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Abstract

This research paper investigates the relative effectiveness of cluster aggregated
sales components, on the daily forecasting accuracy of outdoor sport articles. A
comparison is made between forecasting using an individual product and fore-
casting using aggregated time series. The effect of aggregation is examined by
use of predefined product groups, from the business, and product groups con-
structed with hierarchical agglomerative clustering. A case study is performed
with over 3000 unique products, showing that forecasting can benefit from clus-
tering depending on the nature of time series.
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Chapter 1

Management Summary

This research identifies the influence of cluster aggregated sales data on individ-
ual SKU forecasts. It proposes a framework to cluster products, based on his-
torical sales, to enhance the forecasting performance on a daily level. Further-
more, it performs a detailed data analysis on sales data and shows the relative
improvement on the forecast accuracy, obtained from cluster influence. Lastly, it
establishes the connection between the forecast results and its application in the
business, by identifying how inventory management should deal with fluctua-
tions and uncertainty obtained in the forecast.

Research question: How can time series clustering enhance daily forecasting?

This research shows that forecasting can benefit from predefined product groups
from the business. However, it shows that using these product groups for the
wrong time series can dramatically increase the forecasting error. This research
shows that hierarchical agglomerative clustering generally outperforms the pre-
defined product groups. Furthermore, it shows that the benefits of the cluster-
ing approach are larger, compared with the predefined groups. Additionally,the
increase in the forecasting error is limited for the time series where a detailed
approach should be preferred.

In general, a forecast on an individual product is preferred when the sales
frequency is rather high or the variation is rather low. The clustering approach
is preferred for a low sales frequency or a high variation within the time series.
Therefore, it can be concluded that clustering can enhance the accuracy for daily
forecasting for specific time series. In all cases, the predefined product groups are
depreciated in the general line. Applying the cluster approach when the detailed
approach is preferred, will result in an increased error and should therefore be
threaded with care.

When no attention is payed to the type of time series, both the detailed ap-
proach and the clustering approach are performing rather similar. It is therefore
advised to treat each time series accordingly to its characteristics, to apply either
the detailed approach or the clustering approach.





3

Chapter 2

Introduction

For decades, companies have been trying to cut costs while increase efficiency
in the business process. One of the methods used in achieving this efficiency
is forecasting. Forecasting is used excessively to keep track of financial goals,
estimate future sales, predict employee requirements and more.

So far, a large proportion of researchers have studied different types of fore-
casting models, to identify the strengths and weaknesses of each model. How-
ever, most research has focused on forecasting for an individual product, neglect-
ing relationships between products. Zotteri and Kalchschmidt (2007) and Zotteri,
Kalchschmidt, and Caniato (2005) argue that aggregation of multiple products
could be used to improve the forecasting accuracy on a product level.

This paper tries to identify if forecasting on a product level can benefit from
product aggregation. It examines this by use of a clustering technique to identify
similarity between time series. Furthermore, it compares these clusters with a
regular forecast approach to identify the potential value of aggregation within a
cluster. Additionally, this paper adds the comparison with predefined product
groups. Therefore, this paper tries to answer the following question:

How can time series clustering enhance daily forecasting?

This research shows that forecasting on a product level can benefit from sales ag-
gregation. It shows that the use of predefined product groups, from the business,
should be treated with care when used to perform the aggregation. Furthermore,
it shows that the use of clustering techniques, before applying aggregation, can
result in a forecast accuracy improvement. Although the research shows that this
improvement can be achieved, it also shows that not all time series can benefit
from this approach. This research tries to draw a distinction between the time
series on which this approach is or is not applicable.

This paper starts with a literature study, identifying previous research on the
effect of time series aggregation for forecasting. Besides this, it examines past re-
search in measuring and identifying time series similarity. The main part of this
research consists of a case study where a detailed data analysis is performed in
section 4. Section 5 elaborates on the framework used to test the effect of time
series clustering and explains the models and methods used to conduct this re-
search. Lastly, the results are presented in section 6, followed by a conclusion and
a call for further research in section 7.
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Chapter 3

Literature Review

The different types of companies where forecasting plays an important role is
almost inexhaustible, making it a widely investigated area by both academicians
and practitioners. The interdisciplinary nature of forecasting makes it possible
to apply the same forecasting technique in a variety of business perspectives,
ranging from advanced budget forecasting, to the prediction of illness. Many
different models have been adopted throughout the past decades, where the first
models were implemented without the use of computational power. Nowadays,
more advanced models are applied with interference from the field of computer
science, to improve accuracy and to handle the ever increasing amount of data.

