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for myself and not all results are what I had hoped for. On the positive side, some results are 

actually the approximations I was looking for and I did learn a lot. It wouldn’t have been any fun 

anyway if it would have been an easy problem.  

I’d like to thank my supervisor René Bekker for his help and numerous ideas to progress the 

paper.  

Enjoy reading! 

Abstract 
In this paper we explore the possibilities of data mining techniques on data obtained with a 

queueing simulation. The simulation model has two queues, where each queue has dedicated 

servers, and both queues share flexible servers as well.  

An approximation was found for the probability of delay using a product of two Erlang C 

systems and making a correction on the error with a decision tree. The final approximation 

estimates the probability of delay with an R2 of 0.982 

We also approximated the mean waiting time in case of delay by modeling it as single system 

that suffers from a Poisson overflow by another system. However in various cases this 

approximation differed significantly from the actual waiting time.  A possible explanation is that 

the overflow in this system often does not approximate Poisson arrivals. 
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1. Introduction 

Problem formulation 

In queueing theory, we are usually interested in exact expressions of key performance indicators (KPI’s). 

Two of the most used KPI’s are the expected waiting time in the queue and probability of waiting longer 

than some set time t in the queue. For the simplest queues or queueing networks, like M/G/1 queues 

and Jackson networks, exact expressions are known for such KPI’s. When networks or queues are more 

complex approximation formulas can be constructed using mathematical techniques. A well-known 

example is Kingsman’s formula [1] which approximates the mean waiting time in the GI/G/1 queue by 

using the coefficient of variation for the interarrival and service times. Many other papers are written 

about queueing approximations; Shanthikumar and Buzacott compare different approximations for the 

single server queue in their paper[2] and Ward Whitt has written lots of papers about approximations, 

for example about the GI/G/M queue [3] or about queues in heavy traffic[4]. 

For many systems it is difficult to derive these exact or approximate expressions, this is due to the fact 

that also the asymptotic analysis is complicated or intractable. When these problems arise in a 

professional setting, the usual approach is to use simulation to estimate the KPI’s, tweaking the 

parameters (number of servers for example) for every run and comparing results. Afterwards these 

simulation results are only used to implement the best system and the results are not used to find 

approximate formulas of KPI’s for the simulated systems. 

Research question and structure of paper 

In this research paper the following question is answered:  

“Is it possible to create KPI approximations for a queueing network by fitting functions on simulation 

data with techniques from data mining?” 

The KPI’s focused on in the paper are the probability of waiting, and the expected waiting time given 

waiting. For this a queueing network has been simulated. The network that has been simulated is a two 

queue network, where each queue has dedicated servers. There are flexible servers as well, that can 

process customers from both queues in a first-come, first-served discipline. A more in depth look and 

notation of the network is in chapter 2. The building, running and testing of the simulation as well as the 

settings used for the simulation will be explained in the chapter 3. After that the work done on 

estimating the KPI’s using a combination of queueing theory and data analysis is in chapter 4. Finally 

chapters 5 and 6 have results, conclusions and recommendations. 

  



2. Queueing network  
To answer the research question, we consider the expected waiting time and the probability of waiting 

for the system depicted in figure 1 

 
Figure 1: The simulated network 

There are two separate queues, in each queue different customers arrive, c1 and c2. The customers 

arrive according to Poisson processes with rates  λ1 and λ2, respectively. The service times of customers 

of types c1 and c2 are exponentially distributed with rates µ1 and µ2, respectively.  Then there is a 

number of dedicated servers, s1 and s2, that can process customers of types c1 and c2. Finally there is a 

number of flexible servers of type sf that can process both types of customers. The flexible servers will 

process customers according to the First-In-First-Out principle. The rate at which the flexible servers 

process customers is the same as the dedicated servers. So when a flexible server processes a customer 

of type c1, the server rate becomes µ1 and when it processes a customer of type c2, the rate becomes µ2.  

An important aspect of queueing is the stability of the system. It has to be ensured that all work can be 

processed by the servers. In the long run queues grow to infinity if this is not the case. In this specific 

network there are 3 stability conditions that have to be fulfilled. These are: 

1. The amount of work for customers of type 1 can be done by the combination of the servers of 

type 1 plus servers of type f. Acting as if the flexible servers are dedicated to only type 1. 

