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Preface 
 
This paper is written for an obligatory course in the Master program of Business Mathematics 
and Informatics of the VU University in Amsterdam. The Master’s in Business Mathematics and 
Informatics (BMI) is a multidisciplinary program, aimed at improving business processes by 
applying a combination of methods based on mathematics, computer science and business 
management. The aim of this paper is to reflect on the research performed to find answers for a 
problem definition. The research is based on computer generated data. 
In this paper the relation of the patient-flow between the Intensive Care and the Medium Care 
will be investigated. This will be based on three models for the capacity of the Intensive Care, 
the Medium Care and an additional joint ward. Different kinds of objectives will be investigated 
using simulation programs for these models. 

I would like to thank René Bekker for his support, advices and critical insights during the 
process and writing of this paper. 
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Abstract: 
 
In this paper we investigate the influence of the patient-flow between the Intensive Care (IC) and 
the Medium Care (MC). The best model that represents a hospital is that internal patients remain 
at the IC if they find the MC and the JW full. For investigating this care chain we therefore 
created three models, consisting of an IC, MC and an additional joint ward (both patient types 
have access to this ward if their own ward does not have enough available beds left. In the first 
model the patients from the IC to the MC are blocked when they find the MC and the joint ward 
fully occupied. In the second model those patients remain at the IC when they find the MC and 
joint ward both fully occupied. The third model consists of an independent IC and MC without 
the patient-flow in between. This model is easy to use because it has an analytic solution for 
calculating blocking probabilities, which is called the product-form. Using a simulation we 
compared what the differences of the blocking probabilities between those models are and we 
found out what the influence of MC patients is on the IC. We found that the blocking 
probabilities of all models approximately show the same result especially when we look at the 
realistic bed allocations. For all different models the minimum number of beds per ward which 
give a blocking probability lower than 5 % is similar, namely for the IC 28 beds are needed to 
reach this and for the MC 11 beds. Therefore we can see the wards as independent. Thus when 
making the calculations for the blocking percentages we might use the product-form for 
calculating blocking probabilities of each ward. Another interesting conclusion is that if the MC 
does have enough capacity for handling external MC patients, the influence of the internal MC 
patients on the IC is negligible. 
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1. Introduction 
 
Over the past years hospital managers have been stimulated to make the organization structure of 
the hospital more efficient by reducing the number of beds and increase the occupancy rates to 
improve operational efficiency. This strategy is questionable because generally the management 
does not consider the total care chain from admission to discharge, but mainly focuses on the 
performance of individual units. This has often lead to less patient access without any significant 
reduction in costs. [4]  
 
Another reason why managers must make their organization structure more efficient is because 
of the competition between hospitals and moreover, the increased focus on the service to the 
patient. To distinguish themselves they can keep costs as low as possible and, to reach a high 
service level, they can reduce waiting times. This way they make sure that the quality of the 
service health care is optimal for improving patient satisfaction. 
 
With the current budget cuts, one of the reasons why managers want to make the structure of 
hospitals more efficient is to reduce costs. Therefore we have to look at the cost drivers to know 
in which care chain the structure needs to be adapted. One of the main cost drivers for hospitals 
is the Intensive Care (IC). The costs of the IC can become very large in comparison with other 
wards. For example the costs for an IC bed are twice as high as for a bed on the Medium Care 
(MC). In VUmc, when patients leave the IC, 21,5 percent of the IC patients  are admitted to the 
MC, otherwise they are transferred to another ward such as the Normal Care (NC). To keep the 
costs for the IC as low as possible the IC should be utilized as effectively as possible, meaning 
that blockings from the MC should be avoided. So if managers of hospitals want to gain profit by 
reducing the costs for IC, it is useful to examine this care chain more carefully. Another reason 
for examining this is that the IC needs to be accessible for patients who need acute and intensive 
attention.  
 
Based on economies of scale it is preferable to have large clinical wards. For large, for example 
merged wards, it is possible to achieve a higher occupancy rate while refused admissions are 
lower. In most queuing systems economies of scale occur. From queuing theory, in particular the 
Erlang B model, we know that large systems may benefit from economies of scale, implying 
efficiency gains and potential cost reductions [7]. Larger service systems can operate at higher 
occupancy rates than smaller ones while attaining the same percentage of blocking or delay. This 
means that the best thing a hospital can do is to merge clinical wards as much as possible. But 
this is not always beneficial or desirable for the costs because then the staff needs to be multi-
skilled and the planning and control as well as the organization of the different kind of patients 
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becomes more difficult, which will lead to higher costs.  
 
As mentioned above, patients who leave the IC are admitted to the MC, the NC or another 
nursing unit. I also take into account a joint ward; a joint ward can be seen as a merged ward for 
IC and MC patients and contains flex-beds that can be used by IC patients as well as by MC 
patients. This will be the case if there are no available beds left anymore on the particular ward. 
A fixed number of beds are guaranteed for the IC and MC, although this number is usually less 
than for the case in which the hospital has fully separate wards. The joint ward allows the 
hospital management to protect the high valued patients or patients with a small average length 
of stay. Multi-skilled nurses, who are more expensive than specialized nurses, are only required 
for the joint ward, whereas specialized nurses can be used on the IC and the MC. 
I created three different models A, B and C (explained in Section 2) to examine the already 
above mentioned patient-flow between the IC and MC, care chain in more detail. These models 
are based on three factors.  
First of all, we want to avoid that those patients who leave the IC and go to the MC encounter a 
full MC. Second, it is beneficial to combine the economics of scale of merging wards. Third, we 
want to use the benefits of single wards.  Therefore the basis of the models consists of the IC, the 
MC and a joint ward.  
 
The goal of this paper is to investigate the influence of the patient-flow between the IC and the 
MC based on two objectives: 

1. Do the blocking probabilities for the models show similar results?  
2. What is the influence of the MC on the IC? 

Note that I also take into account that the hospital is using a joint ward for patients who find the 
IC or the MC full when admitting. 
 
In order to obtain the answers for the mentioned objectives, I investigated the patient-flow from 
the IC to the MC. To investigate this flow I created different kind of simulation models based on 
the models A, B and C. These models were used to calculate the performance measures defined 
in Section 2.  
 
First the three models are presented in Section 2. The objectives are listed in Section 3. Section 4 
consists of model assumptions and parameters of the arriving and outgoing patients on the IC, 
MC and the patient-flow between the IC and the MC. The performance measures of the 
simulation models, formulas for the blocking probabilities and a description of the simulation 
models are given in Section 5. The results are presented in Section 6 and the conclusion can be 
found in Section 7. 
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2. The three different kind of patient flow models 
 
This section contains the definition of the three structural models and formulas to calculate the 
blocking probabilities for each model. These models describe the different patient routings in a 
qualitative manner and define the relations between different hospital units. I decided to identify 
three different kinds of patient flows. Model A is a model with internal refusals for the patient-
flow from the IC to the MC. Model B is comparable with model A with the only difference that 
if a leaving IC patient who is transferred to the MC finds the MC as well as the joint ward full 
then the patient stays on the IC. Model C is a model with a joint ward and independent flows, 
without a patient-flow from the IC to the MC.  
 
Models A and C can be compared to find out what the influence is of the patient flow from the 
IC to the MC. Model B can be compared with model A and model C to find out what the impact 
is on the IC if patients stay there when the joint ward and the MC are both occupied.  
 
All models contain a joint ward. The name for this bed allocation policy is called the earmarking 
policy. Each patient type has a guaranteed number of beds.  For this policy, the earmarked beds 
(available beds on the IC and MC) should always be used first before turning to the joint ward. 
Moreover, in the model we assume that as soon as an earmarked bed becomes available, a patient 
is transferred from the joint ward to an earmarked bed. In practice, this patient transfer will not 
occur immediately, but this generally happens in case the joint ward is fully occupied. Therefore, 
the modeling assumption of immediate patient transfers seems a realistic simplification [2]. 
Models A and B have an internal patient-flow from the IC to the MC. In model C the MC can be 
seen as an independent ward. 
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Model A: With internal refusals for patients going from IC to MC 
   

Model A describes the overall patient flow where patients admit the system at the IC or MC. If 
an entering IC patient finds the ward full then the patient is sent to the joint ward (JW). If the JW 
is also full then the patient gets blocked and is sent home, to another nursing unit or to the NC. 
The same holds for an entering MC patient. 
Patients lying on the IC can be transferred to the MC after their stay on the IC, or the patients 
leave the IC by going to another nursing unit such as the NC. If a patient coming from the IC 
finds both the MC and the joint ward full then the patient gets blocked (refused admission) and is 
transferred to another hospital or to another nursing unit. Patients lying on the MC can leave this 
particular ward by going home or to another nursing unit like the NC.  
It is assumed in this model that, if an IC or a MC patient leaves respectively the IC or the MC 
then an IC or a MC patient lying on the joint ward is immediately transferred back to their 
belonging ward. This is called a re-admission (RA). IC and MC patients who enter the joint ward 
and stay there leave the joint ward by going home or to another nursing unit including the NC. 

This model is used to investigate the influence of the patient-flow between the IC and the MC 
with internal refusals. This means that if the IC patient who is transferred to the MC gets blocked 
then there is no possibility that this patient can return to the IC again. Therefore, the patient is 
transferred to another nursing unit or another hospital. 
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The internal refusals avoid that the IC can be fully occupied with MC patients and also serve as a 
comparison to model C, for which closed-form expressions are available. 

