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Abstract

Lung cancer is the deadliest form of cancer for men and women. For people that are diagnosed
with cancer it is of great importance that the disease is detected at an early and treatable stage. In
order to improve radiologists’ performance for detecting nodules on CT examinations a computer
aided detection system is developed that predicts the location of lung tumors in computerized to-
mography scans. The goal of these methods is to reach a high true positive rate and a low true
negative rate.
In this research paper, the requirement of using relatively low computational power is added.
Therefore, a two-dimensional method is built that also includes three-dimensional features. Hereby,
the steps of preprocessing, segmentation, candidate detection, feature extraction and classification
are taken. The method that is created vertically connects the components of segmented data.
Neighbourhood Component Analysis is then used to make an optimal subset of features. These
features are used by a Neural Networks classifier and a Support Vector Machine classifier to clas-
sify the connected components. Finally, the results of these methods are compared and the Support
Vector Machine classifier turns out to have the highest AUC.
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1 Introduction

Lung cancer is by far the deadliest form of cancer for men and women (Association, 2014). The Dutch
Cancer Registration registered 12758 incidents of lung cancer in 2006 in the Netherlands(NKR, 2016).
In the same year, the institute noted that 10420 incidents had caused mortality. These numbers show
the urgency of research in ways to fight this terrible disease.
For people that are diagnosed with cancer it is of great importance that the disease is detected at an
early and treatable stage. Having the cancer nodule detected, the chance of surviving can be strongly
enhanced with a proper treatment. The five-year survival rate for lung cancer is 55 percent for cases
detected at an early stage according to the American Lung Association (2014). To be able to treat
the disease well, for example by radiation, the nodules need to be localized very precisely. The de-
tection of lung cancer nodules is done on computerized tomography scans (CT-scans). These are
cross-sectional images of the body that are produced with X-rays. One CT-scan can consist of over 50
two-dimensional slices of the body. CT-scans are usually done on patients that have complaints which
are directly linked to lung cancer. More than half of these patients die within one year of being di-
agnosed because the disease has spread (American Lung Association, 2014). However, the CT-scans
of patients that do not have a spread disease require a thorough analysis as obviously no nodules can
be missed. For instance, nodules can be smaller than 10 mm and very hard to find. Therefore they
are often overlooked by visual inspection alone. Besides, determining the difference between blood
vessels and actual tumors can be complex. These and similar issues, in combination with the possibly
large amount of slices that a CT-scan can contain, makes the analysis very time-consuming for the
radiologists.
Currently, radiologists use computer aided detection (CAD) to analyze the CT-scans. CAD is a tech-
nique that is designed to increase the detection of diseases by decreasing the false negative rate for
the interpretation of medical images (Castellino, 2005), and in this case CT-scans. In their analyses,
radiologists use it as an extra tool that automatically detects and localizes lung tumors. This way
CAD becomes the second reader: The radiologist and the CAD system do the analysis independently,
after which the results are put together. In many literature, like Sahiner (2010) and G. Rubin (2005),
screening by visual inspection alone is compared to screening with the use of CAD and it is shown
that CAD indeed improves radiologists’ performance for detecting nodules on CT examinations.
The CAD-systems that we know can be divided into 2D-systems and 3D-systems. These 2D-systems
can achieve a high sensitivity but they are generally too simple and return too many false positives. On
the other hand, the 3D-systems require high computational power. Therefore, a method is proposed
that requires relatively low computational power, but still achieves a high sensitivity with a low num-
ber of false positives. This method uses 2D-methods with 3D features.
This research starts with a literature review. Then, a description of the dataset is given in section 3. In
section 4 the methods that are used are described. The experimental setup can be found in section 5
and the results in section 6. Finally, the assumptions and results are put into perspective in the conclu-
sion in section 7 and the discussion (section 8).
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2 Literature review

