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Abstract

Call center traffic is subject to uncertainty, causing the performance of call
centers to fluctuate. To counter these fluctuations, call centers often have
Traffic Management department with people that try to ensure performance
targets are reached, by the end of each day.

This research paper describes an experimental approach to implement
computer-controlled traffic management at an inbound call center in the
form of Rule-Based Traffic Management. A Discrete-event simulation set-up
is explained, after which simulations are run to test the effect of three sets
of rules against each other and a non-traffic management scenario.

Implementing Rule-Based Traffic Management under our settings, is
shown to have a positive effect on call center performance, but against higher
costs. For practical implementation, our model should be altered to better
fit the situation of the call center at hand.
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1 Introduction

Currently, there has been a great deal of research about call centers and the
way they should operate in order to achieve optimal results, some of which
is described in section 2. In practice, it is impossible to exactly forecast the
amount of traffic (requests for service) that arrives at a call center before-
hand. Depending on the accuracy of the forecasts, call center performance
will deviate from what is required by higher management. To counter the
effects of deviations from forecasts, it is customary for call centers to have a
traffic management team that makes sure the targets are reached by the end
of the day. This study aims to investigate the possibility of replacing traffic
management teams by a simple, but objective and consistent, rule-based
traffic management system.

Doing so, we aim to answer the following research questions:

• How could Rule-Based Traffic Management be implemented?

1. How can one determine the right initial staffing levels?

2. When should Traffic Management take action?

3. Under what rule(s), should Traffic Management take action?

In the next section, we will describe a selection of previous studies about
call centers, the way their personnel is managed, and how Traffic Manage-
ment comes into play. In section 3, we will explain our discrete event sim-
ulation that was used to study the effect Rule-Based Traffic Management.
Consequently, in section 4, the results of the simulations are described. In
section 5, we will conclude our research, discuss it’s limitations and oppor-
tunities for further research.
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2 Literature Research

Call centers and their contemporary successors, contact centers, have be-
come a preferred and prevalent means for companies in different industries
worldwide, to communicate with their customers. These call centers provide
a primary link between customer and service provider (Gans et al, 2003).
Typically, 60-70 percent of the total operating costs for a call center are the
workforce costs (Gans et al, 2003). This has caused Workforce Management
(WFM) to be a well represented subject of studies.

2.1 Workforce Management

Call center WFM is about accurately translating demand for service into
demand for workforce and finding the optimal service level to personnel
trade-off (Koole, 2013). Chen (2014) has translated the process of matching
workforce staff to demand for services into four general steps:

1. Choose a service level objective for inbound call centers, e.g. 80% of
calls answered in 20 seconds.

2. Forecast the call load in each time block. The forecast includes fore-
casting the cal arrival rates and the estimation of the call handling
time distribution.

3. Calculate staffing levels, i.e., for each time block, calculate the number
of staff needed to meet the service level objective according to the
forecast call load.

4. Schedule staffing shifts based on staffing levels with the rostered staff
factor, shrink factor or shrinkage. This takes into account breaks, train-
ing and non-phone work.

2.2 Service Level Objective

The chosen service level objective will differ between different industries and
among different companies within the same industry. The call center indus-
try standard for inbound call is to require 80% of all calls to be answered
within 20 seconds. Other possible objectives could be to have the average
waiting time per call to be below a certain threshold. When setting the
service level objective, managers need to make a trade-off between quality
and costs (Koole, 2013). Later in this paper, you will find the service level
objective that was used for our research.

2.3 Forecasting

Forecasting at call centers is performed based on historical data, to estimate
how much traffic (incoming demand for service) can be expected for each
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time-period (typically of length 15 or 30 minutes) in a day. In practice, it is
found that the arrival processes of calls at a call center are well described
by inhomogeneous Poisson processes (Koole, 2013). This means that the
time between two incoming calls can be described by an Exponential dis-
tribution with rate λt, which can differ, depending on the time of the day.
Besides variability due to Poisson fluctuations, the number of incoming calls
is influenced by Seasonality, Holidays, Day of the week, Actions & Special
events and trend (Koole, 2013). Forecasts are often made for different time-
frames (e.g. T+1Y for long-term planning, T+5W for monthly scheduling
and T+1W for adjusting the weekly schedule), depending on preference per
company.

