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Preface 
 
One of the final compulsory subjects of the master study Business Mathematics and Informatics 
(BMI) is the BMI thesis. In this thesis a problem in the field of BMI is assessed using existing 
literature. The subject addressed in this paper is the Multiple Trip Vehicle Routing Problem 
(MTVRP). This is a variant on the standard Vehicle Routing Problem (VRP) which has been 
extensively covered in literature. Although the MTVRP is a real-life problem, not a lot of 
literature can be found on this subject. That is why it is interesting to give a summary of the 
solutions that are available and give a basic comparison of these solutions. 
 
In January 2007, during the Optimization of Business Processes project an algorithm to solve the 
MTVRP was developed.  After the completion of this project, the members wondered to what 
extend their solution would match up to available solutions in literature. The algorithm 
developed during that project will therefore also be discussed and compared to the other 
available solutions. 
 
Finally I would like to thank my supervisor Marco Bijvank for his encouragement and support. I 
have written this thesis with pride and joy and I have learned a lot. I hope that you, the reader, 
will also read this thesis with pleasure. Hopefully, I can share the acquired knowledge with you 
this way. 
 
29-09-2008 
 
Bilal Singer 
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Summary 
 
The subject addressed in this paper is the Multiple Trip Vehicle Routing Problem (MTVRP). 
This is a variant on the standard Vehicle Routing problem (VRP) which has been extensively 
covered in literature. Although the MTVRP is a real-life problem, not a lot of literature can be 
found on this subject. That is why this subject was chosen for my BMI thesis . 
 
The objective of this thesis is: 
 
To research the available techniques for solving Multi-trip VRP and give a comparison of these 
techniques.  
 
A number of solution techniques are described in this thesis. These solution techniques have 
different characteristics and produce different results. The conclusions that were taken are: 

• Greedy algorithms work better than non-greedy when solving the MTVRP 
• The Adaptive Memory Procedure of Olivera and Viera [21] produces the best results for 

the MTVRP. 
 
The goal of each of the discussed MTVRP algorithms is to minimize the total driving time of all 
routes. However, in practice the total driving time is not the most important quality indicator of a 
MTVRP solution. Many real-life companies are interested in minimizing the number of used 
vehicles and not necessarily in minimizing the total driving time. It would therefore be better to 
look at the number of used vehicles of a solution when comparing MTVRP algorithms. 
 
The self-developed algorithm provided poor results, which was somewhat anticipated. However, 
this algorithm can be used as a starting point for further research in the field of MTVRP 
algorithms. The self-developed algorithm also provides a solution for incorporating a 
heterogeneous fleet. This solution technique can also be used in other (MT)VRP algorithms that 
want to incorporate a heterogeneous fleet. 
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Chapter 1  
 
Introduction 
 
In today's business world, transportation costs form a major share of the total logistics expenses 
of companies. That is why many companies are giving special attention to the transportation 
costs of goods in order to minimize their expenses. Decreasing transportation costs can be 
achieved through better utilization of resources such as people and vehicles. Companies try to 
improve their transportation by using rational manners and effective tools. Finding an improved 
planning for transportation is a problem which is frequently addressed in literature. The objective 
of these problems is to make a planning for the routes executed by people or vehicles, such that 
the transportation cost is minimized. In literature such problems are referred to as routing 
problems. 
 
The most well-known routing problem is the Travelling Salesman Problem (TSP) [32]. In this 
problem a salesman has to visit a number of cities and afterwards the salesman has to return to 
the location where (s)he started. The objective in a TSP is to construct a route such that the travel 
distance is minimized. A TSP can be generalized to a m-TSP where m salesmen have to cover the 
given cities. Each city must be visited by exactly one salesman. Every salesman starts from a 
starting point, the depot, and must also return to this depot at the end of his/her journey. The 
objective in an m-TSP is to minimize the sum of the total distances travelled by the salesmen.  
 
A Vehicle Routing Problem (VRP) [33] can be considered as a m-TSP where a demand is 
associated with each city. In a VRP a number of vehicles are stationed at one or several depots 
and these vehicles need to visit a number of geographically dispersed clients. A specific set of 
routes for each of the vehicles has to be determined in order to serve all the clients. The aim is to 
design these routes in order to meet certain (capacity or time) constraints and to minimize a 
given objective function. 
 
This thesis focuses on the Multi-Trip VRP (MTVRP) [6]. This is a specific variant of the VRP in 
which each vehicle can drive more than one route consecutively. A vehicle that returns from a 
short route may be used a second time or even a third time as long as the maximum driving time 
isn’t exceeded.  
 
The MTVRP is very relevant because in practice many transportation companies have vehicles 
that can drive multiple routes on a day. Despite the fact that the MTVRP occurs a lot in everyday 
practice, there has not been much research on the MTVRP. Therefore, hardly any literature is 
available on this subject. That is the main reason for focusing this study on the MTVRP. Another 
reason for choosing the MTVRP is the fact that during a university project last year an algorithm 
for solving the MTVRP was developed by myself together with three other BMI-students. It is 
interesting to see how that algorithm compares to the already available solutions for the MTVRP. 
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The objective of this research is: 
 
To research the available techniques for solving Multi-trip VRP and give a comparison of these 
techniques.  
 
The remainder of this thesis is organized as follows. In Chapter 2 the VRP and it’s different 
variants will be discussed. In Chapter 3 a mathematical formulation of the MTVRP is given. In 
Chapter 4 the currently available techniques for solving the MTVRP are discussed. After that, 
the algorithm that was developed during the university project will be presented in Chapter 5. 
Finally a comparison will be made between all discussed techniques in Chapter 6 and a 
conclusion will be given in Chapter 7. 
 
 
 



 5 

Chapter 2  
 
Vehicle Routing Problems 
 
A Vehicle Routing Problem (VRP) is a general name for problems to assign a set of clients to 
vehicles by means of routes. To solve the VRP a set of routes is designed in order to serve the 
given clients.  Each of these routes belongs to a certain vehicle (see figure 1).  
 

 
Figure 1: A simple VRP example. 

 
The VRP is defined more than 50 years ago [1] and is considered one of the most challenging 
combinatorial optimization tasks. This is because VRP’s belong to the category of NP hard 
(Non-deterministic Polynomial-time Hard) problems. This means that the computational effort 
required to solve this problem increases exponentially with the problem size. Consequently, 
these kinds of problems are often solved with approximate solutions.   
 
The goal of a VRP-algorithm is to minimize a given objective function, usually characterized by 
the total length of the routes. The length of a route can be measured in distance (e.g. miles) or in 
time (e.g. hours). Another objective could be to minimize the number of routes of the number of 
vehicles needed.  
 
There are also a number of different constraints that can be applied to a VRP. The most basic 
constraint is the time constraint for the vehicles. This constraint means that each vehicle only has 
a limited amount of time T  it can drive each day. The VRP has to meet this constraint when 
minimizing the objective function. 
 
There are a number of different variants on the VRP. Each of the specific variants of the VRP 
has some different constraints or characteristics that have to be taken into account.  
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§2.1 Capacitated Vehicle Routing Problem 
 
The most elementary version of the VRP is the Capacitated Vehicle Routing Problem (CVRP). 
The CVRP has a number of specific characteristics and constraints. There is only one depot from 
which the fleet of vehicles originates. Each vehicle in that fleet has a limited capacity Q available 
to deliver goods. Each vehicle also has a limited amount of time T  it can drive each day. There 
are a number of clients and each client that is visited by a vehicle has a certain demand q that 
occupies a portion of the capacity of that vehicle. It is not possible to split the delivery of the 
goods intended for one client. A CVRP solution is therefore a collection of routes with a 
minimum total driving distance. These routes have to visit each customer exactly once, the total 
demand of each route is at most Q and the total length of each route is at most T. The capacity 
and maximum driving time are identical for each vehicle, so all vehicles are of the same type. 
When all vehicles of a fleet are identical, it is called a homogeneous fleet. 
 
For the CVRP a number of exact algorithms like Branch & Bound, Branch & Cut and dynamic 
programming are known for solving this problem. However, these algorithms can only find a 
solution within modest computing times for a maximum of 100 clients [25]. This is not of great 
practical use so these methods are typically not used. There are also a number of heuristics 
known which provide good results also on large problem instances, for instance the Clarke and 
Wright Savings algorithm [2] and the Sweep algorithm [3]. 
 
Since the Capacitated VRP is the most basic version of the VRP it is usually referred to as VRP. 
In the remainder of this thesis the CVRP will also be referred to as VRP.  
 
§2.2 Other VRP variants 
 
Some of the other VRP variants and their characteristics will be briefly discussed in this 
paragraph. They all share the same basic restrictions as the CVRP. 
 
2.2.1 Multiple Depot VRP  
 
A Multiple Depot VRP (MDVRP) is similar to a CVRP with the only difference that a number of 
different depots are available from which the vehicles can depart to service the clients. In this 
problem it is not sufficient to link vehicles to clients but it is also necessary to determine from 
which depot the vehicle should originate. 
 
If there is a clear clustering of clients around the depots, then it is simple to model this problem 
as a set of independent VRPs. Otherwise, it requires more effort to solve the MDVRP. This is 
usually done by a cluster-first, route-second method. In this method first an allocation of clients 
to depots is made and then a number of regular VRPs are solved.  
 
2.2.2 Split Delivery VRP  
 
In a Split Delivery VRP (SDVRP) it is allowed for different vehicles to serve the same client. 
This is a relaxation of the regular VRP assumption where each client can only be served by one 
vehicle. The overall cost of a SDVRP are less than in a VRP, especially if the size of the client 
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orders are (nearly) as big as the capacity of the vehicles. 
 