The typical set-up of a CAD system is preprocessing, segmentation of the structures of interest, de-
tection of candidates, extraction of the candidates by features, and classification of the candidates (I.
Sluimer, 2006):
Segmentation techniques convert gray-scale images into binary images. Tresholding techniques are
very common in the field of lung nodule detection for segmentation. One may think of global treshold-
ing (Messay, 2010), here the same threshold is applied to all pixels: All the pixels below the treshold
get value 0 and above the treshold get value 1. For optimal tresholding (Dehmeshki, 2007), firstly a
grey level histogram is approximated by a linear combination of Gaussians. Then the tresholds are
computed by using a minimum classification error. Ye (2009) propose an algorithm that creates a five-
dimensional vector that includes the position (x,y,z), the intensity and the shape index for every voxel.
With this vector the intensity mode map and shape index mode map are computed. An expectation
maximization algorithm is then used to merge the neighbouring modes based on the Bayesian proba-
bility theory that assigns a probability for each mode to which class it belongs. Another segmentation
option is region growing. This approach examines neighboring voxels of initial seed points and deter-
mines whether the pixel neighbors should be added to the region. Bellotti (2007) adopt two inclusion
rules for the neighboring voxels: Simple Bottom Threshold/Simple Top Threshold and Mean Bottom
Threshold/Mean Top Threshold. The first checks per voxel and the latter checks for the average of all
neighbouring voxels whether the voxels should be adopted or not. The seed point is chosen as the first
voxel that satisfies the inclusion rules. Another example of a region growing method in lung nodule
detection is using wavefront simulation and suitable stop conditions (Nunzio, 2011).
Having the lung segmented, the nodule candidates can be detected. Several techniques have been pro-
posed to detect the candidates like mathematical morphology(Awai, 2004) and connected component
analysis (Oda, 2002). Mathematical morphological operations tend to simplify image data preserving
their essential shape characteristics and eliminating irrelevancies (Haralick, 1987). In connected com-
ponent analysis a unique label is assigned to every maximal connected region of foreground pixels.
With both methods a structure of possible candidates remains.
The third step that I. Sluimer (2006) proposes is feature extraction. In feature extraction mathematical,
textural and geometrical properties are calculated from the segmented region(N. S. Lingayat, 2013).
Features that N. S. Lingayat (2013) proposes are area, perimeter, irregularity index, equivalent di-
ameter, convex are, solidity, gray-Level co-occurrence matrix properties, contrast, correlation, energy,
homogeneity, statistical properties of an image, mean, variance and standard deviation. Singh (2016)
use the area, perimeter, shape complexity, mean standard deviation and circularity as features. The ba-
sic characters of geometric feature are area, perimeter and compactness. A. Gajdhane (2014) restricts
to the basic characters of geometric feature which are area, perimeter and compactness. P. Lambin
(2008) and Ahmad (2015) distinguish three types of features: Shape based features, intensity based
features and texture based features.
With the retained features the extracted volumes can be classified. D. Zinovev (2011) uses belief de-
cision trees. Furthermore, the K-nearest neighbor algorithm is applied by Farag (2011) to classify the
lung nodules. Another classification method is the usage of support vector machines (P. Lin, 2013).
A more complex form of classification is deep learning. One may think of (convolutional) neural
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networks and deep belief networks (K. Hua, 2015).

3 Data

In this section, a description of the dataset is given along with some background and terminology that
are of hand further in this research.

3.1 LIDC dataset

The Lung Image Database Consortium image collection (LIDC-IDRI) is a collection of thoracic CT-
scans and corresponding annotations that is available on the website of the cancer imaging archive.
The data is gathered by seven academic centers and eight medical imaging companies and consists
of 1018 scans. Each scan consists of all the slices of the CT-scan (DICOM images) and an XML-file
with the annotations of four experienced radiologists.
The annotations are made in a so-called two phased image annotation process. In the first phase of the
process, the four radiologists analyze the images independently and mark the lesions belonging to one
of three categories: ”nodules of at least 3mm”, ”nodules smaller than 3mm” and ”non-nodules bigger
than 3mm”. In the second phase, the radiologists compare their own analysis with the analyses of the
other radiologists to adjust their own analysis if necessary and make a final annotation. As a result,
the CT-scan for a patient is analyzed as completely as possible by four radiologists.
In total, the LIDC-IDRI database contains 7371 lesions marked as ”nodule” by at least one radiologist.
Of these nodules, 2669 were marked as ”nodules of at least 3mm” by at least one radiologist. Thus,
on average, a scan has 7,24 lesions annotated as nodule and 2,62 lesions annotated as nodules of at
least 3mm.