ρ1 = λ1/((s1 + sf) µ1) < 1 

2. Similar for type 2: 

ρ2 = λ2/((s2 + sf) µ2) < 1 

3. Under above settings, it’s possible that the required amount of work for the flexible servers 

exceeds 100%. To prevent this from happening a third stability condition is required. This is the 

total utilization of the system ρt 

ρt = (λ1/ µ1 + λ2/ µ2) /(s1 + s2 +  sf)  < 1 

 

A practical example of the simulated network is a call center where there are two types of customers 

having questions about either subject 1 or subject 2. There are three types of call centers employees. 

The first two types of employees can answers questions about subject 1 and subject 2, the third type are 

highly skilled employees who can answer questions about both subjects. In this network, questions 



about one subject can take structurally longer to get service compared to questions about the other 

subject. 

 

Some special cases can occur that have known solutions. The first case is when sf = 0, in which case we 

have two separate M/M/C systems. The M/M/C system is also known as Erlang C and depicted in Figure 

2. Another special case is when λ1 = 0 or λ2 = 0, where the flexible servers act as dedicated servers. This 

corresponds to an M/M/C system as well. 

 
Figure 2: The Erlang C model 

  



3. Simulation 
Building the simulation. 

The simulation was built in the statistical programming language R. Some of the advantages of using R 

are quick and easy functions for drawing random numbers, the ability to do both the analysis and the 

simulation in the same language and the power and simplicity of vector and matrix manipulation. A 

disadvantage of using R is that it is considered to be a slow language, especially when using for loops 

and lookups. Even with this disadvantage, and after several language specific optimizations, about half a 

billion arrivals could be simulated within a day on an Intel®Core™ i7-4700MQ CPU @ 2.40GHz with 16GB 

RAM, which is enough for this paper. 

The general structure of the simulation is a discrete event simulation. The simulation uses a table where 

every customer has its own row. The columns in the table are:  

1. Arrival times. This is created immediately at the start of the simulation. 

2. Arrival types. Contains 1 or 2 to indicate which type of customer arrives. Created at the start of 

the simulation. 

3. Service times. Created at the start of the simulation. 

4. Server-in times. This has all the times when the customer enters the server, so after waiting in 

queue. 

5. Server-out times. This contains the times when the customer leaves the system 

6. Server-type. Contains 1, 2 or f to indicate the type of server serving the customer. 

The main program loops through the arrival times and server-out columns updating Server-in, Server-

out, and Server-type until the last customer has left the system. Some extra variables are updated as 

well like number of customers in each queue and first customer leaving. 

In the form of a flowchart the simulation looks like figure 3. The simulation loops through this flowchart 

top to bottom until all customers have left the system. 

Figure 3: Main flow of the program 

 



 

Parameter settings for the simulation 

There are 7 parameters to be set for every simulation. In this paragraph the parameter settings are 

explained, starting with the number of servers. For this paper we made the decision to always have at 

least one of every server type. The maximum number of servers of each type was chosen at 4. This 

maximum is chosen reasonably small such that each possible configuration can be simulated a few 

times.  

The service rate is chosen such that the servers do not work at different time scales. The maximum 

difference between both service rates is a factor 10. With this maximum the servers do not work at 

different orders of magnitude. 

After the number of servers and the server rate have been set the arrival rates can be set such that they 

meet the stability requirements, given in chapter 2. However if one of the server utilization is really low, 

the overlap between the two systems is very small, effectively making it one Erlang C model, and one 

model with no waiting at all. On the other side if the server utilization is very close to 1 the average 

queues tend to grow to very large numbers. Simulation of queueing systems with utilizations close to 1 

is a challenging topic. To avoid such issues all arrival rates have been chosen such that ρ1, ρ2, and ρt are 

all between 0.30 and 0.98. In table 1,  a summary of the parameter settings can be found. 

