model using Bayes Linear Models (BLM). This
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approach can simplify the phase of extracting information of experts, in com-
parison to other decision support models. The main feature of BLM is the use of
expectations as the key to the underlying stochastic processes. There is no need
to �lter out the full probability distribution of the underlying process. Using
only the expectation, variance and covariance, a total model can be constructed.
The process of obtaining the information needed is, although simpli�ed, still

complicated. When this di¢ cult process is analyzed, the only method of get-
ting the input parameters is eliciting experts on the �eld at hand. The use of
knowledge of experts is not new but a structured approach to obtaining the
information still does not exist. When eliciting information, the elicitator has
to take in account several psychological aspects, like the law of small numbers,
hindsight bias and overcon�dence, and neurological processes like judgement by
representativeness, judgement by availability and judgement of anchoring and
adjustment. In attempting to remove these in�uences on the elicitation process,
a guideline is described by which an elicitation process should be conducted. Al-
though this guideline can be considered standard for other (statistical) research
method, for elicitation it is not.
After a structured method for eliciting information is established, several

tools can be used for getting the moments of the probability distribution. In
section four, three methods are discussed, ranging from precise distribution elic-
itation, parametric �tting, to a method focussed on the value of the expectation,
the Bayesian graphical model.
When experts di¤er in opinion and little is known about quality of these

opinions, a weighted scheme can help to produce a coherent representation of
the experts opinions. By testing the assessments of the experts using a seed
variable, their quality can be valued. Then a framework can be constructed in
which the quality of each expert can be taken into account.
Concluding this paper, it can be said that the use of BLM can simplify the

process of statistical analysis: the computations needed are less extensive than
in the normal Bayesian approach. The di¢ culty lies in eliciting the moments.
The ways of extracting these moments are not di¤erent to distribution extrac-
tion, so in many cases, especially if using parametric �tting, still an underlying
probability function is elicited. When there is a method that can extract only
expectation, variance and covariance, all bene�ts of BLM can be attained.
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