

	
	

BMI	thesis	

Bilal Singer

Vrije Universiteit Amsterdam

29-09-2008

The Multiple Trip
Vehicle Routing Problem

 i

BMI thesis

The multi-trip vehicle routing problem

Author: Bilal Singer

Student number: 1426702

Supervised by: Marco Bijvank

Vrije Universiteit Amsterdam

29-09-2008

 ii

Preface

One of the final compulsory subjects of the master study Business Mathematics and Informatics
(BMI) is the BMI thesis. In this thesis a problem in the field of BMI is assessed using existing
literature. The subject addressed in this paper is the Multiple Trip Vehicle Routing Problem
(MTVRP). This is a variant on the standard Vehicle Routing Problem (VRP) which has been
extensively covered in literature. Although the MTVRP is a real-life problem, not a lot of
literature can be found on this subject. That is why it is interesting to give a summary of the
solutions that are available and give a basic comparison of these solutions.

In January 2007, during the Optimization of Business Processes project an algorithm to solve the
MTVRP was developed. After the completion of this project, the members wondered to what
extend their solution would match up to available solutions in literature. The algorithm
developed during that project will therefore also be discussed and compared to the other
available solutions.

Finally I would like to thank my supervisor Marco Bijvank for his encouragement and support. I
have written this thesis with pride and joy and I have learned a lot. I hope that you, the reader,
will also read this thesis with pleasure. Hopefully, I can share the acquired knowledge with you
this way.

29-09-2008

Bilal Singer

 iii

Summary

The subject addressed in this paper is the Multiple Trip Vehicle Routing Problem (MTVRP).
This is a variant on the standard Vehicle Routing problem (VRP) which has been extensively
covered in literature. Although the MTVRP is a real-life problem, not a lot of literature can be
found on this subject. That is why this subject was chosen for my BMI thesis .

The objective of this thesis is:

To research the available techniques for solving Multi-trip VRP and give a comparison of these
techniques.

A number of solution techniques are described in this thesis. These solution techniques have
different characteristics and produce different results. The conclusions that were taken are:

• Greedy algorithms work better than non-greedy when solving the MTVRP
• The Adaptive Memory Procedure of Olivera and Viera [21] produces the best results for

the MTVRP.

The goal of each of the discussed MTVRP algorithms is to minimize the total driving time of all
routes. However, in practice the total driving time is not the most important quality indicator of a
MTVRP solution. Many real-life companies are interested in minimizing the number of used
vehicles and not necessarily in minimizing the total driving time. It would therefore be better to
look at the number of used vehicles of a solution when comparing MTVRP algorithms.

The self-developed algorithm provided poor results, which was somewhat anticipated. However,
this algorithm can be used as a starting point for further research in the field of MTVRP
algorithms. The self-developed algorithm also provides a solution for incorporating a
heterogeneous fleet. This solution technique can also be used in other (MT)VRP algorithms that
want to incorporate a heterogeneous fleet.

 iv

 1

Index

Preface ... ii

Summary .. iii

Chapter 1 Introduction ...3

Chapter 2 Vehicle Routing Problems ..5

§2.1 Capacitated Vehicle Routing Problem ...6

§2.2 Other VRP variants ..6
2.2.1 Multiple Depot VRP ..6
2.2.2 Split Delivery VRP ..6
2.2.3 Period VRP ..7
2.2.4 Stochastic VRP ..7
2.2.5 VRP with Pick-up and Delivering ...7
2.2.6 VRP with Time Windows ..7
2.2.7 VRP with a Heterogeneous fleet ..7
2.2.8 Multiple Trip VRP ...8

Chapter 3 Model description and notation ...9

Chapter 4 Solution techniques ...11

§4.1 Bin-Packing assignment heuristic ..11

§4.2 Savings Procedure for Multiple Use of vehicles (SPMU) ...13
4.2.1 The SPMU algorithm ...13
4.2.2 Initial step ...13
4.2.3 Savings iteration ...14

§4.3 A Tabu Search algorithm ...16

§4.4 Variations on the Tabu Search algorithm ..19
4.4.1 Minmax procedure ...19
4.4.2 Zhao’s extension ..19
4.4.3 Adaptive Memory Procedure ...20

§4.5 Brandao & Mercers technique ...21
§4.6 Multi-Phase heuristic ...23

§4.7 Genetic Algorithms ..25

§4.8 Insertion Heuristic Approach ...28

§4.9 Route linking procedure ..29

Chapter 5 Self-developed algorithm ..32

§5.1 Part 1: initialization ..32

§5.2 Part 2: iteration ..33
5.2.1 Route combining ..33

 2

5.2.2 Savings ...33
5.2.3 Feasibility tests ...33
5.2.4 Fictitious vehicles removal ..34

§5.3 General procedure ..34

Chapter 6 Comparison of solution techniques ...36

§6.1 Numerical results ...36
6.1.1 Comparing the quality of the feasible solutions ...38

§6.2 Algorithm characteristics ...39
6.2.1 Homogeneous vs. heterogeneous ...39
6.2.2 Greedy vs. non-greedy ...39
6.2.3 Performance of the self-developed algorithm ..40

Chapter 7 Conclusion ...41

Appendix A: References ..43

Appendix B: Results ..46

Appendix C: Savings algorithm ..49

 3

Chapter 1

Introduction

In today's business world, transportation costs form a major share of the total logistics expenses
of companies. That is why many companies are giving special attention to the transportation
costs of goods in order to minimize their expenses. Decreasing transportation costs can be
achieved through better utilization of resources such as people and vehicles. Companies try to
improve their transportation by using rational manners and effective tools. Finding an improved
planning for transportation is a problem which is frequently addressed in literature. The objective
of these problems is to make a planning for the routes executed by people or vehicles, such that
the transportation cost is minimized. In literature such problems are referred to as routing
problems.

The most well-known routing problem is the Travelling Salesman Problem (TSP) [32]. In this
problem a salesman has to visit a number of cities and afterwards the salesman has to return to
the location where (s)he started. The objective in a TSP is to construct a route such that the travel
distance is minimized. A TSP can be generalized to a m-TSP where m salesmen have to cover the
given cities. Each city must be visited by exactly one salesman. Every salesman starts from a
starting point, the depot, and must also return to this depot at the end of his/her journey. The
objective in an m-TSP is to minimize the sum of the total distances travelled by the salesmen.

A Vehicle Routing Problem (VRP) [33] can be considered as a m-TSP where a demand is
associated with each city. In a VRP a number of vehicles are stationed at one or several depots
and these vehicles need to visit a number of geographically dispersed clients. A specific set of
routes for each of the vehicles has to be determined in order to serve all the clients. The aim is to
design these routes in order to meet certain (capacity or time) constraints and to minimize a
given objective function.

This thesis focuses on the Multi-Trip VRP (MTVRP) [6]. This is a specific variant of the VRP in
which each vehicle can drive more than one route consecutively. A vehicle that returns from a
short route may be used a second time or even a third time as long as the maximum driving time
isn’t exceeded.

The MTVRP is very relevant because in practice many transportation companies have vehicles
that can drive multiple routes on a day. Despite the fact that the MTVRP occurs a lot in everyday
practice, there has not been much research on the MTVRP. Therefore, hardly any literature is
available on this subject. That is the main reason for focusing this study on the MTVRP. Another
reason for choosing the MTVRP is the fact that during a university project last year an algorithm
for solving the MTVRP was developed by myself together with three other BMI-students. It is
interesting to see how that algorithm compares to the already available solutions for the MTVRP.

 4

The objective of this research is:

To research the available techniques for solving Multi-trip VRP and give a comparison of these
techniques.

The remainder of this thesis is organized as follows. In Chapter 2 the VRP and it’s different
variants will be discussed. In Chapter 3 a mathematical formulation of the MTVRP is given. In
Chapter 4 the currently available techniques for solving the MTVRP are discussed. After that,
the algorithm that was developed during the university project will be presented in Chapter 5.
Finally a comparison will be made between all discussed techniques in Chapter 6 and a
conclusion will be given in Chapter 7.

 5

Chapter 2

Vehicle Routing Problems

A Vehicle Routing Problem (VRP) is a general name for problems to assign a set of clients to
vehicles by means of routes. To solve the VRP a set of routes is designed in order to serve the
given clients. Each of these routes belongs to a certain vehicle (see figure 1).

Figure 1: A simple VRP example.

The VRP is defined more than 50 years ago [1] and is considered one of the most challenging
combinatorial optimization tasks. This is because VRP’s belong to the category of NP hard
(Non-deterministic Polynomial-time Hard) problems. This means that the computational effort
required to solve this problem increases exponentially with the problem size. Consequently,
these kinds of problems are often solved with approximate solutions.

The goal of a VRP-algorithm is to minimize a given objective function, usually characterized by
the total length of the routes. The length of a route can be measured in distance (e.g. miles) or in
time (e.g. hours). Another objective could be to minimize the number of routes of the number of
vehicles needed.

There are also a number of different constraints that can be applied to a VRP. The most basic
constraint is the time constraint for the vehicles. This constraint means that each vehicle only has
a limited amount of time T it can drive each day. The VRP has to meet this constraint when
minimizing the objective function.

There are a number of different variants on the VRP. Each of the specific variants of the VRP
has some different constraints or characteristics that have to be taken into account.

 6

§2.1 Capacitated Vehicle Routing Problem

The most elementary version of the VRP is the Capacitated Vehicle Routing Problem (CVRP).
The CVRP has a number of specific characteristics and constraints. There is only one depot from
which the fleet of vehicles originates. Each vehicle in that fleet has a limited capacity Q available
to deliver goods. Each vehicle also has a limited amount of time T it can drive each day. There
are a number of clients and each client that is visited by a vehicle has a certain demand q that
occupies a portion of the capacity of that vehicle. It is not possible to split the delivery of the
goods intended for one client. A CVRP solution is therefore a collection of routes with a
minimum total driving distance. These routes have to visit each customer exactly once, the total
demand of each route is at most Q and the total length of each route is at most T. The capacity
and maximum driving time are identical for each vehicle, so all vehicles are of the same type.
When all vehicles of a fleet are identical, it is called a homogeneous fleet.

