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Preface

BMI Thesis is the one component of acquiring the Master’s degree in Business
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Mathematical and Informatics principles with the aim of solving management and
operational problems in the industry with a quantitative thrust.

This BMI thesis starts with the brief introduction of option: the most essen-
tial derivatives in financial markets. Then Black Scholes model is described to
price the option. Based on Black Scholes model, we are more interested in prac-
tical problems: modified Black Scholes model with discrete dividend payments.
Theoretical solutions and numerical experiments are given in the end.

After reading this thesis, one is able to know some details on option pricing,
Black Scholes model and how to solve the Black Scholes equation.

I would like to thank my supervisor Professor Dr. André Ran for his help,
support and his always enthusiastic feedback!

Ermo Shen
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Summary

This paper focuses on the numerical solution of the modified Black-Scholes
equation with discrete dividend. We use the Dirac delta function to model the
valuation of stock options with discrete dividend payments. Explicit solution is
obtained by applying the Mellin transform to the modified Black-Schole equation.
Numerical quadrature approximations and illustrative examples are given in the
end.
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Chapter 1

Introduction

In option pricing theory, the Black-Scholes equation is one of the most effective
models. For European options, the Black-Scholes equation can be solved in terms
of a diffusion equation boundary value problem [2], or directly using the Mellin
transform [3, 4]. There are two ways to solve the option pricing problem: analyti-
cal approaches and numerical approaches. For European options with continuous
payoff functions, the analytical solution is relatively easy to obtain [2, 3]. How-
ever, finding an expression for the solution of the Black-Scholes equation when
coefficients are discontinuous ordinary functions or generalized functions is not
an easy matter.

The Black-Scholes model for pricing stock options when there are dividend
payments D(S, t) is

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ (rS −D(S, t))

∂V

∂S
− rV = 0, 0 < S < ∞, 0 < t < T.

If a discrete dividend yield, independent of S with dividend date td, is considered,
then D(S, t) takes the form

D(S, t) = Aδ(t− td)S, 0 < td < T (1.1)

where A is a constant and δ(t− td) is the shifted Dirac delta function (see [2]).It
is well known that δ(x) is not an ordinary function, but this generalized function
can be obtained as the limit of special sequences of ordinary functions. Such
a discrete dividend payment inevitably results in a jump in the value of the
underlying asset across the dividend date. Using financial arguments, it can be
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shown that the effect of this discontinuous change in the value of the asset of a
contingent option on the asset is the jump condition,

V (S, t−d ) = V (Se−A, t+d ), (1.2)

where t−d and t+d denote just before and just after the dividend payment, respec-
tively (see[2]).

This paper deals with the construction of numerical solutions of modified
Black-Scholes equations of the type

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ (r − Aδ(t− td))S

∂V

∂S
− rV = 0, (1.3)

V (S, T ) = f(S), 0 < S < ∞, 0 < td < T, 0 < t < T. (1.4)

An ordinary function V (S, t) is said to be a financially admissible solution
of problem (3) and (4) if, for t 6= td, V (S, t) satisfies the Black-Scholes equation
without dividend payment,

∂V

∂t
+

1

2
σ2S2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0, (1.5)

as well as the final condition

lim
t→T−

V (S, t) = f(S), (1.6)

almost everywhere for S and for every S at which f is continuous, and the jump
condition (1.2) is

lim
t→t−d

V (S, t) = lim
t→t+d

V (Se−A, t). (1.7)

This paper is organized as follows. Chapter 2 gives a brief description of option
and its pricing model: the Black-Scholes model with several basic assumptions.

Chapter 3 requires some more advanced mathematics. In this chapter, we
will introduce Fourier and Mellin transform as well as the approximation of the
generalized function δ(t − td) by means of an ordinary function sequence fn(t).
We also provide the solution of the approximation problem

∂Vn

∂t
+

1

2
σ2S2

∂2Vn

∂S2
+ (r − Afn(t))S

∂Vn

∂S
− rVn = 0,

0 < S < ∞, 0 < t < T

Vn(S, T ) = f(S), 0 < S < ∞





(1.8)
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using the Mellin transform technique developed in [3]. It is proved that {Vn(S, t)}
is pointwise convergent to a financially admissible solution V (S, t) of problem (3)
and (4) that is explicitly expressed in terms of the payoff function, the dividend
yield A, the volatility σ, and the interest rate r.

Chapter 4 is concerned with the numerical approximation of V (S, t). Two
different numerical quadrature schemes will be applied to the approximation of
the integral solution: Simpson and Guass-Hermite schemes.
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Chapter 2

Option and its price

One of the most significant developments in financial markets in recent years
has been the growth of futures, options, and related derivatives markets. These
instruments provide payoffs that depend on the values of other assets such as
commodity prices, bond and stock prices, or market index values. For this reason
these instruments sometimes are called derivative assets, or contingent claims.
Their values derive from or are contingent on the values of other assets.