2.4 Workforce Scheduling

Based on calculated forecasts, call center management needs to make sure
there are enough agents (call center operatives that process the calls) present
during each time period, to meet the chosen service level objective. Analyti-
cally, the number of agents required to meet the service level objective can be
calculated using the Erlang C formula. This formula calculates the average
service level over infinitely many calls, and makes the following assumptions
(Koole, 2013):

• Poisson arrivals;

• Exponential service duration;

• A fixed number of undistinguishable agents;

• All calls wait in queue until they get served (infinite patience);

• Calls are answered in order of arrival (longest-waiting call first)

In practice, due to variability, the service level will always vary from
the service level calculated by the Erlang C formula. Roubos et al (2011b)
provided a method to incorporate service level variability in the model, by
showing that the service level is normally distributed around the mean (Er-
lang C value) and calculating the variance. Using that information, allows
one to calculate staffing levels, such that with probability X, at least pro-
portion Y of all incoming calls get served before Z time units pass (when
using the standard Erlang formula, X = 0.5). The Erlang C formula has
been known to consistently overstaff, that is, the actual service level is often
higher than the Erlang prediction. The main cause of this, is that no person
calling a call center will prove to have infinite patience, therefore a propor-
tion of the calls that are not answered directly, will abandon. To account for
abandonments, one can use the Erlang A model described by Koole (2013).
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2.5 Shift Scheduling

After determining the required amount of agents for each time-period of the
day, working schedules are made. Since no agent will be willing to come to
work for just one time-period, agents working at a call center work in shifts.
These typically last for eight hours, plus breaks in between. These shifts
almost never allow for the number of scheduled agents to perfectly match
the required number of agents, which causes overstaffing in certain periods.
This type of overstaffing is call shift inefficiency (Koole, 2013). Besides from
shift inefficiency, it also happens that agents that are scheduled to work, are
not available to answer calls or do other work, perhaps because of illness,
vacation or because they’re receiving training. When scheduled agents are
not available to answer a call, this is called shrinkage.

2.6 Traffic Management

Call center workforce management does not stop after setting the desired ser-
vice level, making forecasts of incoming calls, determining the right amount
of staffing for each of the studied time-periods and scheduling shifts to match
the staffing plan. In everyday situations, the actual number of incoming calls
will almost never exactly match the number of calls that were forecasted (ei-
ther due to bad forecasting or expected Poisson variability). Fluctuations in
the actual number of calls will cause the service level, along with other per-
formance measures to fluctuate as well. And even if the forecast is spot on,
unforseen (lack of) shrinkage can form another source of fluctuations in per-
formance. Traffic Management (or Real-Time Performance Management, or
RTPM) can be seen as the adaptations made to the plans to achieve the
right SL and efficiency objectives by the end of the day (Koole, 2013).

Thus, traffic management involves monitoring the SL and other efficiency
objectives. When one or more of the objectives are not met, this is either
due to understaffing or overstaffing. When one of the two occurs, the right
actions need to be determined and taken. Correcting for a low SL due to
understaffing, should be done for at least these three reasons (Koole, 2013):

1. To compensate for the low SL in the beginning of the day.

2. To account for the redials that will occur as a consequence of the bad
SL.

3. To account for an expected increase in incoming calls. If the reason for
the bad SL is that more traffic arrived than was expected, this might
well also be the case throughout the rest of the day.

Furthermore, in case of overstaffing, the call center will incur unnecessary
high costs for employing idle agents. In this case, the exact opposites of the
three rules described above will apply.
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Traffic management can be done considering different horizons. For in-
stance, as more information becomes known, traffic forecasts are adapted
to this information (e.g., a five-week forecast is translated to a 1-week fore-
cast, incorporating the latest information). In this research, we investigate
ways to implement intraday Traffic Management to avoid under- and over-
staffing, consequently maintaining the required quality of service, whilst
keeping down costs. In the following section, we will explain our research
model, the methods used to evaluate model performance and consequently,
we will descibe the outcomes of this research.
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3 Research Methods

In this section, we will first describe the settings of the discrete event simula-
tion that is used in our research. Consequently, we will explain the different
scenario’s under which our traffic management rules are tested, followed
by the characteristics of the traffic management rules and the evaluation
methods used to establish success.

3.1 Discrete Event Simulation Model

To estimate the effect of our traffic management model, we chose to use dis-
crete event simulation. The results of the simulation are designed to closely
resemble the actual outcomes of a 13-hour long workday at a call center that
receives inbound calls. To determine the parameters for our model, we used
data from a Dutch financial institution. This data contained the forecasts
and actual traffic for Thursday, September 18th 2014 and estimates of the
average patience and handling time, along with the service level objective.
In this research, only inbound calls are modelled. We will now describe the
different aspects that describe the simulation settings.