Variable Setting Variable type 

s1 Discrete random number from 1:4 Number of servers of type 1 

s2 Discrete random number from 1:4 Number of servers of type 2 

sf Discrete random number from 1:4 Number of servers of flexible type 

µ1 Continuous random number drawn from the 
uniform distribution between 0.1 and 1 

Service rate of customers of type 1 

µ2 Continuous random number drawn from the 
uniform distribution between 0.1 and 1 

Service rate of customers of type 2 

λ1 Continuous random number such that ρ1 is 
between 0.30 and 0.98 

Arrival rate of customers of type 1 

λ2 Continuous random number such that both ρ2 
and ρt are between 0.30 and 0.98 

Arrival rate of customers of type 2 

Table 1: Simulation settings 

Running the simulation 

To give good estimations of the KPI’s and have room for data analysis a few hundred simulations were 

run drawing new parameters for every simulation from table 1. For this paper each of these runs 

consists of several sub runs. This is for two reasons: 

1. It is easier to give confidence intervals for the KPI’s with several sub runs because customers 

within the same run are interdependent; waiting customers usually create more waiting 

customers. All different sub runs are independent of each other. 

2. The simulation uses lookups in the in-memory-table to find the longest waiting customers when 

a server becomes available. Using one simulation and one huge table makes these lookups 

really slow compared to a lot of small simulations.  



However, a disadvantage of using several sub runs is that the KPI’s should be about the long term 

averages while every sub run starts with empty queues and empty servers. Using lots of runs these 

repeating empty queues influence the averages significantly. This is why a startup period is necessary for 

every run. Using a startup period by simulating a big number of customers and only starting the “true” 

simulation after this startup will have some runs starting with empty queues, and others runs with long 

queues. 

To find out how much customers is a big number of customers several settings for this start up number 

were tested for theoretically known queues. For the M/M/1 queue with a utilization factor ρ = 0.9 and 

with a 200 customer startup, and 1,000 “real” customers in every sub run the simulation did not 

converge to its theoretically expected waiting time, even after ten thousands of these runs. Apparently 

after 200 arriving customers the empty starting state of the system still influenced the expected waiting 

time significantly.  

After this a 1,000 customer startup was used for every independent sub run of the simulation, which did 

converge for a M/M/1 queue with ρ = 0.9. However when testing the simulation with the parameters 

from table 1, it did not converge to the true average on these simulations. This was found by comparing 

the mean waiting time for the first customers after the startup period with the mean waiting time of the 

last customers after the startup period. In some simulation cases there was a significant difference. In 

one simulation case with randomly drawn parameters it led to graph in Figure 4, which shows the mean 

waiting time of the nth-customer after startup on the x-axis: 

 

Figure 4: Mean waiting time is still growing for customers arriving later 

In Figure 4 the first customers after the startup period still have shorter queues on average than the 

customers that come later in the system. This means that the startup number of customers should be 

larger than the 1,000 to prevent some customers getting influenced by the empty starting state. To be 

safe the startup number of customers was set to 10,000 and this growing relationship was not found 

anymore. 

Finally the simulation was run, doing 100 sub runs per simulation, each containing 5000 customers, 

yielding a total of 500,000 customers. Running this for a day resulted in a total of 315 simulations with 

different settings. Because the roles of the queue 1 and 2 can be exchanged every simulation could be 

used twice to approximate the KPI’s. In other words, it is possible to estimate the KPI’s for both 

customers of type and c1 and c2 respectively. 



4. Approximations 
In this chapter several approximations are made for the KPI’s. The Erlang C model is used several times 

in this chapter; a short introduction to the Erlang C formulas and notation will thus be given first.  After 

this introduction a section is dedicated to a lower bound for the expected waiting time in the two queue 

system using the Erlang C formulas. After that paragraph the approximations will be made. 

Erlang C 

The model with Poisson arrivals, exponentially distributed service times and more than one server is 

named the Erlang C model. The formulas for the Erlang C model can be found in a lot of textbooks; in 

this paper we will use the formulas and notation used in the educational textbook from Koole[5]. The 

expected waiting time is given by a formula where the denominator represents the expected waiting 

time in case of delay and the numerator the probability of waiting. In the denominator s is the number 

of servers, µ is the service rate and λ is the arrival rate. In the numerator of the formula a is the offered 

load λ/µ and C(s,a) is the probability of delay.  

