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1 Introduction

The field of Evolutionary Robotics (ER) studies the use of Evolutionary Computing to generate controllers for
robots. The objective of this paper is to summarise and structurise tasks that are and have been used in ER.
We will end with a discussion of trends in ER. This paper is also intended for students that are new to ER, so
I will start with some basic notions.

2 Basic Notions

2.1 Terminology and abbreviations

• a-priori information - Information that is given before the evolutionary run, that is information about the
solution that is incorporated in the fitness function.

• Distance metric - A measure of similarity

• DC - Direct Current

• DOF - Degrees of Freedom

• ER - Evolutionary Robotics

• Heuristic - An algorithm that can generate a reasonably good solution in a decent amount of time, but
for which no formal proof of correctness exists.

• GA - Genetic Algorithm

• GP - Genetic Programming / Genetic Program

• IR - Infra-red

• Morphology - ’The shape of the robot’

• NEAT - Neuro Evolution of Augmented Topologies, a genetic algorithm for evolving neural networks.

• Phototaxis - Movement in response to light

• Proprioception - Perception of the relative position of parts of the body.

• Tactile - Relating to touch.

2.2 Robots

Many researchers use custom made robots for their experiments. These are usually small, wheeled robots with
a differential drive. For gait evolution legged robots are used. The following are commonly used robots or robot
kits.

The Khepera is a circular robot with a diameter of 55 mm, a height of 30 mm and weighing 70 g. Its two
wheels are powered by two DC motors. It comes with 8 IR sensors, though it can also be customized through
the use of extension turrets. The original Khepera was a very popular robot, having been used for some ten
years by hundreds of universities and aiding in the development of Evolutionary robotics.

The Sony AIBO is a quadruped robot outfitted with light sensors, touch sensors and sound sensors. It comes
in various models.

LEGO Mindstorm is a kit for building robots.
The s-bot has a cylindrical turret (diameter 11.6 cm) which can be rotated w.r.t the chassis. The motor

base is outfitted with 2 tracks and 2 wheels, this combination is labelled Differential Treels Drive where a motor
on each side powers both the track and the connected wheel. S-bots are capable of physically connecting to one
another, forming a swarm-bot. Each s-bot has 8 leds, omnidirectional sensors, a microphone and loudspeakers.
[Mondada et al., 2004]

The Cyber Rodent is a two-wheeled robot, 250 mm long and weighs 1.7 kg. It has omnidirectional vision,
infra-red proximity sensors, three coloured LEDs and IR ports.

The e-puck is a small (75 mm in diameter) two-wheeled robot. It has 8 IR-sensors, 3 microphones, a colour
camera, and a 3D accelerometer. Its actuators include a speaker and red and green coloured LEDs. The
capabilities can be further increased using extension modules. [Mondada et al., 2009]

2



Elvis is a 60 cm humanoid robot with 42 DOF powered by servos. It has two cameras mounted on its head,
microphones and touch sensors in its fingers. It uses a three layered software architecture that is designed for
use with evolutionary algorithms and genetic programming in particular. [Nordin and Nordahl, 1999]

Research in evolutionary robotics is not limited to small, mobile robots. For example, in [Furey and Harvey, 2008],
the robot is a traction kite on a spool and in [Bianco and Nolfi, 2004] a robotic arm is used.

2.3 Controllers

A controller is the computational part of a robot, its ”brain”. Many different controller types are used. Neural
networks are based on the naturally occuring networks of biological neurons. They are a popular controller
representation because of robustness and expressivity. A downside to neural networks is a lack of insight in how
the controller works. Neural networks can have recurrent and self-connections, which can serve as memory and
allow time-dependent behaviour. Other controller types include directed graphs, sets of parameters, fuzzy logic
and collections of rules.

2.4 Fitness functions

For complex tasks, hand-coding controllers becomes impractical or impossible. Evolutionary robotics seeks
to generate controllers automatically through a process of artificial evolution. This requires the task to be
performed to be captured in a fitness function, a measure of how well a robot is doing. This fitness function
acts as a bridge between task and evolutionary algorithm. The choice of fitness function is a - or even the
- key element in the quality of the resulting controllers. Fitness functions can be classified according to the
amount of apriori information they incorporate [Nelson et al., 2009]. Training sets specify the desired output
for given inputs. This introduces a large amount of apriori information. It might not be possible to generate an
appropriate training set, for example when an effective heuristic is not known. Behavioral fitness function terms
reward sensor-reaction mappings, this adds a medium amount of a-priori information. Aggregrate functions
’summarize’ the result after the evaluation period (How well it did, not what it did). This adds a low amount
of a-priori information, but see bootstrap problem below.

In its current state, ER is focused on designing evolutionary systems capable of performing new tasks with
greater complexity, instead of improving learning efficiency. A big problem in ER is that it currently does not
scale well for more complex tasks. The initial population is likely to perform below the minimal functionality
limit. When all fitnesses are equal, no selection is possible. This is known as the bootstrap problem. To avoid
this problem the training can be done in phases, where the controller is first trained on simpler subproblems.
This is called staged evolution. A drawback of this approach is that it forces the evolution to occur along
a certain path, based on the assumptions of the user. These assumptions might be unjustified and lead to
a suboptimal solution. For certain complex tasks it might be difficult or impossible to identify subproblems.
Other solutions to the bootstrap problem are environmental complexification, fitness shaping and behavioral
decomposition. [Mouret and Doncieux, 2009] suggests using multi-objective optimisation algorithms to increase
the diversity in a population. A downside is that it requires a distance metric between behaviors, which for
some problems might not be easily defined, though several general suggestions are made.

2.5 Embodied versus Simulated evolution

Embodied evolution happens in physical robots. Embodied evolution is not practical for all problems, for
example when there is a risk that the robots get damaged. This would quickly halt progress until the robots are
repaired or replaced. Embodied evolution also needs to occur in real-time, whereas simulation can take place at
faster than real-time. A drawback with using simulation is that the evolved behaviour might not be as effective
in the real world, due to inaccuracies in the used models. This is known as the ”correspondence problem”’.
Most researchers that perform the evolution in a simulated environment transfer the behaviour to real robots
for validation. [Jakobi, 1998a] discusses the conditions that aid in a successful transfer.

