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Preface 
 
This thesis is part of acquiring the Masters degree in Business Mathematics and Informatics. 
Business Mathematics and Informatics is a multidisciplinary program, aimed at business 
processes optimization by applying a combination of methods based upon mathematics, 
computational intelligence and business management. These three disciplines will also play 
a central role throughout this thesis. 
 
The subject of this study is outpatient scheduling. The objective of outpatient scheduling is 
to find an appointment system for which a particular measure of performance is optimized 
in a clinical environment – it is an application of resource scheduling under uncertainty. 
First, the particular problem on which we are going to perform the outpatient scheduling is 
explained. Subsequently, some literature on outpatient scheduling is studied. Eventually, 
the literature studied is applied to our particular problem, and we shall use a genetic 
algorithm to try to outperform the scheduling rules from the literature. To measure the 
performance of the different rules, a simulation tool is created. 
 
I would like to thank Sandjai Bhulai and Dennis Roubos for supporting me during the whole 
process of writing this paper. 
 
Pearl Stam 
February, 2011 
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1. Introduction 
 
In a modern society like ours, people are very busy and no one likes to wait. Every minute 
waiting at a bus stop, a traffic light, or an elevator is considered to be a waste of time. 
 
For a lot of people the biggest burden is to visit the general practitioner, because you know 
beforehand that you will be sitting in the waiting room for at least a half an hour, if you are 
lucky, before the doctor will see you.  
 
On the other hand, also the general practitioner is a very busy person, who does not like to 
wait for his patients to arrive, since he will run out of his schedule if one of them fails to 
show up in time.  
 
The objective of this paper is to find a reasonable balance between the patient’s waiting 
time, the doctor’s idle time and the overtime. 
 

1.1 The problem 
 
The initial problem is to find an optimal appointment system for one general practitioner for 
one day. 
 

1.1.1 Patients 
 
In our setting, we suppose that there are eight different types of patients. They all have a 
lognormal service time and their actual arrival time is drawn from a triangular distribution. 
Below all different types of patients are described. 
 
In the second column the average service time for every patient is shown. The next column 
shows the standard deviation of the service times. Column four and five give the parameters 
inserted in the lognormal distribution to achieve the values in the first two columns. Since 
the lognormal distribution has no upper bound it is truncated to a maximum service time of 
one hour. 
 
The actual arrival time of patients is simulated by a triangular distribution (of which the 
parameters are given in the last three columns). Patients usually arrive somewhat early. The 
average arrival time for a normal patients is three minutes before their scheduled time. The 
lower limit is eight minutes early and the upper limit is two minutes late. For patients that 
tend to arrive late the triangle is shifted a few minutes later. The average arrival time is to 
arrive exactly on time, the lower limit is five minutes early and the upper limit is five 
minutes late, as can be seen in the table on the following page. 
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 Avg. 
service 
time 

St. dev. 
service 
time 

µ  Σ Arrival 
time 

Upper 
limit 

Lower 
limit 

Type 1 10 1 2,29761 0,099451 -3 2 -8 
Type 2 10 1 2,29761 0,099751 0 5 -5 
Type 3 10 2 2,282975 0,198042 -3 2 -8 
Type 4 10 2 2,282975 0,198042 0 5 -5 
Type 5 20 1 2,994484 0,049969 -3 2 -8 
Type 6 20 1 2,994484 0,049969 0 5 -5 
Type 7 20 2 2,990757 0,099751 -3 2 -8 
Type 8 20 2 2,990757 0,099751 3 8 -2 
Table 1.1.1.1 Parameters for the arrival distribution 
 

1.1.2 General Practitioner 
 
The general practitioner always starts working exactly on time. He does not take a break and 
works until all patients are treated that day.  
 

1.1.3 One day 
 
Every day has eight hours. Four patients of every type are treated per day. Their average 
service times sum up to 480 minutes which is exactly equal to eight hours. On a day all 
patients show up, and there are no walk-in patients.  
 