For the CVRP a number of exact algorithms like Branch & Bound, Branch & Cut and dynamic
programming are known for solving this problem. However, these algorithms can only find a
solution within modest computing times for a maximum of 100 clients [25]. This is not of great
practical use so these methods are typically not used. There are also a number of heuristics
known which provide good results also on large problem instances, for instance the Clarke and
Wright Savings algorithm [2] and the Sweep algorithm [3].

Since the Capacitated VRP is the most basic version of the VRP it is usually referred to as VRP.
In the remainder of this thesis the CVRP will also be referred to as VRP.

§2.2 Other VRP variants

Some of the other VRP variants and their characteristics will be briefly discussed in this
paragraph. They all share the same basic restrictions as the CVRP.

2.2.1 Multiple Depot VRP

A Multiple Depot VRP (MDVRP) is similar to a CVRP with the only difference that a number of
different depots are available from which the vehicles can depart to service the clients. In this
problem it is not sufficient to link vehicles to clients but it is also necessary to determine from
which depot the vehicle should originate.

If there is a clear clustering of clients around the depots, then it is simple to model this problem
as a set of independent VRPs. Otherwise, it requires more effort to solve the MDVRP. This is
usually done by a cluster-first, route-second method. In this method first an allocation of clients
to depots is made and then a number of regular VRPs are solved.

2.2.2 Split Delivery VRP

In a Split Delivery VRP (SDVRP) it is allowed for different vehicles to serve the same client.
This is a relaxation of the regular VRP assumption where each client can only be served by one
vehicle. The overall cost of a SDVRP are less than in a VRP, especially if the size of the client

 7

orders are (nearly) as big as the capacity of the vehicles.

2.2.3 Period VRP

In a basic VRP the routes are usually determined over a period of one single day. In a Period
Vehicle Routing Problem (PVRP), the basic VRP is generalized by extending the planning period
to M days. Each client can require to be visited more than once during this planning period.

2.2.4 Stochastic VRP

In a Stochastic VRP (SVRP) one or several components of the problem is random and can be
stochastically represented. Usually three kinds of components that can be stochastic:

• Stochastic customers: each customer is either present with probability p or absent with
probability (1-p).

• Stochastic demand: the demand of each customer is a stochastic random variable.
• Stochastic time: the service and travel times are stochastic random variables.

A possible way to solve a SVRP is to use two stages. The first stage determines a solution to the
problem before knowing the realizations of the random variables. In the second stage a
corrective action can be taken when the values of the random variables are known.

2.2.5 VRP with Pick-up and Delivering

The VRP with Pick-up and Delivering (VRPPD) adds the possibility for a client to return some
goods. These goods can either be returned to the depot or can be used for delivery to another
client. Therefore it is necessary to take into account that the returned goods of a client must also
fit into the vehicle. This makes the planning problem more complicated and leads to a worse
performance of the algorithm compared to a basic VRP (increased travel distance or more
vehicles).

If the restriction is added that all deliveries are completed before any pickups are made and that
all picked-up goods are brought to the depot, it is called a VRP with Backhauls (VRPB).

2.2.6 VRP with Time Windows

The VRP with Time Windows (VRPTW) adds a restriction that each client is associated with a
specific time window at which the vehicle must visit the client. This problem has received a lot
of attention in literature [4][5]. This is mostly due to the wide applicability of time window
constraints in real-world cases like bank deliveries, postal deliveries or school bus routing.

2.2.7 VRP with a Heterogeneous fleet

In a basic VRP all vehicles in the fleet have the same capacity. At a VRP with a Heterogeneous
fleet (HVRP) the vehicles can have different capacities. Another difference with the basic VRP is
that the number of vehicles available in the fleet is limited and known beforehand.

 8

2.2.8 Multiple Trip VRP

In a Multiple Trip VRP (MTVRP) a vehicle can drive more than one route consecutively. Each
route still has a maximum capacity it can carry. However, a vehicle that returns from a short
route may be used a second time or even a third time as long as the maximum driving time is not
exceeded. This is an important characteristic, especially in urban areas, where the vehicle
capacity is the limiting factor and the travel times are rather short.

It is possible to combine some of these variants. For instance a CVRP with Pick-up and
Deliveries and Time Windows (CVRPPBTW) or a MDVRP with Time Windows and a
heterogeneous fleet (MDHVRPTW). This research however focuses on the Multiple Trip VRP
with only a single depot and a homogeneous fleet. In the next chapter we present a review of the
available solution heuristics in the literature designed for the MTVRP.

 9

Chapter 3

Model description and notation

In this chapter a mathematical formulation of the MTVTP is presented so it can be used in the
remainder of this thesis.

Consider a number of locations where each vehicle can drive to/from. A location can be either a
depot or a customer. There is a single depot, i = 0. There are n customers, where each customer i,
(i=1,…,n), has a demand qi and a non-negative service-time si. There are m vehicles, each
vehicle v has a capacity Qv. The fleet of vehicles is denoted by V, so v Î V={1,2,…,m}. The
driving time between location i and location j is denoted by tij.

The assumptions and restrictions in this problem are:

• each route starts and ends at the single depot, i = 0.
• every client has to be served by exactly one vehicle.
• the sum of the demands of the clients served by a single vehicle in one trip may not

exceed the capacity of the vehicle.
• the maximum driving time of each vehicle is T.
• a vehicle may drive more than one route as long as the total driving time of that vehicle

does not exceed T.
• the fleet is homogeneous, since each vehicle has the same capacity (so Qv=Q for all v).

Other notation needed for this problem:

• the minimal ‘resting’ time for a vehicle between driving two routes is t0. This time can be
used to load the truck.

• a route R = (i1, …, ik) is a sequence of clients visited by a vehicle, including the travel
from the depot to client i1 and from client ik to the depot.

• an assignment of a route R to a vehicle is denoted by v(R).
• the total demand of all clients in route R is denoted by q(R) and the total driving time is

denoted by t(R).
• a schedule S is a set of feasible routes R Î S, such that every client is contained in exactly

one route.
• a schedule S is feasible if there exists an assignment v(R)ÎV of the routes R Î S to

vehicles such that:
o every route is assigned to a vehicle and the total time needed to drive the routes

assigned to a vehicle, Tv, should not exceed the maximum driving time of that
vehicle:

, v Î V (1)

o every route is only assigned to a vehicle that has enough capacity:

0 0
: ()

[()]v
R v R v

T t R t T t
=

= + £ +å "

 10

q(R) ≤ Qv(R) R Î S (2)
Equations (1) and (2) are called the feasibility conditions.

• a shuttle route, RS is a route containing only a single customer. =(i1) is the shuttle
route containing only client 1. All shuttle routes must be feasible. If a shuttle route isn’t
feasible because of the time or capacity restriction, then there exists no solution for that
MTVRP.

Heterogeneous fleet:

Some algorithms allow for the possibility of having a heterogeneous fleet. In a heterogeneous
fleet the capacity Qv of the vehicles does not have to be the same. Each vehicle v has a different
capacity Qv.

When a route R is to be assigned to a vehicle, it is necessary to know to which vehicles in the
heterogeneous fleet, this route can be assigned to, to result in a feasible schedule. This can be
facilitated by creating different classes of vehicles:

• first the vehicles are ordered according to decreasing capacity:
Q1 ≥ Q2 ≥ … ≥ Qm.

• after that, the vehicles are grouped into classes of identical capacity. Vehicle class C1 is
the class of vehicles that have the largest capacity. In general, Ci is the class of vehicles
that have the i-th largest capacity. The capacity of each vehicle v is equal to the capacity
of the vehicle class it belongs to: vÎCk.

Using this notation, it is possible to find for each route R the vehicle class of the smallest feasible
vehicle, c(R). This is the class with the smallest capacity (the highest class number) that has a
capacity equal to or larger than the capacity needed for that route.
The class of the smallest feasible vehicle is:

In the next chapter the solution techniques found in the available literature are described.

"

1
SR

kv CQ Q= "

() max{ : ()}
kC

c R k Q q R= ³

 11

Chapter 4

Solution techniques

In this chapter all solution techniques for the MTVRP known in the literature will be presented.
Each of these solution techniques has some unique extra notation or assumptions only needed for
that solution. These will be described in the respective paragraphs of the solutions. The bin-
packing assignment heuristic is used in several of the techniques to solve the MTVRP.
Therefore, we first explain the basics of a bin-packing assignment heuristic.

§4.1 Bin-Packing assignment heuristic

In every MTVRP solution technique, at some point, an assignment of routes to vehicles has to be
performed. A number of the MTVRP solution techniques, that will be discussed in the remainder
of this chapter, use the same heuristic for assigning a number of routes to a fleet of vehicles.
They use the bin-packing assignment heuristic.

The bin-packing assignment heuristic is used in order to determine an assignment of vehicles
v(R) for all constructed routes RÎS that satisfy the capacity and time constraints. S is a given
schedule that contains a number of feasible routes. When routes have to be assigned to a number
of vehicles, an assignment problem has to be solved. This problem is solved by performing a bin-
packing assignment heuristic.

There are a number of variants of the bin-packing assignment heuristic. The specific heuristic
that is used in this context is the First-Fit-Decreasing (FFD) heuristic. The FFD heuristic is
modified in order to solve the assignment problem of routes to vehicles.

The first step of the FFD algorithm is to sort the list of routes. The routes are sorted so that the
most ‘difficult’ routes are placed at the top of the list. A route is more difficult to assign if it
requires a larger vehicle class (lower c(R)) or it requires more driving time (higher t(R)). The
routes are sorted in increasing order with respect to the vehicle class of the smallest feasible
vehicle, c(R). For equal c(R) the routes are sorted in decreasing order with respect to driving time
of that route t(R). The FFD then assigns routes to vehicles, starting from the most difficult routes
(top of the sorted list of routes). The routes are then sequentially put into the first available
vehicle that has enough space available.

Assignment heuristic:

The assignment of the routes of a given schedule S to a given fleet V is done in the following
way:

1) The driving time of vehicle v, Tv, is set to zero v Î V.
2) Sort all RÎS in increasing order with respect to c(R) and, when c(R) is equal, in

decreasing order with respect to t(R).

"

 12

3) For every RÎS starting from the top of the sorted list :
For every v Î Vc (c = c(R), c(R)-1, …, 1):

If { Tv + t(R) ≤ T }
a) v(R) = v,
b) Tv = Tv + t(R) + t0,

If R has not been assigned: stop, no feasible assignment found.