2.1 What is an option?

The simplest financial option, a European call option, is a contract with the
following conditions:

• At a prescribed time in the future, known as the expiry date or expiration
date, the holder of the option may

• purchase a prescribed asset, known as the underlying asset or, briefly,
the underlying, for a

• prescribed amount, known as the exercise price or strike price

The word ‘may’ in this description implies that for the holder of the option, this
contract is a ‘right ’ and not an ‘obligation’. The other party to the contract, who
is known as the writer, does have a potential obligation: he must sell the asset if
the holder chooses to buy it. Since the option confers on its holder a right with no
obligation it has some value. Moreover, it must be paid at the time of the opening
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of the contract. Conversely, the writer of the option must be compensated for
the obligation he has assumed.

European Put Options The option to buy an asset discussed above is known
as a call option. The right to sell an asset is known as a put option and has
payoff properties which are opposite to those of a call. A put option allows its
holder to sell the asset on a certain date for a prescribed amount. The writer
is then obliged to buy the asset. Whereas the holder of a call option wants the
asset price to rise – the higher the asset price at expiry the greater the profit –
the holder of a put option wants the asset price to fall as low as possible. The
value of a put option also increases with the exercise price, since with a higher
exercise price more is received for the asset expiry.

American Options Above we described the European call/put options, but
nowadays most options are what is called American. The European/American
classification has nothing to do with the continent of origin but refers to a techni-
cality in the option contract. An American option is one that may be exercised
at any time prior to expiry, whereas the European options may only be exercised
at expiry.

2.2 Interest rate and present value

In this paper, we assume that the interest rate is a known function of time,
not necessarily constant. This is not an unreasonable assumption when valuing
options, since a typical equity option has a total lifespan of about nine months.

For valuing options the most important concept concerning interest rate is
that of present value or discounting, i.e., how much would I pay now to
receive a guaranteed amount E at the future time T?

If we assume the interest rates are constant, the answer to this question is
found by discounting the future value, E, using continuously compounded inter-
est. With a constant interest rate r, money in the bank M(t) grows exponentially
according to

dM

M
= r dt. (2.1)

The solution of this is simply
M = cert,

5



where c is the constant of integration. Since M = E at t = T , the value at time
t of the certain payoff is

M = Ee−(T−t).

If interest rates are a known function of time r(t), then (2.1) can be modified
trivially and results in

M = Ee−
R T

t r(s) ds.

2.3 Black-Scholes model

2.3.1 Asset price random walks

It is often stated that asset prices must move randomly because of the efficient
market hypothesis. There are several different forms of this hypothesis with
different assumptions, but they all basically say two things:

• The past history is fully reflected in the present price, which does not hold
any further information.

• Markets respond immediately to any new information about an asset.

Thus the modelling of an asset is really about modelling the arrival of new infor-
mation which affects the price. With the two assumptions above, unanticipated
changes in the asset price are a Markov process.

Now suppose that at time t the asset price is S. Let us consider a small
subsequent time interval dt, during which S changes to S + dS. The commonest
model decomposes this return into two parts. One is a predictable, deterministic
and anticipated return akin to the return on money invested in a risk-free bank.
It gives a contribution

µ dt

to the return dS/S, where µ is a measure of the average rate of growth of the
asset price, also known as the drift. In simple models µ is taken to be a constant.
In more complicated models, for exchange rates, for example, µ can be a function
of S and t.

The second contribution to dS/S models the random change in the asset price
in response to external effects, such as unexpected news. It is represented by a
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random sample drawn from a normal distribution with mean zero and adds a
term

σ dX

to dS/S. Here σ is a number called the volatility, which measures the stan-
dard deviation of the returns. The quantity dX is the sample from a normal
distribution, which is discussed further below.

Putting these contributions together, we obtain the stochastic differential
equation

dS

S
= σ dX + µ dt, (2.2)

which is the mathematical representation of our simple recipe for generating asset
prices.

The term dX, which contains the randomness that is certainly a feature of
asset prices, is known as a Wiener process. It has the following properties:

• dX is a random variable, drawn from a normal distribution, independent
of the value of X on the history of X;

• the mean of dX is zero;

• the variance of dX is dt.

2.3.2 Arbitrage

One of the fundamental concepts underlying the theory of financial derivative
pricing and hedging is that of arbitrage. This can be loosely stated as ‘there’s
no such thing as a free lunch.’ More formally, in financial terms, there are never
any opportunities to make an instantaneous risk-free profit.

2.3.3 Option values

There are some simple notation which we will use:

• We denote by V the value of an option; when the distinction is important
we use C(S, t) and P (S, t) to denote a call and a put respectively. This
value is a function of the current value of the underlying asset, S and time,
t: V = V (S, t). The value of the option also depends on the following
parameters:
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• σ, the volatility of the underlying asset;

• E, the exercise price;

• T , the expiry date; r, the interest rate.

First, consider what happens just at the moment of expiry of a call option,
that is, at time t = T . A simple arbitrage argument tells us its value at this
special time.

If S > E at expiry, it makes financial sense to exercise the call option, handing
over an amount E, to obtain an asset worth S. The profit from such a transaction
is then S−E. On the other hand, if S < E at expiry, we should not exercise the
option because we would make a loss of E − S. In this case, the option expires
worthless. Thus, the value of the call option at expiry can be written as

C(S, T ) = max(S − E, 0). (2.3)

As we get nearer to the expiry date we can expect the value of our call option to
approach (2.3).