The performance measures of this model are  

- The blocking probability for the IC 
- The blocking probability for the MC 

The blocking probabilities are measured using a simulation model. 
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Model B: Without internal refusals for patients going from IC to MC 
 

 

Model B describes the patient-flow where patients enter the system at the IC or MC. If an 
entering patient from the IC finds the ward full then the patient is sent to the joint ward. If the 
joint ward is full then the patient gets blocked and is sent to another hospital or to another 
nursing unit such as the NC. The same holds for an entering MC patient. 
Patients leaving the IC can be transferred to the MC after their stay on the IC or these patients 
leave the IC by going to another nursing unit like the NC. If the patients coming from the IC find 
both the MC and the joint ward full, then instead of sending the patient to another hospital or 
another nursing unit the patient remains at the intensive care, thus the patient will not get 
blocked. Patients lying on the MC can leave this particular ward by going home or to another 
nursing unit including the NC.  
 
Just like model A, it is assumed that if IC or MC patients leave respectively the IC or the MC 
then an IC or MC patient lying on the joint ward is transferred back to their belonging ward right 
away. This is called a re-admission (RA). If IC and MC patients who entered the joint ward are 
not transferred back to their ward they just leave the joint ward by going home, to another 
nursing unit or to the NC.  
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This model is used to investigate the influence of the patient-flow between the IC and the MC 
without internal refusals. This means that if the IC patient who goes to the MC after their stay on 
the IC finds both the MC and the joint ward full, then there is a possibility that this patient can 
return to the IC. Therefore the patient can never be transferred to another nursing unit or another 
hospital because the patient originally came from the IC. 

This model seems to reflect current practice, although there will be tighter bounds on the number 
of MC patients at the IC. Hence, a combination of model A and model B might be most 
appropriate. It, however, depends on many (external) factors whether patients are refused or not 
making any model an abstraction of reality.  

The performance measures of this model are: 

- The blocking probability of the IC 
- The blocking probability of the MC 
- The blocking probability of the MC without counting the MC patients who remain on the 

IC as blocked MC patients. 
- Number of patients who find the MC and the JW full after their stay on IC 
- Time MC patients spend on the IC. 

The blocking probabilities are measured with a simulation model. 
The blocking probability for the MC can be defined in two different ways. Namely, with and 
without counting the patients who remain at the IC as blocked patients.  
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Model C: Model with only independent admission flows 

Model C describes the patient-flow where patients enter the system at the IC or MC. If an 
entering patient from the IC finds the ward full then the patient is sent to the joint ward. If the 
joint ward is full then the patient gets blocked and is sent to another hospital or another nursing 
unit like the NC. The same holds for an entering MC patient. This model does not contain a 
patient-flow between the IC and the MC. The IC and MC can be seen as independent wards. The 
MC has only external admissions. 
Patients lying on IC leave the IC by going to another hospital or another nursing unit such as the 
NC. Patients lying on the MC can also leave this particular ward by going home, to another 
nursing unit including the NC. IC and MC patients who entered the joint ward because of finding 
their own ward full leave the ward by going to another hospital or to another nursing unit.  

When the number of patients exceeds the specified number, then the patient can be admitted to a 
joint ward. An arriving patient of type IC or MC is admitted in case there is a bed available 
among the allocated (earmarked) beds on the IC or MC, or on the joint ward, and refused 
otherwise.  This model does not have a patient-flow from the IC to the MC. 
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This model is used for the purpose to investigate the difference with and without a patient-flow 
between the IC and the MC.   
 
The performance measures of this model are: 
 

- The blocking probability of the IC 
- The blocking probability of the MC 

Because this model does not have a patient-flow between the IC and the MC and the IC and the 
MC can be seen as independent wards, we can use the product-form formula for calculating the 
blocking probabilities for the IC and the MC (see Section 5.4.1) [2]. 
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3. Objectives and scenarios 
 
In this section the objectives of this paper are described. The purpose of the first objective is the 
comparisons of the blocking probabilities between the three different models. This is interesting 
because for model C there already exists a product-form (see section 5.4.1) solution for 
calculating the blocking probabilities [2]. This objective is important for investigating whether 
the product-form formula for calculating the blocking probabilities gives an appropriate 
approximation for the models A and B which both have an internal patient flow between the IC 
and the MC.  

As mentioned, the two main objectives are: 

Objective 1: 

 Do the blocking probabilities for models A, B and C show similar results? 
 Is it possible to use the product-form formula for model A? 
 How many beds are needed on each ward to achieve 5 % blocking probability for 

each patient type? 
 What is the optimal allocation combination of beds on the MC and IC in the 

absence of a joint ward? This gives IC* and MC*.  
 What is the optimal allocation combination of beds on the MC and IC while 

having a joint ward?  
 What might be the costs for a bed on the joint ward? 

Objective 2: 

 What is in model B the influence of the MC on the IC and what are the consequences for 
the admission of IC patients due to internal obstacles? 
 

In the absence of a joint ward: 
 What is the average time that an MC patient lies on the IC? 
 How many IC beds are on average occupied by MC patients?  
 What is the percentage of IC beds that are taken by MC patients? 

 
With a joint ward: 
 What is the average time that an MC patient lies on the IC? 
 How many IC beds are on average occupied by MC patients?  
 What is the percentage of IC beds that are taken by MC patients? 
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3.1 Clarifying objectives: 
 
Objective 1 will be investigated considering the blocking probabilities of the IC and the MC for 
different kinds of scenarios. The scenarios are fully described below. 

For Scenario 1 the number of beds on the joint ward is 0. Calculate the blocking probabilities for 
different bed allocations. 

1. IC and MC are independent of each other but now the total admission rate of the 
MC consists of the direct admissions of the MC plus the admission of patients 
coming from the IC. The total number of available beds per ward on the IC and 
the MC varies from 0 to 40. [use model C] 

2. Consider the internal patient flow and use models A, B and C. The total number 
of available beds per ward on the IC varies from 0 to 40. 

3. The number of beds on the IC is fixed and the number of beds on the MC varies 
from 0 to 16. Repeat this for different fixed number of beds on the IC. [use 
models A,B,C] 

4. Total number of beds on the MC and the IC stays 29. This is a tight scenario. The 
number of beds on the MC varies and therefore the number of beds on the IC 
varies as well. MC                 [use models A, B and C]. Note that model 
B has different performance measures as model A and C. 

5. Total number of beds on the MC and the IC stays 33. This is an average scenario. 
The number of beds on the MC varies and therefore the number of beds on the IC 
varies as well. MC                 [use models A, B, C]. Note that model B 
has different performance measures as models A and C. 

6. Total number of beds on the MC and the IC stays 37. This is a wide scenario. The 
number of beds on the MC varies and therefore the number of beds on the IC 
varies as well. MC                 [use models A, B, C]. Note that model B 
has different performance measures as model A and C. 

7. Compare models A and C to see if the product-form solution can be used. 
8. Highlight for each model the blocking probabilities that are less than 5 %. 
9. Find the optimal allocation of beds for the IC and MC for each scenario. This 

gives an IC* and MC* for each scenario. 
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Scenario 2: Take into account the joint ward (JW). Calculate all performance measures for each 
model for different bed allocations. 

10. Total number of beds is MC*+IC*. Change the beds on the JW form 0 to10 with 
steps of 1 by decreasing the number of beds on the MC and the IC. [Use models 
A, B and C]. Note that model B has different performance measures.  
After each step the number of beds on the IC and the MC becomes: 

IC = IC*-                             

 
  

MC= MC* -                          

 
  

Where    means rounding up and    means rounding down. 
Repeat this for each scenario; average, wide and tight. 

11. Use the optimal allocation formula (see section 5.5) and obtain results with taking 
different costs of a bed on the JW. 

Objective 2 will be investigated considering all performance measures of the IC and the MC for 
different kinds of scenarios. 

Scenario 1: the number of beds on the joint ward is 0. 

12. Total number of beds on the MC and the IC stays 29. The number of beds on the 
MC varies and therefore the number of beds on the IC varies as well. MC 

                [Use model B]. This is a tight scenario. 
13. Total number of beds on the MC and the IC stays 33. The number of beds on the 

MC varies and therefore the number of beds on the IC varies as well. MC 

                [use model B]. This is an average scenario. 
14. Total number of beds on the MC and the IC stays 37. The number of beds on the 

MC varies and therefore the number of beds on the IC varies as well. MC 

                [use model B]. This is an average scenario. 

Scenario 2: Take into account the joint ward (JW). Calculate all performance measures for each 
model for different bed allocations. 

15. Total number of beds is MC*+IC*. Change the number of beds on the JW form 0 
to10 with steps of 1 by decreasing the number of beds on the MC and the IC. [Use 
Model B]. Note that model B has different performance measures.  
After each step the number of beds on the IC and the MC becomes: 

IC = IC*-                             
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MC= MC* -                          

 
  

Where    means rounding up and    means rounding down. 
 Repeat this for each scenario; average, wide and tight. 

16. Now we take for the start allocation the number of beds on the IC and the MC at 
which each ward does have a maximum blocking probability of 5 percent. 
The rest of the process is the same as in 16.  
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 4. Model assumptions and parameters. 

4.1 Arrivals 
 
We assume that patients in a hospital arrive according to a Poisson process; this is often a good 
approximation [3]. A Poisson process is a stochastic process which is related to the Poisson 
distribution. It is a counting process N (t) that counts the number of related events (for example 
arrivals at a bank, earthquakes or calls at a call center) during a specified time period t. To show 
what the properties are for a Poisson process we also need to define  
N(s, t) = N(t)-N(s) as the number of arrivals in (s, t]. Then, the counting process N(t) on [0,  ) is 
called a (homogeneous) Poisson process with rate λ and interarrival times X1,X2,...between 
events if the two definitions below hold: 
- N(s, t) has a Poisson distribution with expectation λ(t - s) for all 0   s < t; 
- N(s, t) and N(s', t') are stochastically independent for all 0 s    t   s' < t'. 
If  N1 and N2 are two independent Poisson processes with rates λ1 and λ2, then N = N1 + N2 is  
also a Poisson process with rate λ1 + λ2 [5]. 
 