If all routes are assigned to a vehicle, a feasible assignment is made. This assignment is then
presented as result.

This bin-packing assignment procedure is used in a number of different heuristics that solve the
MTVRP. The MTVRP algorithm of Fleischmann [6] (§4.2) however, was the first to use this
procedure for the MTVRP.

 13

§4.2 Savings Procedure for Multiple Use of vehicles (SPMU)

Fleischmann [6] was the first author to address the MTVRP in 1990. He proposed a heuristic
called the Savings Procedure for Multiple Use of vehicles (SPMU) to solve the MTVRP. This
heuristic was based on the standard Savings algorithm for a basic VRP [2] and was extended to
take the possibility of multiple trips into account. A description of the Savings algorithm can be
found in Appendix A.

Extra notation for this algorithm:

• Two routes R1, R2 Î S, can be combined into one route R*. If R1 = (i1, …, ik) and R2 = (j1,

… , jl), then the combined route will be R* = R1 ´ R2 = (i1, …, ik, j1, … , jl).
• A link between the two routes can only be made at the first or last client of the routes R1

en R2.
• When two routes are combined it yields a certain savings C(i,j) dependent on the

objective function.
• The savings of combining two routes is dependent on the first and last client of these

routes. When clients i and j are the first and last customers of two different routes the
savings of combining clients i and j is computed as:

C(i,j) = t0,i + t0,j - ti,j
• In Fleischmann’s algorithm [6] the total driving time of all vehicles is minimized.

Fleischmann’s heuristic [6](§4.3) allows for the possibility of having a heterogeneous fleet. This
is the only algorithm described in the literature that incorporates a heterogeneous fleet for the
MTVRP.

4.2.1 The SPMU algorithm

The main idea of this algorithm is to start with a schedule S0 consisting of all shuttle routes and
then iteratively combine routes together in new routes based on the savings. The routes are then
assigned to the vehicles using the bin-packing assignment algorithm (§4.1).

The SPMU algorithm for solving the MTVRP consists of two parts.

1) Initial step.
2) Savings iteration.

Each part will now be discussed in more detail:

4.2.2 Initial step

The SPMU algorithm starts with schedule S0 consisting of all shuttle routes. It is likely that the
initial schedule is not feasible with respect to the number of vehicles needed. In order to enforce
a feasible assignment of S0 a number of fictitious vehicles is introduced in the initial step of
the procedure. Each fictitious vehicle has a capacity equal to the capacity of the smallest feasible
vehicle class (i.e. c(R)), belonging to shuttle route RS that is assigned to that fictitious vehicle.
The fictitious vehicles are numbered m+1,…,m+ and augment the real vehicles V and the

m

m

 14

appropriate vehicle classes Ck. The initialization procedure of the SPMU is as follows:

1) Create the initial schedule consisting of all shuttle routes; S = S0.

2) Determine the minimum vehicle class c(R) needed for every route RÎS0.

3) Set the number of fictitious vehicles = 0.

4) Determine an assignment v(R) RÎS0 using the bin packing assignment heuristic described

in §4.1.3. If this heuristic fails to find a vehicle for a route R, introduce a fictitious vehicle v
by doing the following:

a) Set = + 1, v = m + and k = c(R).
b) , Ck = Ck È {v} and V = V È {v}.
c) v(R) = v, Tv = t(R) + t0.
d) Continue the assignment algorithm.

4.2.3 Savings iteration

After the initial step, the iterative savings procedure is started and routes are combined based on
the computed savings. The highest savings are processed first and only routes that can be can be
assigned to one of the vehicles in the fleet are actually combined. The combined routes are
assigned to vehicles using the bin-packing assignment algorithm (§4.1). As soon as a fictitious
vehicle becomes idle during the savings procedure, it is withdrawn. This means that the number
of fictitious vehicles never increases, except at the initial step. The iterative savings procedure is
as follows:

1) Order all pairs (i,j) (i = 2, …, n, j = 1, …, i-1) from the largest to the smallest value of

C(i,j).

2) Go to the first pair (i,j) in the sorted savings list such that i and j are the first or last customer

in different routes R1, R2, Î S.

3) Test whether the new route R* = R1´R2 can be assigned to a vehicle:
Test 1: Search if route R* can be assigned to any of the two vehicles v(R1) or v(R2)

 relieved of routes R1 and R2, by doing:
 set v´(R) = v(R) for R ¹ R1, R2 and for v Î V;

;
For i = 1,2:
 If c(Ri) ≤ c(R*) and
 v´(R*) = v(Ri);

 go to step 4)

Test 2: Search if any other vehicle v´(R*) in the fleet can execute route R* . If one is
 found go to step 4).

m

"

m m m

kv CQ Q=

vv TT =¢

)2,1()(0)()(=--¢=¢ itRtTT iRvRv ii

:)(*
)(TRtT
iRv

£+¢

;)(0
*

)()(tRtTT
ii RvRv ++¢=¢

 15

Test 3: Determine a new assignment v´(R) for R Î S \ {R1, R2}ÈR* using the bin-
 packing assignment heuristic. If that is successful go to 4). If it fails, go to 5).

4) v(R) = v´(R) (R Î S);
 (v Î V);

Withdraw all unused fictitious vehicles from V and Vc.

5) If there are savings left in the savings list, proceed to the next pair (i,j) in the sorted savings

list such that i and j are the first or last customer in different routes R1, R2, Î S; else stop the
SPMU.

The SPMU results in a set of routes each assigned to a vehicle. If one or more fictitious vehicles
remain that are assigned of routes, then the SPMU couldn’t find a feasible result. If all fictitious
vehicles are removed, then the SPMU has found a feasible result for the MTVRP.

vv TT ¢=

 16

§4.3 A Tabu Search algorithm

A totally different way of solving the MTVRP is by using a tabu search algorithm. For the basic
VRP these algorithms produce very good results [7][8][9]. Tabu search is a mathematical
optimization method, belonging to the class of local search techniques. Tabu search enhances the
performance of a local search method by using memory structures: once a potential solution has
been determined, it is marked as "taboo" ("tabu" being a different spelling of the same word) so
that the algorithm does not visit that possibility repeatedly [27].

Taillard et al. [10] propose a heuristic to solve the MTVRP by using a tabu search algorithm
based on the Rochat-Taillard principle [7]. This principle allows for diversification of the search
process to take place by combining promising solutions. This is fairly similar to what is done in
genetic algorithms [26].

The main idea of this algorithm is to create a number of different basic VRP solution and then
transform these solutions into MTVRP solutions. The best MTVRP solution is then chosen
presented as the final solution.

The Tabu Search algorithm for solving the MTVRP consists of three parts.

1) Generation of a large set of feasible vehicle routes.
2) Use the generated set to come to a number of basic VRP solutions.
3) Transform the basic VRP solution into a MTVRP solution using the bin-packing

algorithm.

Each part will now be discussed in more detail:

Part 1: Generation of a large set of feasible vehicle routes.

The aim of the first part is to generate a number of feasible routes which can be used in Part 2.
The generation is done in such a way that the selected routes are of high quality. This part has a
number of steps which are described below:

1) Creating a first set of feasible routes:

In this step a first set of feasible routes is generated. This is done by constructing a number
of solutions for the basic VRP by using the tabu search algorithm of Taillard [9]. An
unspecified number of vehicles is assumed here. Every VRP solution found in this step will
be different because of the diversification of the search process in the Taillard tabu search
algorithm [9].

The individual vehicle routes of all found VRP solutions are then put in a set and each of the
routes is assigned a label. This label is determined by the total driving time of the respective
VRP solution, which is used as an indication of the quality of that route.

2) Adding more routes to the set:

In this step some more feasible routes are generated using the set of feasible routes
generated in 1). The reason for generating even more routes than already available from 1) is

 17

because this step generates a much broader set of feasible routes. The generation of these
routes is done as follows:
(i) A route is randomly selected from the set generated in 1) where the probability of

selection is proportional to the inverse of the driving time of the route.
(ii) In the set of routes generated in 1) a client is served by more than one route, because the

set of routes result from a number of different VRP solutions. To ensure that in this step
a client is not selected multiple times, all routes in the set that have clients in common
with the already selected routes in (i) are discarded. If some routes remain in the set, go
to (i) to select another route. If no routes remain in the set, go to (iii).

(iii) Using the routes that were selected in (i)-(ii) as a starting point, a tabu search is applied
according to the algorithm of Taillard [9] to generate a new VRP solution. The
individual routes found in this new VRP solution are appended to the set of 1) and
labeled the same way as in 1). If two routes have the same set of clients, the route with
the smallest driving time remains.

The result 1 is a large set of vehicle routes that are all feasible with respect to the capacity and
time constraints. All selected routes are of high quality. The set of routes is given as input to Part
2.

Part 2: Generation of VRP solutions

In this part a number of feasible basic VRP solutions are created. These basic VRP solutions are
found using an enumerative algorithm. The set of routes resulting from Part 1 is used as input for
this enumerative algorithm. This enumerative algorithm uses a search tree [34] to find a large
number of feasible VRP solutions.

The following steps are executed in order to find basic VRP solutions.
1) First a number of routes is selected from the input set. At most q routes (where usually q >>

m) are selected in non-decreasing order of their driving time. These routes are put into a set
J with a selection rule that each client must be selected at least once.

2) Then within a search tree, all feasible VRP solutions that can possibly be constructed by
combining the routes in J are generated. In order to control the growth of the search tree,
branching priority is always given to routes containing the largest number of clients. This
process results in a set of K feasible VRP solutions.

These solutions will be transformed into MTVRP solutions in Part 3. It is however not certain
that every VRP solution resulting from Part 2 can be transformed into a MTVRP solution in Part
3.

Part 3: Generation of solutions for the VRPM

In the last part of the heuristic the construction of a feasible solution for the MTVRP is
attempted. This is done by solving a bin-packing problem for each of the K VRP solutions
resulting from Part 2. This bin-packing algorithm is almost the same assignment heuristic as used
in the SPMU of Fleischmann. Only one addition is made:

 18

• In case a feasible assignment is not found, routes are repeatedly swapped between
vehicles to try and find a feasible solution. It is however not guaranteed that a feasible
solution is found in this stage.