Although the field of forecasting keeps expanding, relatively little research
has been done on relationships between time series (Zotteri and Kalchschmidt,
2007). Forecasting models are mainly focusing on an individual SKU, neglecting
potentially valuable relationships with other products. A large proportion of pa-
pers argue that aggregation of time series improves the ability to estimate trend
and seasonality (Zotteri, Kalchschmidt, and Caniato, 2005; Zotteri and Kalch-
schmidt, 2007; Rostami-Tabar et al., 2015). Furthermore, Babai, Ali, and Kourentzes
(2012) and T. Tabar (2013) argue that aggregation could increase the frequency
and quantity which reduces the number of zero observations in slow-moving
products.

Orcutt, Watts, and Edwards (1968), Barnea and Lakonishok (1980) and Flied-
ner (1999) showed that the preference of demand aggregation over forecasting
on single SKU levels, depends strongly on the correlation between the aggre-
gated time series. Zotteri and Kalchschmidt (2007) suggests to use aggregation
for product with short historical information, or after unexpected changes in the
environment such as promotions. A detailed forecast on SKU level can then be
used when enough historical information has been collected. Although their re-
search focuses on the aggregation between stores, they argue that their findings
could be applied to aggregation of SKUs. Even though no specific time series
length is given, it gives rise to the idea that aggregation would be most beneficial
for recently introduced products.

3.1 Aggregation

Two types of time series aggregation are frequently studied within the literature
(Babai, Ali, and Kourentzes, 2012). The most common aggregation type is tempo-
ral aggregation, transforming a high frequency time series into a lower frequency
by non-overlapping aggregation segments. Kourentzes, Petropoulos, and Trap-
ero (2014) showed that temporal aggregation on different levels can improve the
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overall forecasting accuracy. They proposed a framework showing that combin-
ing exponential smoothing at different aggregation levels, allows for more com-
plex demand patterns. The key is the ability to model different seasonal and
trend patterns separately over each aggregation level. The proposed framework
aggregates each individual time series to k aggregated time series and applies ex-
ponential smoothing separately on each of the aggregation levels. The separate
levels are eventually disaggregated by an averaging function, resulting in one
final forecast.

The second aggregation method mentioned by Babai, Ali, and Kourentzes
(2012) is cross-sectional aggregation, focusing on the relationships between time
series for different SKUs. The effectiveness and practical application of this method
has frequently been discussed in the literature. Rostami-Tabar et al. (2015) dis-
tinguishes and compares the top-down (TD) and bottom-up (BU) approach for
cross-sectional aggregation. Commonly refereed to as, aggregated forecasting for
TD and sub-aggregated forecasting for BU. We will go with the TD and BU con-
vention to avoid name confusion with temporal aggregation. Rostami-Tabar et al.
(2015) found that both types of cross-sectional aggregation achieved performance
benefits for non-stationary and stationary time series, compared with single SKU
level forecasting. They found that non-stationary time series showed the highest
accuracy improvement. They found that the BU approach outperforms TD when
cross-sectional correlations are negative, or relatively low and positive. Further-
more, they argued that TD is preferred when correlations are relatively high.

Gross and Sohl (1990) empirically compared different disaggregation meth-
ods in combination with multiple forecasting methods. They used the TD ap-
proach to examine the reduction in accuracy in relation with the time savings by
forecast aggregation. They concluded that the disaggregation was applicable in
two out of the three product lines, used in the empirical research.

So far, the majority of studies on cross-sectional aggregation focused on ag-
gregation within predefined product families. Most companies use SKU map-
pings toward groups or families in order to generate higher level forecasts (Chen
and Boylan, 2008). This aggregation process is highly affected by the predefined
groups which need to be generated by the business. Furthermore, it assumes that
the SKUs within each group are following similar sales patterns, which might
not always be the case. Similarity in product families is mostly based on product
features or names and not on the desired sales similarity.

3.2 Time Series Similarity

Automatic clustering of time series based on similarity has not frequently been
studied in the literature. So far, most studies focused on using the predefined
groups developed from business knowledge, to assess the cross-sectional aggre-
gation effects. However, time series similarity as a broad topic is more commonly
examined and therefore explored in this section.

