
Faculty of Science
De Boelelaan 1081

1081 HV Amsterdam

Research Paper Business Analytics

Function Discovery in Queuing Models
with Genetic Programming

Author:
Dino Špirtović

Supervisor:
Dr. René Bekker

October 2017

Abstract

Many queueing models exist in practice that are not solvable analytically. While some research has
been carried out to approximate functions in queuing theory, only a few studies have investigated a
machine learning approach. The objective of this paper was to explore the possibility of discovering
performance functions for queueing models with genetic programming, which is a machine learning
technique from the field of evolutionary computing. This was done by sampling training and test
data for models for which the functions are known, namely the Erlang C and Engset delay model.
The discovered functions were compared to the analytical functions and their performance was
tested in an optimization context. The main finding was that GP was able find useful functions
for the considered models. Because the functions are simple approximations of the underlying
function, it is important to expose their flaws before applying them in practice. Another important
finding was that GP was able to discover these functions with relatively little training data.

Research Paper BA iii

Contents

Contents v

1 Introduction 1

1.1 Research Goal . 1

1.2 Related Work . 2

1.3 Paper outline . 2

2 Methods 3

2.1 Genetic Programming . 3

2.2 Function Discovery . 6

3 Experimental Results 9

3.1 Input & settings . 9

3.2 Discovered functions . 11

3.3 Error analysis . 12

3.4 Practical application . 15

4 Discussion 17

Bibliography 19

Appendix 21

A Queueing formulas 21

Research Paper BA v

Chapter 1

Introduction

1.1 Research Goal

Everyday we encounter various queues. From simple queues at the supermarket to complex queuing
networks we are less aware of. To keep the customers satisfied and the service running smoothly,
service providers need to adapt to the arrival stream of customers. For example, to reduce the
waiting time one can increase the number of servers or improve service speed of existing servers.
To do this efficiently one needs to predict the impact of these changes on the waiting time.

The field of Queueing Theory has been successful in analytically deriving performance functions,
e.g the expected queue length or the expected waiting time function, for various queuing models.
These functions provide us with insights and can be used for optimization purposes. However,
many queueing models exist in practice that are not solvable analytically. This means that one
has to rely on simulation to obtain performance measures, which is often time consuming and
provides little insight.

While some research has been carried out to approximate functions for queuing models, only a few
studies have investigated a machine learning approach. Genetic Programming (GP) is a machine
learning technique that is also part of the Evolutionary Algorithm (EA) family and is generally
applied to discover algebraic functions fitting some training data.

The aim of this study is to explore the possibility of discovering functions for queueing models with
GP. More specifically, this research focuses on finding algebraic approximations of the expected
waiting time and average number of customers in the system for respectively the Erlang C and
the Engset delay model. Because this study is the first to attempt a GP approach to discover
performance functions for queueing models, we focus on models for which these functions are
already known. This way we can compare the discovered function with the analytical functions.
Furthermore, we explore how various training sets and GP parameters influence the goodness of
fit of the discovered functions and what the impact is on capacity decisions.

Research Paper BA 1

CHAPTER 1. INTRODUCTION

1.2 Related Work

There is little literature involving a combination of EAs and Queuing Theory. The literature that
does combine these two fields of study usually focuses on finding the optimal policy in Markov
Decision Processes (MDPs). MDPs are an extension of Markov chains that include decision
making. A study that combines EAs and MDPs is [1]. The authors of [1] compare an EA
approach to a common Dynamic Programming (DP) approach and conclude that DPs policy
iteration algorithm outperforms the EA because of its quick convergence. However, policy iteration
can not be applied when dealing with very large MDPs while the EA approach can.

Recent research by Onderwater et al. [5] introduces a method, that is based on GP, to discover
algebraic descriptions of value functions for basic MDPs. Furthermore, to demonstrate the applic-
ability of this method, the authors obtain near-optimal policies via one-step policy improvement
using the discovered value functions. Our research is similar to [5] since we also use GP to discover
functions. However, our research is focused on finding performance functions for queuing models
instead of value functions for MDPs.

An introduction to EAs, including GP, can be found in the textbook ”Introduction to Evolutionary
Computing” [3]. More details on queuing models, Markov chains and MDPs can be found in books
such as [4] and [2].