1.1.4 Simulation 
 
To make sure our results are reliable, a simulation program simulates one thousand days 
per schedule. The performance of each rule is measured by adding up the average waiting 
time of the patients, the average idle time of the doctor and the average overtime. This is 
called the fitness of the schedule. In our case the three variables are equally important, but 
it is also possible to put a weight on each of the variables to indicate the importance.  
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2. Literature study 
 
The objective of outpatient scheduling is to find an appointment system for which a 
particular measure of performance is optimized in a clinical environment – it is an 
application of resource scheduling under uncertainty. The underlying problem applies to a 
wide variety of environments, such as general practice patient scheduling, scheduling 
patients for an MRI device, surgical scheduling, etcetera.  
 

2.1 Simulation studies 
 
Outpatient scheduling in health care has been researched extensively over the last 50 years. 
To model outpatient queuing systems a considerable number of those studies uses 
simulation techniques. One of the advantages of simulation modeling over analytical 
approaches is the ability to model complex outpatient queuing systems and to represent 
environmental variables. Simulation experiments are conducted to evaluate the 
performance of the system and to understand the relationship between various 
performance measures and various environmental factors. 
 
The most primitive form of outpatient scheduling is single block scheduling. The single block 
rule assigns all patients to arrive at the same time. The patients are served on a first come 
first serve basis. Another, nowadays more common, form of appointment scheduling is the 
individual block rule. Patients are assigned unique appointment times that are spaced 
throughout the clinical session.  
 
Bailey (1952) was one of the first to analyze an individual block system.  At that time in most 
clinics it was common practice to assign all patients to arrive at the same time.  
Bailey combines single block and individual block scheduling. A number of patients is 
assigned the same arrival time at the beginning of the clinical session. The idea behind this is 
to keep an inventory of patients so that the doctor's risk of becoming idle is minimized if the 
first patient arrives late or fails to show up. All other patients are assigned unique 
appointment times spread throughout the clinical session. 
Bailey used a Monte-Carlo simulation technique to find the number of patients to assign an 
appointment at the beginning of the session and the length of the intervals between the 
remaining appointment times.  
From this he concluded that he should schedule two patients at the beginning of the 
session. The remaining patients are scheduled at intervals equal to the mean consultation 
time. This leads to a reasonable balance between the patient’s waiting time and the 
doctor’s idle time. 
Bailey also found that shorter mean consultation times result in lower patient waiting times. 
Furthermore, he found that high variability of service times deteriorates both the patients' 
waiting times and the doctor's idle time. 
 
Assigning time blocks to surgeons on a first come first served basis to find a balance 
between the surgeon’s waiting cost, the idle cost of the facilities and operation room 
personnel is studied by Charnetski (1984) using simulation. The heuristic found distinguishes 
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different types of procedures having different service time distributions and bases 
procedure times scheduled for a patient on a function of the mean and the standard 
deviation of the individual service times.   
  
Ho and Lau (1992, 1999) and Ho, Lau and Li (1995) introduce a number of variable-interval 
rules and test their performance against traditional ones using simulation. Their best 
performing variable-interval rule increases appointment intervals toward the latter part of 
the session. They conclude that there is not one rule that performs well under all 
circumstances and provide a simple heuristic to assist in selecting an appointment rule for a 
clinic.  
Their assessment of three environmental factors (no-show probability, variability of service 
times, and number of patients per clinical session) reveals that, among the three, the no-
show probability is the major one that affects the performance and the choice of an 
appointment schedule. 
 
Klassen and Rohleder (1996) classify patients based on their expected service time 
variability. They use simulation techniques to compare various ways of scheduling patients 
having a relatively high and relatively low service time variability, when appointment 
intervals are kept standing. They developed a rule that puts patients with lower service time 
variability before patients with higher service time variability, which performs better than 
Ho and Lau’s best performing rules.  
Later on, they consider the possibility that the scheduler can make errors and that not all 
patients accept every slot they are assigned to. However, they conclude that their rule 
mentioned above still performs well under these more realistic assumptions. 
 
An appointment system for a multi-server queuing system, where doctors may arrive late, 
with constant intervals between two successive appointment times and multiple variable 
blocks is studied by Liu and Liu (1998). They try to minimize the total cost of the patient’s 
flow-time and the doctors’ idle time by developing a simulation search procedure to appoint 
the number of patients to assign to each block. They suggest a simple procedure to find an 
appointment rule for a given environment using the properties of the best rules, derived 
after simulating several environmental factors. 
 