2.3.4 Black-Scholes analysis

Before describing the Black-Scholes analysis which leads to the value of an option
we list the assumptions that we make:

• The asset price follows the lognormal random walk (2.2).

• The risk-free interest rate r and the asset volatility σ are known functions
of time over the life of the option.

• There are no transaction costs associated with hedging a portfolio.

• The underlying asset pays no dividends during the life of the option. We
will drop this assumption in further analysis.

• There are no arbitrage possibilities.

• Trading of the underlying asset can take place continuously.

• Short selling is permitted and the asset are divisible.
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Suppose that we have an option whose value V (S, t) depends only on S and t.
It is not necessary at this stage to specify whether V is a call or a put; indeed, V
can be the value of a whole portfolio of different options although for simplicity
we can think of a simple call or put. Using Itô’s lemma, we can write

dV = σS
∂V

∂S
dX +

(
µS

∂V

∂S
+

1

2
σ2S2

∂2V

∂S2
+

∂V

∂t

)
dt. (2.4)

This give the random walk followed by V . Note that we require V to have at
least one t derivative and two S derivatives.

Now construct a portfolio consisting of one option and a number −∆ of the
underlying asset. This number is as yet unspecified. The value of this portfolio
is

Π = V −∆S. (2.5)

The jump in the value of this portfolio in one time-step is

dΠ = dV −∆ dS.

Here ∆ is held fixed during the time-step; if it were not then dΠ would contain
terms in d∆. Putting (2.2), (2.4), (2.5) together, we find that Π follows the
random walk

dΠ = σS

(
∂V

∂S
−∆

)
dX +

(
µS

∂V

∂S
+

1

2
σ2S2

∂2V

∂S2
+

∂V

∂t
− µ∆S

)
dt. (2.6)

We can eliminate the random component in this random walk by choosing

∆ =
∂V

∂S
. (2.7)

Note that ∆ is the value of ∂V/∂S at the start of the time-step dt.
This results in a portfolio whose increment is wholly deterministic:

dΠ =

(
∂V

∂t
+

1

2
σ2S2

∂2V

∂S2

)
dt. (2.8)

We now appeal to the concepts of arbitrage and supply and demand, with the
assumption of no transaction costs. The return on an amount Π invested in
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riskless assets would see a growth of rΠ dt in a time dt. If the right hand side
of (2.8) were greater than this amount, an arbitrager could make a guaranteed
riskless portfolio. The return for this risk-free strategy would be greater than
the cost of borrowing. Conversely, if the right-hand side of (2.8) were less than
rΠ dt then the arbitrager would short the portfolio and invest Π in the bank.
Either way the arbitrager would make a riskless, no cost, instantaneous profit.
The existence of such arbitragers with the ability to trade at low cost ensures
that the return on the portfolio and on the riskless asset are equal. Thus, we
have

rΠ dt =

(
∂V

∂t
+

1

2
σ2S2

∂2V

∂S2

)
dt. (2.9)

Substituting (2.5) and (2.7) into (2.9) and dividing throughout by dt we arrive at

∂V

∂t
+

1

2
σ2S2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (2.10)

This is the Black-Scholes partial differential equation.

2.4 Black-Scholes model with discrete dividend

2.4.1 Dividend structures

Many assets, such as equities, pay out dividends. These are payments to share-
holders out of the profits made by the company concerned, and the likely future
dividend stream of a company is reflected in today’s share price. The price of an
option on an underlying asset that pays dividends is affected by the payments,
so we must modify the Black-Scholes analysis.

There are several possible different structures for dividend payments. Individ-
ual companies usually make two or four payments per year, which may need to be
treated discretely, but the large number of dividend payments on an index such
as S&P 500 are so frequent that it may be best to regard them as a continuous
payment rather than as a succession of discrete payments.

2.4.2 A constant dividend yield

Suppose that in a time dt the underlying asset pays out a dividend D0Sdt where
D0 is a constant. This payment is independent of time except through the de-
pendence on S. The dividend yield is defined as the proportion of the asset
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price paid out per unit time in this way. Thus the dividend D0Sdt represents a
constant and continuous dividend yield D0.

First, we consider the effect of the dividend payments on the asset price.
Arbitrage considerations show that in each time step dt, the asset price must fall
by the amount of the dividend payment, D0dt, in addition to the usual fluctuation.
It follows that the random walk for the asset price (2.2) is modified to

dS = σS dX + (µ−D0)S dt (2.11)

Since we receive D0Sdt for every asset held and since we hold −∆ of the
underlying, our portfolio changes by an amount

−D0S∆dt, (2.12)

i.e., by the dividend our asset pays. Thus, we must add (2.12) to our earlier dΠ
to arrive at

dΠ = dV −∆dS −D0S∆dt.