1.3 Paper outline

In section 2.1, the reader is provided with relevant knowledge of GP. The function discovery
process is described in section 2.2. Finally, results are presented and discussed in sections 3 and
4 respectively.

2 Research Paper BA

Chapter 2

Methods

2.1 Genetic Programming

As mentioned in the introduction, genetic programming is part of the evolutionary algorithm
family. While other EAs are generally used to find the best input for some known model, GP is
used to find the best fitting model for some in- and output data. The search procedure is the same
as any other EA. The procedure starts with a initial population of randomly generated individuals.
These individuals each represent a candidate solution. After the initial population is generated,
the algorithm starts the (evolutionary) search for the best solution by evaluating the fitness of each
individual with a given fitness function. Based on the computed fitness of each individual, the
parent selection mechanism selects individuals from the population to generate offspring for the
next generation. The offspring is created by applying so-called variation operators to the selected
parents. Finally, the survival selection mechanism decides which individuals from the parent and
offspring pool survive to populate the next generation. This (evolutionary) process is repeated for
multiple generations until a satisfactory solution is found. The various steps of this evolutionary
search process are further elaborated on in subsection 2.1.1 through 2.1.6.

(a) /

/

a µ

·

·©

s s

−

s a

(b) /

+©

1 ·

a a

·

2 µ

(c) /

/

a µ

·

+©

1 ·

a a

−

s a

(d) /

·

3 a

·

·

s s

−

s a

Figure 2.1: Illustration of the recombination and mutation operators. Recombination: red sub-
trees from (a) and (b) are exchanged to generate (c). Mutation: tree (d) is obtained by replacing
the blue sub-tree from (a) with a randomly generated sub-tree 3 · a.

2.1.1 Individual representation

In GP, the individuals are represented as parse trees with the following specification: the inner
nodes of the tree may only contain elements from the user defined function set and the leaves of the

Research Paper BA 3

CHAPTER 2. METHODS

tree may only contain elements from the user defined terminal set. In this paper the individuals
represent arithmetic functions.

Consider figure 2.1a as an example. The function set contains simple arithmetic operators (+,−, ·, /)
while the terminal set consists of relevant variables (s, a, µ) and constants (1, 2, 3). Collapsing the
tree will result in a valid function for the Erlang C model. This is done by starting at the leaves.
Leaves are connected to an inner node. In the example, the leaves a and µ are connected to an
inner node that contains the divide operator. Collapsing this sub-tree results in the left leave
being divided by the right one (a/µ). The same is done for the other leaves of the tree, s · s = s2

and s − a. The sub-trees of s2 and s − a are connected to the inner node representing the times
(·) operator. Collapsing the three further leaves us with a/µ connected with a divide operator to

s2(s − a). The final collapse of sub-trees results in a/µ
s2(s−a) . This is the arithmetic function the

tree represents.

2.1.2 Variation operators

There are two variation operators in GP, namely recombination and mutation. Whenever new
offspring is created one of the two operators is chosen to generate offspring with some probability
p and the other with probability (1 − p). Although various ways exist to preform recombination
or mutation, only those relevant to this study will be described here.

Recombination randomly chooses an inner node from the parent trees, see figure 2.1 trees (a)
and (b). The chosen sub-trees (indicated in red) are then exchanged to create offspring (c). The
generated offspring contains characteristics from both parents after recombination. Mutation on
the other hand generates offspring by slightly changing a single individual. Specifically, this is
done by selecting an inner node of an individual and replacing the sub-tree (indicated in blue)
with a small randomly generated sub-tree. Therefore, mutation adds new characteristics to the
population helping the algorithm to move out of local optima.

2.1.3 Parent selection

Unlike representation and variation operators, the parent and survival selection mechanisms are
not specific to GP. A commonly used method for parent selection in GP is the so called tournament
selection. This method randomly draws a number of individuals from the current population and
lets them compete in a ”tournament” based on their fitness. The winner of the tournament is
then chosen to be a parent. Another method is called roulette selection. This method first assigns
a portion of the virtual roulette wheel to all the individuals based on their relative fitness. The
parents are then randomly picked by spinning this virtual roulette. If more than one parent is
needed for reproduction, the individuals already chosen for recombination are excluded from the
roulette or tournament selection when the next parent needs to be picked.