Swisher et al. (2001) developed a discrete-event simulation model to be applied for decision 
making in outpatient planning. By utilizing this model to a family practice clinic they observe 
that the results are quite sensitive to changes in the patient mix, patient scheduling, and 
staffing levels. The effect of patient scheduling is only studied in changing the instant of the 
appointment, rather than examining several appointment rules. 
 
The majority of the studies mentioned above assume patients are homogeneous for 
scheduling purposes, and use independently and identically distributed service times for all 
patients. Furthermore, those studies do not take into account structural latecomers.  
Another disadvantage is that most studies focus on a particular problem so the solution is 
not suitable for any problem.  
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2.2 My approach 
 
From previous studies it is clear that there is not one particular solution to the outpatient 
scheduling problem. 
 
The objective of outpatient scheduling is to find an appointment system for which a 
particular measure of performance is optimized in a clinical environment. In most studies 
this performance measure is a trade-off in the interest of physicians and patients. Patients 
prefer to have short waiting times, while physicians like to have as little idle time and 
overtime as possible. 
 
Outpatient clinics can be regarded as queuing systems. A unique set of conditions is 
considered when designing an appointment system. The simplest case is when all patients 
arrive on time and one single doctor serves them with stochastic service times.  
Unfortunately in most clinical sessions this never occurs. 
The presence of non-punctual patients, no-shows, walk-ins, and emergencies may intervene 
to upset the schedule. Furthermore, doctors can arrive late or may be interrupted during 
the clinical session which messes up the system as well. 
 
The objective of this paper is to find an optimal appointment schedule for a General Practice 
using genetic algorithms. 
 
The performance of formal studies will be measured using simulation techniques. 
Subsequently, we shall try to find a schedule that performs better than the ones found from 
previous studies. 
 
In searching for an optimal appointment system some assumptions have to be made.  
We shall try to find an optimal appointment system for one general practitioner. This 
general practitioner is very punctual. He always begins exactly on time and he never gets 
interrupted during the clinical session. Patients, however, are not that punctual. Some 
patients have a reputation of being non-punctual, which is taken into account.  
There are several types of patients. Every type has a known service time distribution with 
known parameters. Presence of walk-ins, no-shows and emergency patients will be 
neglected. 
 
On the basis of previous assumptions we shall try to find an appointment system that 
balances the patient’s waiting times, the doctor’s overtime and the doctor’s idle time. 
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3. Approach 
 

3.1 Methods 
 
Initially we shall look into several appointment scheduling rules mentioned in the previous 
chapter, and measure the performance on our specific problem. Subsequently we will try to 
find an appointment system that performs better than those existing rules using genetic 
algorithms. 
 

3.1.1 Individual block 
 
The first appointment scheduling rule that will be used is the individual block rule. Every 
patient is assigned a unique appointment time spread out over the clinical session. 
 

3.1.2 Bailey & Welch 
 
The second rule to be studied is the Bailey Welch rule. This rule is almost similar to the 
individual block rule except now two patients are scheduled at the beginning of the clinical 
session.  
The Bailey Welch rule assumes patients have independent identically distributed Gamma 
service times. Furthermore, it is assumed that all patients arrive exactly on time. 
 

3.1.3 Charnetski 
 
The final rule to be measured is Charnetski’s rule. He derived a heuristic that distinguishes 
different types of procedures having different service time distributions and bases the 
amount of time scheduled for a patient on the mean and the standard deviation of the 
individual service times. 
Charnetski assumes that all patients arrive exactly on time, and does not take any overtime 
into account. The service times are normally distributed and truncated from below at 0. The 
primary focus of the study is to determine a relationship between the scheduled time for a 
procedure and the average idle time of the specialist and the waiting time of the patients. A 
standardized prediction heuristic was used to schedule procedure times, given by  

 where h is a scalar value held constant across procedures, is the 
empirically determined mean for procedure i and is the procedure’s standard deviation. 
The value represents the amount of time scheduled for procedure i as a function of 
the factor h. 

iii hhd sµ +=)( iµ

is
)(hdi
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3.2 Genetic algorithm 
 
We shall approach this problem with a genetic algorithm. The genetic algorithm finds its 
roots in artificial intelligence. This heuristic is used to generate useful solutions to 
optimization and search problems. Genetic algorithms belong to the larger class of 
evolutionary algorithms, which generate solutions to optimization problems using 
techniques inspired by natural evolution.  
 