The best MTVRP solution out of the K possible solutions is then selected and presented. The
presented MTVRP solution is the final solution of this algorithm.

 19

§4.4 Variations on the Tabu Search algorithm

After Taillard et al. [10] proposed their MTVRP algorithm a number of variations were
developed, that also used a tabu search algoritm for solving the MTVRP. These algorithms were
very similar to the Taillard et al. [10] algorithm. Three of these algorithm are described in this
paragraph.

4.4.1 Minmax procedure

Golden et al. [11] made a small addition to Taillard et al.’s procedure [10] in order to incorporate
a minmax objective function. E.g. to minimize the largest driving time of a vehicle. The minmax
objective can be achieved by including a small addition at the end of the Taillard et al. algorithm
[10]:

After all routes have been assigned to vehicles using the bin-packing assignment heuristic (§4.3,
Part 3), an interchange procedure is applied. This procedure swaps routes between vehicles in
order to improve the given minmax objective.

This is only a small addition and will only be used in case a minmax objective is necessary.

4.4.2 Zhao’s extension

Zhao [17] proposed a solution for the MTVRP which is very similar to Taillard et al.’s heuristic
[10]. Zhao’s heuristic [17] has a significant difference with respect to the Taillard et al. algorithm
[10] since it already constructs MTVRP solutions in Part 1 of the algorithm.

The differences in the procedure of Zhao’s heuristic [17] compared to the Taillard et al.
algorithm [10] are:

• At Part1, Step 1) when the first set of solutions is generated, Zhao uses a Savings
algorithm [2] modified with a neighborhood function instead of Taillard’s tabu search
algorithm [9].

• Every VRP solution that is generated in Part 1, Step 1) is directly transformed into a
MTVRP solution by using the bin-packing algorithm already in this stage. The label of
each route that is put into the list is then determined by the total driving time of the
MTVRP instead of the VRP. This addition does not change the kind of routes generated
but only the value that each route gets.

• The same thing is done at Part 1, Step 2.(iii). There Zhao [17] also generates MTVRP
solutions instead of basic VRP solutions as is done in Taillard et al.’s algorithm [10].
This is done to label each route with the MTVRP value instead of the VRP value.

Part 2 and 3 of Zhao’s algorithm are the same as the Taillard et al. algorithm [10]. Zhao [17]
added these variations to ensure that his algorithm accounts for the possibility of multiple trips
per vehicle, in an earlier stage than the Taillard et al. algorithm [10].

 20

4.4.3 Adaptive Memory Procedure

Oliveira and Viera [21] also proposed a solution to the MTVRP using the same general
procedure as Taillard et al. [10]. However, they used an adaptive memory approach in order to
find good MTVRP solutions.

The main difference with the algorithm of Taillard et al. [10] is that an adaptive memory is used
to preserve only a number of solution when new VRP solutions are created in Part 2 of the
Taillard et al. algorithm [10]. Part 2 of the Taillard et al. algorithm [10] is extended as follows:

Only a maximum of AMPsize top routes are kept in the list after each iteration in Part 2, Step 2).
This is done to increase the quality of the produces solutions. The routes are ordered by their
driving time and the routes having the highest driving time are discarded until only AMPsize
routes remain in the list.

Another difference is that at Part 1, Step 1) of the Taillard et al. algorithm [10], Oliveira and
Viera [21] use a Sweep algorithm in order to generate the first set of VRP solutions instead of the
Taillard Tabu Search algorithm [9].

Another difference is that Oliveira and Viera [21] already construct MTVRP solutions at the end
of Part 1 to label the routes that are added to the set. This is the same addition as Zhao’s [17].
Part 1 of the Taillard et al. algorithm [10] is extended as follows:

Each of the VRP solutions created in Part 1, Step 2) (iii) is improved using a tabu search
algorithm. This tabu search algorithm uses the bin-packing assignment algorithm (see §4.1) to
create a MTVRP solution. The routes that are added to the set of routes are labeled by the driving
time of their MTVRP solution.

 21

§4.5 Brandao & Mercers technique

Brandao and Mercer [13] also proposed a solution which makes use of a tabu search approach.
However, their approach is principally different from the Taillard et al. algorithm [10] and
therefore is discussed separately. Brandao and Mercer [12] originally designed a heuristic for a
real-life problem which included other requirements like time-windows, different types of
vehicles, the hiring of extra vehicles and restricted access to some clients for some types of
vehicles. After that, the authors have simplified their heuristic to a VRP which only adds the
possibility of Multiple Trips, in order to compare their heuristic with the Taillard et al. algorithm
[10]. The solution method of Brandao and Mercer [13] is different from many other MTVRP
algorithms in that it does not use a bin-packing heuristic in order to assign routes to vehicles.

The approach of Brandao and Mercer [13] consists of two parts:

1) The first part is an algorithm based on a nearest-neighbour rule and an insertion criterion
that provides an initial solution for the MTVRP.

2) The second part tries to improve this solution in a tabu search framework using two types
of trial moves, namely insert and swap.

This heuristic will not be discussed in great detail because it would take too much explanation of
sub-heuristics like nearest-neighbour and the specific tabu search heuristic. The general scheme
of the procedure will be discussed below:

Part 1: Creating an initial solution

The first part is an algorithm based on a nearest-neighbour rule and an insertion criterion to
provide an initial solution for the MTVRP. In this part two independent procedures are executed
sequentially multiple times. The two independent procedures are:

1) The creation of a set of feasible routes where each route is assigned to a different vehicle.
Such a set is called a layer.

2) Insertion of clients into the layers.
The combined execution of the two procedures is called a stage. The goal of a stage is to assign
one route to each vehicle and to fill these routes as much as possible with clients. The procedure
of a stage is as follows:

1) The creation of a layer.

A route is created in a layer by assigning the unassigned client that lies farthest away from
the depot to the vehicle with the largest driving time remaining that has not yet received a
route in this stage.

2) Insertion of clients into the layers.
The insertion procedure is applied in order to include more clients into the routes of the
created layers. Clients are added into the routes by using a nearest-neighbour algorithm [35].

A stage results in a layer that is filled with routes that serve as much clients as possible. In each
layer each route belongs to a different vehicle in the fleet. The maximum number of routes in
each layer is m (i.e. the number of available vehicles). After a stage is performed, there could be
a number of clients that are still not assigned to a route. In that case another stage is performed.

 22

This means that a new layer is created on top of the other existing layers. Again clients are
assigned to the routes in this layer, if possible. Each vehicle can thus have multiple routes, if the
driving time restriction allows for it. Each of these routes would then be in a different layer.

The final solution given in Part 1 results from successively performing several stages. It is
possible to use overtime for the routes in the last layer of each vehicle if there are still unrouted
clients that could not be inserted using the standard maximum driving time T. This means that in
Part 1 the MTVRP solution is allowed to become infeasible. This is corrected by allowing only
feasible MTVRP solutions in Part 2.

Part 2: Tabu search algorithm

In this part a tabu search algorithm is executed in order to improve the initial MTVRP solution
given in the previous part. If the solution from Part 1 wasn’t feasible, the tabu search algorithm
will try to make the solution feasible.

There are two kinds of trial moves in this tabu search heuristic, namely insert and swap moves:

• An insert move consists of removing one client from one route and putting it in another
route.

• A swap move consists of exchanging two clients belonging to two different routes.

Part 2 results in a set of routes, each assigned to a specific vehicle. This is the final solution for
the MTVRP.

 23

§4.6 Multi-Phase heuristic

Petch and Salhi proposed a Multi-Phase heuristic [14] to solve the MTVRP. They developed a
heuristic that tries to integrate the approach used by Taillard et al. [10] and that of Brandao and
Mercer [13].

The framework of this heuristic is largely the same as the framework proposed by Taillard et al.
[10]. However, it has a number of differences in every step. The main idea of this algorithm is to
create a number of different basic VRP solutions and then produce a feasible MTVRP solution
using the bin-packing assignment heuristic (§4.1) and some improvement techniques.

The Multi-Phase heuristic for solving the MTVRP consists of three parts.

1) Generation of VRP solutions using a modified savings.
2) Construction of a MTVRP solution and improvement.
3) Generation of more VRP solutions using a route population approach.

Each part will now be discussed in more detail:

Part 1: Generation of VRP solutions using a modified savings algorithm

In this first part a sample of VRP solutions is generated using a modification on the savings
algorithm. The modified savings heuristic described by Yellow [15] is used to construct routes in
a parallel way. A number of VRP solutions are generated using this heuristic. This results in a
pool P of VRP solutions.

Part 2: Construction of a MTVRP solution and Improvement

In this part a solution for the MTVRP is constructed using a pool P of VRP solutions as input.
Every VRP solution in pool P is sequentially processed in this part. A VRP solution is
transformed into a MTVRP solution using the bin-packing assignment heuristic (§4.1) and then a
number of improvement techniques are executed to improve the MTVRP solution. The general
procedure of this part is as follows:

1) The VRP solutions in the pool are ranked according to their value (total driving time). The

highest ranking solution requires the least driving time and is the first solution to be
processed.

2) Apply the bin-packing heuristic (§4.1) on the selected VRP solution in order to construct a
MTVRP solution S. In this assignment overtime is allowed, meaning it is possible to
produce a non-feasible MTVRP solution.

3) Improve the MTVRP solution by using a number of improvement techniques. These
techniques are: Meiosis, VRP Partition, Donate, Exchange and Donate Exchange.

4) S is compared with the best known solution up till now, Sbest. If the overtime of S is smaller
than the overtime of Sbest, Sbest = S.

5) If Sbest is MTVRP feasible (meaning no overtime), the heuristic is stopped and Sbest is
presented as result.

6) If there are still solutions in pool P, the next ranked solution chosen and processed from
Step 2); else the heuristic is stopped and Sbest is presented as result.

 24

The result of this part is either a feasible MTVRP solution or a non-feasible MTVRP solution
with the least overtime.

Part 3: Generation of more VRP solutions using a route population approach

Part 3 is not always executed in the Multi-Phase heuristic. First the pool of solutions found in
Part 1 is processed in Part 2. If this results in a feasible MTVRP solution, the heuristic is stopped
without executing this part. However, if no feasible solution is found using the pool of solutions
found in Part 1, a new and larger pool of solutions is generated in this part. The new pool of
solutions will then again be processed by Part 2.