The main idea of EAs is related to the evolutionary process in nature, namely that fit parents are
likely to generate fitter offspring over time. This is reflected in the parent selection mechanism
because fit individuals have a higher likelihood of being picked as parents in both the tournament
and roulette selection. To keep the population diverse, less fit individuals also have a chance of
being picked. Keeping the population diverse is important because the algorithm might get stuck
in a local optimum otherwise.

2.1.4 Fitness function

The fitness of an individual is determined by how well the function fits the training set (of size
k). Less error means higher fitness. One can choose to use any error measure and GP will

4 Research Paper BA

CHAPTER 2. METHODS

seek to minimize the chosen objective. Relevant for this study are the following error measures:
Sum of Absolute Deviation (SAD), Maximum Relative Deviation (MRD) and Maximum Absolute
Deviation (MAD). Define ỹi as the approximated output and yi as the exact output for input
combination i, then SAD and MRD are calculated as follow:

SAD =
k∑
i=1

|ỹi − yi| MRD = max
i

ỹi − yi
yi

MAD = max
i
|ỹi − yi|

2.1.5 Survival selection

The survival selection mechanism is generally straightforward. One can choose to replace the
population entirely by a new one. Or one can choose to keep a number of the fittest individuals
and replace the rest, also known as the elitist approach. Note that according to [3], the convention
for GP is to use the former method.

2.1.6 Bloat

During a GP run the tree sizes of the individuals randomly change because of the variation
operators. Bloat is the name of a common problem in GP, namely that the average tree size tends
to grow during a run. It is still unknown why bloat occurs, but there are many ways to counter
it. A simple method would be to reject any individual that exceeds a certain tree size at creation.
An extension of this method is to dynamically increase the maximum tree size only if the resulting
tree has a better fitness than the fittest one found so far.

Research Paper BA 5

CHAPTER 2. METHODS

2.2 Function Discovery

For this research the matrix-based programming environment MATLAB was used together with
a Genetic Programming toolbox called GPLAB. The toolbox contains most of GPs core features
described in the previous section. Moreover, GPLAB can be extended by the user and contains
some useful features. Two important features used during this study are online adaptation of
operator probabilities and dynamic three depth. The former speeds up the discovery process and
the latter helps control bloat. For more details regarding GPLAB, we refer to the GPLAB user
manual.

2.2.1 Queueing notation

Before we describe our research method in more detail, we introduce some (queueing) notation.
The M/M/1, Erlang C and Engset model are considered during this study. The M/M/1 queue has
a single server and one type of customer. The customers arrive according to a Poisson process with
intensity λ. The service times are exponentially distributed with an expected service time equal
to 1/µ. The M/M/s (or Erlang C) model is an extension of the M/M/1 queue with s identical
servers, each with service rate equal to µ. The offered load is defined by a = λ/µ and the load per
server by ρ = a/s for both models. The stability condition requires that ρ < 1. If this condition
does not hold, the queue length (Lq) would only increase over time and the expected waiting time
(EWq) would rise to infinity. The M/M/s/n/n (or Engset delay) model is a closed network with a
population of n customers. Each of the n customers arrive for service with intensity λ and can be
serviced by any of the s servers with service rate µ. After receiving service they can produce new
service requests. Note that it only makes sense to study this model when s < n. Otherwise there
would always be an available server for every arriving customer and therefore no queue and zero
waiting time. The analytic expressions of the functions for the models discussed in this section
can be found in Appendix A.

2.2.2 Experiments

The first step in our research was to find a data set that enables the GP algorithm to discover
robust functions for the considered queueing models. This was done by sampling multiple data sets
(for each considered queueing model) and running GP experiments to determine which sets work
best. The GP experiments were performed according to machine learning convention. Therefore, a
training set was used for function discovery and a different test set was used for error analysis. This
is a common practice in machine learning applied to detect and prevent ”overfitting”. Overfitting
is a machine learning term that describes the model adapting too much to the training data and
missing the general pattern.

The data sampling procedure is described in more detail in subsection 2.2.3. Furthermore, each
GP experiment was carried out multiple times for different seeds of the random number generator
to eliminate (un)lucky runs. Note that various GP settings were explored during the function
discovery process. The explored GP settings are given in table 2.1.