3.2 Data background

The images in the scans are composed of 512 rows, each of 512 pixels, i.e., a square matrix of
512X512 “ 262144 pixels. An example of such a DICOM image can be found in figure 1. This
is an average cross-section of the thorax.
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Figure 1: Example of a CT-scan slice

To be able to make well-substantiated choices in building the model, it is important to understand
more about the thorax that is visible in the CT-scan slices. The two dark regions inside the thorax are
obviously the lungs. In figure 1, the bright part around the lungs is the chest wall, consisting mostly
of bones and skin. In the bright part in between the two lungs, you can find the heart, the aorta, the
pericardium, the esophagus and other organs. For this research paper only the lungs are of interest,
including what happen at the edges of the lung. The edges of the lungs are called the pleurae. A
pleura includes two thin layers of fluid-filled space that protects and cushions the lung. The small
bright regions inside the lungs are blood vessels and air.
Generally, three types of lung nodules can be distinguished based on external attachment (Mukhopad-
hyay, 2016):

• Well-circumscribed nodules

• Juxta-vascular nodules

• Juxta-pleural nodules

The well-circumscribed nodules are detached, the juxta-vascular nodules are attached to blood vessels,
while the juxta-pleural nodules are attached to the pleura. This terminology will be of hand in the
candidate detection process in section 4.3.
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4 Methodology

In this section, the methods that are used in this research paper are described. Firstly, the preprocessing
stage is described. Secondly, the structures of interest are segmented. Then the candidate are detected
from the segmented images, after which the feature extraction takes place. The section ends with the
classification of the candidates.

4.1 Preprocessing

Due to a limited computation power, only a part of the in total 1018 scans is used in this research
paper. The scans with a slice thickness larger than 2,5 are deleted. This is most convenient for the
connected components algorithm that is used in section 4.3. It is better to reduce the slice thickness to
1 thickness, as P. Monnin (2016) does, however this is not within the scope of this research.
The slice thickness can be found in the DICOM metadata. By deleting the scans with a thickness
larger than 2,5 mm, 888 scans remain:

Slice
thickness (in mm)

Amount

0,6 7
0,75 30
0,9 2
1 58
1,25 343
1,5 5
2 123
2,5 320

Table 1: Division data in slice thickness

Of the remaining 888 scans, randomly 488 scans were removed. This also had to deal with limited
computation power. This measure goes at the cost of the model accuracy unfortunately. The second
step is to turn the annotations and the slices into the same filetype. TIFF images are used because
they are easy to work with in MATLAB. This is done with a MATLAB function that extracts the
annotations of each individual radiologist from the XML file into TIFF images. If no annotations are
made for a slide, then an empty TIFF image is generated. Besides, the function converts the DICOM
images of the slices into TIFF images for convenience.
The third step is to process the annotations. As explained in section 3.1, every CT-scan is analyzed by
four different radiologists. As an empty TIFF image is generated when no annotations are made for a
certain slice, every slice is linked to four TIFF images, which are either empty or annotated. To have
only one reference instead of four, for every slice the unit of the annotations is taken. The reason for
this is that I prefer to have a (part of a) lesion annotated as tumor that is not a tumor, over missing a
(part of a) tumor. By doing this, no information gets lost. An example of 4 annotations in figures 2, 3,
4 and 5 being united as one annotation in figure 6 can be found below.
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Figure 2: Annotation 1 Figure 3: Annotation 2 Figure 4: Annotation 3 Figure 5: Annotation 4

Figure 6: Unit annotations

4.2 Segmentation

To be able to differentiate the nodules from other parts in the CT scan, the gray scale image is converted
into a binary image. Because the difference between air and other parts in the body are very obvious, a
simple segmentation technique like tresholding is sufficient. To find the right treshold, the Houndfield
scale is used. This scale is defined in HU (Hounsfield units) and is the unit of measurement in CT-
scans. The scale encompasses the body’s composition from air designated as ´1000 units, running
through water at 0 units up to bone, which is the densest human tissue, at`1000 units (Bhattacharyya,
2016).
To convert the normal values that are found in the CT-scan into HU, a linear transformation is needed:

HU “ pixelvalue ˚ slope` intercept.

The slope and the intercept of each slice can be found in the CT scan’s data. A histogram of the
transformed slice in figure 1 into HU looks as follows:
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Figure 7: Histogram of the HU scale of a CT-scan

In figure 7 two separate peaks are visible. To have a better understanding of this histogram an
oversight of the HU scale is given in table 2 by T. Buzug (2008). With this table it is easy to distinguish
air and tissue in figure 7: the left peak is air and the right peak is tissue. Because the difference between
air and tissue is that clear, a global treshold at ´400 HU suffices to separate the air and tissue.