Distance metrics are most widely used for defining similarities between mul-
tiple time series. The most commonly known metrices are the Manhattan distance
and the Euclidean distance which are both generalised under the Minkowski dis-
tance (Jain, Murty, and Flynn, 1999). Jain, Murty, and Flynn (1999) pointed out
that the Minkowski distance metrics gives large-scaled features the tendency to
dominate and they argued that this metric works best in compact and isolated
clusters. Bergen et al. (2005) used the Mahalanobis distance metrics to classify
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land cover which overcomes the main disadvantage of the Minkowski metrics by
accounting for non-stationarity of variance (Lhermitte et al., 2011).

In the process of time series similarity, many authors used the Fourier Trans-
formation (FT) before applying a distance metrics. Azzali and Menenti (2000)
used the FT in combination with a proposed distance metrics based on the Eu-
clidean distance. Use of the Euclidean distance results in sensitivity to amplitude
scaling, time scaling and time translation controversial to the other metrics (Lher-
mitte et al., 2011). Furthermore, Evans and Geerken (2006) proposed a more shape
based similarity measure after applying the FT.

Troncoso, Arias, and Riquelme (2015) presented a Multi-scale smoothing ker-
nel (MUSS) for measuring time series similarity. The major advantage of this ker-
nel is that it accounts for minor shifts in time as well as misalignments by focusing
on similarities in shape rather than absolute values. They examined the proposed
kernel against a linear kernel and the DTW kernel, in combination with a SVM
classifier for several datasets. The MUSS kernel showed similar results in terms
of accuracy compared with the well applied GA-DTW kernel and outperformed
the linear kernel. However, the MUSS kernel showed to be much faster than
the GA-DTW kernel making it more applicable in real word situations. A draw-
back of the MUSS kernel, is that it does not account for difference in time series
length, which arises for sales data. Furthermore, both DTW and MUSS are com-
putationally expensive in contrast with the correlation metrics or the Minkowski
distances.

Another time series clustering, based on fuzzy sets, has been proposed by
Shou-Hsiung, Shyi-Ming, and Wen-Shan (2016). They showed by use of empirical
research that the proposed forecast method results in a higher accuracy compared
with previous fuzzy clustering methods.

One of the most straight forward options is the use of correlation to define
similarity. Correlation coefficients such as the Pearson correlation are indepen-
dent of scale. Another measure closely related to Pearson correlation is the cosine
similarity which defines vector differences in terms of the angle.
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Chapter 4

Data

The data used in this empirical research has been made available by a daughter
company of Pon Holding, which requested to remain anonymous. Upon request,
any information regarding the companies nature has been left out and product
codes have been hashed. The company in question mainly sells to retail stores
(B2B), whereas a small proportion is sold directly to the customer by means of
a web-shop (B2C). The two-sided market results in a strong diversity within the
sold quantity per customer, as larger batches can be purchased by the B2B market.
The sold products are all centered around the same outdoor sport, resulting in
highly seasonal data.

4.1 Data Description

The original dataset consists of 8278 unique products or product configurations1,
with in total approximately four million unique sales records. The corresponding
sales records are recorded on a daily level where the product number, the date
and the quantity are registered. A data sample is shown in appendix A. The data
contains some rows (0.38 percent) with missing values in either the date or the
product number.

The data has been collected over the period from 2009-03-02 to 2017-10-19.
Furthermore, eight observations are deviating from this period, all being regis-
tered on 1899-12-31 with a quantity of one. These eight observations are removed,
as expected to be errors. All products are introduced between the start and end
date of the dataset where the first sold date is considered to be the introduction
date. Product introductions frequently deviate from the regular sales pattern,
being significantly higher or lower than the remaining time series. These intro-
duction effects are further discussed in section 4.5.

Due to the occurrences of introductions and products leaving the portfolio,
the time series length varies strongly throughout the data. A histogram of the
length in days of the product history2 is shown in figure 4.1. There is a remarkable
number of products (453) without any sales, resulting in a history of zero days.

1A product configuration is defined as a different colour or size.
2Difference between the first sold date and the last sold date.

http://www.pon.com
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FIGURE 4.1: Time series length in days for all 8278 products
(bin size 100).