The next step in our research was to discover how GP performs with less training data. This
was done by sampling new smaller training sets and running new GP experiments to determine if
its still able to discover ”good” functions. The reduction of the training set was repeated until a
drastic drop in performance of the discovered function was observed.

The final step of this study consisted of applying the discovered functions in an optimization
context. More precisely, we tested how the function performs when one is interested in finding the
minimum number of servers necessary to maintain an average waiting time or average number of

6 Research Paper BA

CHAPTER 2. METHODS

Table 2.1: Explored GP settings

Setting Explored values
generations (10, 15, 20, 25, 30)
population size (500, 1000, 1500, 2000)
operator prob (even,variable)
terminal set (ρ, a, λ, µ, s, n)
function set (plus,minus,times,divide,power,exp)
fitness (SAD, MRD, MAD)
parent selection (tournament, roulette)
survival selection (replace, elitism)

customers in the system below a certain threshold.

2.2.3 Data sampling

Training sets were sampled in the following way:

1. Define value range for each N model parameter

2. For each parameter linearly sample Mi points from defined interval (i = 1, · · · , N)

3. Combine parameter sample points into L =
∏N

1 Mi combinations

4. Remove invalid combinations from the set

5. Get response values for the remaining combinations

At step two a choice was made to linearly sample over the parameters space. This choice is based
on some knowledge of the considered queuing models. Namely, one could expect the functions (of
all the considered models) to be monotonic. Step two can be generalized in the following way:
Sample Mi parameter points from the interval that captures the shape of the response value.
At step four parameter combinations are considered invalid if they do not satisfy some model
restriction. For example, consider the M/M/s queue with a = 20 and s = 15, then the stability
condition (a/s < 1) is not satisfied and the combination is removed from the set. At the final step
(five) one can use various methods to obtain the response values, e.g simulation. The queueing
functions from which the response values were obtained for this research can be found in Appendix
A of this paper.

A common method to generate test data is to sample a certain percentage from the training data.
Because we could obtain the response variable easily for any parameter combination from the
exact functions, we sampled a new and larger set to use as a test set. To be more precise, we
defined a broader value range for each parameter at step one and sampled more points at step
two. Having many samples for the test set allowed us to perform better error analysis. The error
analysis is described in more details in section 3.3.

Research Paper BA 7

Chapter 3

Experimental Results

3.1 Input & settings

As mentioned previously, various training sets and algorithm settings were used during this study.
In this section we present our findings regarding GP training data and settings.

GP settings that proved to work well during the discovery for all the considered models are
presented in table 3.1. We found that keeping the terminal and function set simple resulted in
GP discovering more robust and less complex functions. Moreover, the setting that influenced the
evolutionary search process the most was the fitness function. The MRD was used for the Engset
model, while the SAD was used for the Erlang model. This choice is further elaborated on in
section 3.3.

Table 3.1: ”good” GP settings

Setting Value
generations (15− 25)
population size (1000− 1500)
operator prob (variable)
terminal set (’model parameters’)
function set (plus,minus,times,divide)
parent selection (tournament)
survival selection (replace)

Table 3.2 contains the training set that GP needed to discover functions presented in 3.2. One
can see that more training data was needed for the Engset delay model. This is probably due to
the higher dimension of the function, one needs more samples to capture the shape.

Research Paper BA 9

CHAPTER 3. EXPERIMENTAL RESULTS

Table 3.2: Train and test set per queuing model

Training Test
Parameter Interval Samples Interval Samples

M/M/1
ρ (0, 1) 5 x x
µ (0, 5] 5 x x

M/M/s
a (0, 10] 5 (0, 20] 20
µ [1, 5] 2 (0, 10] 20
s [2, 10] 3 [1, 20] 20

M/M/s/n/n

a [1, 5] 3 [1, 8] 10
µ [0.5, 2] 3 [1, 4] 10
s [1, 100] 12 [6, 100] 32
n [2, 112] 12 [8, 100] 24

10 Research Paper BA

CHAPTER 3. EXPERIMENTAL RESULTS

3.2 Discovered functions

In this section the best function discovered during this study are presented and compared to the
analytical formulas from appendix A.