CT parts HU
Bone 1000
Liver 40-60
White matter 20-30
Grey matter 37-45
Blood 40
Muscle 10-40
Kidney 30
Cerebrospinal fluid 15
Water 0
Fat -50–100
Air -1000

Table 2: HU corresponding to different tissues in a CT-scan

The result of a segmented image can be found in figure 8
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Figure 8: Segmented CT-scan

4.3 Candidate detection

Having the CT-scan segmented, the lung candidates need to be detected. In a strictly 2D CAD system,
one can simply use the foreground segments in the segmented image as nodule candidates. However,
in this research paper the focus lies on the 3D features that can improve the nodule localization.
Therefore, a method is constructed that creates candidates that are situated over multiple slices. It can
be seen as a variant of connected component analysis. Thus, instead of only horizontal candidates that
remain from a segmented slice, vertical candidates are looked for over multiple slice. Hereby, it is
important to note that we are only interested in possibly malignant tumors. Therefore, the assumption
is included that a malignant nodule occurs in at least 3 CT slices. This property was given by the
radiologists of the VUmc. Besides, in table 3 of A. Leung (2007) we see that nodules smaller than 8
mm are hardly malignant. As the largest distance between slices is 2,5 mm (figure 1), all the possibly
malignant nodules should be included by using this assumption.

Diameter Malignancy
<4 mm 0%
4-7 mm 1%
8-20 mm 15%
>20 mm 75%

Table 3: Relationship between diameter and chance of malignancy

The algorithm starts by randomly choosing a segment, say segment s that is not yet examined in
the CT-scan. In order to make the algorithm require low computational power, these segments are
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picked only from every 3rd slice from the center of the scan. Say, a scan contains 14 slices, firstly the
middle slice (slice 7) is picked. Then, from this middle slice, upwards and downwards, every third
slice is used. Downwards that is slice 4 and 1, upwards that is slice 10 and 13. Thus, in this case
the algorithm would only randomly select a segment of slices 1, 4, 7, 10 and 13. As we make the
assumption that a nodule occurs in at least 3 slices, this does not make us miss any tumors.
Of segment s, the algorithm seeks whether other segments in the 2 neighbouring scans have a similar
location in the CT-scan. The location of segment s is denoted as similar to the location of another
segment when their centroids, which are px, yq-coordinates, lay within a certain Euclidean distance
from each other. This Euclidean distance is yet to be determined.
At this point, two cases are distinguished: Segment s has segments with similar locations in at least
one neighbouring slice, or it does not. If one or both of the neighbouring scans indeed have a segment
with a similar location as segment s, the segments are connected and seen as one possible candidate.
Subsequently, the same process is repeated for the neighbouring slice of the segment that is connected
to segment s. In the second case, one gap is ’used’ and in one slice further again a segment with the
same location is searched. If all the gaps are used and still no similar segment has been found, the
segments are deleted and a new segment is chosen randomly from every 3rd slice from the middle.
Reason for this is the assumption that a malignant nodule occurs in at least 3 CT slices.
The algorithm allows a certain amount of gaps within the connected components to also include the
juxta-vascular nodules (section 3.2). The amount of gaps is yet to be determined. The blood vessels
with which the juxta-vascular nodules are connected are usually thinner and not visible on all slices
the nodule is situated at.

Figure 9: Nodule from lower
slice

Figure 10: Juxta-vascular nod-
ule

Figure 11: Nodule from upper
slice

As a result that the blood vessels can strongly influence the centroid of the segment. In the example
in figures 9, 10 and 11 such an occurrence is illustrated. Here, the centroid of the middle slice is
completely changed due to the blood vessels. Thus, in this case allowing the gaps means that a
component can be spread out over all three slices. The gap is counted as an occurrence if it has at least
one segment in the slice above and at least one segment in the slice below in the same component.
The algorithm continues for segment s until the allowed amount of gaps is passed, resulting in one
connected component. Then, the process is repeated for another randomly chosen segment that is not
yet examined, until all segments have been examined.
As part of detecting the candidates, some segments are eliminated:

• The bones, which are the segments that have a HU of around 1000.
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• The chest wall, which is the largest segment. Removing the chest wall also means that the
juxta-pleural nodules are removed. These segments are saved in a different dataset.

• The segments in the vertically connected components that occur in less than 3 slices.

In this section a few variables remained that need to be tweaked in section 5:

• The Euclidean distance denoting the segments as being similar.

• The amount of gaps allowed within a connected component.