2.2.3 Period VRP  
 
In a basic VRP the routes are usually determined over a period of one single day. In a Period 
Vehicle Routing Problem (PVRP), the basic VRP is generalized by extending the planning period 
to M days. Each client can require to be visited more than once during this planning period.  
 
2.2.4 Stochastic VRP  
 
In a Stochastic VRP (SVRP) one or several components of the problem is random and can be 
stochastically represented. Usually three kinds of components that can be stochastic: 
 

• Stochastic customers: each customer is either present with probability p or absent with 
probability (1-p). 

• Stochastic demand: the demand of each customer is a stochastic random variable. 
• Stochastic time: the service and travel times are stochastic random variables. 

 
A possible way to solve a SVRP is to use two stages. The first stage determines a solution to the 
problem before knowing the realizations of the random variables. In the second stage a 
corrective action can be taken when the values of the random variables are known. 
 
2.2.5 VRP with Pick-up and Delivering  
 
The VRP with Pick-up and Delivering (VRPPD) adds the possibility for a client to return some 
goods. These goods can either be returned to the depot or can be used for delivery to another 
client. Therefore it is necessary to take into account that the returned goods of a client must also 
fit into the vehicle. This makes the planning problem more complicated and leads to a worse 
performance of the algorithm compared to a basic VRP (increased travel distance or more 
vehicles). 
 
If the restriction is added that all deliveries are completed before any pickups are made and that 
all picked-up goods are brought to the depot, it is called a VRP with Backhauls (VRPB). 
 
2.2.6 VRP with Time Windows  
 
The VRP with Time Windows (VRPTW) adds a restriction that each client is associated with a 
specific time window at which the vehicle must visit the client. This problem has received a lot 
of attention in literature [4][5]. This is mostly due to the wide applicability of time window 
constraints in real-world cases like bank deliveries, postal deliveries or school bus routing.  
 
2.2.7 VRP with a Heterogeneous fleet  
 
In a basic VRP all vehicles in the fleet have the same capacity. At a VRP with a Heterogeneous 
fleet (HVRP) the vehicles can have different capacities. Another difference with the basic VRP is 
that the number of vehicles available in the fleet is limited and known beforehand.  
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2.2.8 Multiple Trip VRP  
 
In a Multiple Trip VRP (MTVRP) a vehicle can drive more than one route consecutively. Each 
route still has a maximum capacity it can carry. However, a vehicle that returns from a short 
route may be used a second time or even a third time as long as the maximum driving time is not 
exceeded. This is an important characteristic, especially in urban areas, where the vehicle 
capacity is the limiting factor and the travel times are rather short.  
 
It is possible to combine some of these variants. For instance a CVRP with Pick-up and 
Deliveries and Time Windows (CVRPPBTW) or a MDVRP with Time Windows and a 
heterogeneous fleet (MDHVRPTW). This research however focuses on the Multiple Trip VRP 
with only a single depot and a homogeneous fleet. In the next chapter we present a review of the 
available solution heuristics in the literature designed for the MTVRP.  
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Chapter 3  
 
Model description and notation 
 
In this chapter a mathematical formulation of the MTVTP is presented so it can be used in the 
remainder of this thesis. 
 
Consider a  number of locations where each vehicle can drive to/from. A location can be either a 
depot or a customer. There is a single depot, i = 0. There are n customers, where each customer i, 
(i=1,…,n), has a demand qi and a non-negative service-time si. There are m vehicles, each 
vehicle v has a capacity Qv. The fleet of vehicles is denoted by V, so v Î V={1,2,…,m}. The 
driving time between location i and location j is denoted by tij.  
 
The assumptions and restrictions in this problem are: 
 

• each route starts and ends at the single depot, i = 0. 
• every client has to be served by exactly one vehicle. 
• the sum of the demands of the clients served by a single vehicle in one trip may not 

exceed the capacity of the vehicle. 
• the maximum driving time of each vehicle is T.  
• a vehicle may drive more than one route as long as the total driving time of that vehicle 

does not exceed T. 
• the fleet is homogeneous, since each vehicle has the same capacity (so Qv=Q for all v). 

 
Other notation needed for this problem: 
 

• the minimal ‘resting’ time for a vehicle between driving two routes is t0. This time can be 
used to load the truck. 

• a route R = (i1, …, ik) is a sequence of clients visited by a vehicle, including the travel 
from the depot to client i1 and from client ik to the depot.  

• an assignment of a route R to a vehicle is denoted by v(R). 
• the total demand of all clients in route R is denoted by q(R) and the total driving time is 

denoted by t(R).  
• a schedule S is a set of feasible routes R Î S, such that every client is contained in exactly 

one route. 
• a schedule S is feasible if there exists an assignment v(R)ÎV of the routes R Î S to 

vehicles such that: 
o every route is assigned to a vehicle and the total time needed to drive the routes 

assigned to a vehicle, Tv, should not exceed the maximum driving time of that 
vehicle: 

,  v Î V    (1) 

o every route is only assigned to a vehicle that has enough capacity: 

0 0
: ( )

[ ( ) ]v
R v R v

T t R t T t
=

= + £ +å "
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q(R) ≤ Qv(R)  R Î S     (2) 
Equations (1) and (2) are called the feasibility conditions. 

• a shuttle route, RS is a route containing only a single customer. =(i1) is the shuttle 
route containing only client 1. All shuttle routes must be feasible. If a shuttle route isn’t 
feasible because of the time or capacity restriction, then there exists no solution for that 
MTVRP. 

 
Heterogeneous fleet: 
 
Some algorithms allow for the possibility of having a heterogeneous fleet. In a heterogeneous 
fleet the capacity Qv of the vehicles does not have to be the same. Each vehicle v has a different 
capacity Qv.  
 
When a route R is to be assigned to a vehicle, it is necessary to know to which vehicles in the 
heterogeneous fleet, this route can be assigned to, to result in a feasible schedule. This can be 
facilitated by creating different classes of vehicles:  

• first the vehicles are ordered according to decreasing capacity: 
Q1 ≥ Q2 ≥ … ≥ Qm. 

• after that, the vehicles are grouped into classes of identical capacity. Vehicle class C1 is 
the class of vehicles that have the largest capacity. In general, Ci is the class of vehicles 
that have the i-th largest capacity. The capacity of each vehicle v is equal to the capacity 
of the vehicle class it belongs to:  vÎCk.  

 
Using this notation, it is possible to find for each route R the vehicle class of the smallest feasible 
vehicle, c(R). This is the class with the smallest capacity (the highest class number) that has a 
capacity equal to or larger than the capacity needed for that route.  
The class of the smallest feasible vehicle is:   
 
In the next chapter the solution techniques found in the available literature are described.  

"

1
SR

kv CQ Q= "

( ) max{ : ( )}
kC

c R k Q q R= ³



 11 

Chapter 4  
 
Solution techniques 
 
In this chapter all solution techniques for the MTVRP known in the literature will be presented. 
Each of these solution techniques has some unique extra notation or assumptions only needed for 
that solution. These will be described in the respective paragraphs of the solutions. The bin-
packing assignment heuristic is used in several of the techniques to solve the MTVRP. 
Therefore, we first explain the basics of a bin-packing assignment heuristic. 
 
§4.1 Bin-Packing assignment heuristic 
 
In every MTVRP solution technique, at some point, an assignment of routes to vehicles has to be 
performed. A number of the MTVRP solution techniques, that will be discussed in the remainder 
of this chapter, use the same heuristic for assigning a number of routes to a fleet of vehicles. 
They use the bin-packing assignment heuristic. 
 
The bin-packing assignment heuristic is used in order to determine an assignment of vehicles 
v(R) for all constructed routes RÎS that satisfy the capacity and time constraints. S is a given 
schedule that contains a number of feasible routes. When routes have to be assigned to a number 
of vehicles, an assignment problem has to be solved. This problem is solved by performing a bin-
packing assignment heuristic. 
 
There are a number of variants of the bin-packing assignment heuristic. The specific heuristic 
that is used in this context is the First-Fit-Decreasing (FFD) heuristic. The FFD heuristic is 
modified in order to solve the assignment problem of routes to vehicles.  
 
The first step of the FFD algorithm is to sort the list of routes. The routes are sorted so that the 
most ‘difficult’ routes are placed at the top of the list. A route is more difficult to assign if it 
requires a larger vehicle class (lower c(R)) or it requires more driving time (higher t(R)). The 
routes are sorted in increasing order with respect to the vehicle class of the smallest feasible 
vehicle, c(R). For equal c(R) the routes are sorted in decreasing order with respect to driving time 
of that route t(R). The FFD then assigns routes to vehicles, starting from the most difficult routes 
(top of the sorted list of routes). The routes are then sequentially put into the first available 
vehicle that has enough space available.  
 
Assignment heuristic: 
 
The assignment of the routes of a given schedule S to a given fleet V is done in the following 
way: 
 

1) The driving time of vehicle v, Tv, is set to zero  v Î V. 
2) Sort all RÎS in increasing order with respect to c(R) and, when c(R) is equal, in 

decreasing order with respect to t(R). 

"
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3) For every RÎS starting from the top of the sorted list : 
For every v Î Vc (c = c(R), c(R)-1, …, 1): 

If { Tv + t(R) ≤ T } 
a) v(R) = v, 
b) Tv = Tv + t(R) + t0, 

If R has not been assigned: stop, no feasible assignment found. 
 
If all routes are assigned to a vehicle, a feasible assignment is made. This assignment is then 
presented as result. 
 
This bin-packing assignment procedure is used in a number of different heuristics that solve the 
MTVRP. The MTVRP algorithm of Fleischmann [6] (§4.2) however, was the first to use this 
procedure for the MTVRP. 
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§4.2 Savings Procedure for Multiple Use of vehicles (SPMU) 
 
Fleischmann [6] was the first author to address the MTVRP in 1990. He proposed a heuristic 
called the Savings Procedure for Multiple Use of vehicles (SPMU) to solve the MTVRP. This 
heuristic was based on the standard Savings algorithm for a basic VRP [2] and was extended to 
take the possibility of multiple trips into account. A description of the Savings algorithm can be 
found in Appendix A. 
 