2.6 Environment

The environment does not need to remain the same during a run. It can gradually be made more complex as the
population improves. The authors of [Pasemann et al., 2001] first evolved robot controllers for wall avoidance.
They then used the resulting population as a basis for a phototaxis task. The environment was a maze with light
sources. During the run, they added more obstacles and reduced the number of light sources. The increasing
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difficulty led to robust controllers that were able to backtrack and explore dead ends. The controllers obtained
in simulation successfully transferred to real Khepera robots.

2.7 Fitness function notation

To simplify comparisons between fitness functions, common symbols were standardised as in [Nelson et al., 2009].
A lower case f denotes an integrand (over time), while a capital F will be used for aggregate fitness function. If
a function is minimised instead of maximised, this is written with a subscript, e.g. f(−). vl and vr will be used
for left and right speeds, where appropriate. Distance travelled as d, sensor activation levels as s. A boolean
function as B and coordinates as x,y.

3 Tasks

Tasks can be classified by properties such as the degree of interaction with the environment, or whether they
naturally involve groups of robots or just one. First I consider tasks where the goal is to acquire locomotion, this
includes wheeled, legged and winged robots. Next are tasks where there is a given destination or orientation, such
as object homing or phototaxis. Then tasks that require the robot to manipulate its environment, for example
box pushing or gathering. This ordering is roughly in ascending complexity, because tasks in one category are
subtasks of tasks in the next, for example a task like box pushing also requires learning locomotion.

Figure 1: Classification of tasks into categories

Sometimes tasks involve multiple robots cooperating and/or competing. Robots are always implicitly com-
peting for fitness, but tasks are only considered cooperative/competitive when the robots operate at the same
time, potentially influencing each other. For such tasks robots might work in a team towards a common goal,
or multiple groups might be active at the same time, potentially with distinct (sub)tasks. An example of a
competitive task is a predator-prey system, where one group of robots chases and the other avoids.

3.1 Locomotion

In [Thompson, 1995], a controller made of evolvable hardware (FPGA) was evolved for locomotion and wall
avoidance. This was done in ”virtual reality”, meaning that simulated input was sent to the real hardware,
which output was fed back into the simulation.

f = e−c1x(t)
2

+ e−c2y(t)
2

−B

where c1 and c2 are normalisation constants, x(t), y(t) are the horizontal and vertical distances to the center of
the arena and B equals 1 if the robot is not moving. The resulting controller successfully transfered to the real
robot.
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[Floreano and Mondada, 1996] trained neural networks in real Khepera robots for a locomotion and obstacle
avoidance task.

f = mean(vl, vr)(1−
√

(|vl − vr|)(1− sir)

where vl and vr are speeds of the left and right drive motor and sir is the highest current activation level of the
IR sensors. As another task in the same paper, a robot was trained to travel around the environment. It could
’recharge’ at a location marked with a light. The robots were additionally outfitted with light sensors.

f = mean(vl, vr)(1− sir)

Note that returning to the recharge station is not explicitly rewarded in the fitness function. However, since
failure to return to the recharge station in time resulted in immobility for the remainder of the evaluation
period, robots that did recharge could achieve a higher average speed.

[Lund and Miglino, 1996] used Khepera robots controlled by simple neural networks without hidden layers for
a locomotion and object avoidance task. The initial population was evolved in a simulation for 200 generations,
then transferred to real robots and run for 20 more generations.

f = mean(vl, vr)(1− (vl − vr)2)(1− sir)

where vl and vr are the left and right drive motor speeds and sir is the highest current activation level of the
IR sensors. The best controllers reliably performed the task in the real environment.

[Banzhaf et al., 1997] evolved GP controllers for several tasks. Embodied evolution with 8 IR-sensors. For-
ward motion with object avoidance:

f(−) = sir − (vl + vr − |vl − vr|)

where sir is the total of the IR-sensor activation levels. Wall following:

f(−) = (sir1 − c1)2 + (sir2 − c2)2 + (sir3)2 − (vl + vr)2

where sir1, sir2 are activation levels for sensors on the wall side of the robot, sir3 is the activation of the outward
side sensor and c1 and c2 are constants. Controllers were successfully evolved for those tasks.

[Jakobi, 1998b] evolved 8-legged robots for movement and obstacle avoidance. Evolved for 3500 generations
in simulation, then verified in real robots. The robots were outfitted with IR sensors on the left and right sides
and a touch-sensitive bumper on the front. Each leg has its own neural net and is connected with the networks
of adjacent legs.

f = B1(vl + vr) +B2(vl − vr) +B3(−vl + vr) +B4(−vl − vr)

where B1 through B4 are booleans and vl and vr are the velocities for the left and right side of the octopod.
The booleans were set depending on the sensor readings. B1 is true when no obstacles are detected by the
IR sensors and the bumper is not pressed. B2/B3 are true when there is an object in range of the right/left
sensor respectively. B4 is true when the bumper is pressed. This effectively encodes the desired behaviour in
the fitness function.

[Gomi and Ide, 1998] evolved a controller of an OCT-Ib robot (octopod) for movement. Its behaviour is
determined by gait parameters for each leg. This robot comes with a large number of sensors, but only the
motor current sensors and two belly contact sensors were used in the experiment.

F = (strides) ∗ (1− overcurrents) ∗ (differences) ∗ (1− hits) ∗ 1000
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where,

strides =

lifespan∑
i=1

liftswingi
lifespan

liftswingi =

{
1

when the leg lifts up and swings back
or moves down and swings forward

−1 otherwise

overcurrents =

lifespan∑
i=1

legs∑
j=1

(lift currentij +
swing currentij)

lifespan

differences =

lifespan∑
i=1

(up lifti)− down lifti) + (forward swingi − backward swingi)

hits =

lifespan∑
i=1

(belly hiti)

lifespan

All runs ended in successful behaviour, the longest took 110 generations of embodied evolution.
[Matellán et al., 1998] evolved Fuzzy Logic Controllers for locomotion and object avoidance in a Khepera

robot. The fitness function used was:

F =
V (1−

√
D)(1− I)

#rules

with I = sensor
1023 , V = average

10 , D = |v1−v2|
20 , where I is the normalised sensor value, V is the rotation average

speed of the two wheels and D is the normalized absolute value of the difference between the speeds of the two
wheels. This fitness function was the result of experimentation with other fitness functions that resulted in
unwanted behaviours. A controller that avoids obstacles was typically found after 60 generations.