4.4 Feature extraction

Of the vertically connected components that remained from section 4.3, the features can be extracted.
Because the components are situated on multiple slices, 3D features can be used. For this research,
shape based features, intensity based features and texture based features are used. With these types of
features sufficient properties of the nodules are included.
An oversight follows of the 2D features with their definition. The 3D features are retained by taking
the average of the 2D features over all components.
The shape based features were retained from Mathworks (2016b):

• Eccentricity, which is the circularity.

• Area, which is the amount of pixels of the segment.

• Centroid’s x-coordinate, which is the x-coordinate of the centroid.

• Centroid’s y-coordinate, which is the y-coordinate of the centroid.

• Major Axis Length, which is the length of the major axis of the ellipse that has the same nor-
malized second central moments as the segment.

• Minor Axis Length, which is the length of the minor axis of the ellipse that has the same nor-
malized second central moments as the segment.

• Orientation, which is the angle between the x-axis and the major axis of the ellipse that has the
same second-moments as the segment.

• Perimeter, which is the length of the line forming the boundary around the segment.

• Solidity, wich is the ratio between the area and the convex area of the segment.

The intensity based features are computed from the original pixel values and are pretty straight-
forward:

• Mean.

• Median.
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• Skewness.

• Standard deviation.

• Kurtosis.

The texture based features are computed by normalizing the gray-level co-occurrence matrix and
retained from Mathworks (2016a):

• Contrast, which is the measure of the intensity contrast between a pixel and its neighbor over
the whole image.

• Correlation, which is a measure of how correlated a pixel is to its neighbor over the whole
image.

• Energy, which is the sum of squared elements in the GLCM.

• Homogeneity, which is the value that measures the closeness of the distribution of elements in
the GLCM to the GLCM diagonal.

In section 5 the right combination of features is determined.

4.5 Classification

To classify the vertically connected components two well-known methods are used: a neural net-
work and a support vector machine. These are supervised learning techniques that learn the mapping
function from input to output. The input is the vertically connected component and the output de-
notes whether the vertically connected component is a tumor or not. Supervised learning can be done
because the data is labeled.

4.5.1 Neural Network

A neural network is a form of machine learning that is based on the functioning of the brain. As in
figure 12, there is an input vector X which consists of all n input variables x1, x2, ..., xn. Recall that n
is determined in the feature selection in section 5. Linear combinations, called activations, are made
of the input variables for all hidden neurons. In figure 12 the structure of a Neural Network can be
found. The Neural Network has k hidden layers, and every hidden layer has m hidden neurons. The
amount of hidden layers and hidden neurons is yet to be determined.
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Figure 12: A possible Neural Network structure

The weights of these combinations are denoted by vector W with wij being the weight of the
connection between input variable of the previous layer i and neuron j. The summed products of the
weights and the input of the previous layer are called activations δ1, δ2, ..., δm. For every neuron i that
is

δi “
n
ÿ

j“1

wij ¨ xj ` bias. (1)

To check the δ value produced by the neurons and decide whether outside connections should consider
this neuron as activated or not, these activations are passed through a neuron’s so-called activation
function, say f :

ai “ f pδiq . (2)

A well-known activation function is the step-function:

fpxq “

#

1 if x ą 0

0 if x ď 0

Another option is the logistic sigmoid function, which is the smoothed version of the step-function.

fpxq “
1

1` exp p´xq
.

The advantage of smoothing the step-function is that small changes in the weights and in the bias
result in small changes in the output αi. Besides, the logistic sigmoid function takes values between 0

and 1.
The hyperbolic tangent activation function is easier for optimization however because it is zero cen-
tered. Therefore, this function is used as activation function for most hidden layers:

fpxq “ 1´
exp p´2xq

1` exp p´2xq
.
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In every hidden layer these steps are repeated until the output layer is reached. The output layer is
determined by applying a similar combination as in (1) and (2) for the j-th output variable:

yj “ g

˜

m
ÿ

i“1

wij ¨ ai

¸

.