3.2.1 Initialization 
 
From an initial population a large number of individual solutions is randomly generated. 
Occasionally, the solutions may be directed to areas where optimal solutions are likely to be 
found. 
 

3.2.2 Selection 
 
The performance of every solution is determined by a function called the fitness function. 
This fitness function indicates the performance of the specific solution compared to the 
other solutions. A lower score on the fitness function indicates a higher performance. Based 
on these fitness values the population is diminished, where solutions that are less fit are 
more likely to be selected for deletion. 
 

3.2.3 Reproduction 
 
The next step is to generate a second generation population of solutions from those 
selected. This can be realized through genetic operators like recombination and mutation. 
In recombination two existing solutions are combined to find two new solutions. Mutation 
slightly changes several randomly selected existing solutions.  
Occasionally, the solutions with the highest fitness are excluded from the evaluation process 
mentioned above to prevent the algorithm to get stuck at a local optimum. The process is 
repeated until the population has reached the same size as the previous generation. 
These processes ultimately result in the next generation population that is different from 
the initial generation. Generally, the average fitness will have increased by this procedure 
for the population, since only the best solutions from the first generation are selected to 
find new solutions. 
 

3.2.4 Termination 
 
The selection and reproduction steps are repeated until a termination condition has been 
reached. 
 Common terminating conditions are: 
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• There might be a minimum criterion to the problem. The process can be terminated 
if the minimum criterion is satisfied or a fixed number of generations is reached;  

• The highest ranking solution's fitness is reaching or has reached a plateau such that 
successive iterations no longer produce better results.  
 

3.3 Simulation 
 
To model the outpatient queuing system we shall use a simulation tool. As mentioned 
before, one of the advantages of simulation modeling over analytical approaches is the 
ability to model complex outpatient queuing systems and represent environmental 
variables. With this simulation tool we will be able to measure the performance of our 
different scheduling systems.  
 

3.3.1 Assumptions 
 
For our simulation tool some assumptions have to be made in order to determine the 
performance of our scheduling systems.  
 
Both the arrival process and the service time of a patient are modeled as a probability 
process. There are four types of treatments, with short and long service times, and large and 
small standard deviations. Some patients tend to arrive late.  
 
Patients are served according to the following rules. 

• When there are no patients in the waiting room a newly arriving patient is served 
immediately; 

• If there is one patient in the waiting room this patient is served; 
• If there is more than one patient in the waiting room, the patient with the earliest 

scheduled time is served; 
• All patients are served, regardless of the scheduled finishing time of the doctor. 

 

3.3.2 Parameters 
 
Patients almost never arrive exactly on time for their appointment. Although most patients 
arrive somewhat early, several patients have a tendency to arrive late.  Both early and late 
patients are modeled with a triangular arrival distribution, with a different mean. 
 
There are four types of treatments with either a relatively long or a short service time and a 
larger or a smaller standard deviation. Service times are drawn from a lognormal 
distribution.  
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3.3.3 Heuristic 
 
The diagram below shows the steps of the simulation tool while simulating one day. This will 
be repeated for a large number of days. 
 
Preliminary, the following steps have to be taken. 
  

1) The schedule to be measured has to be entered in the simulation tool; 
2) For every patient in the schedule the actual arrival time has to be determined; 
3) All patients must be sorted in order of their actual arrival time. 

 

 
Image 3.3.3.1 Steps of the simulation tool while simulating one day  
 
 
The doctor idle time is retained, as is the waiting time for every patient. At the end of the 
day, the tardiness is determined.  
The doctor idle time is the time in between two services. The waiting time of the patient is 
the difference between their appointment time and the time the patient is actually served. 
This excludes any waiting prior to appointment time, because additional waiting due to 
early arrival is voluntary and is not a consequence of the appointment schedule. If the 
patient is served before the appointment time the waiting time is zero. Late patients may 
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consider some additional waiting as normal, being partly their own fault. Their waiting time 
is set to zero as well.  
 