3.1.1 Call Arrival Process

Call arrivals are generated by a pseudo-random number generator. The
arrivals are assumed to follow an inhomogeneous Poisson process. Conse-
quently, inter-arrival times are given by an exponential distribution with
rate λt, associated with time-period t. These rates for λt are initially as-
sumed to be well-described by the set of intraday forecasts that is described
in figure 1. The figure shows the proportion of the total (3124) daily calls
per 15-minute time-period.

In this scenario, the only fluctuation in the results of the simulations, will
be due to Poisson variability. To incorporate the effect of deviations fore-
casting errors, a busynessfactor is introduced as proposed by Whitt (1999).
In each independent run (or simulated day), a random busynessfactor B is
drawn from a distribution with E(B) = 1. B then represents the busyness-
factor for that day and is used to calculate new rates for the inhomogeneous
Poisson process that generates incoming calls. As distribution for B, we chose
to take a Normal distribution with mean 1 and standard deviation 0.1. This
means on average, more than 3 out of 10 days, the forecast will be off by
more than 10%. The distribution of B should be altered to fit the required
level of deviations from the forecasts. The rates are then calculated as:

B ∼ Norm(1, 0.12)

Λt = B ∗ λt,∀t ∈ {0, . . . , T}
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Figure 1: Forecasted percentage of daily traffic per 15 minute interval

B is generated once for each simulated day, meaning all per-time-period
arrival rates in one simulation are multiplied by the same busynessfactor.

3.1.2 Abandonments

In any real world situation, people calling a call center will not have time
to wait in a queue for an infinite amount of time. That is, no one will
have infinite patience and therefore at some point in time, when people are
left waiting, they will hang up (or abandon). However, not every person
will have the exact same length of patience. In the simulation, each call
that is not directly answered, is attributed a patience of length p, drawn
from an Exponential distribution with rate 0.4 (E(p) = 2.5). For patience
calculations, see Koole, 2013. Once the waiting time for a call exceeds p, the
call is removed from the queue and labeled as an abandoned call.

3.1.3 Call Length Distribution

Each incoming call requires a certain amount of time from an agent to
process. This amount of time is called the handling time and includes talking
time and wrap-up time. In our simulation, the average handling time (AHT)
is set at 10 minutes and drawn from an exponential distribution with rate
µ = 0.1. We note that in practice, the handling time per call may vary
per agent and per time of the day. We did not model this. We assume that
all agents are equally fast and are expected to treat calls in the same way,
regardless of what time it is.
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3.1.4 Perfomance measures

The goal of the call center in our research is to achieve a 80% SL, with an
acceptable waiting time (AWT) of 60 seconds and to do so, for the lowest
cost possible. Hence, a Traffic Management system is said to perform better,
when the resulting Service Level (SL) is higher, the target service level (TSL)
is reached with greater probability, and / or if the costs per connected call
are lower.

The SL for a simulation run is calculated as SL2 from Koole (2013, page
23):

SL =
#(connected ≤ AWT )

#(connected) + #(abandoned > AWT )

Agents are all assumed to cost 1 unit per hour and in case of deviations
from the planned schedule, extra costs are incurred. Adding an agent to the
schedule will cost 1.1 units per hour and removing an agent, will cost 0.1
units per hour. In practical situations, these costs may be adjusted to better
reflect reality.

3.1.5 Other Simulation Assumptions

Furthermore, the simulation assumes there is unrestricted capacity to scale
the amount of agents scheduled to inbound calls, by assigning agents extra to
inbound calls (scaling up) or assigning agents to other tasks (scaling down).
Hence, any shrinkage will be compensated for and is not modelled. In a less
experimental setting, capacity and shrinkage should be introduced to the
model.

3.2 Initial Staffing

Traffic Management can be seen as the adaptations made to the plans to
achieve the right SL and efficiency objectives by the end of the day (Koole,
2013). Hence, before testing the performance of different traffic management
systems, there need to be initial plans. To determine the initial staffing
levels per time-period, estimated to be required to handle incoming traffic,
we compare two models: the traditional Erlang C model and the Erlang A
model described by Koole (2013).