Based on historical data of the VUmc we assume the following: 
 

 The total number of annual arrivals for the IC fluctuates around 1500 arrivals. Therefore 
the average number of patients arriving per day is 4,11. The external arrival process at the 
IC is modeled as a Poisson process with intensity λIC = 4,11. 
 

 The total number of external annual arrivals for the MC (without the internal patient flow 
from the IC) fluctuates around 550 arrivals, that have an average of 1,51 arriving patients 
per day. The external arrival process at the MC is modeled as a Poisson process with 
intensity λMC = 1,51. 

 
 The probability that an admitting IC patient who does not get blocked will go to the MC 

after his treatment is 0,215. The rest of the 0,785 patients will leave the IC and go 
elsewhere. 
 

  If the number of beds on the IC is large enough to cover all IC patients, so that the 
blocking probability of the IC is close to zero, an additional 1500* 0,215= 322,5 patients 
are admitted the MC. That gives an average of 0,88 arriving patients per day.  
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Model C does not have an internal patient flow. For investigating the influence of the 
patient flow between the IC and the MC,  model C must be compared with models A and 
B.  For model C the MC is considered as an independent entity, so both external and 
internal arrivals should be taken into account, yielding a load comparable to models B 
and C. So for model C the λMC model C = λMC external +  λICMC.= 1,51+0,88 = 2,39 patients 
each day.   
The λIC for the IC is the same for all models. 

4.2 Length of stay: 
 
The number of days in hospital for a patient is described by the term length of stay (LOS). LOS 
is defined as the time of discharge minus time of admission. Similarly, the average length of stay 
is denoted as ALOS. We assume that the LOS is exponentially distributed.  
 
Based on historical data we use the following parameters: 
 

 The average length of stay on the IC is 5,4 days. 
 The average length of stay on the MC for external patients is 1,51 days. 
 The average length of stay on the MC for patients coming from the IC is 5,3 days. 

Model C does not have an internal patient flow. For investigating the influence of the patient 
flow between the IC and the MC,  model C must be compared with models A and B.  This 
comparison must be valid. Therefore the length of stay must be adapted. Moreover the MC 
consists of  two different kinds of admission types. These admissions types do not have the same 
length of stay.  
So for model C the average length of stay on the MC is: 

 λICMC / λMC* LOSICMC + λMc external / λMC*LOSMC external: 

(0,88 / 2,39) * 5,3 + (1,51 / 2,39) * 1,5 = 2,903 
 
The length of stay for the IC is the same for all the models. 

4.3 Total available beds: 
 
Currently the available number of beds for the IC in VUmc  is around 28 beds and the available 
number of beds for the MC is around 9 beds. In our model the total available number of beds per 
ward is pre-determined.   
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5. Performance Analysis 
 
In this section I first explain what kind of simulation is used and what a simulation program is in 
general. Second, the basic assumptions and characteristics of the two different simulation 
programs I created are described. After that a more detailed description is given for models A 
and B about what the characteristics of each simulation program are and how the performance 
measures are calculated. Model C does have its own decision support system. This is explained 
in section 5.4. At the end of this section the formula for calculating the optimal bed allocation is 
explained.  

5.1 Simulation: 

The simulation program I created is an example of long term simulation. Another expression that 
can be used for long term simulation is the term steady sate simulation. This term presents very 
well the purpose of long term simulation. The aim of the program is  to analyze the behavior of 
the system after that the start- up is finished and the system has statistical reached equilibrium. 
So we are interested in the average behavior of the system when the system runs for a long 
period. In our case the hospital is busy day and night and a hospital does not close at the end of 
the day. Therefore long term simulation is a good model for the simulation of the hospital. The 
long term performance measures for models A,B and C are the blocking probabilities for the IC 
as well as for the MC. However, model B has additional performance measures, namely the 
blocking probabilities of the MC without counting the patients, who remain at the IC, as blocked 
MC patients,  the number of patients who find the MC and the joint ward full, and therefore 
remain at the IC, and the average time that a patient who actually belongs on the MC uses an IC 
bed. These performance measures are calculated with using a simulation program. 
 
The technique that is used for these models is discrete-event simulation. We assume Xt  N 

 
. 

This means that Xt, which denotes the state of the system at time t, is an element from N 
 

, 
where N denotes all integers in the range from 0 to m (state space).  
In models A, B and C, Xt is a vector: Xt = (x1, x2 ), where x1 is the number of patients on the IC 
and x2 denotes the number of occupied beds on the MC  Every trajectory is a piece-wise constant 
function, where the process makes discrete jumps. For this reason such a process is called a 
discrete-event system. Discrete-event simulation is about generating trajectories of discrete-event 
systems. This is done by starting at time 0 and then constructing a trajectory by sampling one by 
one events in the system. Every event happens on a certain time step and forces the state to 
change. All discrete events are stored in an event list. [5]  
 
The basic functionality of any simulation program is the fact that it can generate pseudo- 
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random numbers. Pseudo-random numbers are not really random (they are generated by some 
deterministic algorithm), but a sequence of pseudo-random numbers resembles, for most 
practical purposes, sufficiently well to real random numbers. Pseudo-random numbers are 
usually integers between 0 and some very large number (say N). From that we can construct 
realizations of other probability distributions. For example, by dividing by N we get numbers 
that are uniformly distributed on [0, 1]. Any random variable X with a known inverse 
distribution function F-1 can now be sampled as follows: if U is uniformly distributed on [0, 1], 
then F-1(U) has the same distribution as X: 
P(F-1(U)   x) = P(U   F(x)) = F(x) = P(X   x). The interarrival times and length of stay of 
patients in a hospital are exponentially distributed. Therefore to generate pseudo-random 
numbers we need the inverse of the exponential distribution for a given random variable X. The 
code below gives an idea how the arrivals and the length of stay for patients on the IC are 
generated. 
 
float draw_expArrivalIc() {             // random sample from exponential distribution 
   float dummy; 
  dummy = rand()+1;                  // random from 1 to 1 
   return -(1/(lambdaIc))*log((float)dummy/(RAND_MAX+2)); // Inverse Trafo Method 
};  [6]. 
 
To understand how we end up with the performance measures first some assumptions and 
characteristics about the simulation model must be explained. 
The runtime of the simulation is 5 years with a start-up period of half a year.  
The start-up period achieves that a steady state is simulated, due to neglecting the impact of the 
initial state. 
Each model does have its own simulation program. The similarities between these models is that 
before you can run the simulation you have to provide the program with the number of beds for 
each ward. This number will not change during the simulations. Another similarity is that they 
all have an event list and that the simulation starts by first initializing the first two events which 
consists of an admission to the IC and an admission to the MC. Both of these events have the 
parameters: arrival time, type of event  and an event number. The events are placed in the event 
list. The arrival time is determined by a sample that is drawn from the exponential distribution 
with rate    As long as the event list has events the simulation program is continued.  For each 
type of patient different calculations are done in different methods. Next to an event list we need 
separate lists for the IC, MC and the joint ward so that we can check what types of patients each 
ward consists of at any given moment. 
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There are six different kinds of events: admitting IC patient, admitting MC patient, admitting 
MC patient after a stay on the IC, departure of IC patient, departure of MC patient, departure of a 
joint ward patient. 

5.2 Simulation model A: 
An arriving IC patient has a chance of 0.215% that the patient is transferred to the MC after his 
stay on the IC. This is determined with a random generator. After this determination the first 
thing that has to be done is to check if the IC is full, if not then the patient is transferred to the 
IC. If the IC is full then the patient goes to the joint ward. If the joint ward is full as well then the 
patient gets blocked. For each patient that stays a sample is drawn from the exponential 
distribution to determine how long the patient will stay, then a departure event is created with 
parameters departure time, type of event and event number.   

An arriving MC patient goes to the MC. If the MC is full then the patient will be transferred to 
the joint ward if still having available beds and otherwise the patient is blocked. For each patient 
that stays a sample is drawn from the exponential distribution to determine how long the patient 
will stay. Then a departure event is created with parameters departure time, type of event and 
event number.   

MC patients coming from the IC first enter the MC if the MC has available beds and otherwise 
they are transferred to the joint ward. If all beds on the joint ward are occupied as well then the 
patient is blocked. For each patient that stays a sample is drawn from the exponential distribution 
to determine how long the patient stays,  then a departure event is created with parameters 
departure time, type of event and event number.   

An admitting joint ward patient is a patient that actually belongs to the IC or the MC. 

When a new IC or MC patient arrives at the ward, either it gets blocked or not, a new arrival is 
created by drawing a sample from the exponential distribution.  

If an IC or MC patient departs then one bed on respectively the IC or the MC becomes available 
again. Then first a check is done to see whether the joint ward does have a patient that belongs 
on that particular ward. If that is the case then the patient is transferred back to their belonging 
ward.  

A departure of a patient on the joint ward simply results into one extra available bed on the joint 
ward. 

The performance measures for this model are the blocking probabilities  for the IC and the MC 
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The blocking probability for the IC is measured by counting the arriving IC patients who get 
blocked (so who find both the IC and the joint ward full) divided by the number of total arrived 
IC patients. 
 
There are two different kinds of MC patient admissions. The patient can enter the MC 
immediately or the MC patient first could have had a stay on the IC. Therefore the blocking 
probability of the MC consists of the immediately entering MC patients who find the MC and the 
joint ward full plus the patients coming from the IC who find the MC and the joint ward full, 
divided by the total entering MC patients (patients coming directly or coming via the IC). 