The average sold quantity deviates strongly between the products where some
are slow moving and others are fast moving. Figure 4.2 shows the coefficient of
variation (CV = σ

µ ) for each time series in relation with the fraction of days where
the product has no sales. The behaviour of figure 4.2 shows that an increase in the
zero fraction results in general in a larger coefficient of variation. This indicates
that an increase in the zero fraction results in a large σ compared to µ.
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FIGURE 4.2: Relationship between the fraction of zero observa-
tions (no sales on a day) and the coefficient of variation.
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4.2 Data Preprocessing

Not all products and sales records are fit for forecasting models and therefore,
data preparation is required. A large proportion of products is excluded from
this research, where figure 4.3 shows the number of excluded products per cause.

FIGURE 4.3: Excluded number of products per cause. Total 5395
products excluded, resulting in 2892 products for this research.

The sales records are prepared by removing any negative sales occurrences. Neg-
ative sales occur as a result of returns which cannot be linked to the actual sales
date. Therefore, excluding these negative sales will prevent from reduced sales at
the return date which should, in fact, be subtracted at the sales date.

The explained 0.38 percent of sales records without either a product number,
sold date, or quantity are removed from the data. Furthermore, any outliers with
large sales quantities are kept in the data, as these are highly affecting the inven-
tory management and therefore crucial to incorporate in the forecast.

Research by Zotteri and Kalchschmidt (2007) shows that aggregation is ben-
eficial for shorter time series and of less added value when more data becomes
available. Therefore, relatively short time series of at least 2 years will be kept, to
ensure at least one year of train data and one year of test data.

4.3 Distributions

There is a large difference in frequency between time series. Figure 4.4 (left)
shows a fast moving item, having a baseline above zero and a clear monthly sea-
sonality. Contrary, figure 4.4 (right) shows a slow moving item with many zero
observations but a rather similar seasonality.
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FIGURE 4.4: Fast moving product with clear seasonality (left) and
slow moving product with less clear seasonality (right).
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The different sales patterns are reflecting in the distributions of the sales count.
Figure 4.5 shows the distribution of both products and its log-transformed3 sales.
The distribution of the fast moving product shows an exponential distribution
where the log transformation transforms this to a distribution not significantly
deviating from normal, when neglecting the observations at zero. The slow mov-
ing product shows a similar pattern whereas the proportion of zero observations
is much higher.
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FIGURE 4.5: Probability density plot for a fast moving product
(left) and a slow moving product (right).

4.4 Periodicity

Figure 4.4 indicates strong evidence for an intra-year seasonality which is shown
to be significant in figure 4.6.
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FIGURE 4.6: Sales effect per year and month for one product.

3Log transformation is applied by Log(sales + 1) to overcome non existence of log(0).
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The demand pattern throughout the week is shown in figure 4.7, indicating a
decreasing demand trend from Monday to Sunday. The quantities are based on
the time series from figure 4.4, but is representative for the majority of products.
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FIGURE 4.7: Sales difference per weekday.

4.5 Introductions

Product introductions occur throughout the year where a yearly reoccurring peak
is observed in the months February, July and September. Product introduction are
of high interest due to its deviation from the remainder of the time series. This
deviation can be twofold, where the sales is either significantly lower (figure 4.8
left) or significantly higher (figure 4.8 right) than the remainder.
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FIGURE 4.8: Product introduction patterns with slow start (left)
and peak sales (right).
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4.6 Holidays

Some businesses are closed on national holidays which largely affects the sales on
these days. Figure 4.9 shows the difference between a regular day (first boxplot)
and the seventeen dutch holidays. Additionally, the combination between the
holiday and the weekday has a strong effect on the sales quantity, as well as the
days surrounding the holiday. To illustrate, a holiday on Monday has a larger
effect on the surrounding days then a holiday on Sunday. The sold quantity on
Sunday is on average lower than Monday which results in a small added sales
quantity to the surrounding days of Sunday.
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FIGURE 4.9: Holiday effect on the sales quantity.