To determine the level of staffing needed, the Erlang C and Erlang A
formulas were used to calculate the number of agents required to have the
expected service at minimum be the target service level (in this case 80% of
the calls are required to be answered within 60 seconds). Both the Erlang C
and A formulas are based on mathematical models of the call center. The
Erlang C formula uses forecasts for the calls, the average handling time and
the number of agents to calculate the expected Service Level. The Erlang A
formula also takes into account a patience distribution.
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Both the Erlang C and Erlang A models are used to calculate steady
state probabilities, hence generate average values over an infinite number of
calls. In a simulation and in practice, an infinite number of calls will never
be reached, consequently simulated and actual results will deviate from the
expectation.

In section 4.1, as an answer to our first research question, we describe
the performance of both the Erlang C and A models, based on 1000 simu-
lated days at the call center, using both the Erlang C and Erlang A staffing
levels. More advanced methods to determine initial staffing levels can be
introduced to improve performance, e.g., in Ding (2014), an analytical ap-
proach is described to determine cost-optimal staffing in the presence of
traffic management costs.

3.3 Traffic Management Timing

Our second research question is: When should Traffic Management take ac-
tion? in section 4.2, we will describe our search for the best moment of the
day to perform (or to start performing) traffic management actions. The
goal is to try and determine what is the right moment to (start) alter(ing)
the original staffing levels to match deviations of actual traffic from the fore-
casts. Several simulations will be run and the intraday performance will be
studied.

3.4 Traffic Management Rules

Our third and final research question is:Under what rule(s), should Traf-
fic Management take action? in this research, there are two ways traffic
management can take action:

Scaling Up Adding one extra agent to the schedule for each remaining
time-period until the end of the day

Scaling Down Removing one agent to the schedule for each remaining
time-period until the end of the day

For practical implementation, more actions can be thought of, depending
on the setting, to incorporate restrictions on the minimum or maximum
amount of time one agent should spend on a certain task consecutively.

We will now describe the rules that are used to determine if one of these
actions should be taken. In theory, one can think of many different rules (or
combinations of rules) and implement these with many different parameters.
The following rules are meant to illustrate and test the concept of rule-based
traffic management.
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3.4.1 TM 1: Bounded Service Levels

Scale up when: SL < 80%

Scale down when: SL > 85%

In practice, management is punished when the TSL is not reached, hence
we choose to scale up when the SL is below the TSL (80%). The upper bound
for the SL is chosen to be 5% above the TSL.

3.4.2 TM 2: Restricted Waiting Times

Scale up when: Expected Remaining Waiting Time for the call at the end
of the queue is greater than one minute (AWT)

Scale down when: Expected Remaining Idle Time for agent that last fin-
ished a call is greater than 2.5 minutes (0.25 * AHT)

Expected Remaining waiting time (W ) for the call at the end of the
queue, is in this case Hypoexponentially distributed. This means that the
remaining waiting time is given by a sum of exponentially distributed vari-
ables, each with their own rate λi. If k is the total number of calls in the
queue, s is the number of agents working, µ = 1/AHT , and γ = 1/p:

Where we assume s is constant, since it will not happen often that the
waiting time is longer than the length of one period (or that the caller is
still waiting after that time), thus will not span more than two, and staffing
levels will not differ drastically between two consecutive time-periods. E[W ]
is then calculated as follows:

λi = (sµ+ iγ), i ∈ 0, .., k − 1

E[W ] =
k−1∑
i=0

1

λi

The expected remaining idle time (I) is estimated by using the Erlang
distribution with rate λ given by the forecast and shape n given by the total
number of idle agents. Where we assume λ and n are constant, for the reason
given above. E[I] is then calculated as follows:

E[I] =
n

λ

3.4.3 TM 3: Combined Rules

Scale up when: SL < 80% ∧ E[W ] > 1

Scale down when: SL > 85% ∧ E[I] > 2.5

13



Where we combined the rules TM 1 and TM 2, making TM 3 the most
restrictive of the three, hence the least amount of actions will be taken using
this rule.

3.4.4 Evaluation

First, we will run simulations (10,000 days each) without implementing any
traffic management, with and without using the busynessfactor. For both
of these scenario’s (we will call these our base-scenarios) we will record the
service level and the costs. This will help us understand the possible results
of a day at the call center without traffic management interference. Conse-
quently, simulations will be run, with traffic management rules implemented.
The results of these simulations will then be compared to the results of the
base-scenarios.
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(a) Erlang C (b) Erlang A

Figure 2: Required number of agents per time-period

(a) Erlang C (b) Erlang A

Figure 3: Realized Service Levels in case of staffing based on Erlang C or A

4 Results

4.1 Initial Staffing

The first research question is: How can one determine the right initial staffing
levels at an inbound call center? In figure 2, you will find the staffing levels
calculated by both the Erlang C and the Erlang A models, based on the
forecast that was given in section 3.1. Using these staffing levels, we’ve run
1000 simulation runs and recorded the service levels. These can be seen in
the histograms in figure 3.