3.2.1 M/M/1

w̃q(ρ, µ) =
ρ

µ(1− ρ)
where ρ < 1

The M/M/1 queue has a simple two dimensional shape therefore GP was able to discover a func-
tion which is exactly the same as the analytically derived function A.1.

3.2.2 M/M/s

w̃q(ρ, µ, s) =
ρ

s2µ(1− ρ)
where ρ = a/s < 1

=
a/s2

sµ− aµ

The discovered waiting time function for the M/M/s queue looks like an extension of the M/M/1
function, extended by s2 in the denominator. After rewriting it, one can observe that it is similar
to equation A.2. The main difference being the numerator, where the complex expression C(s, a)
is approximated by a/s2.

3.2.3 M/M/s/n/n

l̃q(a, µ, s, n) = nµ ·

[
µ+

2µ

µ+ n
+
n+ µs(s+ 2µ)

(s+ n)(µ+ n)
+

(s+ µ)µ

a2n

]−1

No similarities can be observed between the discovered functions and A.3.

Research Paper BA 11

CHAPTER 3. EXPERIMENTAL RESULTS

3.3 Error analysis

Since GP found the exact function for the M/M/1 model, it is omitted from error analysis. The
test data used for error analysis, for the Erlang and Engset model, can be found in table 3.2.

From figure 3.1 one can observe that the discovered waiting time function for the M/M/s queue
does not perform well where ρ is smaller than 0.6. Systems with a low load have an expected
waiting time of a much smaller magnitude than systems with a medium or high load. Therefore,
GP was unable to find a (simple) function that fits both small and high loads well. This is why
SAD was used as fitness function rather than MRD. Nevertheless, one is usually interested in
analyzing systems that endure a medium or high load. One can observe from figure 3.2 that
the discovered function performs well for ρ larger than 0.6. The relative error seems normally
distributed around 0 and 99% of the test data has an error below 10%.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
MMS - Absolute error

rho

A
bs

o
lu

te
 e

rr
or

(a) Absolute error vs load per server (ρ)

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
MMS - Relative abs error (rho>0.6)

rho

R
e

la
tiv

e
 a

b
s

er
ro

r

(b) Relative error vs load per server (ρ > 0.6)

Figure 3.1: Absolute and relative error plots of the discovered function for the M/M/s queue

12 Research Paper BA

CHAPTER 3. EXPERIMENTAL RESULTS

-0.8 -0.6 -0.4 -0.2 0 0.2
0

200

400

600

800

1000

1200

1400
Error histogram, rho>0.6

rel error

fr
e

q

(a) Relative error histogram

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100
Cumulative error, rho>0.6

rel error

%

(b) Cumulative relative error distribution

Figure 3.2: Relative error distribution plots of the discovered function for the M/M/s queue where
ρ > 0.6.

Research Paper BA 13

CHAPTER 3. EXPERIMENTAL RESULTS

-1 -0.5 0 0.5 1
0

500

1000

1500

2000

2500

3000

3500
Error histogram

relative error

fr
e

q

(a) Relative error histogram

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100
Cumulative error

relative error

%

(b) Cumulative relative error distribution

Figure 3.3: Relative error distribution plots of the discovered function for the M/M/s/n/n queue

Figure 3.3 visualizes the error of the discovered function for theM/M/s/n/n queue. The histogram
shows that the approximation is an under estimate of the function we are approximating. From
the other plot (b) one can observe that 80% of the test data has an error smaller than 20%. Most
of the errors that are higher than 20% occurs when parameters s and n are close to each other.
This flaw is visualized in figure 3.4.

14 Research Paper BA

CHAPTER 3. EXPERIMENTAL RESULTS

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Fraction of tested data with error > 20%

|s-n|

fr
a

ct
io

n

Figure 3.4: Fraction of tested data with error larger than 20% vs the absolute difference between
parameters s and n

3.4 Practical application

The waiting time or queue length functions are often used to optimize the number of servers of
a system. For example, a call center might want to know the number of employees they need
during a shift to keep the expected caller waiting time below a certain threshold. Tables 3.3 and
3.4 illustrate the performance of the discovered functions when used in an optimization context.