In [Nordin et al., 1998] controllers were evolved for locomotion and object avoidance of Khepera robots.
Wall following was also investigated. The controllers consist of two processes, a planning process and a learning
process. The learning process tries to build a model of the world, which the planning process uses to perform
the task. This world model is a linear genetic program, which predicts the value of an action based on current
sensor input and proposed motor actions. Fitness for a LGP is given by

F =

n∑
i=1

(f(ei)− p(ei))2

where n is the number of events, ei denotes the i-th event, p(ei) is the predicted value of that event by the LGP
and f(ei) is its actual value. For locomotion and object avoidance, f(e) was

f(e) = (|ml −mr|+ |ml|+ |mr| − (ml +mr)) +
4∑

i=1

si

where ml and mr were the left and right motor activations and si the activation of the i-th sensor.
[Andersson et al., 2000] investigated embodied gait evolution in a four-legged robot dog with 8 DOF. This

robot did not have input sensors, and used linear genetic programming as controller. F = Net forward travel
distance. The system was reported to quickly adapt to mechanical failures.

Embodied evolution of locomotion for a Kafka robot (hexapod) was performed in [Earon et al., 2000]. Each
leg was controlled by a cellular automaton, which changed state based on its own state and those of the
surrounding legs. Fitness was measured by distance travelled.

In [Ziegler and Banzhaf, 2001], a controller for locomotion and object avoidance was evolved in simulation.
The controller is a directed graph, a model of chemical processes. The evolved controllers were transferred to a
Khepera and tested in a maze. f(−) = |vl − vr|

[Wolff and Nordin, 2002] gait evolution for a humanoid robot (28 cm, 1.49 kg). This is a difficult task
compared to gaits for robots with more than 2 legs. The researchers chose to perform the evolution in a real
robot with visual sensors and an IR-sensor. The test environment consists of a white wall with a vertical black
stripe in the center. A horizontal beam, 65 cm above the robot, supports the security cable and power cables.
The robot starts about 40 cm away from the wall, facing the black stripe. Evaluation is based on distance
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travelled (average speed) and straightness of path. If a robot falls over during evaluation it receives a score of
0. Speed for the best controller was 10 cm/minute.

Flapping patterns for an ornithopter were evolved in [Augustsson et al., 2002]. The ornithopter was custom
built with 90 cm wings, each wing having three degrees of freedom. The controller was a list of instructions
specifying target angles (one DOF per instruction), running at 20 instructions per second and repeating three
times. In the first experiment, controllers were evolved for vertical movement. An individual’s fitness is its
average height, with some penalty for ’cheating’. The best generation did not manage to generate enough lift
to carry its own weight. In the experiment for horizontal movement, the ornithopter was suspended from a rail,
and fitness was measured by average forward speed.

The robot in [Marocco and Floreano, 2002] has a camera that can be tilted and panned independently.
A neural network controller with recurrent connections was used to control a Koala robot (6-wheeled). The
task is to move as fast as possible without colliding. Although the robot was capable of moving its camera
independently, this behaviour disappeared in later generations. This might have been caused by the robot
learning the layout of its (static) environment.

f = (vr + vl)− |vr − vl|

A controller for an M-Tran robot was evolved in [Yoshida et al., 2003]. The M-Tran robot is made of
modules, allowing it to reconfigure itself and move in various ways. Each module has two degrees of freedom.
The task was to move in a given direction. Two approaches were tested. In the first, the genotype encoded
”segments”, each segment consisting of motor orientations and connection information. Physically infeasible
solutions were rejected. In the second approach, each module’s motor had its own a neural oscillator, with input
from the other modules.

F = c1 ∗ d− c2 ∗ w − c3 ∗ E/N

where d is the distance travelled in the given direction, w is the deviation from the straight line, E is the total
energy spent and N is the number of modules. Stable movement behaviours were obtained for all of the tested
configurations.

[Okura et al., 2003] Embodied evolution in a Khepera robot using FPGA controllers for movement and
obstacle avoidance. The robot had 4 forward sensors. The arena was a 40 cm square with one 20 cm square
object at the center.

F = D ∗ (1− S) +R ∗ c

Where D is the total distance travelled, S is the total sensor input, R is the number of changes in the motor
rotation and c is a constant.

In [Lund, 2003], a 2-wheeled robot had to follow a black line on the floor. To detect this line, the LEGO
Mindstorms robot had two downward sensors. Notably, both the linear perceptron controller and body param-
eters (type of wheels, location of wheels and location of sensors) were evolved.

f = 4 ∗B1 ∗max(vl + vr, 0) ∗ (2− |vl − vr|) + 100 ∗B2 − s

where B1 is a boolean that equals 1 when the robot is on the line and B2 equals 1 when the robot entered a
new segment of the line (which is made of 20 segments) in this timestep. s is a term that punishes standing
still, moving backwards or rotating at maximum speed by subtracting 10 points.

An artificial neural network controller was evolved in [Nelson et al., 2004] for exploration of a maze. Each
EvBOT only had 5 forward facing binary tactile sensors. The minimal information provided by the sensors
means that a purely reactive controller cannot perform this task effectively, it requires some temporal behaviour.
The controllers were evolved in simulation and successfully transferred to a colony of eight real robots.

F = c1 ∗ d+ c2 ∗ distnet + c3 ∗ distmax + c4 ∗ stuck

where d is the total distance travelled (curve length), distnet is the distance between starting position and
ending position, distmax is the greatest distance between start and endpoint during evaluation and stuck holds
whether or not the robot got stuck in the environment.