Extra notation for this algorithm: 
 

• Two routes R1, R2 Î S, can be combined into one route R*. If R1 = (i1, …, ik) and R2 = (j1, 

… , jl), then the combined route will be R* = R1 ´ R2 = (i1, …, ik, j1, … , jl).  
• A link between the two routes can only be made at the first or last client of the routes R1 

en R2.  
• When two routes are combined it yields a certain savings C(i,j) dependent on the 

objective function.  
• The savings of combining two routes is dependent on the first and last client of these 

routes. When clients i and j are the first and last customers of two different routes the 
savings of combining clients i and j is computed as: 

C(i,j) = t0,i + t0,j - ti,j 
• In Fleischmann’s algorithm [6] the total driving time of all vehicles is minimized. 

 
Fleischmann’s heuristic [6](§4.3) allows for the possibility of having a heterogeneous fleet. This 
is the only algorithm described in the literature that incorporates a heterogeneous fleet for the 
MTVRP. 
 
4.2.1 The SPMU algorithm 
 
The main idea of this algorithm is to start with a schedule S0 consisting of all shuttle routes and 
then iteratively combine routes together in new routes based on the savings. The routes are then 
assigned to the vehicles using the bin-packing assignment algorithm (§4.1). 
 
The SPMU algorithm for solving the MTVRP consists of two parts.  

1) Initial step. 
2) Savings iteration. 

 
Each part will now be discussed in more detail: 
 
4.2.2 Initial step 
 
The SPMU algorithm starts with schedule S0 consisting of all shuttle routes. It is likely that the 
initial schedule is not feasible with respect to the number of vehicles needed. In order to enforce 
a feasible assignment of S0 a number of fictitious vehicles is introduced in the initial step of 
the procedure. Each fictitious vehicle has a capacity equal to the capacity of the smallest feasible 
vehicle class (i.e. c(R)), belonging to shuttle route RS that is assigned to that fictitious vehicle. 
The fictitious vehicles are numbered m+1,…,m+  and augment the real vehicles V and the 

m

m
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appropriate vehicle classes Ck. The initialization procedure of the SPMU is as follows: 
 
1) Create the initial schedule consisting of all shuttle routes; S = S0. 
 
2) Determine the minimum vehicle class c(R) needed for every route RÎS0.  
 
3) Set the number of fictitious vehicles = 0. 
 
4) Determine an assignment v(R)  RÎS0 using the bin packing assignment heuristic described 

in §4.1.3. If this heuristic fails to find a vehicle for a route R, introduce a fictitious vehicle v 
by doing the following: 

a) Set =  + 1, v = m +  and k = c(R). 
b) , Ck = Ck È {v} and V = V È {v}. 
c) v(R) = v, Tv = t(R) + t0. 
d) Continue the assignment algorithm. 

 
4.2.3 Savings iteration 
 
After the initial step, the iterative savings procedure is started and routes are combined based on 
the computed savings. The highest savings are processed first and only routes that can be can be 
assigned to one of the vehicles in the fleet are actually combined. The combined routes are 
assigned to vehicles using the bin-packing assignment algorithm (§4.1). As soon as a fictitious 
vehicle becomes idle during the savings procedure, it is withdrawn. This means that the number 
of fictitious vehicles never increases, except at the initial step. The iterative savings procedure is 
as follows: 
 
1) Order all pairs (i,j) (i = 2, …, n,  j = 1, …, i-1) from the largest to the smallest value of 

C(i,j). 
 
2) Go to the first pair (i,j) in the sorted savings list such that i and j are the first or last customer 

in different routes R1, R2, Î S. 
 

3) Test whether the new route R* = R1´R2 can be assigned to a vehicle: 
Test 1:  Search if route R* can be assigned to any of the two vehicles v(R1) or v(R2)  

 relieved of routes R1 and R2, by doing: 
 set v´(R) = v(R) for R ¹ R1, R2 and  for v Î V; 

; 
For i = 1,2: 
 If c(Ri)  ≤ c(R*) and  
  v´(R*) = v(Ri); 
   
  go to step 4) 

Test 2:  Search if any other vehicle v´(R*) in the fleet can execute route R* . If one is  
 found go to step 4). 

m

"

m m m

kv CQ Q=

vv TT =¢

)2,1()( 0)()( =--¢=¢ itRtTT iRvRv ii
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Test 3:  Determine a new assignment v´(R) for R Î S \ {R1, R2}ÈR* using the bin- 
 packing assignment heuristic. If that is successful go to 4). If it fails, go to 5). 

4) v(R) = v´(R) (R Î S); 
 (v Î V); 

Withdraw all unused fictitious vehicles from V and Vc. 
 
5) If there are savings left in the savings list, proceed to the next pair (i,j) in the sorted savings 

list such that i and j are the first or last customer in different routes R1, R2, Î S; else stop the 
SPMU. 

 
The SPMU results in a set of routes each assigned to a vehicle. If one or more fictitious vehicles 
remain that are assigned of routes, then the SPMU couldn’t find a feasible result. If all fictitious 
vehicles are removed, then the SPMU has found a feasible result for the MTVRP.  
 
 
 

vv TT ¢=



 16 

§4.3 A Tabu Search algorithm 
 
A totally different way of solving the MTVRP is by using a tabu search algorithm. For the basic 
VRP these algorithms produce very good results [7][8][9]. Tabu search is a mathematical 
optimization method, belonging to the class of local search techniques. Tabu search enhances the 
performance of a local search method by using memory structures: once a potential solution has 
been determined, it is marked as "taboo" ("tabu" being a different spelling of the same word) so 
that the algorithm does not visit that possibility repeatedly [27]. 
 
Taillard et al. [10] propose a heuristic to solve the MTVRP by using a tabu search algorithm 
based on the Rochat-Taillard principle [7]. This principle allows for diversification of the search 
process to take place by combining promising solutions. This is fairly similar to what is done in 
genetic algorithms [26].  
 
The main idea of this algorithm is to create a number of different basic VRP solution and then 
transform these solutions into MTVRP solutions. The best MTVRP solution is then chosen 
presented as the final solution. 
 
The Tabu Search algorithm for solving the MTVRP consists of three parts.  

1) Generation of a large set of feasible vehicle routes. 
2) Use the generated set to come to a number of basic VRP solutions. 
3) Transform the basic VRP solution into a MTVRP solution using the bin-packing 

algorithm. 
 
Each part will now be discussed in more detail: 
 
Part 1: Generation of a large set of feasible vehicle routes. 
 
The aim of the first part is to generate a number of feasible routes which can be used in Part 2. 
The generation is done in such a way that the selected routes are of high quality. This part has a 
number of steps which are described below: 
 
1) Creating a first set of feasible routes: 

In this step a first set of feasible routes is generated. This is done by constructing a number 
of solutions for the basic VRP by using the tabu search algorithm of Taillard [9]. An 
unspecified number of vehicles is assumed here. Every VRP solution found in this step will 
be different because of the diversification of the search process in the Taillard tabu search 
algorithm [9].  
 
The individual vehicle routes of all found VRP solutions are then put in a set and each of the 
routes is assigned a label. This label is determined by the total driving time of the respective 
VRP solution, which is used as an indication of the quality of that route.  

 
2) Adding more routes to the set: 

In this step some more feasible routes are generated using the set of feasible routes 
generated in 1). The reason for generating even more routes than already available from 1) is 



 17 

because this step generates a much broader set of feasible routes. The generation of these 
routes is done as follows: 
(i) A route is randomly selected from the set generated in 1) where the probability of 

selection is proportional to the inverse of the driving time of the route. 
(ii) In the set of routes generated in 1) a client is served by more than one route, because the 

set of routes result from a number of different VRP solutions. To ensure that in this step 
a client is not selected multiple times, all routes in the set that have clients in common 
with the already selected routes in (i) are discarded. If some routes remain in the set, go 
to (i) to select another route. If no routes remain in the set, go to (iii). 

(iii) Using the routes that were selected in (i)-(ii) as a starting point, a tabu search is applied 
according to the algorithm of Taillard [9] to generate a new VRP solution. The 
individual routes found in this new VRP solution are appended to the set of 1) and 
labeled the same way as in 1). If two routes have the same set of clients, the route with 
the smallest driving time remains. 

 
The result 1 is a large set of vehicle routes that are all feasible with respect to the capacity and 
time constraints. All selected routes are of high quality. The set of routes is given as input to Part 
2. 
 
Part 2: Generation of VRP solutions 
 
In this part a number of feasible basic VRP solutions are created. These basic VRP solutions are 
found using an enumerative algorithm. The set of routes resulting from Part 1 is used as input for 
this enumerative algorithm. This enumerative algorithm uses a search tree [34] to find a large 
number of feasible VRP solutions. 
 
The following steps are executed in order to find basic VRP solutions. 
1) First a number of routes is selected from the input set. At most q routes (where usually q >> 

m) are selected in non-decreasing order of their driving time. These routes are put into a set 
J with a selection rule that each client must be selected at least once. 

2) Then within a search tree, all feasible VRP solutions that can possibly be constructed by 
combining the routes in J are generated. In order to control the growth of the search tree, 
branching priority is always given to routes containing the largest number of clients. This 
process results in a set of K feasible VRP solutions. 

 
These solutions will be transformed into MTVRP solutions in Part 3. It is however not certain 
that every VRP solution resulting from Part 2 can be transformed into a MTVRP solution in Part 
3.  
 