The analysis proceeds exactly as before but with the addition of this new term.
We find that

∂V

∂t
+

1

2
σ2S2

∂2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0. (2.13)

For a call option the final condition is still C(S, T ) = max(S − E, 0), and the
boundary condition at S = 0 remains as C(0, t) = 0. The only change to the
boundary conditions when we use the modified Black-Scholes equation (2.13) is
that

C(S, t) ∼ Se−D0(T−t) as S →∞. (2.14)

2.4.3 Discrete dividend payments

Suppose that our asset pays just one dividend during the lifetime of the option,
at time t = td. As above, we shall consider only the case in which the dividend
yield is a known constant dy. Thus, at time td, the holder of the asset receives a
payment dyS, where S is the asset price just before the dividend is paid.

Consider the effect of the dividend payment on the asset price. Its value just
before the dividend time t−d , cannot equal is value just after, at time t+d . If it did,
the strategy of buying the asset immediately before td, collecting the dividend,
and selling straight away, would yield a risk-free profit. It is clear that, in the
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absence of other factors such as taxes, the asset price must fall by exactly the
amount of the dividend payment. Thus

S(t+d ) = S(t−d )− dyS(t−d ) = S(t−d )(1− dy). (2.15)

The discrete dividend payment results in a jump in the value of the underlying
asset across the dividend date. To model the jump condition, we have to introduce
the Dirac delta function:

δ(x) =

{ ∞, x = 0
0, x 6= 0

(2.16)

where ∫ ∞

−∞
δ(x)dx = 1.

The constant yield has D(S, t) = D0S while the discrete case, D(S, t) = DδSδ(t−
td) for some constant Dδ. So the Black-Scholes model of discrete dividend pay-
ments now becomes

∂V

∂t
+

1

2
σ2S2

∂2V

∂S2
+(rS−D(S, t))

∂V

∂S
− rV = 0, 0 < S < ∞, 0 < t < T. (2.17)

where
D(S, t) = Aδ(t− td)S, 0 < td < T.

Here A is a constant and δ(t− td) is the shifted Dirac delta function.
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Chapter 3

Integral solution

3.1 Mellin transform

For the sake of clarity in the presentation, we recall some notation and results
about integral transforms and generalized functions. We denote by L1 the set
of all Lebesgue integrable functions in R. If f and g belong to L1, then the
convolution of f and g given by the function

(f ∗ g)(x) =

∫ ∞

−∞
f(x− y)g(y)dy, (3.1)

exists for almost every x and f ∗ g ∈ L1 (see [6], p,232). If f ∈ L1, g ∈ Ck and
Dαg is bounded, then, by ([6],p.233), f ∗ g ∈ Ck and

Dα(f ∗ g) = f ∗ (Dαg), α 6 k. (3.2)

The Fourier transform of f ∈ L1 is defined by

F [f(x)] = F (ω) =

∫ ∞

∞
f(x)e−iωx dx. (3.3)

Let G(ω) be the Fourier transform of g(x). If G ∈ L1, it’s inverse Fourier trans-
form is defined by

F−1[G(ω)](x) =
1

2π

∫ ∞

−∞
G(ω)eiωxdω, (3.4)
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and from ([6],p.243) it holds that F−1[G(ω)](x) = g(x) almost everywhere. Let
f, g ∈ L1 with Fourier transform F and G respectively, then from ([6],p.241),

F [f ∗ g] = F (ω)G(ω). (3.5)

From the properties of the Fourier transform, it is well known that (see[7])

F
[
e−a2x2

]
(ω) =

√
π

a
e
−

ω2

4a2 , a > 0, (3.6)

and
F−1

[
eibωF (ω)

]
(x) = F−1[F (ω)](x + b). (3.7)

Let f be a real function defined on (0,∞). The Mellin transform of f is
the complex valued function defined by

M [f(x)] = f ∗(z) =

∫ ∞

0

f(x)xz−1 dx, z = α + iω (3.8)

assuming the integral exists. For η, ν ∈ R, with η < ν, we define the set M(η, ν)
as follows:

M(η, ν) =

{
f : (0,∞) → R

∣∣∣∣∣
∫ ∞

0

xα−1|f(x)|dx < ∞, η < α < ν

}
.

It is easy to show that if f ∈ M(η, ν), then M [f(x)](z) exists on the strip
〈η, ν〉 = {z = α + iω : η < α < ν, ω ∈ R}. Furthermore, f ∈M(η, ν) if and only
if e−αlf(e−l) ∈ L1, for η < α < ν.

If f ∈M(η, ν) and its Mellin transform f ∗(α + iω) lies in L1 with respect to
ω, for each fixed α such that η < α < ν, the inverse Mellin transform of f ∗ is
defined by

M−1[f ∗](x) =
1

2πi

∫ α+i∞

α−i∞
x−zf ∗(z)dz, (3.9)

it holds that M−1[f ∗(z)] = f(x) a.e.
Let f be a function belonging to M(η, ν) with f(x) ∈ C2(R) such that, for

η < α < ν,
lim

x→0+
xαf(x) = lim

x→∞
xαf(x) = 0,

lim
x→0+

xα+1f ′(x) = lim
x→∞

xα+1f ′(x) = 0,
(3.10)
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Then, for all z ∈ 〈η, ν〉 one gets

M [xf ′(x)](z) = −zM [f(x)](z),

M [x2f
′′
(x)](z) = (z2 + z)M [f(x)](z).