In [A. Boeing, 2004], a gait for a biped robot was evolved in simulation. The controller took the form of
splines describing the servo activations over time. Only points at fixed time intervals were subject to evolution,
and the derivative at those points was set at 0. Control was kept broad to help cross the reality gap. The
evolved controllers successfully transferred to the real robot, but performed worse than a good handdesigned
gait.

F = 5 ∗ d− 50 ∗ ave vel lowering
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and a run stopped if the torso hit the floor (the robot toppled).
[Hornby et al., 2005] performed embodied evolution in 2 models of quadruped robots, Sony’s OPEN-R and

ERS-110. The task was gait evolution, using a set of gait parameters as controller. Fitness was a function of
average speed and straightness of movement.

In [Van Breugel and Lipson, 2005], controllers for simulated ornithopter were evolved. The ornithopter was
2 meters long with 4 rectangular wings. The goal was to find a wing movement pattern which generated enough
lift for the ornithopter to fly by its own power. Evolutionary runs were performed with sinusoidal and bezier
control patterns per wing. The best sinusoidal controller was not very stable and barely able to remain airborne.
The bezier controllers were more successful, though the authors note that a physical implementation of these
movement patterns would probably strain existing servo motors.

F = z

where z is the final height of the ornithopter.
The authors of [Sellers and Manning, 2007] attempted to reconstruct the top running speeds of bipedal

dinosaurs using ER techniques. This was done by evolving gaits for models of the dinosaurs’ bodies in simulation.
To validate the results, gaits were also evolved for models of extant bipeds with more or less known top speeds.
The controllers were sets of gait parameters, with muscle activations for 5 points during half a gait cycle, with
the gait cycle duration also subject to evolution. Fitness was measured by distance travelled over 3 or 5 seconds.

In [Furey and Harvey, 2008], a controller for a traction kite was evolved in simulation. The lines of the kite
were connected to a spool coupled to a dynamo. When properly controlled, the energy gained by letting the kite
reel out is greater than that spent to reel it back in, giving a net gain in energy. The spool was controlled by
a discrete time recurrent neural network, fed with information about traction and line angles. The task was to
maximise aerodynamic forces along the line. Fitness was estimated by simulating wind with variable amplitude
and frequency and measuring the average aerodynamic forces along the lines.

In [Hutter et al., 2009], gaits were evolved for a computer model ”Puppy” based on the physical ”Puppy II”.
The controller used Central Pattern Generators (CPG) for some of the experiments, and sine-wave generators
for the others. Both morphology and controller parameters were evolved in several phases. Each phase unlocked
more parameters for optimisation. Simulated only, using the Webots simulation software. Evolution took place
on flat terrain, with distance travelled as fitness.

3.2 Homing

In [Harvey et al., 1994], the robot is suspended from a gantry, and signals are translated to X and Y changes.
The robot has to home in on a triangle, while avoiding a rectangle. The controller is a neural network. The
visual inputs are subject to evolution as well, the genome encodes up to 256 visual patches that are sampled
from the camera input.

[Banzhaf et al., 1997] evolved GP controllers for several tasks. Embodied evolution in a Khepera robot with
8 IR-sensors. Object homing/following:

f(−) = (sir1 + sir2 + sir3 + sir4 − c)2

where c is the ideal distance to the target and the sir’s are the activation levels of the four forward IR-sensors.
Light avoiding:

f(−) = sphoto − (vl + vr − |vl − vr|)

where sphoto is the activation level of a light-sensitive sensor. Controllers were successfully evolved for those
tasks.

A genetic program was evolved in [sik Seok et al., 2000] for phototaxis and obstacle avoidance. Evolution
took place in a wheeled robot with light sensors and ultra-sonic sensors. Fitness was updated each time step:

F (t+ 1) = [F (t) + (slight,max − slight,fw) ∗ cL + (
2 ∗ sultra,fw + sultra,l + sultra,r

2 ∗ sultra,max
) ∗ k ∗ cU + penalty]/2

where cL and cU are the weights for the phototaxis and obstacle avoidance terms, sl,max and sultra,max are the
maximum activations of the light and ultra-sonic sensors.

In [Floreano and Urzelai, 2000], update rules for Hebbian networks are evolved, instead of the weights them-
selves. The network weights are randomly initialised at the beginning of an individual’s life, so each individual
has to learn the task during his lifetime. This favors the networks that learn their task more quickly. The task
requires the robot to move to a designated area to turn on a light, then move to the light and stop there. The
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initial training was done using Khepera robots, outfitted with visual sensors (for detecting the light area) and
IR-sensors (for avoiding the walls). The arena was a simple rectangular area surrounded by walls, no obstacles
were present. The performance of controllers with dynamic synapses was tested against controllers with the
synapse weights encoded in their genome. The evolved controllers were transferred to Koala robots and proved
to be robust with respect to changed sensor and motor characteristics.

In [Langdon and Nordin, 2001], inverse kinematics was learned for the right arm of the Elvis robot. First,
a dataset was generated by moving the arm and recording the coordinates of the finger tip as seen by the two
cameras, as well as the joint angles. This data was used to evolve GP controllers for each servo, with the (x,y)
pairs as input and a target angle as output. Fitness was the sum of squared differences between the calculated
target angles and the ones stored in the datapoints. To demonstrate the learned behaviour, the best controllers
were then used to make the finger tip move towards a various locations, designed by a laserdot. In most cases,
the distance between the laser and the fingertip was less than 6 cm.

[Watson et al., 2002] Phototaxis in a 130x200 arena with a light in the center. An IR beacon sends a signal
that can be detected by robots that are at the light, triggering behaviour that randomises their position and
restarts the task. Robots get powered by conductive strips on the floor.

[Nehmzow, 2002] Three tasks: Phototaxis, Obstacle avoidance and Robot Seeking. Small mobile robots
with sonar, infrared, tactile and photosensors. There are two robots running at the same time. At the end of
each run they locate each other and exchange strings and fitness information using an error-correcting protocol
over the IR sensors. This requires the robots to be less than 1 meter apart. Each robot holds two strings, the
current string and the best one found so far. After the transfer, crossover and mutation were applied.