     
      

    
 

C(s,a) is given by the following formula, in this formula π(j) is the stationary distribution of j customers in 

the system: 

             

 

   

  
  

           
  

  

  

   

   

 
  

           
 

  

 

With the stationary distributions given by: 

     

 
 
 

 
   

  
           

  

      
           

  

And the probability of being empty: 

        
  

  
 

  

           

   

   

 

 

 

Lower bound on the expected waiting time using Erlang C 

As explained in chapter 3, a special case occurs when λ2 = 0. In this case the modeling of customers of 

type c1 corresponds to an Erlang C model. However, even when λ2 > 0 the model for c1 can still be 

approximated as Erlang C model. In this case all flexible servers are dedicated to customers of type c1, 

with customers of type c2 coming into the system and blocking some of the capacity 



 

Figure 5: When ignoring customers of type 2 it becomes an Erlang C system 

This occasional blocking will make the expected waiting time of customers of type c1 bigger. Decreasing 

the average availability of servers will never decrease waiting times, so the Erlang C model can be used 

as a lower bound of the function of the expected waiting time in the network. 

Besides functioning as a lower bound for the expected waiting time of the simulated network, the 

structure of the formula for the expected waiting time can also function as a framework for the formula 

to look for. It hits the core of queueing theory because it can be broken up in the two essential parts: 

probability of delay and mean waiting time in case of delay. We will try to approximate these two useful 

KPI’s separately from here on. 

Estimating probability of delay 

First a formula for the probability of delay will be constructed. Because the network resembles a 

combination of two Erlang C systems it makes sense to use those formulas as a basis for the new 

approximation.  

The probability estimation is achieved by acting as if the original two-queue-system consists of two 

independent Erlang C sub-systems. For each of these two independent subsystems, the stationary 

probabilities are calculated. By taking the product of the stationary distributions of the two subsystems 

an estimation is made for the probability of delay. 

In figure 6, a product of two Gaussian functions is shown. When for example “delay” would be 

experienced when the sum of the Gaussian functions is positive, the probability of this could be 

calculated by taking the volume under the region where this product is positive. In a similar way, an 

approximation of the stationary state for the two-queue-system could be calculated by taking the 

product of the two subsystems. 

 



 

Figure 6: Visualization [6] of the product of two Gaussian functions. 

Each subsystem n has sn + sf servers available, arrival rate λn and service rate µn. Some notation for the 

two sub-systems is required from here on: π(fn = i) denotes the stationary distribution where i flexible 

servers are utilized by customer type n. In this definition, if i = 0, exactly 0 flexible servers are occupied 

and all regular servers are occupied. 

There are three cases that can be calculated using the Erlang C utilization formulas from above: 

1. Occupation of f1 < 0 flexible servers, in other words there are is at least one dedicated servers 

available: 

             

    

   

 

2. Occupation from exactly all dedicated servers occupied, and k flexible servers, where k is 

between 0 and sf-1. In other words f1 = 0 to f1 = sf - 1 flexible servers occupied: 

                 

3. All flexible servers f1 = sf being occupied: 

                      

 

       

 

If both subsystems would act like independent Erlang C systems, each having sf flexible servers, the long 

term average of the events f1 = i and f2 = j would be given by the product of these 

                              

In the example in figure 7, with 4 “flexible” servers per subsystem, the product π(f1 = 3) * π(f2 = 2) is the 

long term average where 5 “flexible” servers are in use, 3 by type c1 and 2 by type c2. Normally this 

would not cause any of the two subsystems into a delay-state. However when the server capacity is 

shared using at least the number of available shared flexible servers does cause the two-queue-system 



into a delay-state. That’s why for an estimation of the new delay odds these situation will be summed 

on top of the old delay probability C(s,a). 

 

Figure 7: Old and new delay probabilities 

Summing only over the old delay-state and the new delay-states, the estimated probability of delay for 

customers of type 1 will thus be given by the following formula, which will be denoted as C*(s,a) : 

                                            

  

      

  

   

        

This formula is used on the dataset from the simulation, resulting in the following plot: 



 

Figure 8: The approximated probability of delay is shown against the real probability of delay 

Looking at figure 8, the approximation looks like a lower bound on the real probability. It seems as if the 

approximation formula always underestimates the real delay probability. Especially when the 

approximated probability becomes larger, in the 0.4-0.8 range, the difference between the real 

probability and the approximated probability can be significant. 