4.7 Multiplicative Relationship

Figure 4.10 indicates a clear multiplicative relationship between trend and sea-
sonality, which is present for the majority of products.
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Chapter 5

Methodology

This section describes the methodology for testing the effectiveness of product
clustering on a daily forecast. Section 5.1 elaborates on the three methods used
to draw this comparison. The forecasting models used in this comparison are
explained in section 5.4, whereas the clustering approach is explained in section
5.2. The performance of the three methods will be evaluated with use of the
WAPE, MASE and MAE as explained in section 5.7. Lastly, section 5.8 combines
theory and practice by making the translation from forecasting results towards
inventory management.

5.1 Framework

This empirical study examines the effectiveness of adding clustered sales infor-
mation, to enhance the forecasting accuracy on a SKU based level. This compar-
ison is constructed by developing a detailed forecasting model (I), on SKU level,
and comparing its results with a forecast taking existing product group sales into
account (II). Lastly, the comparison is made with product groups generated by
use of time series clustering, referred to as cluster approach (III). In order to con-
duct the comparisons, the following three methods are introduced and graphi-
cally represented in figure 5.1.

1. Method I: Detailed approach

(a) Forecast each SKU separately.

2. Method II: Product group approach

(a) Forecast the aggregated demand within each predefined product group.

(b) Forecast each SKU separately with the additional independent vari-
able: product group forecast.

3. Method III: Product cluster approach

(a) Cluster similar products based on historical demand.

(b) Forecast the aggregated demand within each cluster.

(c) Forecast each SKU separately with the additional independent vari-
able: cluster forecast.
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FIGURE 5.1: Graphical representation of Method I (left), Method
II (middle) and method III (right).

5.2 Clustering

Flat clustering methods such as k-means provide a segmentation of the input data
into k clusters. Another type of clustering is Hierarchical Agglomerative Clustering
(HAC) which provides the notion of hierarchy in its constructed clusters. This is
of particular interest in this study, as it is assumed that products can be classified
hierarchical (e.g. a sweater categorizes under winter clothing which categorizes
under clothing). Furthermore, HAC does not require a predefined number of
clusters, giving it an advantage over other methods such as k-means. In this study
the number of clusters is not known upfront and the clustering is computation-
ally expensive due to the large sample size, making HAC the prefered clustering
method.

HAC is defined as a bottom up algorithm, merging (agglomerating) pairs of
clusters until all branches are merged to one single cluster of size n. The initial
state space consists of n clusters containing exactly one observation, where n− 1
merges are required to obtain the final cluster. The results are mostly provided
in the form of a dendogram which shows the hierarchical structure of all n − 1
merges.

5.2.1 Implementation

HAC is performed in two successive steps: construction of the dissimilarity ma-
trix, which represents the distances between all n products, and the construction
of the hierarchical clusters. The dissimilarity matrix requires the measurement
of similarity between a pair of time series, which can be done by use of a large
variety of metrics as explained in section 3.

Defining the right distance measure between two time series is of major im-
portance for the final clustering. Two problems need to be accounted for in the
selected distance measure: differences in scale and difference in length. The first
is of importance as the scale differs strongly between pairs of time series, which
should not affect the dissimilarity. To illustrate the importance, one can assume a
time series A being a multiple of time series B such that A = a · B. Obviously, the
pattern is exactly the same and the pair of products should therefore be classified
as completely similar. The latter is of great influence as the time series length
differs strongly throughout the dataset. Misalignment between two time series
where one of the two starts earlier or ends later, frequently occurs as most time
series are introduced at different points in time. The used distance measure is
explained in section 5.2.2.
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The second step of HAC is the iterative process of merging clusters. For this,
the dissimilarity of two clusters should be obtained where each iteration merges
the two clusters with the lowest cluster distance. Calculation of the cluster dis-
tance is performed using a linkage function which is explained in section 5.2.3.

A simple and unoptimized implementation of the HAC algorithm is for illus-
trative purposes shown in Algorithm 1, reprinted from Manning, Raghavan, and
Schütze (2008, p. 349).

Algorithm 1 Unoptimized HAC implementation

for n← 1 to N do
for i← 1 to N do

C[n][i]← sim(dn, di)
I[n]← 1 (keeps track of active clusters)

end
end
A← []
for k← 1 to N-1 do

(i,m)← arg max[(i,m):i 6=m∧I[i]=1∧I[m]=1]C[i][m]
A.append((i, m))
for j← 1 to N do

C[i][j]← Sim(i, m, j)
C[j][i]← Sim(i, m, j)

end
I[m]← 0 (deactivate cluster)

end

5.2.2 Distance Measure

The distance measure defines the distance between each pair of time series which
can be represented in an upper triangle matrix, resulting in a dissimilarity matrix.
To overcome the previously explained difference in time series length, the inter-
section of the two time series is used to draw the comparison. The intersection is
selected over the union as it gives the option for short time series to benefit from
the history of long time series. This is of particular interest when the product of
the short time series is introduced later but the sales pattern is rather similar.