(3.11)

For instance, if f is a locally integrable function satisfying f(x) = O(x−η)
when x → 0 and f(x) = O(x−ν) when x →∞, then the integral (3.8) converges
for all z ∈ 〈η, ν〉, and defines an analytic function in this interval.

The Mellin transform and the Fourier transform and their inverses are related
by the following formulas. For f ∈M(η, ν),

M [f(x)](z) = F [e−αxf(e−x)](ω), z = α + iω ∈ 〈η, ν〉. (3.12)

Furthermore, if f ∗(z) ∈ L1, one gets

M−1[f ∗(z)](x) = x−αF−1[f ∗(z)](− ln x). (3.13)

We denote by K the space of functions ϕ : R→ R in C∞(R) having a compact
support. A generalized function f is defined as a continuous linear functional on
K, and we denote f(ϕ) = (f, ϕ) (see [5]). The space of all generalized functions
on K will be called K ′. We said that f(x) is an ordinary function if f ∈ L1[a, b]
for all a < b. With each ordinary function f(x), there is associated a continuous
linear functional on the space K through

(f, ϕ) =

∫ ∞

∞
f(t)ϕ(t) dt.

The Dirac delta function is defined as the generalized function which assigns
value ϕ(0) to each function ϕ(x) ∈ K, i.e., (δ, ϕ) = ϕ(0). Note that she shifted
Dirac delta function δ(t− td) acts on K in the form (δ(t− td), ϕ(t)) = ϕ(td);see
([5],pp,11-13)

A sequence of generalized functions f1, f2, . . . , fn, . . . converges in K ′ to the
generalized function f if, for all ϕ ∈ K (see [5],p.63),

(f, ϕ) = lim
n→∞

(fn, ϕ).

Now we introduce a class of sequences of ordinary functions having a particular
interest in practical applications.
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A sequence of ordinary functions {fn(t)} is said to be nice shifted delta-
defining if, for any interval I0, the quantities

∣∣∣
∫

I

fn(t)dt
∣∣∣, I ⊂ I0

are bounded by a constant depending on neither I nor n, and if

lim
n→∞

∫

I

fn(t)dt =

{
0, when td is exterior to I,

1, when td is interior to I.
(3.14)

3.2 Integral solution of the approximate prob-

lem

This section deals with the construction of a formal solution of the approximate
problem (1.8), where {fn(t)} is an arbitrary nice shifted delta-defining sequence.
Let us assume, for the moment, that (1.8) admits a solution Vn(S, t) that, when
regarded as a function of the active variable S, lies in M(η, ν) ∩ C2(R) for some

η < ν satisfying (3.10), and that
∂Vn

∂t
lies in M(η, ν) and satisfies

∂

∂t
M [Vn(·, t)] = M

[
∂Vn

∂t
(·, t)

]
. (3.15)

Let us suppose that f(S) ∈ M(η, ν) and let f ∗(z) = M [f(S)]. By applying
the Mellin transform to (1.8) and taking into account properties (3.11) and (3.15),
and denoting vn(z, t) = M [Vn(·, t)](z), one gets

∂vn

∂t
+ (p(z) + Azfn(t))vn = 0 0 < t < T, (3.16)

with the final condition
vn(z, T ) = f ∗(z), (3.17)

where

p(z) = p(α + iω) = −1

2
σ2ω2 − iλω + q,

λ = r −
(
α +

1

2

)
σ2,

q =
1

2
σ2α2 + α

(1

2
σ2 − r

)
− r.





(3.18)
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The solution of Eq.(3.16) satisfying (3.17) takes the form

vn(z, t) = f ∗(z)ep(z)(T−t)+AzIn(t), (3.19)

where

In(t) =

∫ T

t

fn(ξ)dξ (3.20)

By (3.12), it follows that f ∗(z) = F [e−αlf(e−l)] and, since e−αlf(e−l) ∈ L1,
then F [e−αlf(e−l)] is bounded (see [6],p.241), and vn(z, t) lies in L1 with respects
to ω. By applying the Mellin inverse transform in (3.19), using (3.13) and denot-
ing

g(l) = e−αlf(e−l), (3.21)

it follows that

Vn(S, t) = M−1[vn(z, t)](S)

= S−αF−1

[
F [g(l)]ep(z)(T−t)+AzIn(t)

]
(− ln S). (3.22)

By (3.6) and (3.7), it is easy to show that

γn(x, t) = F−1
[
ep(z)(T−t)+AzIn(t)

]
,

=
eq(T−t)+αAIn(t)

σ
√

2π(T − t)
e
− [λ(T−t)−x−AIn(t)]2

2σ2(T−t) (3.23)

where q is given by (3.18) and γn(·, t) lies in L1 for each t ∈ (0, T ). As g and
γn(·, t) lie in L1, then g ∗ γn(·, t) also lies in L1, and from (3.5) one gets