 
Part 3: Generation of solutions for the VRPM 
 
In the last part of the heuristic the construction of a feasible solution for the MTVRP is 
attempted. This is done by solving a bin-packing problem for each of the K VRP solutions 
resulting from Part 2. This bin-packing algorithm is almost the same assignment heuristic as used 
in the SPMU of Fleischmann. Only one addition is made: 
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• In case a feasible assignment is not found, routes are repeatedly swapped between 
vehicles to try and find a feasible solution. It is however not guaranteed that a feasible 
solution is found in this stage.  

 
The best MTVRP solution out of the K possible solutions is then selected and presented. The 
presented MTVRP solution is the final solution of this algorithm.  
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§4.4 Variations on the Tabu Search algorithm 
 
After Taillard et al. [10] proposed their MTVRP algorithm a number of variations were 
developed, that also used a tabu search algoritm for solving the MTVRP. These algorithms were 
very similar to the Taillard et al. [10] algorithm. Three of these algorithm are described in this 
paragraph. 
 
4.4.1 Minmax procedure 
 
Golden et al. [11] made a small addition to Taillard et al.’s procedure [10] in order to incorporate 
a minmax objective function. E.g. to minimize the largest driving time of a vehicle. The minmax 
objective can be achieved by including a small addition at the end of the Taillard et al. algorithm 
[10]: 
 
After all routes have been assigned to vehicles using the bin-packing assignment heuristic (§4.3, 
Part 3), an interchange procedure is applied. This procedure swaps routes between vehicles in 
order to improve the given minmax objective. 
 
This is only a small addition and will only be used in case a minmax objective is necessary. 
 
4.4.2 Zhao’s extension 
 
Zhao [17] proposed a solution for the MTVRP which is very similar to Taillard et al.’s heuristic 
[10]. Zhao’s heuristic [17] has a significant difference with respect to the Taillard et al. algorithm 
[10] since it already constructs MTVRP solutions in Part 1 of the algorithm. 
 
The differences in the procedure of Zhao’s heuristic [17]  compared to the Taillard et al. 
algorithm [10] are: 

• At Part1, Step 1) when the first set of solutions is generated, Zhao uses a Savings 
algorithm [2] modified with a neighborhood function instead of Taillard’s tabu search 
algorithm [9]. 

• Every VRP solution that is generated in Part 1, Step 1) is directly transformed into a 
MTVRP solution by using the bin-packing algorithm already in this stage. The label of 
each route that is put into the list is then determined by the total driving time of the 
MTVRP instead of the VRP. This addition does not change the kind of routes generated 
but only the value that each route gets. 

• The same thing is done at Part 1, Step 2.(iii). There Zhao [17] also generates MTVRP 
solutions instead of basic VRP solutions as is done in Taillard et al.’s algorithm [10]. 
This is done to label each route with the MTVRP value instead of the VRP value. 

 
Part 2 and 3 of Zhao’s algorithm are the same as the Taillard et al. algorithm [10]. Zhao [17] 
added these variations to ensure that his algorithm accounts for the possibility of multiple trips 
per vehicle, in an earlier stage than the Taillard et al. algorithm [10].  
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4.4.3 Adaptive Memory Procedure 
 
Oliveira and Viera [21] also proposed a solution to the MTVRP using the same general 
procedure as Taillard et al. [10]. However, they used an adaptive memory approach in order to 
find good MTVRP solutions.  
 
The main difference with the algorithm of Taillard et al. [10] is that an adaptive memory is used 
to preserve only a number of solution when new VRP solutions are created in Part 2 of the 
Taillard et al. algorithm [10]. Part 2 of the Taillard et al. algorithm [10] is extended as follows: 
 
Only a maximum of AMPsize top routes are kept in the list after each iteration in Part 2, Step 2). 
This is done to increase the quality of the produces solutions. The routes are ordered by their 
driving time and the routes having the highest driving time are discarded until only AMPsize 
routes remain in the list. 
 
Another difference is that at Part 1, Step 1) of the Taillard et al. algorithm [10], Oliveira and 
Viera [21] use a Sweep algorithm in order to generate the first set of VRP solutions instead of the 
Taillard Tabu Search algorithm [9].  
 
Another difference is that Oliveira and Viera [21] already construct MTVRP solutions at the end 
of Part 1 to label the routes that are added to the set. This is the same addition as Zhao’s [17]. 
Part 1 of the Taillard et al. algorithm [10] is extended as follows: 
 
Each of the VRP solutions created in Part 1, Step 2) (iii) is improved using a tabu search 
algorithm. This tabu search algorithm uses the bin-packing assignment algorithm (see §4.1) to 
create a MTVRP solution. The routes that are added to the set of routes are labeled by the driving 
time of their MTVRP solution. 
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§4.5 Brandao & Mercers technique 
 
Brandao and Mercer [13] also proposed a solution which makes use of a tabu search approach. 
However, their approach is principally different from the Taillard et al. algorithm [10] and 
therefore is discussed separately. Brandao and Mercer [12] originally designed a heuristic for a 
real-life problem which included other requirements like time-windows, different types of 
vehicles, the hiring of extra vehicles and restricted access to some clients for some types of 
vehicles. After that, the authors have simplified their heuristic to a VRP which only adds the 
possibility of Multiple Trips, in order to compare their heuristic with the Taillard et al. algorithm 
[10]. The solution method of Brandao and Mercer [13] is different from many other MTVRP 
algorithms in that it does not use a bin-packing heuristic in order to assign routes to vehicles. 
 
The approach of Brandao and Mercer [13] consists of two parts: 

1) The first part is an algorithm based on a nearest-neighbour rule and an insertion criterion 
that provides an initial solution for the MTVRP.  

2) The second part tries to improve this solution in a tabu search framework using two types 
of trial moves, namely insert and swap.  

 
This heuristic will not be discussed in great detail because it would take too much explanation of 
sub-heuristics like nearest-neighbour and the specific tabu search heuristic. The general scheme 
of the procedure will be discussed below: 
 
Part 1: Creating an initial solution 
 
The first part is an algorithm based on a nearest-neighbour rule and an insertion criterion to 
provide an initial solution for the MTVRP. In this part two independent procedures are executed 
sequentially multiple times. The two independent procedures are: 

1) The creation of a set of feasible routes where each route is assigned to a different vehicle. 
Such a set is called a layer. 

2) Insertion of clients into the layers. 
The combined execution of the two procedures is called a stage. The goal of a stage is to assign 
one route to each vehicle and to fill these routes as much as possible with clients. The procedure 
of a stage is as follows: 
 
1) The creation of a layer. 

A route is created in a layer by assigning the unassigned client that lies farthest away from 
the depot to the vehicle with the largest driving time remaining that has not yet received a 
route in this stage.  

2) Insertion of clients into the layers.  
The insertion procedure is applied in order to include more clients into the routes of the 
created layers. Clients are added into the routes by using a nearest-neighbour algorithm [35].  

 
A stage results in a layer that is filled with routes that serve as much clients as possible. In each 
layer each route belongs to a different vehicle in the fleet. The maximum number of routes in 
each layer is m (i.e. the number of available vehicles). After a stage is performed, there could be 
a number of clients that are still not assigned to a route. In that case another stage is performed. 
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This means that a new layer is created on top of the other existing layers. Again clients are 
assigned to the routes in this layer, if possible. Each vehicle can thus have multiple routes, if the 
driving time restriction allows for it. Each of these routes would then be in a different layer. 
 
The final solution given in Part 1 results from successively performing several stages. It is 
possible to use overtime for the routes in the last layer of each vehicle if there are still unrouted 
clients that could not be inserted using the standard maximum driving time T. This means that in 
Part 1 the MTVRP solution is allowed to become infeasible. This is corrected by allowing only 
feasible MTVRP solutions in Part 2. 
 
Part 2: Tabu search algorithm 
 
In this part a tabu search algorithm is executed in order to improve the initial MTVRP solution 
given in the previous part. If the solution from Part 1 wasn’t feasible, the tabu search algorithm 
will try to make the solution feasible. 
 
There are two kinds of trial moves in this tabu search heuristic, namely insert and swap moves: 

• An insert move consists of removing one client from one route and putting it in another 
route.  

• A swap move consists of exchanging two clients belonging to two different routes. 
 
Part 2 results in a set of routes, each assigned to a specific vehicle. This is the final solution for 
the MTVRP.  
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§4.6 Multi-Phase heuristic 
 
Petch and Salhi proposed a Multi-Phase heuristic [14] to solve the MTVRP. They developed a 
heuristic that tries to integrate the approach used by Taillard et al. [10] and that of Brandao and 
Mercer [13].  
 
The framework of this heuristic is largely the same as the framework proposed by Taillard et al. 
[10]. However, it has a number of differences in every step. The main idea of this algorithm is to 
create a number of different basic VRP solutions and then produce a feasible MTVRP solution 
using the bin-packing assignment heuristic (§4.1) and some improvement techniques.  
 
The Multi-Phase heuristic for solving the MTVRP consists of three parts.  

1) Generation of VRP solutions using a modified savings. 
2) Construction of a MTVRP solution and improvement. 
3) Generation of more VRP solutions using a route population approach. 

 
Each part will now be discussed in more detail: 
 
Part 1: Generation of VRP solutions using a modified savings algorithm 

 
In this first part a sample of VRP solutions is generated using a modification on the savings 
algorithm. The modified savings heuristic described by Yellow [15] is used to construct routes in 
a parallel way. A number of VRP solutions are generated using this heuristic. This results in a 
pool P of VRP solutions. 
 
Part 2: Construction of a MTVRP solution and Improvement 

 
In this part a solution for the MTVRP is constructed using a pool P of VRP solutions as input. 
Every VRP solution in pool P is sequentially processed in this part. A VRP solution is 
transformed into a MTVRP solution using the bin-packing assignment heuristic (§4.1) and then a 
number of improvement techniques are executed to improve the MTVRP solution. The general 
procedure of this part is as follows: 
 
1) The VRP solutions in the pool are ranked according to their value (total driving time). The 

highest ranking solution requires the least driving time and is the first solution to be 
processed.  