To quantify the dissimilarity, a distance metric is required. The most widely
known distance metric would be the Minkowski distances. However, this metric
gives large scale features the tendency to dominate and is therefore not suited to
cope with scale differences between time series (Jain, Murty, and Flynn, 1999).
The correlation is also widely applied to quantify similarity between time series.
The correlation is however sensitive to outliers which can result in the case where
a rather similar time series gets a low correlation due to one outlier in either of
the two series. More advanced measures such as MUSS and DTW as explained
in section 3 are computationally too expensive to perform on the dataset.

The selected measure is the Cosine similarity which is not largely affected by
outliers and has a tremendous computational speedup compared to MUSS and
DTW. The following example, with time series A and B compares the Cosine
similarity with the Pearson Correlation to explain the effect of outliers.
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A = [1, 2, 3, 30, 5, 6, 7, 8, 9, 10]
B = [2, 4, 6, 30, 10, 12, 14, 16, 0, 20]

Pearson Cor = 0.051
Cosine Sim = 0.603

The above shows that the Cosine similarity gives a higher similarity when outliers
occur, which is the desired result. The Cosine similarity is defined in equation
(5.1) , where the dissimilarity is defined by equation (5.2). Equation (5.2) reverses
the interval [0, 1], which results in dis(A, A) = 0.

sim(A, B) = cos(θ) =
〈A, B〉
‖A‖ ‖B‖ (5.1)

dis(A, B) = 1− sim(A, B) (5.2)

5.2.3 Linkage Function

The linkage function defines the distance calculation between a pair of clusters.
The most common linkage functions are: Single linkage, Complete linkage, Aver-
age linkage and Centroid linkage which are defined below (Flach, 2018, pp. 254–
255).

Lsingle(A, B) = min
x∈A,y∈B

dis(x, y) (5.3)

Lcomplete(A, B) = max
x∈A,y∈B

dis(x, y) (5.4)

Laverage(A, B) =
∑x∈A,y∈B dis(x, y)

|A| · |B| (5.5)

Lcentroid(A, B) = dis
(

∑x∈A x
|A| ,

∑y∈B y
|B|

)
(5.6)

One major drawback of Single linkage and Complete linkage is the reduction of
cluster quality to a single pair of products: the two most similar products or the
two most dissimilar products (Manning, Raghavan, and Schütze, 2008, pp. 350–
353). The major drawback of Single linkage is called chaining which could result
in elongated clusters. Complete linkage on the other hand gives large importance
to outliers by measuring between the two most dissimilar products.

Flach (2018, pp. 255–558) argues against Centroid linkage as only Centroid
linkage violates the monotonicity constraint, defined in Theorem 5.2.1. From
this, the preferred linkage function is the Average linkage as it incorporates all
products within a cluster, but does not violate the monotonicity. Incorporating
all products should logically be used as this research focuses on the aggregation
of sales from the complete cluster.
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Theorem 5.2.1 (Monotonocity) A linkage function satisfies the monotonicity require-
ment if and only if the following condition holds (Flach, 2018, p. 257):

If L(A, B) < L(A, C) and L(A, B) < L(B, C)

Then L(A, B) < L(A ∪ B, C)

5.2.4 Number of Clusters

It is expected that the final forecast accuracy depends on the selected number of
clusters. Too large clusters could result in strong time series dissimilarity, whereas
too small clusters could loose the stability of the group information. Manning,
Raghavan, and Schütze (2008, pp. 348–349) describe the following four methods
to determine the optimal number of clusters. This research will make use of the
Elbow method to find the optimal number of clusters graphically. This method
is selected as it is one of the most widely used methods and the most intuitive in
use.

1. Predefined number of clusters
Cutting-off the dendogram at exactly k clusters (k-means approach).

2. Predefined similarity
Cutting-off the dendogram at a similarity s and accepting the resulting k
number of clusters.

3. Largest gab identification (knee method or elbow method)
The elbow method is a graphical method which requires to calculate for
each number of clusters the sum of the distances within the clusters. The
optimal number of clusters can then be defined as the value for which the
monotonically decreasing line shows an elbow.