The absolute difference between the real probability and the approximated probability of C*(s,a) is 

calculated; from here on we’ll call this the error. If, for example, the approximation has an output of 0.5 

for the probability of delay and the real probability of delay is 0.6, the error is 0.1  

In figure 9 we plot the errors of the approximation against ρt. The first observation is that the errors 

become bigger on average as ρt gets closer to 1. A possible explanation of this is that the approximation 

assumes that the subsystems do not influence each other while in reality, the subsystems influence each 

other, and this influence becomes larger as ρt grows. 



 

Figure 9:  The errors on the new approximation visualized 

It also strongly depends on the value of ρ1 as shown in the following plots: 

 

Figure 10: The colors represent the size of the error, with blue being small errors and red big errors 

In figure 10, the errors are biggest when ρ1 is between 0.4 and 0.7 and ρt is very close to 1. What would 

be ideal here is function fitted to this “hill-shape”. As estimation a decision tree can predict the error. 



The “rpart” package from R is used to build the decision tree. By default, rpart uses entropy to make the 

splits the dataset in different branches. Because the plots from above show that the load is a crucial 

factor in explaining the error on our first prediction, we use the load factors as predictors.  

 

Figure 11: Decision tree boundaries to estimate the error on the first prediction 

In Figure 11, the decision tree is plotted. The numbers in the boxes show the predicted error on top and 

the number of occurrences in the dataset on the bottom. The bottom left box thus shows, that in 228 

cases (36% of total dataset), ρt was smaller than 0.73, and the average error in this case was 0.035. This 

means that the correction on C*(s,a) is 0.035 for these cases. 

This makes the final estimation a combination of the adjusted C*(s,a) and the “error fixing” of the 

decision tree.  

                               

In the chapter results a short analysis is provided how well this approximation works. 

Estimating mean waiting time in case of delay 

It is difficult to estimate the mean waiting time in case of delay. We tried to model the system as an 

M/G/c model. In this model we interpret it as an isolated system, just as explained in the chapter Lower 

limit on the expected waiting time using Erlang C. From here on we will look at the system from the 

perspective of one queue only, type c1. We assume that the customers outside of this system influence 

the isolated system by “overflow”. We assume this overflow to be a Poisson arrival process, and have a 

minimum arrival rate 0, and a maximum rate λ2. We’ll denote overflow fraction of type 2 customers as p. 

As goal, we’ll assume the independent Poisson overflow assumption as valid and try to find a way to 

estimate p in terms of the 7 variables in the model. 

Visualized, we try to approximate p in the following system: 



 

Figure 12: Mean waiting time approximation with overflow pλ2 

A general formula is known to approximate the M/G/c queue, already given in 1959 [7]. According to 

Whitt [3], this formula is usually an excellent approximation of most M/G/c systems. The formula is 

given by: 

     
      

    
   

    

 
 

In this formula c2 is the coefficient of variation of the service times. Several parameters in this equation 

are unknown; however they can all be expressed in terms of p and other known expressions, leaving 

only p unknown. 

From here on we assume this one-queue system with overflow (M/G/c) as a good approximation for the 

two-queue-system. Next we will identify the parameters of this system. 

The arrival rate is given by 

           

The service rate is given by 
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The coefficient of variation of the service times is given by: 
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A decent approximation for the probability of delay C(s,a) has already been given above, however, for 

data analysis purpose the probability of waiting of the simulation will be used. 

As we assume the overflow model as a good way to approximate the two-queue-system, the goal is to 

estimate p in terms of the parameters from the two-queue-system. The probability p could be 

calculated by plugging all known formulas into the expression for the expected waiting time in the 

queue. After that we assume to know the true waiting times from the simulation, and use these as well; 

after that p could be isolated. However p can be found as well by following the curve that p produces as 

it grows bigger. By using the fact that the mean waiting time will only grow as p grows larger it is a 

matter of trying. It starts at p = 0 and can become p = 1 at most. So starting at p=0 and very slowly 

growing towards 1 until the right side of the expression gets bigger than the expected waiting time at 

the left side of the expression. We show this for one case in Figure 13. 