3.3.4 Output 
 
The following output is generated from the simulation tool 

• The mean and standard deviation of the waiting time of the patient; 
• The mean and standard deviation of the idle time of the doctor; 
• The mean and standard deviation of the tardiness. 
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4. Results 
 
The different algorithms we picked to compare to the genetic algorithm do not say that 
much about the order we have to schedule the patients in, by means of average service 
times, standard deviations, or arrival times. We have tried several scenarios that seem to be 
obvious using some knowledge from other literature. 
 
According to Bailey, shorter mean consultation times result in lower patient waiting times. 
Klassen and Rohleder concluded that patients should be scheduled in order of increasing 
standard deviation. Furthermore, it seems logical to schedule latecomers after punctual 
patients, because you do not want your system to get messed up already at the beginning of 
the day.  
 
Now the only thing we have to investigate is the order of importance of the rules mentioned 
above. 
 

4.1 Individual Block 
 
The time reserved for every patient is the average service time for that patient. For the 
individual block system we found the following results: 
 
The patients are scheduled in order of: 

1. Increasing service time; 
2. Increasing standard deviation; 
3. Increasing possibility of arriving late. 

 
Mean overtime 6.6037 Variance overtime 30.9676 
Mean waiting time 3.1305 Variance waiting time 15.9294 
Mean idle time 6.4110 Variance idle time 18.3622 
Fitness 16.1476   
Table 4.1.1 Results for the individual block system with patients scheduled in order of increasing service time, 
increasing standard deviation and increasing possibility of arriving late. 
 
 
Subsequently, patients are scheduled in order of: 

1. Increasing standard deviation; 
2. Increasing service time; 
3. Increasing possibility of arriving late. 

 
Mean overtime 6.9242 Variance overtime 35.0269 
Mean waiting time 2.9906 Variance waiting time 15.0648 
Mean idle time 6.4982 Variance idle time 18.1916 
Fitness 16.4131   
Table 4.1.2 Results for the individual block system with patients scheduled in order of increasing standard 
deviation, increasing service time and increasing possibility of arriving late. 
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Finally, patients are scheduled in order of: 
1. Increasing possibility of arriving late; 
2. Increasing service time; 
3. Increasing standard deviation. 

 
Mean overtime 6.8204 Variance overtime 38.3545 
Mean waiting time 3.5351 Variance waiting time 20.3208 
Mean idle time 6.5380 Variance idle time 15.7736 
Fitness 16.8935   
Table 4.1.3 Results for the individual block system with patients scheduled in order of increasing possibility of 
arriving late, increasing service time and increasing standard deviation. 
 
 

 
Image 4.1.1 Results for the individual block system. 
 

4.2 Bailey & Welch 
 
The Bailey & Welch rule is very similar to the individual block system. The only difference 
now is that we schedule the final patient at the same time as the first patient. From the 
above results we find that there is not that much difference in the performance of the 
different schedules, but the first scheme works slightly better than the following two, so we 
will use this scheme to apply Bailey’s rule on.  
 
First, we give the final patient from the schedule above an appointment at time zero. 
 
Mean overtime 3.3455 Variance overtime 24.7531 
Mean waiting time 13.3588 Variance waiting time 106.8742 
Mean idle time 0.0537 Variance idle time 0.1463 
Fitness 16.7580   
Table 4.2.1 Results for the Bailey & Welch system, final patient at time zero. 
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Now we put the last patient with a short service time at time zero and shift all patients with 
a long service time ten minutes back. 
 
Mean overtime 3.4227 Variance overtime 25.0010 
Mean waiting time 6.9368 Variance waiting time 40.5728 
Mean idle time 0.8513 Variance idle time 5.3766 
Fitness 11.2109   
Table 4.2.2 Results for the Bailey & Welch system, final patient with a short service time at time zero. 
 
 
Finally, we chop the day in half and pretend the morning is reserved for patients with a 
short service time, and patients with a long service time are served in the afternoon. Both in 
the morning and the afternoon, the final patient is put at time zero of the part of day. 
 