4. Distortion method
λ is described as the penalty value for each additional cluster where the
RSS(K′) is the residual sum of squares for cluster size k′ which can be re-
placed by other distortion measures.

K = argmin
k′

[RSS(K′) + λK′] (5.7)

5.3 Train and Test Data

The forecast is performed for two weeks ahead, which will be referred to as a
batch. Due to the presence of yearly seasonality, the two week test period se-
lected in the year will largely influence the final forecast accuracy. To overcome
this problem, a sliding window method is applied where the test data of 364 days
(52 weeks) is used to cover the complete year. This method results in 26 batches
which need to be forecasted to cover the complete year. This method is graph-
ically presented in figure 5.2. The final forecast accuracy can then be obtained
by applying the accuracy measure over the complete year to obtain an average
accuracy.
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FIGURE 5.2: Sliding window approach for splitting train and test
data.

5.4 Forecasting Models

Several implementations of the Generalized Linear Models (GLMs) and a special
case of these models, Linear regression, are implemented to produce a daily fore-
cast. First the Linear Regression model is explained in section 5.4.2, after which
the broader GLMs are explained. From this class, the Poisson Model is used as
well as a stacked model having a Logistic regression implementation followed by
a Linear regression model.

5.4.1 Naive Models

Two naive forecasting models are applied to serve as a benchmark to the regres-
sion models. These two models are referred to as Naive last batch and Naive last
year.

• Naive last batch
The forecast for the next batch will equal the current sales. This means that
the upcoming two weeks will equal the past two weeks. In terms of days:
Ft = Yt−14.

• Naive last year
The forecast for the upcoming two weeks will equal the sales in the same
period last year.

5.4.2 Linear Regression

Linear regression has been widely applied, where the relevance in the business
has gained much attention due to its convenience to interpret the constructed
model. Besides this, the regression model is used in this paper due to its ability to
incorporate relatively complex patterns, such as holiday effects, by use of dummy
variables.

During this section, the mathematical formulation of Bijma, Jonker, and Van
der Vaart (2013) will be used. Linear regression is build on two components. The
response variable, often defined as Y, and the explanatory variables X.

The linear regression model with independent variables y1, ..., yn and p-dimen-
sional explanatory variables (x1,1, ..., x1,p), ..., (xn,1, ..., xn,p) is mathematically de-
fined in equation (5.8).



5.4. Forecasting Models 21

Yi =
p

∑
j=1

β jxi,j + εi i = 1, ..., n (5.8)

εi ∼ N(0, σ2) i.i.d

The above formulation can be simplified to matrix notation using Y = (Y1, ..., Yn)T

as vector of dependent variables. Furthermore, β = (β1, ..., βp)T represent the re-
gression coefficients. The design matrix Xnxp contains the p explanatory variables
for n observations.

Y = Xβ + ε (5.9)

ε ∼ N(0, σ2 I)

5.4.3 Generalized Linear Models

GLMs is a generalization of the Linear regression model, which allow for data
with a probability density distribution originating from the exponential family
(Kedem and Fokianos, 2002, pp. 142–143). The Linear Model satisfies this con-
dition as the Normal distribution can be rewritten into the canonical form and
is therefore a special case of the Generalized Linear Models. GLMs enable to
create regression models with different distributions such as binomial for classi-
fication. Each GLM consists of the following three components as explained by
Gunst (2013, pp. 41–42):

1. Random Component: Specifies the distribution of Yi, indicating the distri-
bution of the uncertainty:

Yi ∼ fi (5.10)

2. Systematic Component: Vector of predictors, with Xi the independent vari-
ables and β the weight of each variable:

ηi = XT
i β (5.11)

3. Link Function: Specifies the connection between the random and system-
atic component. An example of a link function is the Sigmoid function
which transforms a real number into a binary classification:

ηi = g(µi) (5.12)

The link function can be derived by rewriting the distribution into the canonical
form described in equation (5.13) (Kedem and Fokianos, 2002, pp. 4–6). Addition-
ally, the canonical form can be used to show that a distribution originates from
the exponential family.

fi(y) = fi(y, θi) = exp

(
yθi − b(θi)