As stated in section 2.4, the Erlang C formula does not take patience into
account. When simulating 1000 runs with patience as described in section
3.1.2 with scheduling based on infinite patience, the service level of the
realizations will be higher than required, as is shown in figure 3a. In fact,
in 1000 runs, it doesn’t occur that the service level is lower than 92.5%.
The average service level that was found with Erlang C staffing is 97.56%
(E[SLErlangC ] = .9756, V ar[SLErlangC ] = .00011).

The Erlang A does take customers’ finite patience into account, which

15



means less agents are required to achieve an the same expected service level
(as can be seen in figure 2b). As a result, service levels for the simulated days
are also lower. In figure 3b, you can see that the service levels are concen-
trated around the mean of 79.37% (E[SLErlangA] = .7937, V ar[SLErlangA] =
.00114) and approximately follow a Normal distribution.

Using 1000 simulations, we can say with 95% certainty that the actual
expected service level will be within a (79.16%, 79.58%) confidence interval.
For the rest of the simulations, we will assume the initial staffing levels that
are given by the Erlang A model (figure 2b).
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(a) Busynessfactor B = 1 (b) Busynessfactor B ∼ Norm(1, 0.12)

Figure 4: Intraday cumulative service levels for 10 simulations, with and
without random busynessfactor

4.2 Traffic Management Moment of Action

The second research question is When should Traffic Management take ac-
tion? To answer this question, we investigated the intraday development
of the service level. After setting the initial staffing levels with the Erlang
A formula, each simulation starts at 08:00h in the morning with an empty
queue, and calls start to come in. An emtpy queue means that agents are
available immediately to answer the first few calls and the service level will
be 100% when calculated over these first calls. Consequently, traffic man-
agement should not act in response to the service level too early on the day.
Moreover, traffic management should not act too late either, or there will
not be enough time to try and make up for a bad start.

In figure 4, the intraday cumulative service levels are shown, for two set-
tings. On the left, forecasts are assumed to be very accurate (Busynessfactor
B = 1) and on the right, the busynessfactor is introduced as described in
section 3.1.1. It can be seen, that the service level is very volatile at the
beginning of the day (single calls have a larger impact on the service level).
From about half-way through the day, the service level is more stable. To-
wards the end of the day, no big shifts can be detected in the service level,
this can be explained since there is less traffic near the end of the day (see
figure 1) and single calls have less impact on the service level as the total
number of calls in the day grows larger.

It would be preferable if the moment of the day could be approximated,
at which performance for the rest of the day would become accurately pre-
dictable. The results of the simulations lead us to choose for not one, but
multiple moments on the day at which the traffic management rules should
be evaluated. For the rest of the simulations, the traffic management rule
evaluations will take place every 15 minutes after 10:00 h (120 minutes after
opening).
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4.3 Traffic Management Rules

The third and final research question is: Under what rule(s), should Traffic
Management take action? In search of an answer to this question, we have
simulated 10.000 days at the call center, each time using a different set of
the rules described in section 3.4. We will now describe the results of these
simulations, that are shown in figure 5 and tables 1 and 2.

4.3.1 No TM

First, when looking at the histograms in figures 5a and 5e, a large spread
between realized SLs can be detected, especially in the scenario where B is
randomized. Also, based on the top rows in tables 1 and 2, we can conclude
that on average, the TSL is not reached, only in 43.5% and 48.31% for
the constant and variable busyness scenarios respectively. The total costs
without TM are always the same, as no adaptations are made to the work
schedule throughout the day. The costs per connected call do vary as a result
of random call arrivals.

4.3.2 TM 1: Bounded Service Levels

Secondly, implementing TM 1: Bounded Service Levels, causes the realized
values for the SL to be both higher, and more concentrated around the mean
(see figures 5b and 5f). The TSL is reached in 89.58% and 81.43% for the
constant and variable busyness scenarios respectively. Both the resulting
average total costs and the costs per connected call are higher than in the
scenario without traffic management. This seems to be the result scaling up
and down frequently.