In [Marocco et al., 2003], a robotic arm with 6 DOF was used. Each epoch, the arena contained one of two
objects, either a sphere and a cube, placed in a random location. The arm had to touch the sphere and avoid
the cube. To distinguish between the objects, the neural network controller received tactile and proprioceptive
input. As part of the experiment, agents would also receive the last values of two output neurons from agents of
the previous generation. This enabled the evolution of a lexicon, which allowed the agents to determine whether
to avoid or home in on the object, without first having to touch the object to determine its shape.

f = c ∗ −B

where B is the event of not touching the sphere if it exists, or touching the cube if it exists.
A controller for a Sony Aibo was evolved in [Gu et al., 2003] for ball chasing and goal homing. An Aibo uses

a layered controller, with a cognition layer, a behaviour layer and a walking layer. The cognition layer extracts
high level information from the sensors such as ball position (if one is detected). This is passed to a fuzzy logic
controller in the behaviour layer, which then selects a predefined gait in the walking layer. The fitness function
for both tasks was given by F = (1 − distance/3000) ∗ (1 − angle/180) ∗ (1 − time/maximum time), where
distance is the distance to the target, angle is the angle between a straight line to the target and the robots
current heading, and time is the time spent in the behaviour that was being evolved for. All three terms were
normalised in [0, 1],

[Barlow et al., 2004] evolved controllers for an Unmanned Aerial Vehicle in simulation and transferred it to
an EvBOT II with acoustic array (a wheeled robot). The task was to home in on a radar signal. The controllers
were GP’s with the amplitude and direction of the signal as input (accurate within 45 degrees). Once the robot
had successfully moved within a certain range, the task shifted to circling around the goal. The environment
had no obstacles, only the homing task was important.

In [Parker and Georgescu, 2005] a Cyclic Genetic Algorithm (CGA) is used to evolve a multi-loop controller
for phototaxis. The simulation took place in a square arena with 5 obstacles. The light source is in the lower
left corner, the robot starts in the upper right corner, facing the light. The location of the obstacles is fixed
throughout a test. Fitness was given by

F = 2 ∗ c21 − (x2 + y2).

where (x,y) is the final location of the robot and c1 is the length of the sides of the arena. After 350 generations,
the best controller was transferred into a lego robot dubbed ”Amsterdam”. This robot was equipped with 2
photosensors and a forward tactile sensor. The real arena was an 8 feet square with wooden walls and 1 foot
obstacles. 5 tests were performed for each of 3 configurations of obstacles. In all cases the robot successfully
reached the light source.

[Capi and Doya, 2005] uses the Cyber Rodent robot. The task is to visit sites for food, water and nests
in sequence. The locations of food and water are swapped twice during the run, at 1/3 and 2/3 of the total
evaluation time. This requires the robot to have some memory. The controller is a locally connected neural
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network with memory nodes. The memory nodes have self-excitation and lateral inhibition connections. The
fitness is only updated when the robot arrives at a landmark.

∆F =

{
+1 if the landmark is the next in the sequence
−1 otherwise

The controllers evolved in simulation were transferred to a real Cyber Rodent.
In [Togelius and Lucas, 2006], standard RC cars were evolved to race in eight simulated tracks. The tracks

were delimited by walls, and the cars were outfitted with distance sensors. The angle to the next waypoint was
also sent to the neural controllers. In one experimental setup, controllers were trained on all tracks at once and
in another, they were trained incrementally from easy to harder tracks. The effect of evolvable sensor angle
and position was also investigated. The resulting controllers could competently navigate the tracks they were
evolved on, although they performed poorly on the other tracks.

In [Peniak et al., 2009] a simulated approximation of the Mars Rover (a 6 wheeled robot, approximately
290x270x220 cm, with 18 IR sensors) had to move and avoid obstacles in an unknown rough terrain. It was
controlled by a fully connected feed forward neural network with no hidden layers. Training took place on three
terrains. The first terrain was 60x60 meters, with inclining and declining slopes, holes, flat and rough terrain
and small and large obstacles. The second terrain had the same obstacles as the first, but with all rough terrain.
The third terrain had more obstacles than the first.

f =
St ∗ Sp

S ∗ T

where T is the number of trials and S is the number of timesteps in a trial. Sp maps speed to [0,1], where 1
is maximum speed and 0 is no movement or backwards movement. St maps steering angle to [0,1], where 1 is
straight forward and 0 is an absolute angle of 30 degrees or more. To evaluate the degree of exploration, the
terrains were subdivided into 3x3m squares, with the measure being the fraction of passable terrain visited by
the robot. Exploration test function:

E =
Svisited

Stotal − Sobstacles

Where S is the number of squares. Each controller was evaluated for 10,000 timesteps for 100 random starting
positions on all three terrains.

Neural network controllers for Micro Unmanned Aerial Vehicles (MAV) were evolved in [Ruini and Cangelosi, 2009].
The authors used a combination of Multi-Agent Systems and Evolutionary Robotics. The MAVs are airplane-
like, this means that course adjustments have strict time requirements compared to hovering helicopters. The
task is goal homing and obstacle avoidance in simulated 2d and 3d environments. The 2d arena is a map of
canary wharf, where the tallest buildings act as obstacles. The robots have to locate a target and detonate
while nearby. A robot is ’destroyed’ when it detonates, collides with a building or another UAV, runs out of
energy or leaves a predefined area. A MAV moves at a fixed speed of 3 Graphical units (GU) per timestep, in
the direction it is facing. The first task was to search and destroy a stationary target. It is assumed that the
MAVs know the location of the target (for example by satelite tracking). MAVs work in teams of 4. Four trials
are performed. The corresponding fitness function was:

F = −α+ (β/50) + (σ ∗ 50) + (ε ∗ 10)

Where α is the average distance between the target and the MAV that detoned closest to it. β is the average
amount of energy for the MAV that detonated closest to the target. σ is the number of tests that ended in
success (target was destroyed) ε is the total number of MAVs still alive after the four tests. A harder task
involves a target that actively moves away from the MAVs. The authors experimented with various escape
speeds, expressed as a fraction of the MAVs speed. Speeds above 1/3 led to decreased fitness, compared to
the stationary target. The next setup made the target require several hits. The MAVs now got additional
information about the status of the target (damaged/undamaged) and whether or not another MAV was within
30 pixels.