Mean overtime 3.8972 Variance overtime 28.7913 
Mean waiting time 10.4235 Variance waiting time 92.7438 
Mean idle time 1.0056 Variance idle time 4.8501 
Fitness 15.3262   
Table 4.2.3 Results for the Bailey & Welch system, final patient with a short service time at time zero and final 
and first patient with a long service time at the same time.  
 
 

 
Image 4.2.1 Results for the Bailey & Welch system. 
 

4.3 Charnetski 
 
As mentioned before, Charnetski determines the procedure time for a patient with the 
following formula . In this formula, h is a scalar value held constant across 
procedures, is the empirically determined mean for procedure i and is the procedure’s 
standard deviation. The value represents the amount of time scheduled for procedure 
i as a function of the factor h.  
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Again, we use the first schedule found for the individual block system, but now the 
procedure times are calculated using the formula for . Since it is a bit silly to schedule 
a patient at 14 minutes and 23 seconds past nine, we shall round the times in the schedule 
we find to the closest whole minute. 
 
For h = 0 we find the same results as for the individual block system. 
 
For h = 0.1 we find: 
 
Mean overtime 8.8859 Variance overtime 27.3369 
Mean waiting time 2.3253 Variance waiting time 10.6687 
Mean idle time 9.0343 Variance idle time 29.4476 
Fitness 20.2455   
Table 4.3.1 Results for Charnetski’s system, h = 0.1. 
 
 
Apparently, increasing h results in a higher fitness. We shall try some negative values for h. 
 
For h = - 0.1 we find: 
 
Mean overtime 5.6628 Variance overtime 36.0550 
Mean waiting time 4.0786 Variance waiting time 24.1332 
Mean idle time 4.8147 Variance idle time 12.2727 
Fitness 14.5561   
Table 4.3.2 Results for Charnetski’s system, h = -0.1. 
 
 
For h = - 0.2: 
 
Mean overtime 5.2898 Variance overtime 36.3351 
Mean waiting time 5.2630 Variance waiting time 37.4420 
Mean idle time 3.6482 Variance idle time 8.0002 
Fitness 14.2009   
Table 4.3.3 Results for Charnetski’s system, h = -0.2. 
 
 
For h = - 0.3 
 
Mean overtime 4.6722 Variance overtime 33.3282 
Mean waiting time 6.3862 Variance waiting time 49.8470 
Mean idle time 2.8881 Variance idle time 4.4373 
Fitness 13.9465   
Table 4.3.4 Results for Charnetski’s system, h = -0.3. 
 
 

)(hdi
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For h = - 0.4 
 
Mean overtime 4.6302 Variance overtime 34.1016 
Mean waiting time 7.8117 Variance waiting time 69.0342 
Mean idle time 2.4140 Variance idle time 2.7721 
Fitness 14.8559   
Table 4.3.5 Results for Charnetski’s system, h = -0.4. 
 
 

 
Image 4.3.1 Results for Charnetski’s system. 
 

4.4 Combination 
 
Finally, we combine the best results from the Bailey & Welch rule with the results of 
Charnetski’s rule. 
 
The last patient with a short service time is put at time zero, and the patients with long 
service time are shifted back the amount of time that is scheduled for this patient. 
Procedure times are calculated for h equal to - 0.1. 
 
Mean overtime 3.4473 Variance overtime 25.5487 
Mean waiting time 8.3176 Variance waiting time 55.0513 
Mean idle time 0.3045 Variance idle time 1.2819 
Fitness 12.0694   
Table 4.4.1 Results for Bailey & Welch and Charnetski’s system, h = -0.1. 
 
 
The last patient with a short service time is put at time zero, and the patients with long 
service time are shifted back the amount of time that is scheduled for this patient. 
Procedure times are calculated for h equal to - 0.2. 
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Mean overtime 3.3609 Variance overtime 26.0050 
Mean waiting time 9.6214 Variance waiting time 69.9474 
Mean idle time 0.1364 Variance idle time 0.4456 
Fitness 13.1187   
Table 4.4.2 Results for Bailey & Welch and Charnetski’s system, h = -0.2. 
 
 
The last patient with a short service time is put at time zero, and the patients with long 
service time are shifted back the amount of time that is scheduled for this patient. 
Procedure times are calculated for h equal to - 0.3. 
 