In order to generate a new and larger pool of solutions a method is executed based on a route
partition approach. This method generates a population of routes that satisfy the VRP constraints.
The essence of this method is as follows:

1) The clients are ranked with respect to their angle with the depot.
2) For every client a number of feasible routes are generated, choosing that client as the first

client on each route. A variant on the sweep method [16] is used for finding these routes.
Each route is then improved using the 2-Opt and 3-Opt methods [29].

3) Using a search tree [34] VRP solutions are constructed by combining the generated routes.
In this search tree data structures and reduction are used.

The result of the entire Multi-Phase heuristic is either a feasible MTVRP solution or a non-
feasible MTVRP solution with the least overtime.

 25

§4.7 Genetic Algorithms

Petch and Salhi [22] proposed a solution for the MTVRP using genetic algorithms (GA’s).
Genetic algorithms are search techniques that try to find an approximate solution to optimization
problems. The main idea of a GA is that starting with an initial set of solutions, a new set of
solutions can be created that give better results. Each solution is represented by a chromosome
and a set of solutions is called a generation. Each time a new set of solutions is found, a new
generation is created. The GA heuristic continues to iterate until the maximum number of
generations, GENmax, is reached

The genetic algorithm proposed by Petch and Salhi [22] is used to partition all clients in different
clusters. The clients are partitioned in different clusters by using the angles of the clients with
respect to a reference line (usually the x-axis). Each cluster starts at a certain angle and ends at
the starting angle of the next cluster. All clients that are positioned between the begin and end
angle of a certain cluster are assigned to that cluster. In this way a partition is made of clients
into clusters. This is much like the sweep procedure [3]. The chromosomes of the GA represent
the partition of clients into different clusters. Each chromosome is a sequence of begin angles of
the different clusters. A generation represents a set of begin angles.

The GA procedure for solving the MTVRP consists of three parts:

1) Create an initial set of solutions.
2) Produce new populations.
3) Selection of the best solution.

Evaluation procedure:

Once a chromosome is constructed, an evaluation procedure is executed to evaluate the quality
of that chromosome. A chromosome is evaluated by first creating a MTVRP solution using a
combination of the savings algorithm [2] and the bin-packing assignment heuristic (§4.1) and
then using the total driving time of all vehicles to label that chromosome. The details of the
evaluation procedure are as follows:

1) Generate clusters belonging to those angles and assign the clients to their related clusters.
2) Generate routes for each cluster using the savings heuristic [2].
3) Allocate routes to vehicles using the bin-packing assignment algorithm as described in §4.1.
4) Compute the fitness of that solution. The fitness of a solution is determined by the total

driving time of all vehicles in that solution.

This evaluation procedure is used in both Part 1 and Part 2 of the GA procedure. Each part of the
GA procedure will now be discussed in more detail:

 26

Part 1: Create an initial set of solutions

1) Create a number of Z chromosomes {Xi,…,XZ}.
2) For each chromosome do the following:

a). Randomly select k angles from [0°,359°].
b). Evaluate the chromosome using the evaluation procedure.

Part 1 results in a set of Z initial solutions for the MTVRP. This set is called the initial generation
of chromosomes. This initial population is given as input to Part 2.

Part 2: Produce new populations

This is the main part of the recursive process where new population of chromosomes are created
and evaluated. Using the initial population of chromosomes found in the previous part as a
starting point, new and improved generations are created iteratively. Each iteration results in a
new generation. This iterative procedure is as follows:

The creation of a new generation of chromosomes is done using four different types of GA
operators:
• Chromosome injection:

Randomly created chromosomes are inserted into the new generation.
• Chromosome cloning:

The cloning mechanism is based upon maintaining a variety in the quality chromosomes.
The chromosomes of the previous generation are ranked according to a fitness function and
then partitioned into groups. After that, a proportion of chromosomes within each group is
selected.

• Extraction operator:
The operator extraction is the primary operator used to generate a new offspring. Given two
chromosomes Xi and Xj, extraction produces a single offspring. Extraction is used to add a
series of sectors, from a chosen partner Xj, into the chromosome Xi by overwriting the
corresponding sectors. In other words, a sequence of angles of chromosome Xj is
transplanted in the angle composition of chromosome Xi.

• Mutation operator:
The mutation operator selects a number of chromosomes from the previous generation and
adds a mutation of each of these chromosomes to the new generation. A chromosome is
mutated by changing some of the angles of that chromosome randomly.

After the creation of a new set of chromosomes, the MTVRP solutions belonging to this set of
chromosomes are determined using the evaluation procedure.

The result from Part 2 is a set of MTVRP solutions. This set is given as input to Part 3.

 27

Part 3: Selection of the best solution

In this part, the best solution for the MTVRP is selected from the input set. This is done in the
following way:

1) All solutions found are ranked according to their fitness function. The top 10% solutions are

then chosen.
2) Some improvement modules are performed on the chosen solutions. These are the same

techniques as used in the Multi-Phase heuristic of Petch and Salhi [14] (discussed in §4.5).
3) Finally the solution with the best fitness (smallest total driving time) is selected.

The selected solution from Part 3 is the final solution for the MTVRP.

 28

§4.8 Insertion Heuristic Approach

Cambell and Savelsbergh [18] proposed a solution for the MTVRP in 2002 by using an insertion
heuristic. Insertion heuristics are frequently used in solving a number of different VRP variants
[19][20]. Cambell and Savelsbergh [18] have extended the insertion heuristic in order to
incorporate multiple trips.

This heuristic tries to sequentially add every unrouted customer j to that specific vehicle and
route which provides the highest profitability. Profitability is defined by the negative of the extra
travel time needed for that route by inserting the unrouted customer j between the already routed
customer (i-1) and i. Profitability of adding unrouted customer j between customer (i-1) and
customer i is: –(t(i-1),j + tj,i – t(i-1),i).

The insertion heuristic approach for solving the MTVRP consists of two parts:

1) Initialization.
2) Iteration.

Each part will now be discussed in more detail:

Part 1: Initialization

In the initialization phase, every vehicle in the fleet is given an empty route. In the iteration
phase, clients are assigned to these routes. As soon as a client is assigned to an empty route of a
vehicle in the iteration phase, a new empty route is created for that vehicle. In this way each
vehicle can have multiple routes assigned to it, but always has one empty route available.

Part 2: Iteration

In this phase each client is sequentially assigned to a vehicle and a route. This is done by first
computing all possible profitability’s of that client and then assigning this client to the vehicle
and route that have the highest profitability. The procedure of the iteration phase is as follows:

For each unassigned client j the following is done:
1) For every route R assigned to every vehicle vÎV v, (v(R) = v):
 For every customer i in route R:

• Determine whether inserting the unrouted customer j between (i-1) and i
results in a feasible solution. Feasibility is checked with respect to
capacity and time constraints.

• If an insertion of j is feasible the profitability is computed for this
insertion and this profitability is saved in a list.

2) Customer j is inserted between clients (i-1) and i that give the highest profitability. A new

route is added if necessary, such that every vehicle has an empty route.

This results in a solution where each vehicle has a number of routes assigned to it. All customers
are assigned to one of these routes. This is the final solution for the MTVRP.

 29

§4.9 Route linking procedure

Goodson [23] proposed a heuristic for solving the MTVRP in his working paper in 2007. He
does not use the bin-packing algorithm as many other MTVRP algorithm, but he proposes a
different method of assigning routes to vehicles.

This algorithm uses an observation relating to the nature of linking routes in a single vehicle. A
vehicle has to return to the depot for two reasons:

• if the vehicle load is near vehicle capacity.
• if the route driving time is near the maximum driving time.

If the vehicle has to return to the depot because of the capacity restriction, that vehicle can drive
another route in the remaining time after the first route. If the vehicle returns to the depot
because of the maximum driving time constraint, that vehicle cannot drive another route. This
observation is used to link routes together in a certain vehicle.

The main idea of this algorithm is to first generate a large set of feasible routes and after that,
link some of these routes together using the above observation. Finally a number of linked routes
are assigned to vehicles using a set covering problem (SCP) [28] algorithm.

The route linking procedure for solving the MTVRP consists of three parts.

1) Route generation.
2) Route linking.
3) Selection of linked routes.

Each part will now be discussed in more detail:

Part 1: Route generation

In this part, a large number of potential routes is generated using the sweep approach [16]. The
routes are generated the following way:

1) a certain customer i is chosen as starting point for the sweep approach [16].
2) all possible feasible routes, with customer i as starting point, are generated using the sweep

approach [16]. This heuristic takes into account both the capacity constraint and the
maximum driving time constraint.

This procedure is executed for every available customer. All routes generated for all customers
are then put together in a list.

The list with all possible routes is given as input to Part 2.

Part 2: Route linking

The generated routes from Part 1 are now linked together to form linked-routes. A linked-route is
a combination of a couple of routes that can be executed sequentially by a single vehicle of the

 30

homogeneous fleet. The sum of the driving times of the routes combined in the linked-route,
does not exceed the maximum driving time.

If all potential linked-routes are created by combining the routes in every possible way, it will
result in a huge amount of linked-routes. This will also require huge computational effort. In
order to reduce the number of generated linked-routes Goodson [23] uses his route-linking
procedure. Goodson proposed to link the routes using the two observations he made, relating to
the nature of linking routes. He formulated these two observations as rules that are used in his
algorithm:

1) Rule 1: do not link two routes if the sum of the capacity is less than the capacity of the
vehicle. If two of such routes would be linked, unnecessary additional distance is added.
This happens because it is not necessary to return to the depot between driving these two
routes since the capacity constraint is not violated.

2) Rule 2: a series of r linked-routes must consist of at least r-1 full routes and at most 1
non-full route. A full route is a route that can accommodate no more than b additional
customers without exceeding the vehicle capacity or the route duration limit. A non-full
route is a route that is not full. This rule was formulated by using the observation that a
vehicle returns to the depot when its current route cannot accommodate another
customer.
For instance: if b = 2, all routes that can accommodate more than 2 customers without
exceeding the vehicle capacity or the route duration limit, are non-full. All other routes
are full. To test whether a route can accommodate a number of clients, the sweep
heuristic [16] is used.