F = (γ ∗ c
4

) + (η ∗ c
2

) + (λ ∗ c) + (ε ∗ 10) + (
β

50
)

Where γ is the number of tests where a MAV detonated within 64 px from the target. η is the number of tests
where at least one MAV damaged the target. λ is the number of tests completed successfully (target destroyed).
ε is the number of MAVs still alive after the four tests, β is the average amount of energy retained by the MAVs
that eventually detonated near the target and c is a constant. Finally, the model was extended to 3d simulation,
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which adds two more degrees of freedom to the MAV’s. The environment is now a cuboid, 1000x750x650 GU
(graphical units) in size. The obstacles were removed, but a MAV that leaves the area is considered ’lost’.

F = −α+ β

α is the average distance of the MAV that detonated closest to the target and β is the average amount of energy
left for the MAV that detonated closest.

[Hartland et al., 2009] compares the performance of Multi Layer Perceptrons and Echo State Networks.
Simulated evolution using Khepera II robots with 8 proximity IR sensors. The task is known as the Tolman
maze, the robot needs to reach the endpoint of the third branch. In absence of rich sensors, efficiently performing
this task requires memory. One fitness function with a large amount of apriori information:

F(−) = (mint=1..T ||x(t)− z∗||2 + 1) ∗ (mint=1..T ||x(t)− x∗||2)

where x(t) is the location of the robot at time t, x∗ is the goal location and z∗ is the location of the entry point
of the third branch. Another fitness function with less apriori information:

F(−) = mint=1..T ||x(t)− x∗||2

This function has a local minimum at the end of the second branch.
In [Moioli et al., 2010], the robot is located at the bottom of the arena facing upward and can only move

horizontally. In their first experiment, objects are created at the top, moving downwards, the robot needs to
move towards circles and avoid squares. A run consists of 20 trials. The task of the second experiment is the
same as the first, with the addition of 20 trials with inverted input. The controller, a network of oscillators,
gets input from 7 ray sensors, which are distributed with equal angles to give a 60 degree upward view angle.
Performed in simulation only.

3.3 Object Manipulation

A Khepera robot with neural network controller was evolved for peg collection and goal homing in [Nolfi and Parisi, 1995].
The arena was a 60x35 cm rectangle, surrounded by walls. The object to be retrieved was a 3 cm high cardboard
cylinder, covered in white paper. The robot had to avoid the walls until it had picked up the peg, then deposit
the peg outside the arena.

[Schultz et al., 1996] A controller for a shepherd robot is evolved. The shepherd robot has to lead a sheep
robot (with fixed controller) to a goal location without colliding with any obstacles. The shepherd controller is
a collection of stimulus-response rules, using the SAMUEL rule learning system.

In [po Lee et al., 1997] a Khepera robot with infra red and ambient light sensors was trained to push a box
towards a goal, indicated by a light source. The arena consisted of the box and the lightsource, with no further
obstacles. The controllers were Genetic Programs, the island model was used to maintain diversity.

In [Pok and Keung, 1999] a GP controller was evolved for a small wheeled robot with two arms and two
forward eyes. The robot had to push a stationary object out of an otherwise empty area, 42x65cm in size. The
experiments were run for objects of various shapes and weights.

In [Sprinkhuizen-kuyper et al., 2000], a neural network controller for a Khepera robot with IR sensors was
evolved in simulation. The neural network was a fully connected single layer perceptron. The task involved
pushing a circular box to a light area, in a square arena with two walls as extra obstacles. The authors inves-
tigated two different viewpoints on fitness assessment. Global versus local is the difference between calculating
the fitness after the run and integrating at each timestep. Internal versus external relates to the source of infor-
mation, which can be internal (only using information available to the robot through its sensors), or external
(for example from a bird-eye camera). The combinations gave rise to four fitness functions:

Global external (GE)

F = d(BT , B0)− 1

2
d(BT , RT )

Local external (LE)

f = d(Bt, Bt−1) +
1

2
[d(Bt−1, Rt−1)− d(Bt, Rt)]

Global internal (GI)

F =
1

2× 1024
(Sd2 + Sd3) + (1− 1

4× 500

4∑
i=1

sphotoi)
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Local internal (LI)

f =
1

2× 1024
(sd2 + sd3) +

1

2× 20
(M [L] +M [R])− 1

3× 20
|M [L]−M [R]|

Out of those four fitness functions, GE functioned the best. The evolved controllers from that fitness function
successfully transferred to a real Khepera.

The authors of [Kamio and Iba, 2005] integrated Genetic Programming and Reinforcement Learning. First
the Genetic Programs were evolved in simulation for a box-pushing task. The GP used terms like move-forward
from an action set. After simulation, the best controller was transferred to a real robot. The effects of these
actions were tweaked in the real robots using Q-learning. The experiments were performed using an Aibo and
a HAOP-1 as physical robots.

A neural network controller for a quadruped robot with a front gripper is evolved in simulation in [Bongard, 2008].
The robot needs to move towards an object and place that object on its back.

F =

{
maxtk=1sleftclawtip(k) ∗ srightclawtip(k) if both claws never touched the object simultaneously

1 +maxtk=1sbacksensor(k) otherwise

where scomponent(k) is the activation of the distance sensor (closer is higher) at time k.
While the controller is successful, the distance between object and starting position is increased.
[Mouret and Doncieux, 2009] used an electric circuit with lights and buttons that turn additional lights on,

training a robot to turn a specific light on.