Mean overtime 3.8402 Variance overtime 28.4364 
Mean waiting time 11.2007 Variance waiting time 93.9860 
Mean idle time 0.0334 Variance idle time 0.0560 
Fitness 15.0743   
Table 4.4.3 Results for Bailey & Welch and Charnetski’s system, h = -0.3. 
 
 

 
Image 4.4.1 Results for Bailey & Welch combined with Charnetski’s system. 
 

4.5 Genetic algorithm 
 
To find a better solution than the previous ones, we tried to optimize the fitness of the 
schedule using the genetic algorithm solver within MatLab. The variables are the arrival 
times of the patients, which can vary between 0 and 480.  
 
We started with a population of 20 initial solutions and the number of generations was 
equal to 100. The initial population contained 20 individuals with 32 random integers 
between 0 and 480. Unfortunately, this resulted in something worse than everything we 
found up until now.  
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Subsequently, we started to increase the population size which improved our results, but 
we were still not able to find a fitness that exceeded the previous results. 
 
Our next approach was to search in the neighborhood of the best results we found up until 
now. We created an initial population where every variable from every individual was in a 
range of 5 minutes of the optimal value up until now. The following results were found 
applying the genetic algorithm with a population size of 250 and the number of generations 
equal to 200. 
 
Mean overtime 3.2777 Variance overtime 24.6602 
Mean waiting time 5.1208 Variance waiting time 31.3429 
Mean idle time 1.2365 Variance idle time 6.5035 
Fitness 9.6350   
Table 4.5.1 Results for the Genetic Algorithm near Bailey & Welch. 
 
 

 
Image 4.5.1 Results for the Genetic Algorithm compared to Bailey & Welch. 
 
 
In the graph above it can be seen that with the genetic algorithm we are able to improve the 
Bailey Welch rule. Although the idle time has increased a little bit, we have managed to 
decrease the overall fitness almost two minutes by taking a lot of time of the average 
waiting time for the patients.  
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Image 4.5.2 The optimal schedule found with the Genetic Algorithm next to the Bailey & Welch schedule. 

 
 
The image above shows the optimal solution found with the Bailey & Welch approach, in 
blue, and the optimal solution found with the genetic algorithm in red. Every bar represents 
an appointment. The two higher bars at time zero represent two arrivals at the same time.  
 
It is remarkable that the genetic algorithm schedules patients that arrive in time very close 
to the Bailey & Welch schedule, while patients that have a tendency to arrive late are 
scheduled several minutes later than Bailey & Welch. 
Furthermore, we see that the third patient to arrive is shifted four minutes forward 
compared to the Bailey & Welch schedule. This makes sense, since this patient has to wait 
for two patients to be served in front of him, instead of one.
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5 Conclusion and discussion 

5.1 Conclusion 
 
From the results we can conclude that it is indeed possible to find a schedule with the 
genetic algorithm that outperforms the other algorithms mentioned. 
However it was not that easy as we thought beforehand. We got stuck in a local optimum 
several times, so we really had to push the algorithm in the right direction to get some 
satisfying results.  
 
We have seen that, although the Bailey & Welch rule is almost sixty years old, it is still a very 
good performing rule that could not be matched by Charnetski in this setting. Also we saw 
that it is wise to consider some scheduling rules instead of simply implementing the 
individual block system, since every rule we applied outperformed the individual block rule. 
 
Unfortunately, we noticed that the variations of the waiting time, idle time and overtime 
were pretty high, which means that the results we found may count for the long run, but we 
will probably not find the same results if we observe only a few days.  
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5.2 Discussion 
 
For this paper some assumptions had to be made that might not be completely credible in 
reality. For instance, we assumed there were no no-shows, while in reality it is always 
possible that patients fail to show up. And it is not very likely that the doctor will always 
start exactly on time. 
 
Also, not every patient is willing to accept any time of day he or she is assigned to. For 
instance, people that have a job, often want an appointment at the beginning or the end of 
the day and will not settle for an appointment at noon. 
 
Furthermore, the general assumption of independence between the arrival and the service 
patterns may be questionable. In practice, doctors may increase their service rate during 
peak hours knowing that there are many patients waiting. 
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