F [g(l)]ep(z)(T−t)+AzIn(t) = F [g ∗ γn]. (3.24)

By (3.22),(3.23)and (3.24) and the inverse Fourier transform theorem, it fol-
lows that

Vn(S, t) = S−α(g ∗ γn(·, t))(− ln S),

=
eq(T−t)+αAIn(t)

σ
√

2π(T − t)
S−α

∫ ∞

−∞
g(l)e

− [ln S+l+λ(T−t)−AIn(t)]2

2σ2(T−t) dl. (3.25)
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3.3 Solution of modified Black-Scholes equation

Since
∣∣∣g(l)e

− [ln S+l+λ(T−t)−AIn(t)]2

2σ2(T−t)

∣∣∣ 6 |g(l)| ∈ L1, for all s ∈ R and t ∈ (0, T ),

taking into account (3.14) and the dominate convergence theorem, it follows that
{Vn(S, t)} is pointwise convergent to the function V (S, t) defined by

V (S, t) =





eq(T−t)+αA

σ
√

2π(T − t)
S−α

∫∞
−∞ g(l)e

− [ln S+l+λ(T−t)−A]2

2σ2(T−t) dl 0 < t < td,

eq(T−t)

σ
√

2π(T − t)
S−α

∫∞
−∞ g(l)e

− [ln S+l+λ(T−t)]2

2σ2(T−t) dl td < t < T.

(3.26)
Taking into account (3.21) and the expressions of λ and q given by (3.18), we get

V (S, t) =





eq(T−t)

σ
√

2π(T − t)

∫∞
−∞ f(e−l)e

− [ln S+l+(T−t)(r−σ2

2 )−A]2

2σ2(T−t) dl 0 < t < td,

eq(T−t)

σ
√

2π(T − t)

∫∞
−∞ f(e−l)e

− [ln S+l+(T−t)(r−σ2

2 )]2

2σ2(T−t) dl td < t < T.

(3.27)
In order to show that (3.27) is a financially admissible solution of problem

(1.3) and (1.4), let us introduce the functions

V̂1(S, t) = V̂2(e
−AS, t), t < T, (3.28)

and

V̂2(S, t) =
e−r(T−t)

σ
√

2π(T − t)

∫ ∞

−∞
f(e−l)e

− [ln S+l+(T−t)(r−σ2

2 )]2

2σ2(T−t) dl t < T. (3.29)

From (3.27), (3.28) and (3.29),

V (S, t) =

{
V̂1(S, t) 0 < t < td,

V̂2(S, t) td < t < T,
(3.30)

and
lim
t→t−d

V (S, t) = V̂1(S, td) = V̂2(e
−AS, td) = lim

t→t+d

V (Se−A, t).
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Hence, condition (1.7) is satisfied. Let us define

γ̂2(s, t) = F−1
[
ep(z)(T−t)

]
=

eq(T−t)

σ
√

2π(T − t)
e
− [−x+λ(T−t)]2

2σ2(T−t) . (3.31)

Taking into account (3.26), (3.27), (3.29) and (3.31), and the substitution
S = e−x, it follows that

e−αxV̂2(e
−x, t) =

eq(T−t)

σ
√

2π(T − t)

∫ ∞

−∞
g(l)e

−
[−x+l+λ(T−t2

]

2σ2(T−t) dl

= (g ∗ γ̂2(·, t))(x). (3.32)

From (3.4), (3.5), (3.31) and (3.32), one gets

e−αxV̂2(e
−x, t) =

1

2

∫ ∞

−∞
F [g(l)]ep(z)(T−t)eiωx dω. (3.33)

Since g(l) lies in L1, by ([6],p.246) it shows that F [g(l)](ω) is a bounded
continuous function, and since ∂

∂t
ep(z)(T−t) exists for every ω ∈ R and t ∈ (0, T ),

and

∣∣∣F [g(l)]
∂

∂t
ep(z)(T−t)eiωx

∣∣∣ 6 M
(1

2
σ2ω2 + |λ||ω|+ |q|

)
eq(T−t)e−

1
2
σ2ω2(T−t) ∈ L1,

for sufficiently large M,ω ∈ R, t ∈ (0, T ), by applying the theorem of derivation
of parametric integrals ([8], Th. 14.23) to expression (3.33), it follows that

∂

∂t

(
e−αxV̂2(e

−x, t)
)

=
1

2π

∫ ∞

−∞
F [g(l)]

( ∂

∂t
ep(z)(T−t)

)
eiωx dω,

=
(
g ∗ F−1

[ ∂

∂t
ep(z)(T−t)

])
(x), (3.34)

=
(
g ∗ ∂

∂t
γ̂2(·, t)

)
(x).