2) Apply the bin-packing heuristic (§4.1) on the selected VRP solution in order to construct a 
MTVRP solution S. In this assignment overtime is allowed, meaning it is possible to 
produce a non-feasible MTVRP solution. 

3) Improve the MTVRP solution by using a number of improvement techniques. These 
techniques are: Meiosis, VRP Partition, Donate, Exchange and Donate Exchange.  

4) S is compared with the best known solution up till now, Sbest. If the overtime of S is smaller 
than the overtime of Sbest, Sbest = S.  

5) If Sbest is MTVRP feasible (meaning no overtime), the heuristic is stopped and Sbest is 
presented as result. 

6) If there are still solutions in pool P, the next ranked solution chosen and processed from 
Step 2); else the heuristic is stopped and Sbest is presented as result. 
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The result of this part is either a feasible MTVRP solution or a non-feasible MTVRP solution 
with the least overtime. 
 
Part 3: Generation of more VRP solutions using a route population approach 
 
Part 3 is not always executed in the Multi-Phase heuristic. First the pool of solutions found in 
Part 1 is processed in Part 2. If this results in a feasible MTVRP solution, the heuristic is stopped 
without executing this part. However, if no feasible solution is found using the pool of solutions 
found in Part 1, a new and larger pool of solutions is generated in this part. The new pool of 
solutions will then again be processed by Part 2. 
 
In order to generate a new and larger pool of solutions a method is executed based on a route 
partition approach. This method generates a population of routes that satisfy the VRP constraints. 
The essence of this method is as follows: 
 
1) The clients are ranked with respect to their angle with the depot.  
2) For every client a number of feasible routes are generated, choosing that client as the first 

client on each route. A variant on the sweep method [16] is used for finding these routes. 
Each route is then improved using the 2-Opt and 3-Opt methods [29]. 

3) Using a search tree [34] VRP solutions are constructed by combining the generated routes. 
In this search tree data structures and reduction are used.  

 
The result of the entire Multi-Phase heuristic is either a feasible MTVRP solution or a non-
feasible MTVRP solution with the least overtime. 
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§4.7 Genetic Algorithms 
 
Petch and Salhi [22] proposed a solution for the MTVRP using genetic algorithms (GA’s). 
Genetic algorithms are search techniques that try to find an approximate solution to optimization 
problems. The main idea of a GA is that starting with an initial set of solutions, a new set of 
solutions can be created that give better results. Each solution is represented by a chromosome 
and a set of solutions is called a generation. Each time a new set of solutions is found, a new 
generation is created. The GA heuristic continues to iterate until the maximum number of 
generations, GENmax, is reached 
 
The genetic algorithm proposed by Petch and Salhi [22] is used to partition all clients in different 
clusters. The clients are partitioned in different clusters by using the angles of the clients with 
respect to a reference line (usually the x-axis). Each cluster starts at a certain angle and ends at 
the starting angle of the next cluster. All clients that are positioned between the begin and end 
angle of a certain cluster are assigned to that cluster. In this way a partition is made of clients 
into clusters. This is much like the sweep procedure [3]. The chromosomes of the GA represent 
the partition of clients into different clusters. Each chromosome is a sequence of begin angles of 
the different clusters. A generation represents a set of begin angles. 
 
The GA procedure for solving the MTVRP consists of three parts:  

1) Create an initial set of solutions. 
2) Produce new populations. 
3) Selection of the best solution. 

 
Evaluation procedure: 
 
Once a chromosome is constructed, an evaluation procedure is executed to evaluate the quality 
of that chromosome. A chromosome is evaluated by first creating a MTVRP solution using a 
combination of the savings algorithm [2] and the bin-packing assignment heuristic (§4.1) and 
then using the total driving time of all vehicles to label that chromosome. The details of the 
evaluation procedure are as follows: 
 
1) Generate clusters belonging to those angles and assign the clients to their related clusters. 
2) Generate routes for each cluster using the savings heuristic [2]. 
3) Allocate routes to vehicles using the bin-packing assignment algorithm as described in §4.1. 
4) Compute the fitness of that solution. The fitness of a solution is determined by the total 

driving time of all vehicles in that solution. 
 
This evaluation procedure is used in both Part 1 and Part 2 of the GA procedure. Each part of the 
GA procedure will now be discussed in more detail: 
 



 26 

Part 1: Create an initial set of solutions 
 
1) Create a number of Z chromosomes {Xi,…,XZ}.  
2) For each chromosome do the following: 

a). Randomly select k angles from [0°,359°]. 
b). Evaluate the chromosome using the evaluation procedure. 

 
Part 1 results in a set of Z initial solutions for the MTVRP. This set is called the initial generation 
of chromosomes. This initial population is given as input to Part 2. 
 
Part 2: Produce new populations 
 
This is the main part of the recursive process where new population of chromosomes are created 
and evaluated. Using the initial population of chromosomes found in the previous part as a 
starting point, new and improved generations are created iteratively. Each iteration results in a 
new generation. This iterative procedure is as follows: 
 
The creation of a new generation of chromosomes is done using four different types of GA 
operators: 
• Chromosome injection: 

Randomly created chromosomes are inserted into the new generation. 
• Chromosome cloning: 

The cloning mechanism is based upon maintaining a variety in the quality chromosomes. 
The chromosomes of the previous generation are ranked according to a fitness function and 
then partitioned into groups. After that, a proportion of chromosomes within each group is 
selected. 

• Extraction operator:  
The operator extraction is the primary operator used to generate a new offspring. Given two 
chromosomes Xi and Xj, extraction produces a single offspring. Extraction is used to add a 
series of sectors, from a chosen partner Xj, into the chromosome Xi by overwriting the 
corresponding sectors. In other words, a sequence of angles of chromosome Xj  is 
transplanted in the angle composition of chromosome Xi.  

• Mutation operator: 
The mutation operator selects a number of chromosomes from the previous generation and 
adds a mutation of each of these chromosomes to the new generation. A chromosome is 
mutated by changing some of the angles of that chromosome randomly. 

 
After the creation of a new set of chromosomes, the MTVRP solutions belonging to this set of 
chromosomes are determined using the evaluation procedure.  
 
The result from Part 2 is a set of MTVRP solutions. This set is given as input to Part 3. 
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Part 3: Selection of the best solution 
 
In this part, the best solution for the MTVRP is selected from the input set. This is done in the 
following way: 
 
1) All solutions found are ranked according to their fitness function. The top 10% solutions are 

then chosen. 
2) Some improvement modules are performed on the chosen solutions. These are the same 

techniques as used in the Multi-Phase heuristic of Petch and Salhi [14] (discussed in §4.5). 
3) Finally the solution with the best fitness (smallest total driving time) is selected. 
 
The selected solution from Part 3 is the final solution for the MTVRP. 



 28 

§4.8 Insertion Heuristic Approach 
 
Cambell and Savelsbergh [18] proposed a solution for the MTVRP in 2002 by using an insertion 
heuristic. Insertion heuristics are frequently used in solving a number of different VRP variants 
[19][20]. Cambell and Savelsbergh [18] have extended the insertion heuristic in order to 
incorporate multiple trips. 
 
This heuristic tries to sequentially add every unrouted customer j to that specific vehicle and 
route which provides the highest profitability. Profitability is defined by the negative of the extra 
travel time needed for that route by inserting the unrouted customer j between the already routed 
customer (i-1) and i. Profitability of adding unrouted customer j between customer (i-1) and 
customer i is: –(t(i-1),j + tj,i – t(i-1),i). 
 
The insertion heuristic approach for solving the MTVRP consists of two parts: 

1) Initialization. 
2) Iteration. 

 
Each part will now be discussed in more detail: 
 
Part 1: Initialization 
 
In the initialization phase, every vehicle in the fleet is given an empty route. In the iteration 
phase, clients are assigned to these routes. As soon as a client is assigned to an empty route of a 
vehicle in the iteration phase, a new empty route is created for that vehicle. In this way each 
vehicle can have multiple routes assigned to it, but always has one empty route available. 
 
Part 2: Iteration 
 
In this phase each client is sequentially assigned to a vehicle and a route. This is done by first 
computing all possible profitability’s of that client and then assigning this client to the vehicle 
and route that have the highest profitability. The procedure of the iteration phase is as follows: 
 
For each unassigned client j the following is done: 
1) For every route R assigned to every vehicle vÎV v, (v(R) = v): 
  For every customer i in route R: 

• Determine whether inserting the unrouted customer j between (i-1) and i 
results in a feasible solution. Feasibility is checked with respect to 
capacity and time constraints. 

• If an insertion of j is feasible the profitability is computed for this 
insertion and this profitability is saved in a list. 

 
2) Customer j is inserted between clients (i-1) and i that give the highest profitability. A new 

route is added if necessary, such that every vehicle has an empty route. 
 
This results in a solution where each vehicle has a number of routes assigned to it. All customers 
are assigned to one of these routes. This is the final solution for the MTVRP. 
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§4.9 Route linking procedure 
 
Goodson [23] proposed a heuristic for solving the MTVRP in his working paper in 2007. He 
does not use the bin-packing algorithm as many other MTVRP algorithm, but he proposes a 
different method of assigning routes to vehicles.  
 
This algorithm uses an observation relating to the nature of linking routes in a single vehicle. A 
vehicle has to return to the depot for two reasons:  

• if the vehicle load is near vehicle capacity.  
• if the route driving time is near the maximum driving time.  

 
If the vehicle has to return to the depot because of the capacity restriction, that vehicle can drive 
another route in the remaining time after the first route. If the vehicle returns to the depot 
because of the maximum driving time constraint, that vehicle cannot drive another route. This 
observation is used to link routes together in a certain vehicle.  
 