 

Figure 13: In this picture it can be seen that finding p is just a matter of following the curve  

When using this for the 630 results from the simulation in 63 (exactly 10%) cases the mean waiting time 

in case of delay is actually only achievable with a negative overflow. When just focusing on the cases 

that at least have some overflow it is also hard to approximate p. We know the value of p from the 

simulation, however no clear relation is found between p and the simulation parameters. In figure 14 we 

plot the overflow against several parameters and against the difference between C(s,a) and C*(s,a) from 

last paragraph. 



 

Figure 14: Testing the overflow p on the y-axis against several variables 

A big drawback of this model is that the mean waiting time in case of delay can only grow because of the 

overflow. However, as shown before, in a significant part of the cases this waiting time was actually 

smaller than in the system without any overflow. This shows that the assumption of a Poisson overflow 

process might not be a realistic assumption. The overflow could still be Poisson distributed a fraction of 

the time, and thus be state dependent. Especially when the service rate µ2 is very large compared to µ1 

customers of type 1 delay  more often for a shorter time.  



5. Results 
The results from “Estimating probability of delay” leads to the following plot, when applied to the data: 

 

Figure 15: Final approximation visualized 

In general, the approximation for the probability of delay works quite well. The r2 (coefficient of 

determination) for this model is 0.982. However there are still some points that are off by quite a big 

margin, the biggest being 0.16, this seems to happen most of the time when the approximated 

probability is between 0.4 and 0.6. It seems that part of this happens because of the decision tree. In 

general decision trees work very well on linear decision boundaries, and not so well on gradually 

increasing functions. However, when looking more closely at figure 10, it does look more like a function 

that increases gradually, especially in the ρt direction. For a follow up research, it would probably be 

best to estimate the surface by a better function than a decision tree. 

Unfortunately no really good prediction could be given for the mean waiting in case of a delay. What 

was tried was to model and then estimate p in terms of parameters. However as shown in Figure 14, it is 

unclear what parameters really influence the overflow p. This overflow model probably does not work 

because the arrival rate by overflow is considered to be a Poisson process, however they (probably) 

arrive with significantly more variance. This approximation especially does not work when µ2 > µ1. The 

10% of the cases where the overflow was “negative” all had µ2 > µ1 



6. Conclusion and recommendations 
The research question was the following: “Is it possible to create KPI approximations for a queueing 

network by fitting functions on simulation data with techniques from data mining?” This paper shows 

that it is at least possible in some cases. The probability of waiting can well be approximated by a 

decomposition of two Erlang C models in addition to a refinement using a decision tree. The mean 

waiting turns out to be hard to approximate.  

There are also several drawbacks of a data analysis approach: 

1. The amount of time spent fitting functions and analysis was at least a factor 20 times bigger as 

the time it took to build and run the simulation. It is also difficult to do it without any knowledge 

of queueing theory. The form of these functions is usually a sum over lots of different states the 

system can be in and using only data analysis techniques these sums are hard to find. Maybe 

genetic algorithms would work better here, however it is recommended to start such an 

approach with less complex systems. 

2. The accuracy of a simulation will, given enough simulation time, beat the accuracy of an 

approximation function on such a simulation. Even when the standard error on the estimation is 

known to be small. 

3. It is unclear how well the approximation formulas generalize for cases outside the simulation 

boundaries as this has not been tested. Upper and lower boundaries on the KPI’s can be given if 

they fit within the simulation boundaries. However it’s hard to give these boundaries when the 

systems fall out of the simulation boundaries. For example it is unsure how well the function 

found in this paper works if the number of flexible servers is a bigger than 4, or what happens 

when the utilization is bigger or smaller than the utilization in the simulation. 

This is why we would only recommend the approximation approach from this paper in certain specific 

cases. An example of such a case is when the networks or queues approximated are recurring very often 

and the influence of some parameters needs to be estimated. It is also useful to know approximation 

formulas for optimization purposes. 

Maybe that the ‘overflow model’ could actually be used under certain circumstances, as in 90% of the 

cases there actually was a positive overflow p. However it would be important to find out which 

parameter settings this would actually work for and for which settings it would not. 

Would we use a data analysis approach again, we would probably not use random settings for the 

simulation. It’s much easier to estimate the influence of these settings by fixing all parameters except 

for one parameter. 
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