Taking into account the substitution S = e−x in (3.34), one gets

∂

∂t
V̂2(S, t) = S−α

(
g ∗ ∂

∂t
γ̂2(·, t)

)
(− ln S), (3.35)
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where

∂

∂t
V̂2(x, t) =

(
−q+

1

2(T − t)
+

(λ(T − t)− x)λ

σ2(T − t)
− [λ(T − t)− x]2

2σ2(T − t)2

)
γ̂2(x, t). (3.36)

In order to compute ∂
∂S

V̂2(S, t) and ∂2

∂S2 V̂2(S, t), note that, by (3.2), one gets

∂

∂x
(g ∗ γ̂2(·, t)) = g ∗ ∂

∂x
γ̂2(·, t),

∂2

∂x2
(g ∗ γ̂2(·, t)) = g ∗ ∂2

∂x2
γ̂2(·, t).

Hence, using (3.32) and the substitution S = e−x, it follows that

∂

∂S
V̂2(S, t) = −S−α−1

(
α(g ∗ γ̂2(·, t)) + g ∗ ∂

∂x
γ̂2(·, t)

)
; (3.37)

and

∂2

∂S2
V̂2(S, t) = S−α−2

(
(α+α2)(g∗γ̂2(·, t))+(2α+1)

(
g∗ ∂

∂x
γ̂2(·, t)

)
+g∗ ∂2

∂x2
γ̂2(·, t)

)
,

(3.38)
where, by (3.31), one gets

∂

∂x
γ̂2(x, t) =

(
λ(T − t)− x

σ2(T − t)

)
γ̂2(x, t), (3.39)

∂2

∂x2
γ̂2(x, t) =

(
[λ(T − t)− x]2

σ4(T − t)2
− 1

σ2(T − t)

)
γ̂2(x, t). (3.40)

From (3.35)-(3.40), it follows that

∂V̂2

∂t
+

1

2
σ2S2

∂2V̂2

∂S2
+ rS

∂V̂2

∂S
− rV̂2 = S−α(g ∗ 0) = 0, (3.41)

for all t < T and, in particular, for td < t < T .
For 0 < t < td, note that, by (3.28) and (3.41), the substitution S ′ = e−AS

and the chain rule of the differential calculus, one gets

∂V̂1

∂t
(S, t) +

1

2
σ2S2

∂2V̂1

∂S2
(S, t) + rS

∂V̂1

∂S
(S, t)− rV̂1(S, t)
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=
∂V̂2

∂t
(S ′, t) +

1

2
σ2

(
eAS ′

)2

e−2A
∂2V̂2

∂S ′2
(S ′, t) + reAS ′e−A

∂V̂2

∂S ′
(S ′, t)− rV̂2(S

′, t)

= 0 (3.42)

From (3.41) and (3.42), it follows that V (S, t) given by (3.27) satisfies (1.5)
for t 6= td.

Now, it will be shown that V (S, t) satisfies the final condition (1.6). Let ϕ(x)
and ϕτ (x) be defined by

ϕ(x) =
1

σ
√

2π
e−

x2

2σ2 , (3.43)

ϕτ (x) =
1

τ
ϕ
(x

τ

)
. (3.44)

Hence, ∫ ∞

−∞
ϕτ (x)dx =

∫ ∞

−∞
ϕ(x)dx =

1

σ
√

2π

∫ ∞

−∞
e−

x2

2σ2 dx = 1,

and

|ϕ(x)| < C

(1 + |x|)2

for some sufficiently large C and for all x ∈ R. Taking into account Theorem 8.15
of ([6],p.235), one gets

lim
τ→0

(g ∗ ϕτ )(x) = g(x) a.e., (3.45)

and for every x at which g is continuous.
Let us consider the function

φ(x, τ) =
1

τ
ϕ
(x

τ
− τλ

)
. (3.46)

Taking into account (3.43) and the mean value theorem, one gets

|ϕ(y)− ϕ(y − h)| 6 max
y∈R

|ϕ′(y)||h| = |h|
σ2
√

2eπ

Hence,

|φ(x, τ)− ϕτ (x)| = 1

|τ |ϕ
(x

τ
− τλ

)
− ϕ

(x

τ

)
6

|λ|
σ2
√

2eπ
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and ∣∣ g(x)
(
φ(x− y, τ)− ϕτ (x− y)

)∣∣ 6
|g(x)||λ|
σ2
√

2eπ
∈ L1. (3.47)

Furthermore, by applying the L’Hopital rule, it is easy to show that

lim
τ→0

(φ(x, τ)− ϕτ (x)) = 0. (3.48)

Taking into account (3.47), (3.48) and the dominated convergence theorem, one
gets

lim
τ→0

(g ∗ (φ(·, τ)− ϕτ (·)))(x) =

(
g ∗ lim

τ→0
(φ(·, τ)− ϕτ (·))

)
(x) = 0. (3.49)

Taking τ =
√

T − t and using (3.43), (3.44) and (3.46), it follows that expression
(3.29) can be written in the form

V̂2(e
−x, t) = eqτ2

eαx(g ∗ φ(·, τ))(x),

= eqτ2

eαx
(
g ∗ (

φ(·, τ)− ϕτ (·)
)
(x) +

(
g ∗ ϕτ (·)

)
(x)

)
(3.50)

Hence, by (3.45) and (3.49), it follows that limt→T− V̂2(e
−x, t) = eαxg(x), a.e., and

therefore
lim

t→T−
V̂2(S, t) = f(S), (3.51)

almost everywhere for S and for every S at which f is continuous.
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Chapter 4

Numerical experiments

The integral expression (3.27) can only be computed in analytical form, for a
very special payoff function f(S). Thus, it is convenient to apply some numerical
technique for computing such integrals.