5.3 Simulation model B: 
Model B does have the same characteristics as model A, with one important difference.  When 
an MC patient is admitted that comes from the IC which finds the joint ward completely 
occupied then the patient is transferred back to the IC instead of getting blocked. The IC must 
have an available bed because the admitting patient on the MC comes originally from the IC. 

Next to the check if the joint ward does have an MC patient when an MC patient departs from 
the MC, first the IC is checked to see whether the IC has patients who belong to the MC. 

The performance measures for this model are  

- The blocking probability of the IC 
- The blocking probability of the MC 
- The blocking probability of only the external MC. 
- Number of patients who find the MC and the JW full after their stay on IC 
- Time MC patients spend on the IC 

When we know these performance measures, the percentage of the number of beds of the IC that 
is on average occupied by MC patients can now be calculated. This is done using the cost 
equation Little’s Law[5];  
 
L=λw. 
 
The λ denotes the number of patients who remain at the IC per day and w denotes the average 
time those patients spend on the IC per day. Now L, the number of IC beds that are taken by MC 
patients, can be calculated. The percentage of IC beds that are taken by MC patients is calculated 
by: (L / number of beds on the IC) * 100. 
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The blocking probability for the IC is measured by counting the arrived IC patients who get 
blocked (who find the IC and the joint ward full) divided by the total number of arrivals for the 
IC. 

There are two different kinds of MC patient admissions, external and internal. Therefore the 
blocking probability of the MC consists of the immediately entering MC patients who find the 
MC and the joint ward full plus the patients coming from the IC who find the MC and the joint 
ward full, divided by the total entering MC patients (patients coming directly or coming from the 
IC). 

To see what the influence of the MC patients is on the IC we also measure the blocking 
probability of the MC only by counting the immediate entering MC patients who get blocked 
divided by the total number of external patients on the MC. 

5.4 Decision support system for model C: 
Model C does not have an internal patient-flow from the IC to the MC. Therefore IC patients 
only leave the IC by going to another nursing unit or to the NC. As mentioned in Section 2 the 
blocking probabilities of the IC and MC when using model C can be calculated with the so called 
product-form solution [2]. Instead of calculating the blocking probabilities of the IC and the MC 
with a simulation program a decision support system with the implementation of the product 
form is used. This formula of the product form is derived below: 

5.4.1 The calculation of blocking probabilities for model C  
The loss fraction or the blocking probability can easily be derived for model C. In this model we 
have two types of patients namely IC and MC patients. Denote the number of type 
IC(1) patients and MC(2) patients at some time by xj , j = 1,2 and let x = (x1, x2 ) be the 
corresponding vector. We assume that M1 beds are reserved for IC patients and M2 beds are 
reserved for MC patients, with         ,where N denotes the total available beds. 
In case all beds for type j are occupied there is a ward of overflow that is shared by all 
patient types. The size of this joint ward is Mjoint = N –    

   Let Mi, i = 1, 2 and N be fixed and 
denote by x(t) the vector of the number of patients at time t. The stochastic process {x(t), t ≥ 0} 
then clearly is a Markov process with state space  
S = {x   Z 

 
: x1 < M1 +(Mjoint− (x2-M2)+) 

  : x2 < M2 +(Mjoint− (x1-M1)+)} 

 The transition rates q(x, x′) are given by q(x, x′) =  
λ                  

    
            

    x +      S,  
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Let π(x) denotes the stationary distribution of x(t). The stationary distribution has a 

product form: π(x) = 
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 as the normalizing constant. 

 
ρ denotes the load of the ward that is: ρ=λ*average length of stay 
This result can be derived by verifying that π(x) satisfies the balance equations: 
π(x)λi = π(x +   )(xi + 1)  

 
,  x, x +     S. [2] 

To obtain the fraction of refused admissions (blocking probabilities), define all the sets  
Sj = {x   S : x1 = M1 + Mjoint −(Mjoint− (x2-M2)+) 
           x2 = M2 + Mjoint −(Mjoint− (x1-M1)+) 
to get all the blocked states for the IC and the MC. 
Using PASTA, it follows directly that blocking probabilities for the IC (w1) are obtained using 
the formula: w1=             and for the MC(w2) with the formula  w2=           
 
 inally, we note that the product-form distribution is insensitive to the length of stay 
distribution. Hence, we only require the average length of stay to determine the performance of 
the earmarking policy with independent admission flows.[2] So this formula can also be used 
when the length of stay is not exponentially distributed as in this paper. 
 
In brief, we give the number of beds of the IC, MC and the joint ward. Then the accepted states 
for each ward are obtained and for each accepted state it is checked whether the next patient gets 
blocked or not. Finally find the blocking probability for each ward by summing up the stationary 
distributions of all those blocked states. 
 
The above calculations are implemented in a decision support system which determines for each 
ward the  blocking probability. This decision support system has the following characteristics: 

Input variables: 

J= # type patients=2 (IC and MC)  
M = total number of beds 
Mi = number of beds for ward i (in this case IC and MC) number of beds for the joint ward is 
    calculated by Mjoint= M-MIC - MMC. 

λi = expected arrival rate for patient of type i.   i         

βi = expected service time (length of stay) for patient of type i. i         
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Output variables: 

bi = blocking probability for patients of type i. i         

5.5 Optimal bed allocation: 
For each type of patient, in this case the patients of the IC and the MC, we assign an α and the 
costs for a bed.  α is the importance rate for a specific ward.  
For the calculation of the optimal bed allocation we use the formula presented below. 

 

         

 

   

         

 

   

              

 
αi = importance factor for patient of type i  
wi= blocking probability for patient of type i 
Ci =cost of a bed for patient of type i 
Cjoint = costs of a bed for a patient on the “joint ward” 
Mi = total number of beds for type i 
Mjoint= number of beds on the joint ward 
wi= Blocking probability for patient of type i 

Before we can use this formula, we need to assign all the parameters (alpha, costs and the 
number of beds) a relative value between 0 and 1. This is achieved by first adding all alphas, and 
calculating for each ward the new alpha by dividing alpha with the sum of the alphas. This way 
the fraction of the alphas is calculated. The same thing is done for the costs and the number of 
beds. So now all the parameters are between 0 and 1 and we can combine them together to use 
the formula. 

In this paper we assume that the α IC is twice as high as αMC so that the cost for a bed on the IC is 
twice as high as a bed on the MC as well. To find the optimal bed allocation first, we obtain for 
each bed allocation the result of the formula. The bed allocation with the lowest value represents 
the optimal bed allocation.  
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6. Results 
 
In this section I present the results of the objectives, which are described earlier in Section 3.  

6.1 Objective 1: “Do the blocking probabilities for the models show similar results?” 

6.1.1 Scenario 1: without a joint ward 

In figure 1 the blocking probabilities of the independent IC and MC are presented without using 
a joint ward.  

 

Figure 1 Blocking probability for independent IC and MC for model C 

Treating the IC and MC as independent wards this situation can be considered as two 
independent wards with their own load (see Sections 4.1 and 4.2). We see that approximately 11 
beds for the MC and 28 beds for the IC are needed to achieve a blocking probability of 
approximately 5 %.  
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Figure 2 Blocking probability IC model A, B and C 

Figure 2 presents the blocking probabilities for the IC for models A, B and C. The number of 
beds on the IC varies from 0 to 40 and the number of beds on the MC is zero. The blocking 
probabilities for the IC in models A and C are identical. Moreover if the hospital uses model B 
and the capacity of the MC is small, we see that the blocking probabilities for the IC are 
significantly higher. Instead of the 28 beds to achieve a maximum blocking probability of 5 
percent now we need approximately 32 beds to achieve the same result. This is a difference of 4 
beds which is a lot. The models differ the most in the range of approximately 16 to 32 beds on 
the IC. If the MC does not have the capacity to receive the patients coming from the IC, using 
model B will cause problems which result into a higher blocking probability on the IC. 

In figure 3 we see the blocking probabilities of the MC for model A given a specified number of 
beds on the IC. If the number of beds on the IC ranges from 1 to 3, 7 beds are enough to have on 
the MC, although this is not a realistic situation. In model A the less IC admissions are blocked 
the more patients will become a patient that will enter the MC after their stay on the MC. 
Therefore the MC blocking probability becomes higher if the IC has more beds available. If the 
IC consists of a number of 31 beds or more the blocking probabilities of the MC will no longer 
increase and are close to zero and therefore the number of internal MC patients is at most and 
will not differ anymore. 
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Figure 3 Blocking probability MC for model A without JW with internal patient flow 

In figure 4 we see the blocking probabilities of the MC for model B given a specified number of 
beds on the IC. Note that the blocked MC patients partly involve IC patients that are medically 
ready for the MC, who find the MC full and therefore remain at the IC because of this the 
blocking probabilities of the MC when having a low number of beds behave quite differently. 
 

 

Figure 4 Blocking probability internal and external MC patients for model B  
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In figure 5 we see the blocking probabilities of the external MC patients for model B. For this model the 
lower the number of beds on the IC, the faster the blocking probability of the MC decreases. The higher 
the number of beds on the IC the more beds on the MC are needed to achieve the same blockings 
probability. 