The main idea of this algorithm is to first generate a large set of feasible routes and after that, 
link some of these routes together using the above observation. Finally a number of linked routes 
are assigned to vehicles using a set covering problem (SCP) [28] algorithm. 
 
The route linking procedure for solving the MTVRP consists of three parts.  

1) Route generation. 
2) Route linking. 
3) Selection of linked routes. 

 
Each part will now be discussed in more detail: 
 
Part 1: Route generation 

 
In this part, a large number of potential routes is generated using the sweep approach [16]. The 
routes are generated the following way: 
 
1) a certain customer i is chosen as starting point for the sweep approach [16]. 
2) all possible feasible routes, with customer i as starting point, are generated using the sweep  

approach [16]. This heuristic takes into account both the capacity constraint and the 
maximum driving time constraint. 

 
This procedure is executed for every available customer. All routes generated for all customers 
are then put together in a list. 
 
The list with all possible routes is given as input to Part 2. 
 
Part 2: Route linking 
 
The generated routes from Part 1 are now linked together to form linked-routes. A linked-route is 
a combination of a couple of routes that can be executed sequentially by a single vehicle of the 
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homogeneous fleet. The sum of the driving times of the routes combined in the linked-route, 
does not exceed the maximum driving time.  
 
If all potential linked-routes are created by combining the routes in every possible way, it will 
result in a huge amount of linked-routes. This will also require huge computational effort. In 
order to reduce the number of generated linked-routes Goodson [23] uses his route-linking 
procedure. Goodson proposed to link the routes using the two observations he made, relating to 
the nature of linking routes. He formulated these two observations as rules that are used in his 
algorithm: 

1) Rule 1: do not link two routes if the sum of the capacity is less than the capacity of the 
vehicle. If two of such routes would be linked, unnecessary additional distance is added. 
This happens because it is not necessary to return to the depot between driving these two 
routes since the capacity constraint is not violated. 

2) Rule 2: a series of r linked-routes must consist of at least r-1 full routes and at most 1 
non-full route. A full route is a route that can accommodate no more than b additional 
customers without exceeding the vehicle capacity or the route duration limit. A non-full 
route is a route that is not full. This rule was formulated by using the observation that a 
vehicle returns to the depot when its current route cannot accommodate another 
customer.  
For instance: if b = 2, all routes that can accommodate more than 2 customers without 
exceeding the vehicle capacity or the route duration limit, are non-full. All other routes 
are full. To test whether a route can accommodate a number of clients, the sweep 
heuristic [16] is used. 

 
Both these rules ensure that less linked-routes are generated and that the computational effort is 
also reduced. The choice of parameter b determines the number of full routes and therefore 
influences the number of potential route links. The procedure for executing this part is as 
follows: 
 
All routes generated in Part 1) are divided in full and non-full routes based on parameter b. After 
that, the following iterative procedure is applied to generate the linked-routes: 

1) Full routes are linked with other full routes until additional route links are infeasible in 
terms of route duration. All possible combinations of full routes are created this way. 

2) At most 1 non-full route is added to each of the generated series of full routes in 1). All 
possible combinations of a series of full routes and the addition of a non-full route are 
generated. 

 
Throughout the procedure, routes are only linked if they satisfy Rule 1 and if they contain no 
common customers, so that a customer is not visited more than one time.  
 
The result from Part 2 is a large set of linked routes. Each of these linked routes can be assigned 
to one of the available vehicles in the homogeneous fleet. The set of linked routes is given as 
input to Part 3. 
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Part 3: Selection of linked routes 
 
In this part a subset of the linked-routes generated in Part 2 will be selected such that each client 
is visited once. Each of the selected linked-routes is then assigned to a vehicle. The selection of 
linked-routes is done by formulating a Set Covering Problem (SCP) [28]. The SCP is a classical 
question in computer science and complexity theory. The input of a basic SCP is a collection of  
several sets. Each set contains a number of elements and the different sets may have some 
elements in common. The goal of a SCP is to select a minimum number of these sets so that the 
selected sets contain all elements exactly once.  
 
Goodson [23] represents each linked-route by a set in the SCP model and each client that has to 
be served is represented by an element in the SCP model. The goal of this SCP is then to 
minimize the number of chosen linked-routes such that all customers are visited. Goodson uses 
the Lagrangian-based heuristic proposed by Caprara et al. [24] to solve the SCP. 
 
In this way a number of linked routes are selected. Each linked route is then assigned to one of 
the vehicles in the fleet. This is the final solution for the MTVRP. 
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Chapter 5  
 
Self-developed algorithm 
 
During the course Project Optimization of Business Processes in 2007 we developed an 
algorithm to solve a MTVRP. This algorithm was developed without using any of the MTVRP 
algorithms described in the previous chapter. It was created by adding some modifications to the 
savings algorithm based on intuition to deal with multiple trips. This algorithm can also deal with 
a heterogeneous fleet of vehicles. 
 
In many respects the algorithm developed is similar to the SPMU developed by Fleischmann [6]. 
It does however have a number of differences. The main idea of the self-developed algorithm 
and the differences with the Fleischmann’s algorithm [6], will be described in §5.1 and §5.2. The  
general procedure will be described in mathematical terms in §5.3. 
 
The notation will be the same as in Fleischmann [6] (see § 4.2). 
 
§5.1 Part 1: initialization 
 
The developed algorithm is initialized by creating the schedule S0 consisting of all shuttle routes. 
First, all client are put in a list and are then sorted in decreasing order based on their demand. For 
each of these clients a shuttle route is made and each of these shuttle routes is assigned to a 
vehicle. This is done by sequentially assigning the unassigned shuttle route with the largest 
demand to the largest unused vehicle. If a shuttle route has a demand that is bigger than the 
capacity of the largest unused vehicle, split delivery is applied. Client i is split in two new 
clients, i1 and i2, where i1 will have a demand equal to the capacity of the largest unused vehicle 
and i2 will get a demand equal to the demand of i minus the demand of i1. Client i1 will be put 
into a shuttle route and is assigned to the largest unused vehicle. Client i2 will be put in the list of 
clients that still have to be served in its appropriate position when looking at the demand. If there 
are no unused vehicles remaining, a fictitious vehicle with the smallest capacity Qmin is added to 
the fleet. All of the created shuttle routes must be feasible with respect to the driving time. If a 
shuttle route isn’t feasible then there exists no solution for this problem.  
 
In the initialization phase there are two main differences with the SPMU of Fleischman [6]. The 
first difference is the possibility of splitting clients when the demand it too big. The second 
difference is that only fictitious vehicles with the smallest capacity, Qmin,  are added in contrast to 
Fleischmann’s algorithm [6] in which fictitious vehicles can have larger capacity. 
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§5.2 Part 2: iteration  
 
After the algorithm is initialized, the savings procedure is started and routes are combined. The 
self developed algorithm has a number of differences with respect to Fleischmann’s algorithm 
[6]. 
 
5.2.1 Route combining 
 
The self-developed algorithm combines two routes Ri and Rj in a combined route R* using an 
improvement procedure. The order in which the clients of the combined route are visited is 
improved using a Traveling Salesman Problem (TSP) heuristic, namely Farthest Insertion (FI). 
This is an important difference with Fleischman’s algorithm [6]. Fleischman [6] only tries to 
combine the routes of their first and last customers, so the order in which the clients are visited in 
the combined route does not change from their original routes. The self-developed algorithm 
combines two routes in a different manner using the Farthest Insertion heuristic. In this way the 
order in which the clients are visited in a combined route is improved.  
 
5.2.2 Calculation of the savings 
 
To determine which routes should be combined we calculate the savings. These savings are 
computed differently than the savings in Fleischmann’s algorithm [6]. In the self-developed 
algorithm, a TSP heuristic, Farthest Insertion, is used in order to find the TSP savings. These 
savings are based on the difference in driving time when combining two routes using the Farthest 
Insertion heuristic. The TSP savings of combining routes Ri and Rj into route R* are determined 
by: 

S(i,j) = t(Ri) + t(Rj) – FI(R*) 
Where FI(R*) is the total driving time or route R* when combining routes Ri and Rj into 
route R* using the Farthest Insertion heuristic. 

 
The TSP savings are savings based on combining entire routes and not only combining clients as 
is the case at Fleischmann’s algorithm [6]. This means that if the set of routes is changed, by 
combining two routes into one route, our savings have to be computed again. The savings of 
Fleischmann’s algorithm [6] only have to be computed once in the beginning. 
 
5.2.3 Feasibility tests 
 
In every iteration of the savings procedure we need to be test whether adding the combined route 
R* and removing the routes Ri and Rj from the schedule provides a feasible solution. This is done 
by performing two tests. First we try to assign route R* to one of the vehicles v(Ri) or v(Rj) 
relieved of the routes Ri and Rj (test 1) and after that we try to assign R* to any other available 
vehicle in the fleet (test 2). Fleischmann [6] uses the same two tests, but he also adds a third test 
to this procedure. His third test comprises of performing a complete new assignment using the 
bin-packing assignment heuristic (§4.2). Our testing procedure may lead to a rejection of certain 
route combinations (savings) that would be accepted using the third test of Fleischmann [6].  
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5.2.4 Fictitious vehicles removal 
 
If a fictitious vehicle isn’t used any more, it isn’t removed directly out of the fleet in the self-
developed algorithm. Only at the final step of the algorithm, these fictitious vehicles are 
removed. Once the savings are processed, all routes are reassigned to vehicles using the same 
bin-packing heuristic used by Fleischmann. At the self-developed algorithm the fictitious, 
vehicles that aren´t used any more at a certain step of the iterative savings procedure, could be 
assigned to a route in subsequent steps of the iterative savings procedure. Fleischmann [6] 
removes the fictitious vehicles as soon as they become idle and these fictitious vehicles cannot 
be used anymore in subsequent steps of the iterative savings procedure.  
 