Both these rules ensure that less linked-routes are generated and that the computational effort is
also reduced. The choice of parameter b determines the number of full routes and therefore
influences the number of potential route links. The procedure for executing this part is as
follows:

All routes generated in Part 1) are divided in full and non-full routes based on parameter b. After
that, the following iterative procedure is applied to generate the linked-routes:

1) Full routes are linked with other full routes until additional route links are infeasible in
terms of route duration. All possible combinations of full routes are created this way.

2) At most 1 non-full route is added to each of the generated series of full routes in 1). All
possible combinations of a series of full routes and the addition of a non-full route are
generated.

Throughout the procedure, routes are only linked if they satisfy Rule 1 and if they contain no
common customers, so that a customer is not visited more than one time.

The result from Part 2 is a large set of linked routes. Each of these linked routes can be assigned
to one of the available vehicles in the homogeneous fleet. The set of linked routes is given as
input to Part 3.

 31

Part 3: Selection of linked routes

In this part a subset of the linked-routes generated in Part 2 will be selected such that each client
is visited once. Each of the selected linked-routes is then assigned to a vehicle. The selection of
linked-routes is done by formulating a Set Covering Problem (SCP) [28]. The SCP is a classical
question in computer science and complexity theory. The input of a basic SCP is a collection of
several sets. Each set contains a number of elements and the different sets may have some
elements in common. The goal of a SCP is to select a minimum number of these sets so that the
selected sets contain all elements exactly once.

Goodson [23] represents each linked-route by a set in the SCP model and each client that has to
be served is represented by an element in the SCP model. The goal of this SCP is then to
minimize the number of chosen linked-routes such that all customers are visited. Goodson uses
the Lagrangian-based heuristic proposed by Caprara et al. [24] to solve the SCP.

In this way a number of linked routes are selected. Each linked route is then assigned to one of
the vehicles in the fleet. This is the final solution for the MTVRP.

 32

Chapter 5

Self-developed algorithm

During the course Project Optimization of Business Processes in 2007 we developed an
algorithm to solve a MTVRP. This algorithm was developed without using any of the MTVRP
algorithms described in the previous chapter. It was created by adding some modifications to the
savings algorithm based on intuition to deal with multiple trips. This algorithm can also deal with
a heterogeneous fleet of vehicles.

In many respects the algorithm developed is similar to the SPMU developed by Fleischmann [6].
It does however have a number of differences. The main idea of the self-developed algorithm
and the differences with the Fleischmann’s algorithm [6], will be described in §5.1 and §5.2. The
general procedure will be described in mathematical terms in §5.3.

The notation will be the same as in Fleischmann [6] (see § 4.2).

§5.1 Part 1: initialization

The developed algorithm is initialized by creating the schedule S0 consisting of all shuttle routes.
First, all client are put in a list and are then sorted in decreasing order based on their demand. For
each of these clients a shuttle route is made and each of these shuttle routes is assigned to a
vehicle. This is done by sequentially assigning the unassigned shuttle route with the largest
demand to the largest unused vehicle. If a shuttle route has a demand that is bigger than the
capacity of the largest unused vehicle, split delivery is applied. Client i is split in two new
clients, i1 and i2, where i1 will have a demand equal to the capacity of the largest unused vehicle
and i2 will get a demand equal to the demand of i minus the demand of i1. Client i1 will be put
into a shuttle route and is assigned to the largest unused vehicle. Client i2 will be put in the list of
clients that still have to be served in its appropriate position when looking at the demand. If there
are no unused vehicles remaining, a fictitious vehicle with the smallest capacity Qmin is added to
the fleet. All of the created shuttle routes must be feasible with respect to the driving time. If a
shuttle route isn’t feasible then there exists no solution for this problem.

In the initialization phase there are two main differences with the SPMU of Fleischman [6]. The
first difference is the possibility of splitting clients when the demand it too big. The second
difference is that only fictitious vehicles with the smallest capacity, Qmin, are added in contrast to
Fleischmann’s algorithm [6] in which fictitious vehicles can have larger capacity.

 33

§5.2 Part 2: iteration

After the algorithm is initialized, the savings procedure is started and routes are combined. The
self developed algorithm has a number of differences with respect to Fleischmann’s algorithm
[6].

5.2.1 Route combining

The self-developed algorithm combines two routes Ri and Rj in a combined route R* using an
improvement procedure. The order in which the clients of the combined route are visited is
improved using a Traveling Salesman Problem (TSP) heuristic, namely Farthest Insertion (FI).
This is an important difference with Fleischman’s algorithm [6]. Fleischman [6] only tries to
combine the routes of their first and last customers, so the order in which the clients are visited in
the combined route does not change from their original routes. The self-developed algorithm
combines two routes in a different manner using the Farthest Insertion heuristic. In this way the
order in which the clients are visited in a combined route is improved.

5.2.2 Calculation of the savings

To determine which routes should be combined we calculate the savings. These savings are
computed differently than the savings in Fleischmann’s algorithm [6]. In the self-developed
algorithm, a TSP heuristic, Farthest Insertion, is used in order to find the TSP savings. These
savings are based on the difference in driving time when combining two routes using the Farthest
Insertion heuristic. The TSP savings of combining routes Ri and Rj into route R* are determined
by:

S(i,j) = t(Ri) + t(Rj) – FI(R*)
Where FI(R*) is the total driving time or route R* when combining routes Ri and Rj into
route R* using the Farthest Insertion heuristic.

The TSP savings are savings based on combining entire routes and not only combining clients as
is the case at Fleischmann’s algorithm [6]. This means that if the set of routes is changed, by
combining two routes into one route, our savings have to be computed again. The savings of
Fleischmann’s algorithm [6] only have to be computed once in the beginning.

5.2.3 Feasibility tests

In every iteration of the savings procedure we need to be test whether adding the combined route
R* and removing the routes Ri and Rj from the schedule provides a feasible solution. This is done
by performing two tests. First we try to assign route R* to one of the vehicles v(Ri) or v(Rj)
relieved of the routes Ri and Rj (test 1) and after that we try to assign R* to any other available
vehicle in the fleet (test 2). Fleischmann [6] uses the same two tests, but he also adds a third test
to this procedure. His third test comprises of performing a complete new assignment using the
bin-packing assignment heuristic (§4.2). Our testing procedure may lead to a rejection of certain
route combinations (savings) that would be accepted using the third test of Fleischmann [6].

 34

5.2.4 Fictitious vehicles removal

If a fictitious vehicle isn’t used any more, it isn’t removed directly out of the fleet in the self-
developed algorithm. Only at the final step of the algorithm, these fictitious vehicles are
removed. Once the savings are processed, all routes are reassigned to vehicles using the same
bin-packing heuristic used by Fleischmann. At the self-developed algorithm the fictitious,
vehicles that aren´t used any more at a certain step of the iterative savings procedure, could be
assigned to a route in subsequent steps of the iterative savings procedure. Fleischmann [6]
removes the fictitious vehicles as soon as they become idle and these fictitious vehicles cannot
be used anymore in subsequent steps of the iterative savings procedure.

§5.3 General procedure

The general procedure of the self developed algorithm is as follows:

Part 1: initial step

In this step an assignment v(R) for all RÎS0 is determined using the following procedure:

1) Create the initial schedule S0 consisting of all shuttle routes. The routes in this schedule
are not yet assigned to a vehicle.

2) Set the number of fictitious vehicles = 0.

3) Sort the routes in decreasing order based on their demand: q(R1) ≥ q(R2) ≥ … ≥ q(Rn)

4) Assign route Ri with the highest demand q(Ri) to the largest available vehicle v with the

highest capacity Q. Call this vehicle Vmax with capacity QVmax.
This assignment cannot be executed if QVmax < q(Ri) or if there isn’t any unassigned
vehicle left.

If QVmax < q(Ri) split the delivery in two routes R1 and R2, where route R1 will get a
demand of QVmax and R2 will get a demand of (dRi - QVmax). Assign route R1 to vehicle
Vmax and add route R2 to S0 according to decreasing demand.

If there are no more unassigned vehicles available, then introduce a fictitious vehicle
Vfic:

o Set = + 1 and set the capacity of this fictitious vehicle to the smallest
capacity of a vehicle, Qmin.

o Add this fictitious vehicle to the fleet of vehicles.
o Assign route Ri to Vfic and apply split delivery if necessary.

5) Proceed with the next unassigned route in S0 until all routes are assigned.

m

m m

 35

Part 2: iteration

In this step the savings are processed and the routes are combined in order to create a feasible
MTVRP solution.

1) S = S0.

2) Compute the savings S(i,j) for combining all unassigned routes Ri and Rj Î S using:
S(i,j) = t(Ri) + t(Rj) – FI(R*)

 If there are no unassigned routes, go to 6), else go to 3).

3) Put the savings in a list and sort them on a descending order.

4) Take the top unprocessed savings S(i,j) in the sorted list and test whether routes Ri and Rj
can be combined into the combined route R*. This is done by checking whether route R*
can be assigned to a vehicle by performing the following two tests:

Test 1: Check whether the new route R* can be assigned to one of the vehicles
v(Ri) or v(Rj) relieved of routes Ri and Rj.

Test 2: Check whether the new route R* can be assigned to any of the other
vehicles in the fleet.

5) If the assignment was accomplished go to 2), if the assignment wasn’t feasible and there

are still savings in the list also go to 2), else go to 6).

6) All routes are now assigned to a vehicle and there are no more feasible savings available.

In order to make sure that the assignment of routes to vehicles is optimal the routes are
reassigned. All routes are first unassigned and then a bin packing assignment heuristic is
executed. For details on this heuristic see § 4.2.1.

This results in a set of routes each assigned to a vehicle. If there are still fictitious vehicles in the
solution then a feasible solution could not be found using this algorithm. If no fictitious vehicles
are present in the solution then this algorithm presents a feasible solution for that MTVRP.

 36

Chapter 6

Comparison of solution techniques

In this chapter a comparison is made between the MTVRP solution techniques discussed in the
previous chapters. In §6.1 a number of discussed algorithms will be compared numerically. Not
all algorithms can be compared, because not all numerical results are reported in the papers. In
§6.2 some of the characteristics of the discussed algorithms are compared.