 

Figure 5 Blocking probability external MC patients for model B  

 

Figure 6 Blocking probability MC model A B, C 
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The blocking probabilities for the MC for models A, B and C are shown in figure 6. As 
mentioned above the more beds available on the IC, the higher the blocking probability for the 
MC in model A. The blocking percentage in model C for the MC does not depend on the number 
of available beds on the IC because the IC and MC are independent wards. Note that if the IC has 
31 or more beds available in model A, then the blocking probability of the MC is the same for 
both models. This means that if the IC has 31 beds or more the blocking probabilities for the MC 
of model A can be compared with model C. Then the IC and MC in model A can be seen as 
having independent wards and the interaction between the IC and M can be neglected.  However, 
the approximate blocking probability of the MC in model A with only 21 beds on the IC (see 
figure 6) approaches the line of 31 beds quite good. The blocking probability of only the external 
MC patients, (model B) can be compared with model A and C if the number of beds on the MC 
is 4 or more. Thus if internal MC patients remain at the IC if the MC is full and if the available 
beds on the MC is 4 or more, then the external MC patients will not be affected by the internal 
MC patients.  
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Number of beds Blocking probabilities for the IC and MC 
IC MC JW Model A IC Model C IC Model A MC Model C MC 
33 0 0 0,008 0,007 1,000 1,000 
32 1 0 0,011 0,011 0,872 0,874 
31 2 0 0,015 0,016 0,750 0,752 
30 3 0 0,023 0,022 0,631 0,635 
29 4 0 0,032 0,031 0,518 0,525 
28 5 0 0,041 0,041 0,415 0,422 
27 6 0 0,054 0,054 0,313 0,328 
26 7 0 0,068 0,070 0,226 0,246 
25 8 0 0,087 0,088 0,150 0,176 
24 9 0 0,108 0,108 0,092 0,120 
23 10 0 0,130 0,131 0,054 0,077 
22 11 0 0,158 0,157 0,026 0,046 
21 12 0 0,183 0,184 0,011 0,026 
20 13 0 0,215 0,214 0,001 0,014 
19 14 0 0,245 0,245 0,000 0,007 
18 15 0 0,279 0,278 0,000 0,003 
17 16 0 0,313 0,312 0,000 0,001 
Average scenario ↑ 

    37 0 0 0,001 0,001 1,000 1,000 
36 1 0 0,002 0,002 0,874 0,874 
35 2 0 0,000 0,003 0,752 0,752 
34 3 0 0,000 0,005 0,635 0,635 
33 4 0 0,007 0,007 0,522 0,525 
32 5 0 0,012 0,011 0,418 0,422 
31 6 0 0,015 0,016 0,320 0,328 
30 7 0 0,022 0,022 0,238 0,246 
29 8 0 0,031 0,031 0,168 0,176 
28 9 0 0,041 0,041 0,110 0,120 
27 10 0 0,053 0,054 0,067 0,077 
26 11 0 0,069 0,070 0,037 0,046 
25 12 0 0,088 0,088 0,017 0,026 
24 13 0 0,109 0,108 0,009 0,014 
23 14 0 0,131 0,131 0,003 0,007 
22 15 0 0,156 0,157 0,001 0,003 
21 16 0 0,186 0,184 0,000 0,001 
Wide scenario  ↑ 

    29 0 0 0,030 0,031 1,000 1,000 
28 1 0 0,041 0,041 0,872 0,874 
27 2 0 0,054 0,054 0,745 0,752 
26 3 0 0,070 0,070 0,622 0,635 
25 4 0 0,087 0,088 0,503 0,525 
24 5 0 0,108 0,108 0,387 0,422 
23 6 0 0,131 0,131 0,289 0,328 
22 7 0 0,158 0,157 0,197 0,246 
21 8 0 0,183 0,184 0,124 0,176 
20 9 0 0,213 0,214 0,073 0,120 
19 10 0 0,244 0,245 0,036 0,077 
18 11 0 0,279 0,278 0,016 0,046 
17 12 0 0,313 0,312 0,006 0,026 
16 13 0 0,348 0,348 0,002 0,014 
15 14 0 0,384 0,384 0,001 0,007 
14 15 0 0,421 0,422 0,000 0,003 
13 16 0 0,460 0,460 0,000 0,001 
Tight scenario ↑ 

    Table 1 

  

- Model A IC = Model C IC 
- Blocking probabilities for the MC 

in model C are higher than model 
A MC.  

- The less blockings for the IC 
(wide scenario) the more model A 
and C show similarities between 
the blocking probabilities of the 
MC.  

- For the most bed allocations the 
blocking probabilities for the MC 
for both models do not differ a 
lot. Therefore the product-form 
solution cannot be used for the 
exact calculations of the blocking 
probabilities for the MC but it is a 
good approximation.  
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In table 1 you can find the blocking probabilities of the IC and MC for models A and C for the 
three scenarios: average, wide and tight. The findings are presented next to this table. The 
outcomes of the performance measures for the IC in models A and C are exactly the same.  
Therefore we can use the product-form solution (Section 5.4.1) to calculate those blocking 
probabilities. For the MC we cannot use the formula for calculating the exact blocking 
probabilities but we can use it for the MC if we want an approximation of the blocking 
probabilities.   
 

Number of beds Blocking probabilities 

IC  MC JW Model A IC  Model A MC  Model B IC Model B MC Model B MC without Model C IC  Model C MC  
33 0 0 0,008 1,000 0,040 1,000 0,640 0,007 1,000 
32 1 0 0,011 0,872 0,041 0,990 0,635 0,011 0,874 
31 2 0 0,015 0,750 0,041 0,970 0,621 0,016 0,752 
30 3 0 0,023 0,631 0,042 0,912 0,583 0,022 0,635 
29 4 0 0,032 0,518 0,045 0,806 0,519 0,031 0,525 
28 5 0 0,041 0,415 0,050 0,675 0,435 0,041 0,422 
27 6 0 0,054 0,313 0,061 0,518 0,336 0,054 0,328 
26 7 0 0,068 0,226 0,073 0,365 0,237 0,070 0,246 
25 8 0 0,087 0,150 0,090 0,242 0,159 0,088 0,176 
24 9 0 0,108 0,092 0,111 0,143 0,094 0,108 0,120 
23 10 0 0,130 0,054 0,132 0,072 0,048 0,131 0,077 
22 11 0 0,158 0,026 0,157 0,036 0,024 0,157 0,046 
21 12 0 0,183 0,011 0,184 0,016 0,010 0,184 0,026 
20 13 0 0,215 0,001 0,214 0,006 0,004 0,214 0,014 
19 14 0 0,245 0,000 0,244 0,002 0,001 0,245 0,007 
18 15 0 0,279 0,000 0,279 0,001 0,001 0,278 0,003 
17 16 0 0,313 0,000 0,311 0,000 0,000 0,312 0,001 

Average scenario ↑ 
       37 0 0 0,001 1,000 0,012 1,000 0,632 0,001 1,000 

36 1 0 0,002 0,874 0,013 0,995 0,630 0,002 0,874 
35 2 0 0,000 0,752 0,013 0,973 0,616 0,003 0,752 
34 3 0 0,000 0,635 0,013 0,916 0,580 0,005 0,635 
33 4 0 0,007 0,522 0,014 0,824 0,520 0,007 0,525 
32 5 0 0,012 0,418 0,015 0,691 0,441 0,011 0,422 
31 6 0 0,015 0,320 0,019 0,545 0,346 0,016 0,328 
30 7 0 0,022 0,238 0,024 0,398 0,254 0,022 0,246 
29 8 0 0,031 0,168 0,032 0,274 0,176 0,031 0,176 
28 9 0 0,041 0,110 0,042 0,173 0,111 0,041 0,120 
27 10 0 0,053 0,067 0,055 0,095 0,060 0,054 0,077 
26 11 0 0,069 0,037 0,069 0,049 0,030 0,070 0,046 
25 12 0 0,088 0,017 0,088 0,025 0,016 0,088 0,026 
24 13 0 0,109 0,009 0,108 0,011 0,007 0,108 0,014 
23 14 0 0,131 0,003 0,131 0,004 0,002 0,131 0,007 
22 15 0 0,156 0,001 0,156 0,001 0,001 0,157 0,003 
21 16 0 0,186 0,000 0,183 0,000 0,000 0,184 0,001 

   Wide scenario ↑  
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29 0 0 0,030 1,000 0,096 1,000 0,650 0,031 1,000 
28 1 0 0,041 0,872 0,097 0,994 0,650 0,041 0,874 
27 2 0 0,054 0,745 0,098 0,965 0,630 0,054 0,752 
26 3 0 0,070 0,622 0,103 0,896 0,588 0,070 0,635 
25 4 0 0,087 0,503 0,109 0,779 0,515 0,088 0,525 
24 5 0 0,108 0,387 0,120 0,625 0,414 0,108 0,422 
23 6 0 0,131 0,289 0,140 0,460 0,313 0,131 0,328 
22 7 0 0,158 0,197 0,159 0,311 0,209 0,157 0,246 
21 8 0 0,185 0,124 0,186 0,187 0,128 0,184 0,176 
20 9 0 0,214 0,073 0,215 0,101 0,070 0,214 0,120 
19 10 0 0,244 0,036 0,245 0,048 0,034 0,245 0,077 
18 11 0 0,279 0,016 0,278 0,020 0,014 0,278 0,046 
17 12 0 0,313 0,006 0,313 0,007 0,005 0,312 0,026 
16 13 0 0,348 0,002 0,347 0,002 0,002 0,348 0,014 
15 14 0 0,384 0,001 0,384 0,001 0,000 0,384 0,007 
14 15 0 0,421 0,000 0,421 0,000 0,000 0,422 0,003 
13 16 0 0,460 0,000 0,460 0,000 0,000 0,460 0,001 

  Tight  scenario ↑ 
Table 2 

In table 2 we show, for the three different scenarios; average, wide and tight, again the blocking 
probabilities of the IC and the MC but now for all models. The yellow highlighted cells indicate 
the allocations which have a blocking probability less than 5 %. As you can see the three models 
do not differ much from each other. The IC blocking probabilities for the IC in model B only 
differ for a tight scenario. You can see in table 2 that having approximately 28 beds on the IC 
and around 11 beds on the MC gives a blocking probability of approximately 5 % for each 
scenario.  Model C shows similar blocking  probabilities for 28 beds on the IC and 11 beds on 
the MC. Therefore the product-form is a good approximation for calculating the required bed 
capacity. 