The activation function gpxq that is used for the output layer is the logistic sigmoid function, because
it returns values between 0 and 1, which is easy for finding the optimal treshold.
To train the weights of the model, back-propagation can be used. Back-propagation is a repetitive
process to update the weights of the neural network. Firstly, the output is computed with random
initial weights. With the sum of the squared error,

Epy, tq “
ÿ

j

pyj ´ tjq
2,

the loss with respect to the target values tj is computed. This error is then propagated back through
the network by updating the weights. This process is repeated until the error is minimized. This back-
propagation algorithm is known as a computationally efficient algorithm (Bengio, 2012).
To find the set of weights that minimizes the error, gradient descent is commonly used. With this
method the gradient of the error with respect to the weights is computed:

4wij “ η
δEpy, tq

δwij
. (3)

An important requirement for gradient descent is that its input, weight and activation functions have
derivative functions, which is indeed the case. With (3) the direction with the steepest descent is
chosen. Hossain (2015) shows that scaled conjugate gradient descent is a better option however.
Scaled conjugate gradient descent does not only look for the steepest descent, but searches along
conjugate directions. This makes the scaled gradient descent algorithm a faster algorithm faster than
normal gradient descent.
In this section a few variables remained that need to be tweaked in section 5:

• The amount of hidden layers and hidden neurons.

4.5.2 Support Vector Machine

To have multiple options for comparison, support vector machine (SVM) is also used as a classification
method. An SVM is a rather straightforward classifier that divides the data into nodules and non-
nodules with a hyperplane. This hyperplane is chosen such that the distance between the nearest
data points on each side is maximized. When the distance is maximized, the hyperplane is called
maximum-margin hyperplane. In figure 13 an example of a maximum-margin hyperplane can be
found. The dotted lines are the support vectors.
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Figure 13: An SVM that divides the data with a maximum-margin hyperplane

To determine (the weights of) the optimal hyperplane, the following LP needs to be solved.

W pαq “ ´
n
ÿ

i“1

αi `
1

2

n
ÿ

i“1

n
ÿ

j“1

yiyjαiαjKpXiXjq

subject to
n
ÿ

i“1

yiαi “ 0,

αi ď 0.

In this LP the Lagrangian constant α is used to include the constraints. Furthermore, x1, x2, ..., xn is
the input and y1, y2, ..., yn is the output which returns either a 0 (no tumor) or a 1 (tumor). KpXiXjq

is the kernel function of the dot product of input data points that maps the data points into the higher
dimensional feature space by transformation. The kernels that are examined in this research paper are
the linear function, the polynomial function and the radial basis function (RBF):

KpXiXjq “

$

’

’

&

’

’

%

Xi ¨Xj Linear

pγXi ¨Xj ` Cq
d Polynomial

expp´γ|Xi ´Xj |
2q RBF

In this section a few variables remained that need to be tweaked in section 5:

• The kernel function.

5 Experiments

In the section 4.3, section 4.4 and section 4.5 some variables remained that need to be tweaked. An
oversight of these variables is given:
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• The Euclidean distance denoting the segments as being similar.

• The amount of gaps allowed within a connected component.

• The input features.

• Support Vector Machine: Kernel function.

• Neural Network: The amount of hidden layers and hidden neurons.

• Classifier.

The data is divided into a train-set and a test-set. The train-set is used to determine the optimal
variables and parameters (section 5.1) and train the data on. The test-set is used to compare the
different models. The performance measure can be found in section 5.2.

5.1 Experimental setup

Firstly, the Euclidean distance denoting the segments as being similar and the amount of gaps allowed
within a connected component are determined. The values are determined by computing and 3D-
plotting the amount of connected components that are nodules over the first 25 scans for different
combinations of distances and amount of gaps.
The second step is to determine the optimal subset of features. Wrapper methods and embedded
methods are well-known approaches. Wrapper methods can be computationally expensive however
for large-scaled data sets, as for every subset a new model needs to be trained. In embedded methods
the feature selection is built into the classifier construction and gradient descent method is used to
optimize the feature weights. However, this method is rather complex and time-consuming because
different models are used. A method that is not only simpler and more efficient, but also yields
competitive results with the previous methods is Neighbourhood Component Analysis (W. Yang,
2012). Neighbourhood Component Analysis is a method that works as follows:
Denote the weighted distance between two samples xi and xj as

dwpxi, xjq “

p
ÿ

r“1

w2
r |xir ´ xjr|.

A reference point is determined by a probability distribution. The probability that xj is picked as the
reference point for xi is

pij “
kpdwpxi, xjqq

řn
j“1,j“‰i kpdwpxi, xjqq

.

In this equation,

kpzq “ expp´
´z

σ
q,

is a kernel function and the kernel width σ is an input parameter that influences the probability of each
points being selected as the reference point.
The chance that the classifier correctly classifies observation i is

pi “
n
ÿ

j“1,j“‰i

pijyij .
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Here, it holds that

yij “

#

1 yi “ yj ,

0 other.