F (x) = minn=1,2,3(−φ(n, i)

T
)

where φ(n, i) is the time needed to switch on the target light in experiment n and T is the duration of an
experiment. [Mouret and Doncieux, 2008] explores the same task, but using this fitness function for each light,
using multi-objective optimisation.

3.4 Cooperative and competitive tasks

[Ciesielski et al., 2002] used strongly typed genetic programming to evolve controllers for robot soccer. Each
team consists of 11 players sharing the same controller. The first experiment only used low-level functions (kick,
turn, dash). The teams of each generation competed in an elimination tournament, where fitness depended on
the round in which the team was eliminated. Most individuals from experiment 1 failed to score any goals or even
kick a ball. The second experiment replaced the set of non-terminals by higher-level functions (kickTo, turnTo,
moveTo). Fitness was a weighted sum of goals scored and kicks made. The best controllers of experiment 2
were able to play a basic game of soccer, though they tended to all move towards the ball, resulting in ’ball
smothering’. Experiment 3 added more low-level functions and terminals to the set from experiment 1. This
commonly resulted in behaviour where robots would circle the ball and kick it in a random direction, allowing
it to score goals but scoring own goals as well.

[Quinn et al., 2002] A group of 3 robots had to move some distance away from the starting point, avoid
collisions and stay in sensor range of each other (move in formation). Wheeled robots, outfitted with 2 front
and 2 back IR sensor/emitters. All three robots used the same artificial network controller.

F = P ∗
T∑

t=1

f(dt, Dt−1) ∗ (1 + tanh(st/20))

Where P is a term in [0.5, 1] penalising collisions, P = 1−c/2cmax with c the number of collisions during this
trial and cmax the maximum (20). A function to reward distance, f(dt, Dt−1) = max(min(dt, Dmax)−Dt−1, 0),
with Dmax the desired distance from the starting point, dt the distance at time t and Dt−1 the greatest distance
obtained before time t.

Evolved in simulation, transferred to real robots.
[Trianni and Dorigo, 2006] used a group of s-bots for movement in a straight line, avoiding holes in the

environment. The robots were outfitted with ground sensors and traction sensors. For the setups with signalling,
a microphone and loudspeakers were added. Because the ground sensors were positioned below the robot, an
individual robot could not detect a hole without falling in, so this task required cooperation. A single neural
network controller was evolved that was used in all robots. Three setups were tested, one without signalling,
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one with handwritten signalling and one with evolved signalling. The setup with evolved signalling performed
significantly better than the other two.

For each s-bot s belong to the swarm-bot S the fitness at cycle t is computed.

fs(t) = ωs(t) ∗∆ωs(t) ∗ γs(t)

where ωs(t) is a term evaluating fast motion:

ωs(t) = (|ωs, l(t)|+ |ωs, r(t)|)/(2 ∗ ωM )

where ωs,l(t) and ωs,r(t) are the angular velocities of the left and right wheel of s-bot s at cycle t, and ωM is
the maximum attainable angular velocity. where ∆ωs(t) is a term evaluating straightness of movement:

∆ωs(t) =

{
1−

√
(|ωs, l(t)− ωs, r(t)|/ωM ) if ωs,l(t) ∗ ωs,r(t) >= 0

0 otherwise

and where γs(t) accounts for coordination and hole avoidance: γs(t) = 1−max(Fs(t), Gs(t), Ss(t)) where Fs(t)
is the intensity of the traction force perceived by bot s at time t, Gs(t) is the maximum activation of the ground
sensors and Ss(t) is a binary value denoting whether or not bot s was emitting a tone at time t. The fitness of

the trial is given by: F = 1/T
∑T

t=1 mins fs(t), or 0 if fallen.
[Nelson and Grant, 2007] made two robots play games of Capture the Flag against each other. This task

requires them to be able to efficiently navigate in an environment. The fitness function had two modes: the
bootstrap mode to overcome the problem of subminimality, and the aggregate mode that was based on the
outcome of the matches.

F = Fmode 1XOR Fmode 2,

where XOR is an operator that returns Fmode 2 if Fmode 2 is above zero and Fmode 1 otherwise.

Fmode 1 = Fdist − stuck −m

where Fdist is proportional to the difference of the distance d travelled by the robot and half the size of the
biggest dimension of the training environment D. stuck and m are constants that penalise getting stuck and
producing output that exceeds the range of the actuators respectively. Each robot of the current generation
played 2 matches against a robot from the previous generation.

Fmode 2 = 1.5 ∗ wins− 0.5 ∗ draws− 1 ∗ losses.

The authors report that the evolved controllers performed comparable to a knowledge based handcoded con-
troller.

In [Baldassarre et al., 2007], a group of 4 s-bots with identical neural controllers was evolved for coordinated
movement. The s-bots started connected to eachother in a linear shape, but with a randomised direction of
their chassis. To perform well at the task they needed to align their individual direction and move their center
of mass away from the starting point. Evolved in simulation and tested extensively both in simulation and in
real robots. These tests included moving on rough terrain, increasing the number of robots, changing shape of
the swarm-bot and linking the s-bots to a passive object. The controller performed successfully in all setups,
even though it was not evolved explicitely for these situations. The authors also note the complexity of the
group behaviour, despite the simplicity of the single-layered neural controller.

In [Groβ and Dorigo, 2008], controllers for s-bots were evolved in simulation to push an object weighing 250
or 500 grams. Each individual in the group used the same neural network controller. Fitness was calculated
by the distance between the final position of the object and its starting position. The 500 gram object was too
heavy to be moved by a single robot. While the robots did not have sensors to detect each other directly, they
still managed to coordinate by measuring the forces applied on the object. This resulted in behaviour where
robots glided along the edge of the object until the pushing directions were more or less aligned.

[Froese and Di Paolo, 2008] simulated two robots that can only move horizontally. They are 40 units wide
with an on/off sensor in the middle, which triggers when their centers are less than 20 units apart. Both robots
use the same fully connected neural network controller with self connected links. At the beginning of each run,
random relative starting positions are given to the robots. The task is to move as far as possible while keeping
sight of the other. Because the robots face each other and use the same controller this task is non-trivial,
requiring coordination.
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[Tuci et al., 2008] trained two s-bots to connect to each other using a gripper, while minimising collisions
between the two.