Table 3 shows the optimal bed allocation values for the three scenarios. The values are obtained 
with the optimal bed allocation formula (see Section 5.5). This formula needs for each ward an 
alpha which indicates the importance of the ward. The alpha of the IC is twice as high as the 
alpha of the MC. The highlighted cells present the minimum value and therefore the optimal bed 
allocation solution.  It is interesting to notice that for models A, B (internal and external blocked 
MC patients) and C the optimal bed allocation for all three scenarios show the same pattern. The 
most optimal solution to represent the reality of the hospital is to use model B (internal MC 
patients do not count as blocking persons), since this model has the lowest minimum value 
overall. An additional benefit if using this model is that the hospital needs less available MC 
beds than for other models. 

  



~ 36 ~ 
 

Number of beds 
             IC  MC JW Costs IC Costs MC costs JW α IC α MC Model A Model B Model B without Model C 

33 0 0 2 1 0 2 1 1,005 1,027 1,188 1,005 
32 1 0 2 1 0 2 1 0,954 1,014 0,841 0,955 
31 2 0 2 1 0 2 1 0,906 0,997 0,818 0,908 
30 3 0 2 1 0 2 1 0,862 0,968 0,780 0,863 
29 4 0 2 1 0 2 1 0,820 0,925 0,724 0,822 
28 5 0 2 1 0 2 1 0,782 0,875 0,660 0,784 
27 6 0 2 1 0 2 1 0,746 0,819 0,592 0,752 
26 7 0 2 1 0 2 1 0,717 0,766 0,531 0,724 
25 8 0 2 1 0 2 1 0,694 0,726 0,489 0,703 
24 9 0 2 1 0 2 1 0,678 0,697 0,461 0,688 
23 10 0 2 1 0 2 1 0,670 0,678 0,445 0,679 
22 11 0 2 1 0 2 1 0,670 0,672 0,446 0,675 
21 12 0 2 1 0 2 1 0,671 0,673 0,455 0,677 
20 13 0 2 1 0 2 1 0,679 0,680 0,468 0,682 
19 14 0 2 1 0 2 1 0,689 0,689 0,484 0,691 
18 15 0 2 1 0 2 1 0,701 0,701 0,504 0,701 
17 16 0 2 1 0 2 1 0,714 0,713 0,522 0,714 

Average scenario ↑ 
         37 0 0 2 1 0 2 1 1,001 1,008 1,173 1,001 

36 1 0 2 1 0 2 1 0,950 0,998 0,825 0,950 
35 2 0 2 1 0 2 1 0,900 0,981 0,801 0,901 
34 3 0 2 1 0 2 1 0,852 0,954 0,762 0,855 
33 4 0 2 1 0 2 1 0,809 0,915 0,710 0,810 
32 5 0 2 1 0 2 1 0,769 0,862 0,643 0,769 
31 6 0 2 1 0 2 1 0,730 0,807 0,575 0,732 
30 7 0 2 1 0 2 1 0,698 0,752 0,512 0,700 
29 8 0 2 1 0 2 1 0,671 0,708 0,464 0,674 
28 9 0 2 1 0 2 1 0,649 0,671 0,428 0,653 
27 10 0 2 1 0 2 1 0,634 0,645 0,405 0,638 
26 11 0 2 1 0 2 1 0,626 0,630 0,397 0,629 
25 12 0 2 1 0 2 1 0,623 0,625 0,399 0,626 
24 13 0 2 1 0 2 1 0,625 0,625 0,407 0,626 
23 14 0 2 1 0 2 1 0,629 0,629 0,418 0,630 
22 15 0 2 1 0 2 1 0,636 0,636 0,433 0,637 
21 16 0 2 1 0 2 1 0,647 0,645 0,449 0,646 

Wide scenario ↑ 
         29 0 0 2 1 0 2 1 1,020 1,064 1,219 1,020 

28 1 0 2 1 0 2 1 0,973 1,051 0,886 0,974 
27 2 0 2 1 0 2 1 0,928 1,031 0,858 0,931 
26 3 0 2 1 0 2 1 0,886 0,999 0,816 0,890 
25 4 0 2 1 0 2 1 0,846 0,953 0,757 0,854 
24 5 0 2 1 0 2 1 0,810 0,898 0,687 0,822 
23 6 0 2 1 0 2 1 0,781 0,845 0,621 0,795 
22 7 0 2 1 0 2 1 0,757 0,796 0,565 0,773 
21 8 0 2 1 0 2 1 0,738 0,761 0,527 0,756 
20 9 0 2 1 0 2 1 0,730 0,740 0,508 0,746 
19 10 0 2 1 0 2 1 0,726 0,731 0,503 0,741 
18 11 0 2 1 0 2 1 0,731 0,732 0,511 0,741 
17 12 0 2 1 0 2 1 0,740 0,740 0,525 0,746 
16 13 0 2 1 0 2 1 0,750 0,749 0,541 0,754 
15 14 0 2 1 0 2 1 0,762 0,762 0,560 0,764 
14 15 0 2 1 0 2 1 0,775 0,775 0,579 0,776 
13 16 0 2 1 0 2 1 0,789 0,789 0,600 0,790 

   Tight scenario ↑ 
Table 3 Optimal bed allocation 

The  most optimal bed allocation with optimal value of 0,397 (red highlighted cell) is, using table 
3, 26 beds on the IC and 11 beds available on the MC, which can be achieved using model B 
with only counting the external MC patients as blockings. If we look at each scenario, the 
optimal bed allocation for the average scenario is on average 23 IC beds and 10 MC beds. For 
the wide scenario the results show an optimal bed allocation of 26 beds on the IC and 11 beds for 
the MC. The tight scenario has an optimal bed allocation of 19 beds for the IC and 10 on the MC. 
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I think the only realistic bed allocation is to have 26 beds on the IC and 10 beds on the IC. This 
result implies that the chosen alpha of 2 for the IC is probably too low. This indicates that the 
optimization task is hard to conduct since we keep asking ourselves “How to choose the correct 
alphas?” 

6.1.2 Scenario 2 with joint ward:    

 
Number of beds Blocking probabilities 
IC MC JW Model A IC Model A MC Model B IC Model b MC Model b MC without Model C IC Model C MC 
23 10 0 0,131 0,052 0,132 0,076 0,051 0,131 0,076 
22 10 1 0,132 0,031 0,131 0,041 0,028 0,132 0,050 
22 9 2 0,109 0,040 0,111 0,051 0,034 0,112 0,056 
21 9 3 0,112 0,030 0,112 0,036 0,024 0,113 0,043 
21 8 4 0,093 0,041 0,095 0,049 0,033 0,091 0,052 
20 8 5 0,093 0,034 0,096 0,041 0,027 0,097 0,046 
20 7 6 0,079 0,045 0,086 0,053 0,035 0,085 0,055 
19 7 7 0,079 0,042 0,084 0,048 0,052 0,085 0,052 
19 6 8 0,071 0,052 0,076 0,058 0,039 0,077 0,060 
18 6 9 0,072 0,051 0,077 0,056 0,038 0,077 0,059 
18 5 10 0,065 0,058 0,073 0,064 0,044 0,072 0,064 
Avarage scenario ↑ 

  26 11 0 0,071 0,036 0,070 0,051 0,033 0,070 0,046 
25 11 1 0,069 0,020 0,069 0,026 0,017 0,071 0,027 
25 10 2 0,055 0,024 0,055 0,014 0,019 0,056 0,030 
24 10 3 0,055 0,014 0,056 0,019 0,012 0,056 0,020 
24 9 4 0,043 0,020 0,045 0,024 0,015 0,045 0,023 
23 9 5 0,043 0,016 0,044 0,017 0,011 0,045 0,018 
23 8 6 0,035 0,020 0,036 0,023 0,014 0,037 0,022 
22 8 7 0,036 0,018 0,037 0,019 0,012 0,037 0,020 
22 7 8 0,030 0,022 0,031 0,023 0,015 0,032 0,023 
21 7 9 0,030 0,021 0,033 0,023 0,015 0,032 0,022 
21 6 10 0,027 0,024 0,028 0,025 0,017 0,029 0,024 
Wide Scenario ↑ 

 19 10 0 0,245 0,037 0,245 0,048 0,034 0,245 0,076 
18 10 1 0,245 0,023 0,246 0,029 0,021 0,246 0,053 
18 9 2 0,217 0,033 0,216 0,042 0,029 0,217 0,066 
17 9 3 0,215 0,028 0,216 0,034 0,024 0,219 0,057 
17 8 4 0,189 0,045 0,193 0,055 0,038 0,194 0,075 
16 8 5 0,190 0,042 0,191 0,049 0,034 0,194 0,071 
16 7 6 0,167 0,062 0,173 0,072 0,052 0,173 0,091 
15 7 7 0,171 0,059 0,172 0,068 0,049 0,174 0,090 
15 6 8 0,153 0,080 0,157 0,088 0,063 0,158 0,108 
14 6 9 0,154 0,075 0,158 0,084 0,062 0,158 0,107 
14 5 10 0,141 0,092 0,147 0,104 0,077 0,147 0,121 

Tight Scenario↑ 
 Table 4 blocking probabilities for models A,B and C 

When taken into account a JW the blocking probabilities of the IC and MC of each model do not 
differ significantly from each other.  However, for each scenario and model the more available 
beds on the JW the lower the blocking probability of the IC. The blocking probabilities of  the IC 
for models A,B and C are very similar. Therefore for calculating these probabilities we might use 
the product-form solution.  
When we look at the tight scenario we see that for model A,B and C the blocking probabilities of 
the MC differ more than for the IC.  The wide scenario shows a significant difference in the 
blocking probabilities of the MC, however, the product-form could be a practical approximation 
for the blocking probabilities. Thus, if the number of beds on the IC is realistic and 26 or more 
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we can use the product-form for  calculation of the blocking percentages. 
Table 4 does not take into account the costs of a bed on the joint ward. To figure out what the 
costs of a joint ward might be, we obtained the results below. Table 5 and table 6 show the 
optimal bed allocation for different costs of a bed on the JW. 