The approximate leave-one-out classification accuracy is

F pwq “
n
ÿ

i“1

pi

“

n
ÿ

i“1

pi ´ λ

p
ÿ

r“1

w2
r

Here, a regularization term is added to perform feature selection and alleviate overfitting. The regu-
larization term is λ and is tuned through cross validation. Finding the weight vector can be expressed
into a minimization problem. To do this, first assume the following relations:

fpwq “ ´F pwq,

n
ÿ

i“1

n
ÿ

j“1,j“‰i

pij “ 1

Note that the minimum does not change if you add a constant to fpwq.

ŵ “ argmin
w

tfpwqu

“ argmin
w

t1` fpwqu

“ argmin
w

#

1

n

n
ÿ

i“1

n
ÿ

j“1,j‰i

pij ´
1

n

n
ÿ

i“1

n
ÿ

j“1,j‰i

pijyij ` λ

p
ÿ

r“1

w2
r

+

“ argmin
w

#

1

n

n
ÿ

i“1

n
ÿ

j“1,j‰i

pijp1´ yijq ` λ

p
ÿ

r“1

w2
r

+

“ argmin
w

#

1

n

n
ÿ

i“1

n
ÿ

j“1,j‰i

pijlpyi, yjq ` λ

p
ÿ

r“1

w2
r

+

The loss function lpyi, yjq is defined as follows:

lpyi, yjq “

#

1 yi ‰ yj

0 other

The third step of the experiments is to determine the amount of hidden layers and hidden neurons for
the Neural Network. Hereby, we used a 3D plot for different amounts of hidden neurons and hidden
layers to find the optimal accuracy. The fourth step is to determine the best Kernel function for the
Support Vector Machine. 5-fold crossvalidation is applied to avoid overfitting. Here, the train-set is
divided into 5 parts. 1 part is used as validation-set and the rest is train-set. This process is repeated
until all parts have been a validation-set once. Of the results the mean is taken. In the final step
both methods are compared on the test-set. The performance measure that is used is explained in
section 5.2.
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5.2 Performance Measure

To determine the best variables, a Relative Operating Characteristic curve is used, also known as the
ROC-curve. An ROC-curve plots the true positive rate (TPR) against the true negative rate (TNR) for
different tresholds. To understand these rates, see figure 14.

Figure 14: Confusion matrix

In words, the TPR is the proportion of positives that have been assigned as positives and the TNR
is the proportion of negatives that have been assigned as positives. The goal is to have a high TPR
and a low TNR. With the ROC-curve, the Area Under the ROC Curve value (AUC) can be computed.
AUC is the two-dimensional area underneath the ROC-curve. AUC values ranges between 0.5 and 1,
where 0.5 is worthless and 1 is excellent. In figure 15 a different ROC’s are illustrated. Here, yellow
has a good AUC value and blue has a bad AUC value.
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Figure 15: Comparing ROC curves

After the AUC values have been computed, a (paired) t-test is performed to see whether the dif-
ference between the models is significant.

6 Results

In this section, (the performance of) the optimal model is determined.

6.1 Connected Component parameters

Firstly, the amount of gaps that are allowed on each side of the random starting point of the connected
component algorithm and the distance between two nodules denoting them as similar, is determined.
The results can be found in figures 16, 17 and 18.
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Figure 16: Average number of segments in con-
nected components per scan

Figure 17: Average number of connected compo-
nents per scan

Figure 18: Average amount of segments annotated as nodules in connected component per scan

Figure 16 shows that a large Euclidean distance in combination with a large number of gaps leads
to a large number of segments in the connected components. The reason for this is that the algorithm
adds segments to the connected component that belong to different lesions. Thus, in order to avoid
this, the number of gaps and the Euclidean distance should be kept low.
From figure 17 a similar conclusion can be drawn for the Euclidean distance. A large Euclidean
distance results in a large number of connected components because the minimum number of occur-
rences, which is three, is more easily reached for the small segments that are connected with each
other. Changing the number of gaps has little influence in this case.
From section 3.1 we know that on average, a scan has 7,24 lesions annotated as nodule and 2,62 le-
sions annotated as nodules of at least 3mm. However, the juxta-pleural nodules are included in these
average numbers. Therefore, the juxta-pleural nodules are also added in the averages of figure 18.
We see that 7,24 nodules are almost reached by increasing the Euclidean distance and the number of
gaps. The remaining must be the small nodules that cannot be connected to at least 2 other segments.
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However, in this research paper we are interested in the possibly malignant tumors. The combination
that returns slightly more tumors (which is more preferable than a lower amount) on average than 2,62
is using 1 gap on each side and by applying an Euclidean distance of 2. This combination matches
the average amount of tumors in the connected components, while the number of components and
the size of the components are kept small. When a larger Euclidean distance is used, the small and
non-malignant tumors are connected to other lesions, such that the minimum number of occurrences
is reached. This is undesirable because we do not wish to classify these non-malignant nodules as a
nodule. Besides, a lower Euclidean distance would not include all nodules in to the components.
Because the ratio between components and components with tumors is around 54 to 3, a balanced data
set is used for the training of the classifiers. The new balanced ratio is around 9 to 3.