§5.3 General procedure 
 
The general procedure of the self developed algorithm is as follows: 
 
Part 1: initial step 
 
In this step an assignment v(R) for all RÎS0 is determined using the following procedure: 
 

1) Create the initial schedule S0 consisting of all shuttle routes. The routes in this schedule 
are not yet assigned to a vehicle. 

 
2) Set the number of fictitious vehicles = 0. 

 
3) Sort the routes in decreasing order based on their demand: q(R1)  ≥ q(R2) ≥ … ≥ q(Rn) 
 
4) Assign route Ri with the highest demand q(Ri) to the largest available vehicle v with the 

highest capacity Q. Call this vehicle Vmax with capacity QVmax.  
This assignment cannot be executed if QVmax < q(Ri) or if there isn’t any unassigned 
vehicle left.  
 
If QVmax < q(Ri) split the delivery in two routes R1 and R2, where route R1 will get a 
demand of QVmax and R2 will get a demand of (dRi - QVmax). Assign route R1 to vehicle 
Vmax and add route R2 to S0 according to decreasing demand. 
 
If there are no more unassigned vehicles available, then introduce a fictitious vehicle 
Vfic: 

o Set =  + 1 and set the capacity of this fictitious vehicle to the smallest 
capacity of a vehicle, Qmin. 

o Add this fictitious vehicle to the fleet of vehicles. 
o Assign route Ri to Vfic and apply split delivery if necessary. 

 
5) Proceed with the next unassigned route in S0 until all routes are assigned.  

 

m

m m
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Part 2: iteration 
 
In this step the savings are processed and the routes are combined in order to create a feasible 
MTVRP solution. 
 

1) S = S0. 
 

2) Compute the savings S(i,j) for combining all unassigned routes Ri and Rj Î S using:  
S(i,j) = t(Ri) + t(Rj) – FI(R*) 

 If there are no unassigned routes, go to 6), else go to 3). 
 

3) Put the savings in a list and sort them on a descending order. 
 

4) Take the top unprocessed savings S(i,j) in the sorted list and test whether routes Ri and Rj 
can be combined into the combined route R*. This is done by checking whether route R* 
can be assigned to a vehicle by performing the following two tests: 

Test 1: Check whether the new route R* can be assigned to one of the vehicles  
v(Ri) or v(Rj) relieved of routes Ri and Rj. 

Test 2: Check whether the new route R* can be assigned to any of the other  
vehicles in the fleet. 

 
5) If the assignment was accomplished go to 2), if the assignment wasn’t feasible and there 

are still savings in the list also go to 2), else go to 6). 
 
6) All routes are now assigned to a vehicle and there are no more feasible savings available. 

In order to make sure that the assignment of routes to vehicles is optimal the routes are 
reassigned. All routes are first unassigned and then a bin packing assignment heuristic is 
executed. For details on this heuristic see § 4.2.1. 

 
 
This results in a set of routes each assigned to a vehicle. If there are still fictitious vehicles in the 
solution then a feasible solution could not be found using this algorithm. If no fictitious vehicles 
are present in the solution then this algorithm presents a feasible solution for that MTVRP. 
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Chapter 6  
 
Comparison of solution techniques 
 
In this chapter a comparison is made between the MTVRP solution techniques discussed in the 
previous chapters. In §6.1 a number of discussed algorithms will be compared numerically. Not 
all algorithms can be compared, because not all numerical results are reported in the papers. In 
§6.2 some of the characteristics of the discussed algorithms are compared. 
 
§6.1 Numerical results 
 
Some of the papers discussed in Chapter 4, use the same problem instances to test the quality of 
the proposed algorithms. We also used these problem instances to test our the self-developed 
algorithm. The results from the tests of each algorithm are compared in order to give an 
indication of the quality of the algorithms. 
 
Table 1 lists the algorithms for which all numerical results are available to perform the 
comparison. 
 

Algorithm number Algorithm name 
1 A Tabu Search algorithm (§4.2) 
2 Brandao & Mercers technique (§4.4) 
3 Multi-Phase heuristic (§4.5) 
4 Adaptive Memory Procedure (§4.3.3) 
5 Genetic Algorithms (§4.6) 
6 Self-developed algorithm (Chapter 5) 

Table 1: list of algorithms that can be numerically compared. 
 
There are 9 problem settings which are used. The first 5 settings come from problem 1-5 in 
Christofides, Mingozzi and Toth [29], 2 settings correspond to problem 11-12 of Christofides, 
Mingozzi and Toth [29] and 2 settings come from problem 11-12 in Fisher [30]. In each of these 
settings, the number of vehicles m changes according to Table 2. This results in 52 problem 
instances. 
 
Problem number Originated from: Nr. Clients m z* 

1 Problem 1 of Christofides, Mingozzi and Toth 50 1,…,4 524,61 
2 Problem 2 of Christofides, Mingozzi and Toth 75 1,…,7 835,26 
3 Problem 3 of Christofides, Mingozzi and Toth 100 1,…,6 826,14 
4 Problem 4 of Christofides, Mingozzi and Toth 150 1,…,8 1028,42 
5 Problem 5 of Christofides, Mingozzi and Toth 199 1,…,10 1291,44 
6 Problem 11 of Christofides, Mingozzi and Toth 120 1,…,5 1042,11 
7 Problem 12 of Christofides, Mingozzi and Toth 100 1,…,6 819,56 
8 Problem 11 of Fischer 71 1,…,3 241,97 
9 Problem 12 of Fischer 134 1,…,3 1162,96 

Table 2: characteristics of the base problems. 
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These problem instances are however for VRP problems. Therefore, the maximum driving time 
T corresponds to:  

T1 = [1.05 z*/m] and  
T2, = [1.1 z*/m],  

where [x] is the value of x rounded to the nearest integer and z* is the value of a VRP solution to 
that problem obtained as in Rochat and Taillard [7] with an unspecified number of vehicles. This 
results in 104 problem instances.  
 
Table 3 specifies the number of problem instances that are solved by the different MTVRP 
algorithms. For example, algorithm 1 finds a feasible solution for 5 out of 8 problem instances 
for base problem 1 and finds a feasible solution for 81 out of the 104 total problem instances.  
 

Base 
problem nr. 

# problem 
instances Number of feasible problem instances for each algorithm: 

  1 2 3 4 5 6 
1 8 5 6 4 6 5 1 
2 14 11 12 12 12 8 3 
3 12 8 11 10 12 8 0 
4 16 12 14 13 15 8 1 
5 20 19 18 14 19 9 5 
6 10 9 9 8 9 5 7 
7 12 8 9 11 11 10 5 
8 6 3 4 4 5 3 1 
9 6 6 6 6 6 6 3 

Total 104 81 89 82 95 62 26 
Table 2: number of feasible problem instances for each algorithm. 

 
Table 3 shows that algorithm 4 (Adaptive Memory Procedure) finds a feasible solution for 95 
problem instances.  Algorithm 2 (Brandao & Mercers technique) also solves a big part of the 
problem instances (89 out of 104). The self-developed algorithm has the worst performance 
when looking at the number of problem instances solved (only 26 out of 104). 
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6.1.1 Comparing the quality of the feasible solutions 
 
For only 3 algorithms the total driving time of the solutions is reported. The algorithms for which 
these results are available, are listed in Table 4. The total driving times are reported in Appendix 
B. 
 

Algorithm number Algorithm name 
4 Adaptive Memory Procedure (§4.3.3) 
5 Genetic Algorithms (§4.6) 
6 Self-developed algorithm (Chapter 5) 
Table 4: list of algorithms that present exact results for the feasible problem instances. 

 
In Table 5 a summary of the results is presented. This table shows, for each algorithm, which 
percentage of feasible problem instances obtains better results (lower total driving time) by using 
that algorithm opposed to one of the other two algorithms. For example, the self-developed 
algorithm outperforms the GA in 53,85% of the instances and the Adaptive Memory Procedure 
in 7,69% of the instances. It should be noted, that only instances that provide a feasible solution 
for both algorithms are taken into account with this comparison. 
 
                         Worse 
Better 

Self-developed 
algorithm Genetic Algorithms 

Adaptive Memory 
Procedure 

Self-developed 
algorithm - 53,85% 7,69% 

Genetic Algorithms 46,15% - 3,23% 
Adaptive Memory 

Procedure 92,31% 96,77% - 
Table 5: comparing the quality of the feasible solutions. 

 
From Table 5 we can conclude that the Adaptive Memory Procedure generally produces results 
of a higher quality than the other two algorithms (92,31% and 96,77% of the problem instances 
have better results by using the Adaptive Memory Procedure [11]).  
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§6.2 Algorithm characteristics 
 
The algorithms that are discussed in the previous paragraph have certain characteristics that 
make them more or less suitable for different practical circumstances. Some algorithm 
characteristics will now be discussed. 
 
6.2.1 Homogeneous vs. heterogeneous 
 
Each MTVRP algorithm can accommodate either a homogeneous fleet or a heterogeneous fleet. 
Only two of discussed algorithms accommodate a heterogeneous fleet. These two algorithms are 
the SPMU (§4.1) of Fleischmann [6] and the self-developed algorithm (Chapter 5). If an 
algorithm does not present the possibility for having a heterogeneous fleet, it could be changed in 
order to incorporate this possibility.  
 
6.2.2 Greedy vs. non-greedy 
 
A greedy algorithm is an algorithm that follows a problem solving heuristic of making the 
locally optimum choice at each stage with the hope of finding the global optimum. It iteratively 
makes one greedy choice after another, reducing each given problem into a smaller one. In other 
words, a greedy algorithm never reconsiders its choices. Greedy algorithms mostly (but not 
always) fail to find the globally optimal solution, because they usually do not exhaustively 
consider all possible solutions. They can make commitments to certain choices too early which 
prevent them from finding the best overall solution later and they then get stuck in a local 
optimum. 
 