Fe = Ae ∗ Ce ∗ Se

with

Ae =

{
1.0/(1.0 + atan(drr−16

16 )) if drr > 16 cm
1.0 otherwise

where drr is the distance between bots.

Ce =

 1.0 if nc = 0
0.0 if nc > 20

1.0/(0.5 +
√
nc) otherwise

nc = the number of collisions recorded during training.

Se =

{
100.0 if GG(T ) = 1.0, for any robot

1.0 + 29.0 ∗ sumT
t=0K(t)/T otherwise

K(t) = 1 if the sensor GS of any bot is active at time t, 0 otherwise. The fitness is the average over 40 runs
with random initial orientations.

In [Bell et al., 2009], robots were coevolved in simulation to communicate with each other. A seeing robot
leads a blind robot to a light. The robot gains a point if it moves nearer to the light, and loses one if it moves
away. If the robot reaches the light, the light is moved to a random location and the robot gains 1000 points.
A trial lasted for 200 time steps. Both robots used neural network controllers, with NEAT as evolutionary
algorithm.

3.5 Implicit

In recent years, much research has been devoted to implicit fitness functions. One of the projects that focus
on autonomous, localized evolution and implicit pressure in robot swarms is SYMBRION [Baele et al., 2009].
With implicit fitness, the inherent task could be considered to be survival and reproduction. Despite the
absence of an explicit fitness function, it is still possible to evolve controllers for specific tasks. An example is
[Bird et al., 2008], where a robot gains energy by drawing lines over food circles on the floor (invisible to the
robot). Here energy essentially corresponds to accumulated fitness.

4 Conclusions

I have given an overview of the common tasks in ER. For added structure, I have proposed to divide them into
fundamental categories: movement, homing and object manipulation. I have still only touched a fraction of
all published works in ER, but for this section I will assume that my sample is at least representative of the
complete body of work.

In most of the literature, controllers were evolved successfully. This typically happened in 20 - 300 gener-
ations, although some runs took thousands of generations. Sometimes performance of the evolved controllers
was compared to that of a hand-crafted controller. When evolving in a physical robot, population sizes were
kept small (below 100), due to time constraints. Many researchers use a single physical robot, evaluating one
controller at a time. The speed benefits of simulation allow for larger population sizes. The cost of computing
power has continued to decrease in the past decades. Recently, the focus has moved away from increasing
clockspeeds, and towards increasing the number of processors. Since simulation lends itself to parallelisation
quite well, it is expected that the speed benefits of simulation will continue to increase. Embodied evolution
also benefits, with the increasing speed allowing richer sensor input and more complex controllers.

4.1 Tasks

Research in locomotion tasks was very common. This may be because it is the most basic task for a mobile
robot to perform and a requirement for the more complex tasks. Locomotion is almost always combined with
obstacle avoidance. The rarity of locomotion for winged robots can be explained by a lack of winged robotics
platforms, as well as the computational cost of simulating flight. To minimise the risk of damage from crashes,
embodied flight evolution has always taken place in a carefully constructed setup.
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Category Task Popularity

Movement

Locomotion Very common
Gait Evolution Common

Flight Rare
Path following Rare
Wall following Common

Homing

Goal Homing Common
Object Homing Common

Phototaxis Common
Inverse Kinematics Rare

Object Manipulation
Object Pushing Common

Gathering Rare
Herding Rare

Table 1: Relative popularity of tasks

Homing is another fundamental aspect of robotics. In order to perform useful work, robots need to be able
to find and navigate towards objects and areas of interest. In most literature, a target area is indicated using
light or sound. Sometimes homing is towards an object instead. The arena can contain multiple objects, some of
which need to be avoided and others homed in on. This requires the robot to evolve the ability to discriminate
between objects. Objects may differ in shape [Moioli et al., 2010], though the number of shapes is typically
restricted to two.

Manipulating objects is an essential part of many real-world tasks. In the literature, the mode of interaction
is typically restricted to pushing an object, while a few robots are equipped with a gripper that can grab and/or
lift the object. Destinations for the object have included ’away from the start location’, ’outside the arena’, or
’into a lighted area’. Herding can be seen as object manipulation with an active object, normally another robot
with a fixed controller.

For evolutionary robotics to advance beyond ’toy tasks’, researchers should seek new challenges to overcome.
Current experiments often take place in a simplified environment. While this does not prevent the emergence
of robust controllers [Baldassarre et al., 2007], it could be worthwhile to position experiments in more realistic
settings. I think ER is at a stage where more practical applications can be investigated. For example, I think
that controllers can be successfully evolved for a task like litter collection, which is an extension of foraging
with objects of varying shapes and sizes.

4.2 Robots

One thing to note is that in most of the research the morphology of the robot is fixed. There is evidence that
having the morphology change can improve the quality of the controllers, as well as the speed of evolution.
[Bongard, 2011]. A wide variety of sensors are used. Some robots are equipped with cameras, but the rich input
from the camera is usually preprocessed before it is passed to the controller. This preprocessing step reduces
the dimensionality of the input and thus the search space. The parameters for the method of preprocessing can
be encoded in the genome. The choice of sensors also influences the difficulty of a task. With low bandwidth
sensors, controllers may need to rely on memory and integrating information over time. The s-bot is a popular
platform for multi-robot research. It has been used in several experiments involving coordinated movement and
using its ability to physically connect to other s-bots.

4.3 Controllers

More than half of the discussed literature from the last decade used some form of neural network as controller.
The popularity of neural controllers can be ascribed to their robustness to noise and expressiveness. Neural
nets, unlike for example gait parameters, also have the benefit of being applicable to many different tasks. With
the use of algorithms like NEAT, controllers can be evolved with the right amount of complexity for a given
task, leading to a succesful controller for capture the flag [Nelson and Grant, 2007] with 100 neurons and some
5000 connections. Most successful neural controllers are much simpler though, using less than 15 hidden nodes.
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