§6.1 Numerical results

Some of the papers discussed in Chapter 4, use the same problem instances to test the quality of
the proposed algorithms. We also used these problem instances to test our the self-developed
algorithm. The results from the tests of each algorithm are compared in order to give an
indication of the quality of the algorithms.

Table 1 lists the algorithms for which all numerical results are available to perform the
comparison.

Algorithm number Algorithm name
1 A Tabu Search algorithm (§4.2)
2 Brandao & Mercers technique (§4.4)
3 Multi-Phase heuristic (§4.5)
4 Adaptive Memory Procedure (§4.3.3)
5 Genetic Algorithms (§4.6)
6 Self-developed algorithm (Chapter 5)

Table 1: list of algorithms that can be numerically compared.

There are 9 problem settings which are used. The first 5 settings come from problem 1-5 in
Christofides, Mingozzi and Toth [29], 2 settings correspond to problem 11-12 of Christofides,
Mingozzi and Toth [29] and 2 settings come from problem 11-12 in Fisher [30]. In each of these
settings, the number of vehicles m changes according to Table 2. This results in 52 problem
instances.

Problem number Originated from: Nr. Clients m z*

1 Problem 1 of Christofides, Mingozzi and Toth 50 1,…,4 524,61
2 Problem 2 of Christofides, Mingozzi and Toth 75 1,…,7 835,26
3 Problem 3 of Christofides, Mingozzi and Toth 100 1,…,6 826,14
4 Problem 4 of Christofides, Mingozzi and Toth 150 1,…,8 1028,42
5 Problem 5 of Christofides, Mingozzi and Toth 199 1,…,10 1291,44
6 Problem 11 of Christofides, Mingozzi and Toth 120 1,…,5 1042,11
7 Problem 12 of Christofides, Mingozzi and Toth 100 1,…,6 819,56
8 Problem 11 of Fischer 71 1,…,3 241,97
9 Problem 12 of Fischer 134 1,…,3 1162,96

Table 2: characteristics of the base problems.

 37

These problem instances are however for VRP problems. Therefore, the maximum driving time
T corresponds to:

T1 = [1.05 z*/m] and
T2, = [1.1 z*/m],

where [x] is the value of x rounded to the nearest integer and z* is the value of a VRP solution to
that problem obtained as in Rochat and Taillard [7] with an unspecified number of vehicles. This
results in 104 problem instances.

Table 3 specifies the number of problem instances that are solved by the different MTVRP
algorithms. For example, algorithm 1 finds a feasible solution for 5 out of 8 problem instances
for base problem 1 and finds a feasible solution for 81 out of the 104 total problem instances.

Base
problem nr.

problem
instances Number of feasible problem instances for each algorithm:

 1 2 3 4 5 6
1 8 5 6 4 6 5 1
2 14 11 12 12 12 8 3
3 12 8 11 10 12 8 0
4 16 12 14 13 15 8 1
5 20 19 18 14 19 9 5
6 10 9 9 8 9 5 7
7 12 8 9 11 11 10 5
8 6 3 4 4 5 3 1
9 6 6 6 6 6 6 3

Total 104 81 89 82 95 62 26
Table 2: number of feasible problem instances for each algorithm.

Table 3 shows that algorithm 4 (Adaptive Memory Procedure) finds a feasible solution for 95
problem instances. Algorithm 2 (Brandao & Mercers technique) also solves a big part of the
problem instances (89 out of 104). The self-developed algorithm has the worst performance
when looking at the number of problem instances solved (only 26 out of 104).

 38

6.1.1 Comparing the quality of the feasible solutions

For only 3 algorithms the total driving time of the solutions is reported. The algorithms for which
these results are available, are listed in Table 4. The total driving times are reported in Appendix
B.

Algorithm number Algorithm name
4 Adaptive Memory Procedure (§4.3.3)
5 Genetic Algorithms (§4.6)
6 Self-developed algorithm (Chapter 5)
Table 4: list of algorithms that present exact results for the feasible problem instances.

In Table 5 a summary of the results is presented. This table shows, for each algorithm, which
percentage of feasible problem instances obtains better results (lower total driving time) by using
that algorithm opposed to one of the other two algorithms. For example, the self-developed
algorithm outperforms the GA in 53,85% of the instances and the Adaptive Memory Procedure
in 7,69% of the instances. It should be noted, that only instances that provide a feasible solution
for both algorithms are taken into account with this comparison.

 Worse
Better

Self-developed
algorithm Genetic Algorithms

Adaptive Memory
Procedure

Self-developed
algorithm - 53,85% 7,69%

Genetic Algorithms 46,15% - 3,23%
Adaptive Memory

Procedure 92,31% 96,77% -
Table 5: comparing the quality of the feasible solutions.

From Table 5 we can conclude that the Adaptive Memory Procedure generally produces results
of a higher quality than the other two algorithms (92,31% and 96,77% of the problem instances
have better results by using the Adaptive Memory Procedure [11]).

 39

§6.2 Algorithm characteristics

The algorithms that are discussed in the previous paragraph have certain characteristics that
make them more or less suitable for different practical circumstances. Some algorithm
characteristics will now be discussed.

6.2.1 Homogeneous vs. heterogeneous

Each MTVRP algorithm can accommodate either a homogeneous fleet or a heterogeneous fleet.
Only two of discussed algorithms accommodate a heterogeneous fleet. These two algorithms are
the SPMU (§4.1) of Fleischmann [6] and the self-developed algorithm (Chapter 5). If an
algorithm does not present the possibility for having a heterogeneous fleet, it could be changed in
order to incorporate this possibility.

6.2.2 Greedy vs. non-greedy

A greedy algorithm is an algorithm that follows a problem solving heuristic of making the
locally optimum choice at each stage with the hope of finding the global optimum. It iteratively
makes one greedy choice after another, reducing each given problem into a smaller one. In other
words, a greedy algorithm never reconsiders its choices. Greedy algorithms mostly (but not
always) fail to find the globally optimal solution, because they usually do not exhaustively
consider all possible solutions. They can make commitments to certain choices too early which
prevent them from finding the best overall solution later and they then get stuck in a local
optimum.

A non-greedy algorithm looks at the entire problem simultaneously and at every stage of the
algorithm there is a possibility of reconsidering previous choices. This way, is it possible to get
out of a local optimum and find the global optimum.

Table 6 lists the discussed algorithms and whether these algorithms are greedy or non-greedy.

Algorithm name Greedy / non- greedy
SPMU (§4.1) Greedy
A Tabu Search algorithm (§4.2) Non-greedy
Minmax Procedure (§4.3.1) Non-greedy
Zhao's Extension (§4.3.2) Non-greedy
Adaptive Memory Procedure (§4.3.3) Non-greedy
Brandao & Mercers technique (§4.4) Greedy/ Non-greedy
Multi-Phase heuristic (§4.5) Non-greedy
Genetic Algorithms (§4.6) Non-greedy
Insertion Heuristic Approach (§4.7) Greedy
Route Linking Procedure (§4.8) Greedy
Self-developed algorithm (Chapter 5) Greedy

Table 6: list of algorithms and the respective algorithm type.

 40

6.2.3 Performance of the self-developed algorithm

From the results can be concluded that the self-developed algorithm does not provide very good
results for solving the MTVRP, in comparison to other available MTVRP algorithms. This is
caused by a number of reasons:

• The standard savings algorithm, which is the base of the self-developed algorithm,
performs relatively well with short computational time for the standard VRP.
However, other algorithms are available that give better results when more computing
time is available, like the algorithm proposed by Rochat and Taillard [7].

• The self-developed algorithm performs a type of “greedy” search. Once two routes
are combines, this choice is never undone or changed. However, it isn’t sure that this
choice will provide an overall best solution.

• The choice for combining two routes is only based on the savings and not on some
value that indicates how well the resulting route would fit in the fleet of vehicles.

 41

Chapter 7

Conclusion

The MTVRP is very relevant because in practice many transportation companies have vehicles
that can drive multiple routes on a day. However, not a lot of literature is available on this
subject.

In this thesis, a number of algorithms are described that solve the MTVRP. This field of research
is still in development and there exists no algorithm which is widely used. This thesis can be
used as a summary for most MTVRP algorithms known up till know.

We can conclude that non-greedy algorithms work better than greedy algorithms. A greedy
algorithm makes local choices based on some intuition regarding the characteristics of the
MTVRP. These local choices tend to go to local optimum and not a global optimum and
therefore do not present the best results for this type of problems. Non-greedy algorithms try to
create a large sample of solutions and have a random component that result in solutions of higher
quality.

The algorithm that presented the best results is the Adaptive Memory Procedure [11] described
in § 4.3.3. This algorithm solves more test problem instances than any other MTVRP algorithm
and the quality of the results of this algorithm is also higher than any of the other algorithms it
was compared to.

The goal of each of the discussed MTVRP algorithms is to minimize the total driving time of all
routes. However, in practice the total driving time is not the most important quality indicator of a
MTVRP solution. Many real-life companies are interested in minimizing the number of used
vehicles and not necessarily in minimizing the total driving time. It would therefore be better to
look at the number of used vehicles of a solution when comparing MTVRP algorithms.

The self-developed algorithm provided poor results, which was somewhat anticipated. However,
this algorithm can be used as a starting point for further research in the field of MTVRP
algorithms. The self-developed algorithm also provides a solution for incorporating a
heterogeneous fleet. This solution technique can also be used in other (MT)VRP algorithms that
want to incorporate a heterogeneous fleet.

 42

 43

Appendix A:

References

[1] G. B. Dantzig and R.H. Ramser. The Truck Dispatching Problem. Management Science 6, 80–91.
1959.

[2] G. Clarke and J. Wright. Scheduling of vehicles from a central depot to a number of delivery points.
Operations Research, 12 #4, 568-581, 1964.

[3] B. E. Gillet and L. R. Miller. A Heuristic Algorithm for the Vehicle Dispatch Problem. Operations
Research, 22:340-349, 1974.

[4] M. Desrochers, J. Desrosiers and M.Solomon. A New Optimization Algorithm for the Vehicle
Routing Problem with Time Windows. Operations Research. N° 40, PP342-354, 1992.