Number of beds 
           IC MC JW Costs IC Costs MC costs JW α IC α MC Model A Model B Model B without Model C 

23 10 0 2 1 1 2 1 0,529 0,538 0,366 0,537 
22 10 1 2 1 1 2 1 0,515 0,518 0,353 0,521 
22 9 2 2 1 1 2 1 0,503 0,508 0,343 0,510 
21 9 3 2 1 1 2 1 0,494 0,496 0,339 0,499 
21 8 4 2 1 1 2 1 0,485 0,489 0,332 0,487 
20 8 5 2 1 1 2 1 0,475 0,479 0,330 0,482 
20 7 6 2 1 1 2 1 0,470 0,476 0,327 0,477 
19 7 7 2 1 1 2 1 0,461 0,466 0,324 0,468 
19 6 8 2 1 1 2 1 0,459 0,464 0,322 0,465 
18 6 9 2 1 1 2 1 0,451 0,456 0,322 0,457 
18 5 10 2 1 1 2 1 0,449 0,456 0,321 0,456 
Average scenario ↑ 
26 11 0 2 1 1 2 1 0,485 0,490 0,316 0,488 
25 11 1 2 1 1 2 1 0,472 0,474 0,307 0,475 
25 10 2 2 1 1 2 1 0,464 0,460 0,293 0,466 
24 10 3 2 1 1 2 1 0,453 0,456 0,295 0,456 
24 9 4 2 1 1 2 1 0,447 0,450 0,289 0,450 
23 9 5 2 1 1 2 1 0,439 0,441 0,287 0,441 
23 8 6 2 1 1 2 1 0,435 0,437 0,283 0,437 
22 8 7 2 1 1 2 1 0,429 0,430 0,282 0,430 
22 7 8 2 1 1 2 1 0,426 0,427 0,279 0,428 
21 7 9 2 1 1 2 1 0,419 0,421 0,280 0,421 
21 6 10 2 1 1 2 1 0,418 0,419 0,278 0,419 

Wide scenario ↑ 
19 10 0 2 1 1 2 1 0,589 0,593 0,428 0,602 
18 10 1 2 1 1 2 1 0,576 0,579 0,422 0,587 
18 9 2 2 1 1 2 1 0,561 0,563 0,408 0,572 
17 9 3 2 1 1 2 1 0,549 0,552 0,406 0,562 
17 8 4 2 1 1 2 1 0,538 0,544 0,399 0,551 
16 8 5 2 1 1 2 1 0,529 0,531 0,395 0,541 
16 7 6 2 1 1 2 1 0,520 0,527 0,392 0,534 
15 7 7 2 1 1 2 1 0,513 0,517 0,390 0,525 
15 6 8 2 1 1 2 1 0,508 0,513 0,386 0,521 
14 6 9 2 1 1 2 1 0,498 0,504 0,386 0,512 
14 5 10 2 1 1 2 1 0,495 0,503 0,385 0,509 

Tight scenario ↑ 
 Table 5 

If the costs of a bed on the joint ward equal the costs of a bed on the MC then we could have as 
much beds as possible on the Joint Ward. This is a very obvious result. This table was created to 
show the comparison of the optimization values between the different costs of a bed on the joint 
ward. 
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Number of beds 
           IC  MC JW Costs IC Costs MC costs JW α IC α MC Model A Model B Model B without Model C 

23 10 0 2 1 2 2 1 0,444 0,453 0,317 0,452 
22 10 1 2 1 2 2 1 0,438 0,440 0,324 0,444 
22 9 2 2 1 2 2 1 0,431 0,436 0,331 0,439 
21 9 3 2 1 2 2 1 0,430 0,432 0,341 0,435 
21 8 4 2 1 2 2 1 0,427 0,431 0,349 0,433 
20 8 5 2 1 2 2 1 0,425 0,429 0,357 0,433 
20 7 6 2 1 2 2 1 0,426 0,432 0,369 0,432 
19 7 7 2 1 2 2 1 0,424 0,430 0,374 0,430 
19 6 8 2 1 2 2 1 0,429 0,434 0,385 0,433 
18 6 9 2 1 2 2 1 0,429 0,434 0,391 0,435 
18 5 10 2 1 2 2 1 0,432 0,439 0,404 0,439 
Average scenario ↑ 
26 11 0 2 1 2 2 1 0,400 0,404 0,266 0,403 
25 11 1 2 1 2 2 1 0,393 0,395 0,275 0,397 
25 10 2 2 1 2 2 1 0,391 0,393 0,278 0,393 
24 10 3 2 1 2 2 1 0,387 0,390 0,292 0,390 
24 9 4 2 1 2 2 1 0,387 0,389 0,301 0,389 
23 9 5 2 1 2 2 1 0,385 0,387 0,308 0,387 
23 8 6 2 1 2 2 1 0,387 0,388 0,318 0,389 
22 8 7 2 1 2 2 1 0,387 0,388 0,325 0,388 
22 7 8 2 1 2 2 1 0,390 0,390 0,335 0,391 
21 7 9 2 1 2 2 1 0,389 0,391 0,343 0,391 
21 6 10 2 1 2 2 1 0,393 0,395 0,352 0,395 

Wide scenario ↑ 
19 10 0 2 1 2 2 1 0,507 0,510 0,383 0,520 
18 10 1 2 1 2 2 1 0,502 0,505 0,396 0,513 
18 9 2 2 1 2 2 1 0,494 0,496 0,398 0,505 
17 9 3 2 1 2 2 1 0,491 0,493 0,409 0,503 
17 8 4 2 1 2 2 1 0,486 0,492 0,417 0,499 
16 8 5 2 1 2 2 1 0,485 0,488 0,423 0,498 
16 7 6 2 1 2 2 1 0,484 0,491 0,434 0,497 
15 7 7 2 1 2 2 1 0,485 0,489 0,439 0,498 
15 6 8 2 1 2 2 1 0,487 0,493 0,450 0,500 
14 6 9 2 1 2 2 1 0,486 0,492 0,455 0,500 
14 5 10 2 1 2 2 1 0,490 0,498 0,467 0,504 

Tight scenario ↑ 
               Table 6 

If the costs for a bed on the JW equals the costs of a bed on the IC then it not profitable anymore 
to use as much beds as possible on the JW.  
If the hospital uses model B (only external patients get blocked) they should not even have a 
joint ward since you can see in fact an IC bed as a bed on the joint ward. The red highlighted cell 
presents the lowest optimal value of this table. This means that we can say that it is 
approximately most efficient if we model the hospital with model B (when only external MC 
patients get blocked). If we look at the realistic wide scenario for models A and C we see that it 
is desirable to have 5 or 6 beds on the joint ward. The best solution if the hospital wants to use 5 
or 6 beds on the JW is that a bed on the JW equals the price of a bed on the IC and it should be 
twice as high as a bed on the MC. As you can see in table 7 when having 5 (or 6) beds on the 
joint ward, the blocking probabilities stay under the 5%. 

Number of beds Blocking probabilities 
IC MC JW Model A IC Model A MC Model B IC Model B MC Model B MC without Model C IC Model C MC 
23 9 5 0,043 0,016 0,044 0,017 0,011 0,045 0,018 
23 8 6 0,035 0,020 0,036 0,023 0,014 0,037 0,022 

Table 7 
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6.2 Objective 2: “What is the influence of the MC on the IC?” 

6.2.1 Scenario 1  without joint ward 

 
Number of beds     

IC MC JW # MC patients on 
IC in 1 year 

Total time spend 
on IC in 1 year 

Average days MC 
patient spend on 

the IC 

Number of IC 
beds that are taken 

by MC patients 

% of IC beds 
taken by MC 

patients 
33 0 0 310,48 1646,53 5,303 4,511 13,67% 
32 1 0 304,62 1283,33 4,213 3,516 10,99% 
31 2 0 300,15 950,03 3,165 2,603 8,40% 
30 3 0 282,82 657,84 2,326 1,802 6,01% 
29 4 0 247,00 417,78 1,691 1,145 3,95% 
28 5 0 206,03 259,26 1,258 0,710 2,54% 
27 6 0 156,83 146,57 0,935 0,402 1,49% 
26 7 0 108,00 77,15 0,714 0,211 0,81% 
25 8 0 70,17 39,85 0,568 0,109 0,44% 
24 9 0 40,93 19,35 0,473 0,053 0,22% 
23 10 0 19,94 7,70 0,386 0,021 0,09% 
22 11 0 9,57 3,01 0,315 0,008 0,04% 
21 12 0 4,19 0,17 0,041 0,000 0,00% 
20 13 0 1,26 0,36 0,290 0,001 0,00% 
19 14 0 0,46 0,10 0,225 0,000 0,00% 
18 15 0 0,16 0,03 0,191 0,000 0,00% 
17 16 0 0,03 0,00 0,148 0,000 0,00% 
Average scenario ↑      37 0 0 320,53 1705,13 5,320 4,672 12,63% 
36 1 0 318,49 1329,31 4,174 3,642 10,12% 
35 2 0 311,57 992,89 3,187 2,720 7,77% 
34 3 0 292,34 693,40 2,372 1,900 5,59% 
33 4 0 264,49 472,78 1,788 1,295 3,93% 
32 5 0 217,78 280,85 1,290 0,769 2,40% 
31 6 0 173,08 171,43 0,990 0,470 1,52% 
30 7 0 124,60 94,77 0,761 0,260 0,87% 
29 8 0 85,12 51,78 0,608 0,142 0,49% 
28 9 0 53,03 26,48 0,499 0,073 0,26% 
27 10 0 28,24 11,27 0,399 0,031 0,11% 
26 11 0 14,35 5,00 0,349 0,014 0,05% 
25 12 0 7,26 2,21 0,304 0,006 0,02% 
24 13 0 2,95 0,80 0,271 0,002 0,01% 
23 14 0 1,02 0,24 0,238 0,001 0,00% 
22 15 0 0,38 0,07 0,181 0,000 0,00% 
21 16 0 0,11 0,02 0,171 0,000 0,00% 