A non-greedy algorithm looks at the entire problem simultaneously and at every stage of the 
algorithm there is a possibility of reconsidering previous choices. This way, is it possible to get 
out of a local optimum and find the global optimum. 
 
Table 6 lists the discussed algorithms and whether these algorithms are greedy or non-greedy. 
 

Algorithm name Greedy / non- greedy 
SPMU (§4.1) Greedy 
A Tabu Search algorithm (§4.2) Non-greedy 
Minmax Procedure (§4.3.1) Non-greedy 
Zhao's Extension (§4.3.2) Non-greedy 
Adaptive Memory Procedure (§4.3.3) Non-greedy 
Brandao & Mercers technique (§4.4) Greedy/ Non-greedy 
Multi-Phase heuristic (§4.5) Non-greedy 
Genetic Algorithms (§4.6) Non-greedy 
Insertion Heuristic Approach (§4.7) Greedy 
Route Linking Procedure (§4.8) Greedy 
Self-developed algorithm (Chapter 5) Greedy 

Table 6: list of algorithms and the respective algorithm type. 
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6.2.3 Performance of the self-developed algorithm 
 
From the results can be concluded that the self-developed algorithm does not provide very good 
results for solving the MTVRP, in comparison to other available MTVRP algorithms. This is 
caused by a number of reasons: 

• The standard savings algorithm, which is the base of the self-developed algorithm, 
performs relatively well with short computational time for the standard VRP. 
However, other algorithms are available that give better results when more computing 
time is available, like the algorithm proposed by Rochat and Taillard [7]. 

• The self-developed algorithm performs a type of  “greedy” search. Once two routes 
are combines, this choice is never undone or changed. However, it isn’t sure that this 
choice will provide an overall best solution.  

• The choice for combining two routes is only based on the savings and not on some 
value that indicates how well the resulting route would fit in the fleet of vehicles.  
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Chapter 7  
 
Conclusion 
 
The MTVRP is very relevant because in practice many transportation companies have vehicles 
that can drive multiple routes on a day. However,  not a lot of literature is available on this 
subject. 
 
In this thesis, a number of algorithms are described that solve the MTVRP. This field of research 
is still in development and there exists no algorithm which is widely used. This thesis can be 
used as a summary for most MTVRP algorithms known up till know. 
 
We can conclude that non-greedy algorithms work better than greedy algorithms. A greedy 
algorithm makes local choices based on some intuition regarding the characteristics of the 
MTVRP. These local choices tend to go to local optimum and not a global optimum and 
therefore do not present the best results for this type of problems. Non-greedy algorithms try to 
create a large sample of solutions and have a random component that result in solutions of higher 
quality. 
 
The algorithm that presented the best results is the Adaptive Memory Procedure [11] described 
in § 4.3.3. This algorithm solves more test problem instances than any other MTVRP algorithm 
and the quality of the results of this algorithm is also higher than any of the other algorithms it 
was compared to. 
 
The goal of each of the discussed MTVRP algorithms is to minimize the total driving time of all 
routes. However, in practice the total driving time is not the most important quality indicator of a 
MTVRP solution. Many real-life companies are interested in minimizing the number of used 
vehicles and not necessarily in minimizing the total driving time. It would therefore be better to 
look at the number of used vehicles of a solution when comparing MTVRP algorithms. 
 
The self-developed algorithm provided poor results, which was somewhat anticipated. However, 
this algorithm can be used as a starting point for further research in the field of MTVRP 
algorithms. The self-developed algorithm also provides a solution for incorporating a 
heterogeneous fleet. This solution technique can also be used in other (MT)VRP algorithms that 
want to incorporate a heterogeneous fleet. 
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Appendix B: 
 
Results 
 

Problem 
number m T 

Self-developed 
algorithm 

Genetic Algorithms 
[22] 

Adaptive Memory 
Procedure [11] 

1 1 551 x 546,28 524,61 
50 2 275 x x 533 

524,61 3 184 x x x 
567,03 4 138 x x x 

0,0808601 1 577 567,03 547,14 524,2 
  2 289 x 549,42 529,85 
  3 192 x 560,26 552,68 
  4 144 x 566,86 547,1 
2 1 877 875,31 869,06 835,67 
75 2 439 x 865,48 843,13 

835,26 3 292 x x 846,37 
875,31 4 219 x 856,77 838,71 

0,0479491 5 175 x x 852,66 
  6 146 x x x 
  7 125 x x x 
  1 919 875,31 869,73 844,26 
  2 459 875,31 881,5 841,23 
  3 306 x 869,11 836,77 
  4 230 x 880,9 836,18 
  5 184 x 883,29 844,28 
  6 153 x x 875,03 
  7 131 x x 872,64 
3 1 867 x 845,33 830,77 

100 2 434 x 850,65 834,15 
826,14 3 289 x x 831,16 
909,25 4 217 x x 832,74 

0,1006004 5 173 x x 851,47 
  6 145 x x 836,9 
  1 909 x 845,33 829,69 
  2 454 x 872,11 829,54 
  3 303 x 869,48 829,45 
  4 227 x 878 826,14 
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  5 182 x 901,3 833,15 
  6 151 x 861,76 842,21 
4 1 1080 x 1.064,06 1033,21 

150 2 540 x 1.065,86 1036,7 
1028,24 3 360 x x 1035,48 
1121,6 4 270 x x 1036,35 

0,0907959 5 216 x x 1033,02 
  6 180 x x 1058,04 
  7 154 x x x 
  8 135 x x 1064,97 
  1 1131 1128,86 1.088,93 1041,77 
  2 566 x 1.070,50 1047,02 
  3 377 x 1.077,24 1038,98 
  4 283 x 1.119,05 1038,88 
  5 226 x 1.085,38 1044,09 
  6 189 x 1.112,03 1033,02 
  7 162 x x 1062,89 
  8 141 x x 1064,56 
5 1 1356 x 1.347,34 1323,13 

199 2 678 x 1.346,63 1341,41 
1291,44 3 452 x x 1317,58 
1390,32 4 339 x x 1330,63 

0,0765657 5 271 x x 1329,17 
  6 226 x x 1337,05 
  7 194 x x 1340,91 
  8 170 x x 1327,09 
  9 151 x x 1342,5 
  10 136 x x x 
  1 1421 1390,32 1.340,44 1318,46 
  2 710 1390,32 1.399,65 1314,09 
  3 474 1390,32 1.409,37 1311,89 
  4 355 1390,32 1.397,60 1338,52 
  5 284 1390,32 1.411,19 1322,64 
  6 237 - 1.377,07 1311,1 
  7 203 - 1.394,73 1337,81 
  8 178 - x 1316,89 
  9 158 - x 1331,17 
  10 142 - x 1347,99 
6 1 1094 1062,3 1.088,26 1073,34 

120 2 547 x x 1073,07 
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1042,11 3 365 1062,3 x 1047,97 
1060,05 4 274 x x x 

0,0172151 5 219 x x 1049,81 
  1 1146 1062,3 1.088,26 1044,35 
  2 573 1062,3 1.110,10 1072,21 
  3 382 1062,3 1.088,56 1043,17 
  4 287 1062,3 x 1045,07 
  5 229 1062,3 1.092,95 1045,85 
7 1 861 830,33 819,97 820,96 

100 2 430 830,33 821,33 819,56 
819,56 3 287 x 826,98 819,6 
833,89 4 215 x 824,57 819,56 

0,017485 5 172 x x 845,37 
  6 143 x x x 
  1 902 830,33 819,97 819,56 
  2 451 830,33 829,54 819,56 
  3 301 830,33 851,16 819,56 
  4 225 x 821,53 819,56 
  5 180 x 833,85 824,78 
  6 150 x 855,36 825,36 
8 1 254 x x 241,97 
71 2 127 x x 252,13 

241,97 3 85 x x x 
269,16 1 266 264,61 254,07 243,25 

0,1123693 2 133 x 254,07 241,97 
  3 89 x 256,53 260,63 
9 1 1221 1191,17 1.190,21 1171,16 

134 2 611 x 1.194,24 1175,3 
1162,96 3 407 x 1.199,86 1166,18 
1190,64 1 1279 1191,17 1.183,00 1173,07 

0,0238013 2 640 1191,17 1.199,64 1173,18 
  3 426 x 1.215,43 1167,43 
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Appendix C:  
 
Savings algorithm 
 
The Clarke and Wright savings algorithm [2] is one of the most known heuristic for  the basic 
VRP. It was developed by Clarke and Wright in 1964 and it applies to problems for which the 
number of vehicles is not fixed (it is a decision variable), and it works equally well for both 
directed and undirected problems. When two routes r1 = (0,...,i,0) and r2 = (0,j,...,0) can feasibly 
be merged into a single route r*= (0,...,i,j,...,0), a distance saving sij = ci0 + c0i - cij is generated. 
(where cij is the distance from location i to location j) 
 
The Clarke and Wright savings algorithm [2] works at follows: 
 
Step 1: Savings Computation 

1) Compute the savings sij = ci0 + c0i - cij for i,j=1,…,n and i¹j.  
2) Create n shuttle routes (0,i,0) for i = 1,…,n. 
3) Order the savings in a non-increasing fashion. 
  

Step 2: Best Feasible Merge 
Starting from the top of the savings list, execute the following: 
1) Given a saving sij, determine whether there the following two routes can feasibility be 

merged: 
• One starting with (0,j). 
• One ending with (i,0). 

2) If the two routes can be merged, these two routes are combined by deleting the routes 
starting with (0,j) and ending with (i,0) and introducing a new combined route with 
(i,j) in the middle.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