[5] J. Desrosiers, Y. Dumas, M.Solomon, and F.Soumis. Time Constrained Routing and Scheduling. In
M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser (Eds.), Network Routing, Volume 8 of
Handbooks in Operations Research and Management Science. Amsterdam, The Netherlands. Pp 35 -139,
1995

[6] B. Fleischmann. The vehicle routing problem with multiple use of vehicles. Working paper,
Fachbereich Wirtshaftswissenschaften, Universitat Hamburg, 1990.

[7] Y. Rochat and E. Taillard. Probabilistic diversification and intensification in local search for vehicle
routing. J. Heuristics 1, 147-167, 1995.

[8] M. Gendrbau, A. Hertz and G. Laporte. A tabu search heuristic for the vehicle routing problem. Mgmt
Sci. 40, 1276-1290, 1994.

[9] E. Taillard. Parallel iterative search methods for vehicle routing problems. Networks 23,661-676,
1993.

[10] É. D. Taillard, G. Laporte and M. Gendreau. Vehicle Routing with Multiple Use of Vehicles. The
Journal of the Operational Research Society, Vol. 47, No. 8. pp. 1065-1070, Aug. 1996.

[11] B. Golden, G. Laporte, E. Taillard. An adaptive memory heuristic for a class of vehicle routing
problems with minmax objective. Comput. Oper. Res. 24 445–452, 1997.

[12] J. Brandao and A. Mercer. A tabu search algorithm for the multi-trip vehicle routing and scheduling
problem. Eur J OplRes 100: 180-191, 1997.

[13] JCS Brandão and A. Mercer. The Multi-Trip Vehicle Routing Problem. The Journal of the
Operational Research Society, Vol. 49, No. 8. pp. 799-805, Aug. 1998.

[14] R. Petch and S. Salhi. A multi-phase constructive heuristic for the vehicle routing problem with
multiple trips. Discrete Applied Mathematics 133, 69–92, 2004.

 44

[15] P.C. Yellow, A computational modification to the savings method of vehicle scheduling, Oper. Res.
Q.21 281–283, 1970.

[16] B. Gillett and L. Miller. A heuristic algorithm for the vehicle-dispatch problem. Operations Research
22(2), 340–349, 1974.

[17] Q. Zhao, S. Wang, K. Lai and G. Xia. A vehicle routing problem with multiple use of vehicles.
Advanced Modeling and Optimization 4(3), 21–40, 2002.

[18] A.M. Campbell and M.Savelsbergh. Efficient Insertion Heuristics for Vehicle Routing and
Scheduling Problems. Transportation Science, Vol. 38, No. 3, pp. 369–378, August 2004.

[19] M. Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Oper. Res. 35 254–265, 1987.

[20] S. Salhi and G. Nagy. A cluster insertion heuristic for single and multiple depot vehicle routing
problems with backhauling. J. Oper. Res. Soc. 50 1034–1062, 1999.

[21] A. Olivera, O. Viera. Adaptive Memory Programming for the Vehicle Routing Problem with
Multiple Trips. Computers & Operations Research Volume 34, Issue 1, Pages 28-47, January 2007.

[22] S. Salhi, and R. J. Petch. A GA Based Heuristic for the Vehicle Routing Problem with Multiple
Trips. Journal of Mathematical Modelling and Algorithms, Volume 6, Number 4, p 591-613, December
2007.

[23] Justin Goodson. Vehicle Routing Problem with Multiple Trips. Working paper (2007).

[24] A. Caprara, M. Fischetti and P. Toth. A heuristic method for the set covering problem. Operations
Research 47(5), 730–743, 1999.

[25]M. L. Fisher, Optimal Solution of Vehicle Routing Problems Using Minimum K-trees, Operations
Research 42, 626-642, 1994.

[26] Genetic Algorithms:
 http://en.wikipedia.org/wiki/Genetic_algorithm

[27] Tabu search:
 http://en.wikipedia.org/wiki/Tabu_search

[28] Set Covering Problem:
 http://en.wikipedia.org/wiki/Set_cover_problem

[29] 2-Opt and 3-Opt (in general k-Opt)

http://en.wikipedia.org/wiki/K-opt

[30] N. Christofides, A. Mingozzi, P. Toth and C. Sandi. Combinatorial Optimization. Wiley: Chichester,
pp 313-318.

[31] M. L. Fischer. Optimal solution of vehicle routing problems using minimum K-trees. 1994, Opns
Res. 42, 626-642.

 45

[32] Travelling Salesman Problem:
 http://en.wikipedia.org/wiki/Travelling_salesman_problem

[33] Vehicle Routing Problem:
 http://en.wikipedia.org/wiki/Vehicle_routing_problem

[34] Search Tree:
 http://en.wikipedia.org/wiki/Tree_(data_structure)

[35] Nearest neighbor algorithm
 http://en.wikipedia.org/wiki/Nearest_neighbour_algorithm

 46

Appendix B:

Results

Problem
number m T

Self-developed
algorithm

Genetic Algorithms
[22]

Adaptive Memory
Procedure [11]

1 1 551 x 546,28 524,61
50 2 275 x x 533

524,61 3 184 x x x
567,03 4 138 x x x

0,0808601 1 577 567,03 547,14 524,2
 2 289 x 549,42 529,85
 3 192 x 560,26 552,68
 4 144 x 566,86 547,1
2 1 877 875,31 869,06 835,67
75 2 439 x 865,48 843,13

835,26 3 292 x x 846,37
875,31 4 219 x 856,77 838,71

0,0479491 5 175 x x 852,66
 6 146 x x x
 7 125 x x x
 1 919 875,31 869,73 844,26
 2 459 875,31 881,5 841,23
 3 306 x 869,11 836,77
 4 230 x 880,9 836,18
 5 184 x 883,29 844,28
 6 153 x x 875,03
 7 131 x x 872,64
3 1 867 x 845,33 830,77

100 2 434 x 850,65 834,15
826,14 3 289 x x 831,16
909,25 4 217 x x 832,74

0,1006004 5 173 x x 851,47
 6 145 x x 836,9
 1 909 x 845,33 829,69
 2 454 x 872,11 829,54
 3 303 x 869,48 829,45
 4 227 x 878 826,14

 47

 5 182 x 901,3 833,15
 6 151 x 861,76 842,21
4 1 1080 x 1.064,06 1033,21

150 2 540 x 1.065,86 1036,7
1028,24 3 360 x x 1035,48
1121,6 4 270 x x 1036,35

0,0907959 5 216 x x 1033,02
 6 180 x x 1058,04
 7 154 x x x
 8 135 x x 1064,97
 1 1131 1128,86 1.088,93 1041,77
 2 566 x 1.070,50 1047,02
 3 377 x 1.077,24 1038,98
 4 283 x 1.119,05 1038,88
 5 226 x 1.085,38 1044,09
 6 189 x 1.112,03 1033,02
 7 162 x x 1062,89
 8 141 x x 1064,56
5 1 1356 x 1.347,34 1323,13

199 2 678 x 1.346,63 1341,41
1291,44 3 452 x x 1317,58
1390,32 4 339 x x 1330,63

0,0765657 5 271 x x 1329,17
 6 226 x x 1337,05
 7 194 x x 1340,91
 8 170 x x 1327,09
 9 151 x x 1342,5
 10 136 x x x
 1 1421 1390,32 1.340,44 1318,46
 2 710 1390,32 1.399,65 1314,09
 3 474 1390,32 1.409,37 1311,89
 4 355 1390,32 1.397,60 1338,52
 5 284 1390,32 1.411,19 1322,64
 6 237 - 1.377,07 1311,1
 7 203 - 1.394,73 1337,81
 8 178 - x 1316,89
 9 158 - x 1331,17
 10 142 - x 1347,99
6 1 1094 1062,3 1.088,26 1073,34

120 2 547 x x 1073,07

 48

1042,11 3 365 1062,3 x 1047,97
1060,05 4 274 x x x

0,0172151 5 219 x x 1049,81
 1 1146 1062,3 1.088,26 1044,35
 2 573 1062,3 1.110,10 1072,21
 3 382 1062,3 1.088,56 1043,17
 4 287 1062,3 x 1045,07
 5 229 1062,3 1.092,95 1045,85
7 1 861 830,33 819,97 820,96

100 2 430 830,33 821,33 819,56
819,56 3 287 x 826,98 819,6
833,89 4 215 x 824,57 819,56

0,017485 5 172 x x 845,37
 6 143 x x x
 1 902 830,33 819,97 819,56
 2 451 830,33 829,54 819,56
 3 301 830,33 851,16 819,56
 4 225 x 821,53 819,56
 5 180 x 833,85 824,78
 6 150 x 855,36 825,36
8 1 254 x x 241,97
71 2 127 x x 252,13

241,97 3 85 x x x
269,16 1 266 264,61 254,07 243,25

0,1123693 2 133 x 254,07 241,97
 3 89 x 256,53 260,63
9 1 1221 1191,17 1.190,21 1171,16

134 2 611 x 1.194,24 1175,3
1162,96 3 407 x 1.199,86 1166,18
1190,64 1 1279 1191,17 1.183,00 1173,07

0,0238013 2 640 1191,17 1.199,64 1173,18
 3 426 x 1.215,43 1167,43

 49

Appendix C:

Savings algorithm

The Clarke and Wright savings algorithm [2] is one of the most known heuristic for the basic
VRP. It was developed by Clarke and Wright in 1964 and it applies to problems for which the
number of vehicles is not fixed (it is a decision variable), and it works equally well for both
directed and undirected problems. When two routes r1 = (0,...,i,0) and r2 = (0,j,...,0) can feasibly
be merged into a single route r*= (0,...,i,j,...,0), a distance saving sij = ci0 + c0i - cij is generated.
(where cij is the distance from location i to location j)

The Clarke and Wright savings algorithm [2] works at follows:

Step 1: Savings Computation

1) Compute the savings sij = ci0 + c0i - cij for i,j=1,…,n and i¹j.
2) Create n shuttle routes (0,i,0) for i = 1,…,n.
3) Order the savings in a non-increasing fashion.

Step 2: Best Feasible Merge
Starting from the top of the savings list, execute the following:
1) Given a saving sij, determine whether there the following two routes can feasibility be

merged:
• One starting with (0,j).
• One ending with (i,0).

2) If the two routes can be merged, these two routes are combined by deleting the routes
starting with (0,j) and ending with (i,0) and introducing a new combined route with
(i,j) in the middle.