4.3.3 TM 2: Restricted Waiting Times

Thirdly, implementing TM 2: Restricted Waiting times causes a higher in-
crease in mean SL than implementing TM 1. However, using TM 2, there is
more variance than using TM 1. Furthermore, we can see that the frequency
at which the TSL is reached, differs from TM 1; for B = 1, it goes up to
95.12%, for B ∼ N(1, 0.01), it goes down to 75.48%, when comparing to TM
1. The total costs and costs per connected call are higher than when no TM
is implemented, but lower than when implementing TM 1, which is due to
scaling up and down less frequently.

4.3.4 TM 3: Combined Rules

Finally, implementing TM 3: Combined Rules, shows the smallest raise in
mean SL out of the three TM rules. But it does so, at the lowest costs and
using the least scaling actions.
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(a) B = 1, no TM

(b) B = 1, TM 1

(c) B = 1, TM 2

(d) B = 1, TM 3

(e) B ∼ Norm(1, 0.01), no TM

(f) B ∼ Norm(1, 0.01), TM 1

(g) B ∼ Norm(1, 0.01), TM 2

(h) B ∼ Norm(1, 0.01), TM 3

Figure 5: Histograms of realized end-of-the-day service levels.
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B = 1 Service Level Total Costs Costs / Conn. Call TM Actions
Mean (Var), P (SL) > 80% Mean (Var) Mean (Var) Mean U, Mean D

NO TM 79.35% (0.0011), 43.5% 465.75 (0) 0.1762 (8e-06) 0, 0
TM 1 82.64% (0.0004), 89.58% 512.26 (786.58) 0.1889 (7e-05) 12.69, 7.05
TM 2 84.78% (0.0007), 95.12% 494.27 (109.60) 0.1805 (1e-05) 5.39, 4.90
TM 3 81.18% (0.0004) 70.92 % 476.46 (163.66) 0.1780 (2e-05) 1.72, 0.14

Table 1: Result table for simulations with B = 1

B ∼ N(1, 0.01) Service Level Total Costs Costs / Conn. Call TM Actions
Mean (Var), P (SL) > 80% Mean (Var) Mean (Var) Mean U, Mean D

NO TM 79.35% (0.0011), 43.5% 465.75 (0) 0.1762 (8e-06) 0, 0
TM 1 82.64% (0.0004), 89.58% 512.26 (786.58) 0.1889 (7e-05) 12.69, 7.05
TM 2 84.78% (0.0007), 95.12% 494.27 (109.60) 0.1805 (1e-05) 5.39, 4.90
TM 3 81.18% (0.0004) 70.92 % 476.46 (163.66) 0.1780 (2e-05) 1.72, 0.14

Table 2: Result table for simulations with B ∼ N(1, 0.01)



5 Conclusion & Discussion

During this experimental research, we have come to somewhat conditional
conclusions. First of all, in our simulation setting, the Erlang A model out-
performs the Erlang C model, when estimating the optimal staffing levels
and requiring the SL to be as close to the TSL as possible.

Furthermore, no strict rules have been found to determine the optimal
moment of the day at which one should (start to) implement traffic man-
agement. We have not found a closed format to estimate this moment and
conclude that it is good to perform traffic management at multiple times
during the day and that the moment at which to start with the first traffic
management action is highly dependent on the situation. In a practical sit-
uation, this moment could be determined based on simulation results, while
keeping in mind the variability of the factors affecting the SL.

Moreover, implementing Rule-based Traffic Management can cause an
increase in the expected SL, less variance and a greater probability to reach
the TSL. However, this often happens at a higher cost. In practical situ-
ations, different (combinations of) rules should be tested to estimate the
difference between their outcomes, after which a choice should be made con-
sidering both the effect on performance and costs. This choice should also
depend on the precision of the forecasts.

There are some limitations to our research. In this study, not all aspects
of a call center have been taken into account. For our research method
to be used in practice, the model should be altered, taking more aspects
into account. For example, in practice there will be deviations from 100%
adherence. There will also be restrictions on the number of agents that
are available for scaling up and down, and the agents will not always be
immediately available when called upon. Furthermore, call center agents
will not all take the same amount of time for a call, and sometimes they
will be unavailable. Moreover, in a typical call center (or contact center),
there are more types of activities to be done than handling inbound calls,
e.g., handling e-mails, outbound calls or learning skills. The effects of (some
of) these additional factor(s) might be studied in further research. Further
research might also be done to test other rules and other actions or the effect
of other parameters to the rules proposed in this research.
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