6.2 Feature selection

Neighbourhood Component Analysis is applied to obtain an optimal subset of features. In table 6.2
the results of this method are presented.

Feature Weight
Area 6,063241
Centroid’s y-coordinate 3,845947
Standard Deviation 2,964714
Centroid’s x-coordinate 2,071998
Mean 1,439018
Orientation 1,120594
Median 0,970196
Skewness 0,970196

Table 4: Optimal subset of features along with feature weights.

The resulting set of relevant features consists of the area, centroid’s x-coordinate, centroid’s y-
coordinate, orientation, mean, median, skewness and standard deviation. The texture based features
are thus not included in the model.

6.3 Neural Network

For the Neural network, the amount of hidden layers and hidden neurons need to be determined. In
figure 19 a 3D plot is illustrated of the average AUC that is computed with 5-fold cross-validation on
the train-set for different hidden layers and hidden neurons.
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Figure 19: Average AUC for different amounts of hidden layers and hidden neurons

In this figure we see that an increaseing number of hidden layers leads to an increasing average
AUC up to 3 hidden layers for all numbers of hidden neurons. From that point, the AUC starts
decreasing, which is probably because of overfitting. The same holds for the numbers of hidden
neurons: There is an increase up to 50 hidden neurons and the average AUC decreases for a larger
amount than 50 hidden neurons. Thus, using 3 hidden layers with each 50 hidden neurons yields the
highest accuracy.
To check whether the difference is significant with the results of other combinations, t-tests were
performed on the results obtained with the 5-fold cross validation. The difference appeared to be
significant as the p-values are smaller than 0.05.

6.4 Support Vector Machine

For the Support Vector Machine the Kernel function needs to be determined. 5-fold cross validation
is used and the average AUC is displayed in table 6.4.

Kernel Average AUC
Linear 0.8358
Polynomial 0.5362
RBF 0,7798

Table 5: Average AUC of SVM’s with different kernels.

Just like in section 6.3, t-tests were performed on the results obtained with the 5-fold cross valida-
tion. The difference appeared to be significant as the p-values are smaller than 0.05.
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6.5 Comparison methods

Finally, the two models are trained on the train-set and compared on the test-set:

Kernel AUC
Support Vector Machine 0.8469
Neural Network 0.8192

Table 6: AUC of the methods.

To determine whether this difference is significant, bootstrapping with hundred times sampling is
used. On the results a t-test is applied which returned a p-value smaller than 0.05. The difference is
thus significant.

7 Conclusion

The goal of this research paper was to create a 2D method with 3D features that reaches a high true
positive rate and a low true negative rate. This goal has been met as the best method has an AUC of
0.8469 on the test-set. It is hard to compare the result of this method with other methods because the
assumptions that were made in this research are unique.

8 Discussion

This research paper has shown that a 2D method can have a good accuracy score. However, some
considerations have to be made before such a method is put into practice.
Only 400 of the 1018 scans were used. The accuracy would have probably increased when more scans
would have been used. Besides, the scans with a slice thickness greater than 2,5 have been deleted. In
practice this cannot be done obviously. It would have been better to normalize the slice thickness for
example. This is left to other research.
The classification of the juxta-pleural nodules cannot be done by the method that is provided in this
research because the segmentation process that is chosen is rather simple and cannot separate the
juxta-pleural nodules from the pleura. Therefore, in this research the juxta-pleural nodules are sepa-
rated by placing the segment with the biggest area in a different dataset. Applying classification on
this dataset did not return satisfying results.
In this research the strong assumption is made that a possibly malignant tumor occurs in at least 3
slices. In some exceptions the possibly malignant tumors could be missed in the candidate detection
because the assumption is not satisfied. For example due to high variation in the centroids’ location.
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