Wide scenario ↑      29 0 0 292,27 1547,41 5,294 4,239 14,62% 
28 1 0 290,71 1186,52 4,082 3,251 11,61% 
 27 2 0 281,95 855,46 3,034 2,344 8,68% 
26 3 0 259,49 572,97 2,208 1,570 6,04% 
25 4 0 222,32 350,90 1,578 0,961 3,85% 
24 5 0 176,61 202,78 1,148 0,556 2,31% 
23 6 0 128,37 108,57 0,846 0,297 1,29% 
22 7 0 83,47 53,77 0,644 0,147 0,67% 
21 8 0 48,23 24,00 0,498 0,066 0,31% 
20 9 0 25,22 10,32 0,409 0,028 0,14% 
19 10 0 11,90 4,12 0,346 0,011 0,06% 
18 11 0 4,76 1,33 0,279 0,004 0,02% 
17 12 0 1,63 0,41 0,252 0,001 0,01% 
16 13 0 0,44 0,08 0,188 0,000 0,00% 
15 14 0 0,10 0,01 0,134 0,000 0,00% 
14 15 0 0,03 0,01 0,194 0,000 0,00% 
13 16 0 0,00 0,00 0,000 0,000 0,00% 

Tight scenario ↑      
Table 8 
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To find out what the influence is of the MC on the IC, when using a patient-flow in between and 
without a joint ward is, we created table 8. To obtain these results we had to use a model with 
patient flow between the IC and the MC and where internal MC patients remain at the IC if they 
encounter a full MC. Therefore we used model B because that is the only model where internal 
MC patients remain at the IC if they find the MC full. In table 8 you can find all values of the 
performance measures from model B, except for the blocking probabilities. The more available 
beds on the IC and the less available beds on the MC, the higher the percentages of IC beds 
which are taken by internal MC patients are. The number of beds on which are taken by MC is 
quite low because external MC patients do not enter the IC if the MC is totally occupied. The 
highlighted cells reflect the current situation in VUmc. The percentage of IC beds that are taken 
by MC patients is extremely low. You should expect that these numbers would be higher than 
one might anticipate. Based on these models, the influence of the MC on the IC seems limited. 

6.2.2 Scenario 2 with joint ward 

 
Number of beds      

IC MC JW # MC patients 
on IC in 1 year 

Total time spend 
on IC in 1 year 

Average days 
MC patient 

spend on the IC 

Number of beds that 
are taken by MC 

patients 

% of IC beds 
taken by MC 

patients 
23 10 0 21,045 7,804 0,371 0,021 0,000 
22 10 1 11,383 4,135 0,363 0,011 0,000 
22 9 2 14,323 5,968 0,417 0,016 0,000 
21 9 3 10,275 4,152 0,404 0,011 0,000 
21 8 4 13,968 6,453 0,462 0,018 0,000 
20 8 5 11,530 5,262 0,456 0,014 0,000 
20 7 6 15,405 7,895 0,512 0,022 0,000 
19 7 7 13,663 7,170 0,525 0,020 0,000 
19 6 8 16,293 10,534 0,647 0,029 0,000 
18 6 9 14,820 8,879 0,599 0,024 0,000 
18 5 10 17,103 12,881 0,753 0,035 0,000 
Avarage scenario ↑ 
26 11 0 14,873 5,190 0,349 0,014 0,000 
25 11 1 7,650 2,561 0,335 0,007 0,000 
25 10 2 9,135 3,485 0,382 0,010 0,000 
24 10 3 5,645 2,081 0,369 0,006 0,000 
24 9 4 7,325 3,166 0,432 0,009 0,000 
23 9 5 5,513 2,148 0,390 0,006 0,000 
23 8 6 7,218 3,350 0,464 0,009 0,000 
22 8 7 5,973 2,595 0,434 0,007 0,000 
22 7 8 6,973 3,693 0,530 0,010 0,000 
21 7 9 7,015 3,818 0,544 0,010 0,000 
21 6 10 7,798 4,900 0,628 0,013 0,000 

Wide scenario ↑ 
19 10 0 11,160 5,400 0,484 0,000 0,000 
18 10 1 6,925 5,650 0,816 0,000 0,000 
18 9 2 10,213 5,900 0,578 0,000 0,000 
17 9 3 8,200 6,150 0,750 0,000 0,000 
17 8 4 13,620 6,400 0,470 0,000 0,000 
16 8 5 11,663 6,650 0,570 0,000 0,000 
16 7 6 17,075 6,900 0,404 0,000 0,000 
15 7 7 15,743 7,150 0,454 0,000 0,000 
15 6 8 20,395 7,400 0,363 0,010 0,000 
14 6 9 18,413 7,650 0,415 0,010 0,000 
14 5 10 22,775 7,900 0,347 0,010 0,000 

Tight scenario ↑ 
Table 9 



~ 42 ~ 
 

The number of beds that are taken by MC patients varies from 0,000 to 0,035, independent of the 
number of beds on the joint ward. For all bed allocations the percentage of IC beds that are taken 
by MC patients is approximately zero. The joint ward does not especially take care of decreasing 
the number of beds on the IC that are taken by MC patients.  
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7. Conclusion  

 
Currently in VUmc the number of beds on the IC is 28 and the number of beds on the MC is 9.  
0,215 % of the Intensive Care patients are transferred to the Medium Care. This care chain is 
important to investigate because the IC is a main cost-driver, and the IC needs to be accessible 
for patients who need acute and intensive attention. In this paper three models were created to 
investigate this patient-flow. These models all consist of the IC, MC and an additional joint 
ward. In model A the internal MC patients who come from the IC are blocked when 
encountering a full MC and JW. In model B internal MC patients who come from the IC and find 
both the MC and JW full, remain at the IC. Model C consist of two independent wards the IC 
and the MC and the additional JW. 
 
The goal of this paper is to investigate the influence of the patient flow between the IC and the 
MC based on two objectives: 

1. Do the blocking probabilities for the models show similar results?  
2. What is the influence of the MC on the IC in Model? 

 
One of the conclusion that can be drawn to give an answer on the first objective is that 
approximately 11 beds for the MC and 28 beds for the IC are needed to achieve a blocking 
probability of approximately 5 % when using the independent wards as in model C.  
If we look at the scenario that the number of beds on the JW is zero then in model A the blocking 
probabilities of the IC are the same as in model C even if the number of beds on the MC is zero. 
However, for model B if the number of beds on the MC is zero, we see that the blocking 
probabilities for the IC are significantly higher. Instead of the 28 beds to achieve a maximum 
blocking probability of 5 percent you need approximately 32 beds to achieve the same result. 
In model A the less IC patients are blocked the more patients will become a patient that will 
enter the MC after their stay on the IC. Therefore the blocking probability of the MC becomes 
higher if the IC gets more available beds. For most bed allocations the blocking probabilities for 
the MC for models A and C do not differ a lot. Therefore the product-form solution cannot be 
used for the exact calculations of the blocking probabilities for the MC but it is a good 
approximation. If the IC has 31 beds or more then all models roughly provide identical results. If 
the internal MC patients in model B are not seen as blocked patients when encounter a full MC 
then with 4 or more beds on the MC and 31 beds or more on the IC, the blocking probabilities of 
the IC can be compared with models A and C. 
Therefore without a joint ward the product-form is a good approximation for calculating the 
blocking probabilities of realistic bed allocations for the IC and MC regardless which model you 
use.  



~ 44 ~ 
 

With a joint ward for each scenario and model the more available beds on the JW the lower the 
blocking probability of the IC. The blocking probabilities of the IC for models A, B and C are 
very similar. The product-form can be used for calculating the blocking probabilities of the IC 
and for the MC only if we use a wide scenario. If we look at the blocking probabilities obtained 
with the product-form solution for the average and tight scenario we see that the approximation 
is a bit more worse than for the wide scenario but it is still useful. 

For models A, B (all MC patients can be blocked) and C, if the costs of a bed on the joint equals 
the costs of a bed on the IC and are twice as high as a bed on the MC than it is desirable to have 
5 or 6 beds on the JW. (Note that we do not take into account the costs for setting up the ward, 
train the nurses etc.). The blocking probabilities show desirable results (less than 5 %) with these 
bed allocations. However, when we use model B (only external MC patients can be blocked) we 
have seen that it is not necessary to use a joint ward.  
 
The conclusion that we can drawn based on the results of the second objective, we obtained with 
model B, is that the influence of MC on the IC is negligible. The percentages of beds that are 
taken by internal MC patients are very low if we take a realistic bed allocation. The joint ward 
does not especially take care of decreasing the number of beds on the IC that are taken by MC 
patients.  It is remarkable that the MC patients relatively speaking do not use beds on the IC very 
often, however the blocking probabilities of the external MC patients seems to improve a lot. 
This means that letting the internal MC patients stay at the IC when they encounter the MC and 
JW full is a good strategy to continue with.  
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