4.1 Gauss-Hermite scheme

We consider first the Gauss-Hermite approach. Note that, making the substitu-
tion

u =
ln S + l + (T − t)(r − σ2

2
)

σ
√

2(T − t)
,

in (3.29) and taking into account (3.28) and (3.30), one gets

V (S, t) =





e−r(T−t)

√
π

I(Se−A, t) 0 < t < td

e−r(T−t)

√
π

I(S, t) td < t < T,

(4.1)

where

I(S, t) =

∫ ∞

−∞
e−u2

F (u, S, t)du, (4.2)

and

F (u, S, t) = f

(
e−uσ

√
2(T−t)+ln S+(T−t)(r−σ2

2
)

)
.
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We recall that the Gauss-Hermite formula takes the form ([9],p.96),

∫ ∞

−∞
e−u2

F (u)du ≈
n∑

k=1

ωkF (uk) (4.3)

where the nodes uk are the zeros of the Hermite polynomial

Hn(u) = (−1)neu2 dn

du2
e−u2

and

ωk =
2n+1n!

√
π(

Hn+1(uk)
)2.

The Gauss-Hermite quadrature formula is very efficient if the integrand is
continuous. However, if the integral function presents jumps, the result is not
satisfactory because the formula disregards the specific change in the integrand
outside the set of zeros of the Hermite polynomial.

4.2 Simpson scheme

This above fact motivates a numerical alternative integration approach that uses
the specific information of the integrand close to the parts of the domain with
stronger changes. One possibility is to use the composite Simpson’s rule after
transforming the integration domain into a new finite domain.

Let us consider the substitution l = tan u into (3.29). Using (3.28) and (3.30),
one gets

V (S, t) =





e−r(T−t)

√
2π(T − t)

H(Se−A, t), 0 < t < td

e−r(T−t)

√
2π(T − t)

H(S, t) td < t < T,

(4.4)

where

H(S, t) =

∫ π
2

−π
2

f(e− tan u)e
−
[

ln S+tan u+(T−t)(r−σ2

2 )

]2

2σ2(T−t) sec2 udu
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Let us denote

G(u, S, t) = f(e− tan u)e
−
[

ln S+tan u+(T−t)(r−σ2

2 )

]2

2σ2(T−t) sec2 u

Note that, as f(S) lies in M(η, ν), it follows that G(−π
2
, S, t) = G(π

2
, S, t) = 0,

for all 0 < t < T, S ∈ R. In this case, the composite Simpson rule takes the form

H(S, t) =

∫ π
2

−π
2

G(u, S, t)du ≈ 2h

3

m−1∑

k=1

G(u2k, S, t) +
4h

3

m∑

k=1

G(u2k−1, S, t), (4.5)

where uk = −π
2

+ hk for k = 1, . . . , 2m and h = π
2m

.

4.3 Example

Consider the valuation problem of binary options (see [2],p.151), with payoff
function f(S) = βH(S −E), where β is a positive constant and H(S −E) is the
Heaviside function.

It is easy to show that the valuation solution of the problem of binary options
with discrete dividend is given by

V (S, t) = βe−r(T−t)





N
(
d2 −

A

σ
√

T − t

)
, 0 < t < td,

N(d2), td < t < T.

(4.6)

where

d1 =
1

σ
√

T − t

[
ln

S

E
+ (T − t)

(
r +

σ2

2

)]
,

d2 =
1

σ
√

T − t

[
ln

S

E
+ (T − t)

(
r − σ2

2

)]
,

d′i = di −
A

σ
√

T − t
i = 1, 2

and

N(x) =
1√
2π

∫ x

−∞
e−

ξ2

2 dξ,
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To find out how accurate of two numerical quadrature schemes, we programme
in Matlab to implement these two methods. We set in both cases the European
call option with the exercise price 95, the interest rate 4%, σ = 0.05, the maturity
T = 365, β = 1.2, the dividend will paid on the 180 days and the constant A = 5.
The results are illustrated in Figure 1 ∼ Figure 4:

By the Matlab error function erf() we calculate the payoff of the option.
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Figure 1: Payoff calculated directly from (4.6)

From the Figure 2 and Figure 3, it’s obvious that the Gauss-Hermite quadra-
ture formula provides an inaccurate approximation.
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Figure 2: Payoff approximated by Gauss-Hermite polynomial of degree 10
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Figure 3: Payoff approximated by Gauss-Hermite polynomial of degree 20
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Figure 4: Payoff approximated by Simpson scheme

Compared with Gauss-Hermite scheme, the Simpson scheme gives excellent
approximation. From Figure 5, it illustrates that the Simpson scheme provides
accurate approximation cross the dividend payment date. However, since we use
the same time-step during the final period of the option, the approximation is
not accurate when approaching the expiry date.
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Figure 5: Difference between explicit solution and Simpson approximation
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