The suggested number of servers s is calculated with the analytical function and s̃ with the
discovered function. The thresholds are given by wq and lq for the Erlang C and Engset delay
model respectively.

Table 3.3: M/M/s queue

a µ wq s s̃
40 0.1 0.1 43 43
20 0.05 0.1 27 26
3 1 0.2 5 5

Table 3.4: M/M/s/n/n queue

a µ n lq s s̃
1 1 100 70 30 32
2 0.5 150 100 102 108
1 0.1 50 30 20 19

Research Paper BA 15

Chapter 4

Discussion

The results of this study show that GP was able to discover useful approximation functions for the
considered models, which vary in complexity. However, obtaining robust approximations becomes
harder for more complex models. More model parameters require more samples to capture the
shape of the underlying function. This might form an obstacle when samples are not easily
obtained as in our case. More model parameters also increase the difficulty for GP to find a well
fitting function because of the higher dimension of the underlying function. A solution for this
could be to reduce the dimension of the model by making one or more input parameters constant.
This way one would obtain a problem specific function.

Since the underlying functions of more complex queueing models are probably no simple expres-
sions, GP is not likely to discover the exact one when using only simple arithmetic operators.
Therefore, we stress the importance of error analysis. Error analysis is not only necessary to
prevent overfitting, but also to expose flaws of the discovered function. Identifying such flaws
allows one to use the discovered function appropriately by avoiding its weaknesses. Future work
should focus on discovering approximation functions, with acceptable weaknesses, for models with
unknown performance functions.

Furthermore, our secondary aim was to obtain robust functions of minimal size/complexity so that
they might provide additional insights into the considered queueing models. However, extracting
these insights from the discovered functions is left to the reader. Note that the discovered function
for the M/M/s queue contains characteristics from the related M/M/1 queue. As suggested
by [5], a future study could include function characteristics from related models into the initial
population. Initial experiments during this study support the idea that this may speed up and
aid the function discovery process. If one is only interested in accuracy, then simplicity of the
function can be sacrificed in favor of accuracy. For example, this can be done by populating the
initial generation with larger trees or by relaxing the bloat control parameters.

Research Paper BA 17

Bibliography

[1] D. Barash. ”a genetic search in policy space for solving Markov decision processes”. Technical
report, AAAI, 1999. SS-99-07. 2

[2] S. Bhulai and G. Koole. ”Stochastic Optimization”. 2014. 2

[3] A. E. Eiben and J. E. Smith. ”Introduction to Evolutionary Computing”. Springer, 2013. 2, 5

[4] G. Koole. ”Optimization of Business Processes”. MG books, 2014. 2

[5] M. Onderwater, S. Bhulai, and R. D. v. d. Mei. ”value function discovery in Markov decision
processes with evolutionary algorithms”. 2016. 2, 17

Research Paper BA 19

Appendix A

Queueing formulas

λ := arrival rate n := customer population size

µ := service rate a := load in Erlang (λ/µ)

s := number of servers ρ := load per server (a/s)

L := number of customers in the system

WQ := time an arbitrary customer spends waiting in a queue

M/M/1

EWQ =
ρ

µ(1− ρ)
where ρ < 1 (A.1)

M/M/s

EWQ =
C(s, a)

sµ− aµ
where ρ < 1

with C(s, a) =
as

(s− 1)!(s− a)

[
s−1∑
j=0

aj

j!
+

as

(s− 1)!(s− a)

]−1 (A.2)

M/M/s/n/n

ELn−1 =
n−1∑
j=1

jπn−1(j)

with πn(j) =

(
n

j

)
ajπn(0) if 0 ≤ j ≤ s

πn(j) =
n!

(n− j)!s!sj−s
ajπn(0) if j > s

πn(0)−1 =
s∑
j=0

(
n

j

)
aj +

n∑
j=s+1

n!

(n− j)!s!sj−s
aj

(A.3)

Research Paper BA 21

	Contents
	Introduction
	Research Goal
	Related Work
	Paper outline

	Methods
	Genetic Programming
	Function Discovery

	Experimental Results
	Input & settings
	Discovered functions
	Error analysis
	Practical application

	Discussion
	Bibliography
	Appendix
	Queueing formulas