φ
Ai

+ c
(

y,
φ

Ai

))
(5.13)
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Kedem and Fokianos (2002, pp. 4–6) describe that the parameters of the canonical
form can found by:

E(yi) = µi = b′(θi) (5.14)

V(yi) = b′′(θi)
φ

Ai
(5.15)

Poisson Regression Model

Poisson regression, or log-linear regression is especially of use when dealing with
count data. Furthermore, it is of use when the observed values are defined in the
positive domain Z+, having E(yi) > 0. This method removes the need for a log-
transformation which avoids log(0) (Kedem and Fokianos, 2002, pp. 143–149).

The Poisson distribution can be rewritten to the canonical form and is there-
fore a proven distribution from the exponential family. Rewriting the Poisson
distribution to the canonical form (equation (5.16)) will give the link function of
the GLM.

fi(yi) =
e−θi θyi

yi!
log( fi(yi)) = yi · log(θi)− θi − log(yi!) (5.16)

fi(yi) = exp
(yi · log(θi)− θi

1
− log(yi!)

)
From the above derivation, in combination with the canonical form, the following
parameters can be derived:

b(θi) = eθi

φ = 1 (5.17)
Ai = 1

c
(

y,
φ

Ai

)
= −log(yi!)

Kedem and Fokianos (2002, pp. 4–6) show that the link function can then be de-
rived by:

µi = g−1(b′(θ))

µi = g−1(eθi) (5.18)
θi = log(µi)

The three resulting components are shown below (Gunst, 2013, p. 44):

Poisson Regression


Yi ∼ Poisson(µi)
ηi = XT

i β
ηi = g(µi) = log(µi)

(5.19)

Although the link function is log(µi), the Poisson regression should not be con-
fused with Linear regression on the log-transformed (e.g. Y′ = log(Y)). For the
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Linear model on the log-transformed data, the left hand site becomes: E(Y′|x) =
E(log(Y)|x). From this, Poisson regression is not equivalent with Linear regres-
sion on the log-transformed data. Unless Y is fully determined by x, the following
holds:

E(log(Y)|x) 6= log(E(Y|x)) (5.20)

Stacked Model

The data analysis showed a large proportion of zero observations occurring in the
data. This can be modelled as a succession of two models where the first model
predicts if sales occurs at time t (1/0). A second model predicts the quantity if
the first model predicts sales. This methodology removes the large number of
zero observations from the distribution of the second model, making the estima-
tion of this model less biased. The stacked model implements Logistic regression
followed by Linear regression.

The logistic regression model is defined in the space {0,1} and can be formu-
lated by a similar derivation as done for the Poisson regression, using the notation
of Gunst (2013, p. 44). The three resulting components are:

Logistic Regression


niYi ∼ Binomial(ni, µi)
ηi = XT

i β
ηi = g(µi) = log

( µi
1−µi

) (5.21)

5.5 Feature Engineering

Feature engineering is among the most important steps in the development of a
representative regression model. Well designed features have the ability to im-
prove the regression model by allowing for more complex patterns in the data.

5.5.1 Transformations

Section 4.7 explains the existence of a multiplicative relationship between trend
and seasonality. This implicates that an increase in trend gives rise to a larger sea-
sonal effect and the other way around. The multiplicative relationship is trans-
formed to an additive relationship by use of a log transformation, displayed in
equation 5.22.

Yi = Ti · Si · εi (5.22)
log(Yi) = log(Ti) + log(Si) + log(εi)

To overcome the undefined log(0), which occur on days having a demand of
zero, the log(yi) is replaced by log(yi + 1). The predicted values are reversed to
the original level by use of equation (5.23), where F̃i is the predicted value on the
log-transformed data.

Fi = eF̃i − 1 (5.23)
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5.5.2 Seasonality

Nominal variables such as month numbers do not represent a numerical quantity
which makes the absolute value meaningless (Bijma, Jonker, and Van der Vaart,
2013, pp. 261–262). One-hot-encoding (OHE) can be used to replace the numerical
quantity to a list of binary dummy variables. Each nominal variable, having S
possible states, translates to S− 1 binary variables. The Sth variable follows from
a combination of the S − 1 variables (e.g. all binary variables being 0). Each
binary variable is defined by equation (5.24), where M defines the state space
having only one categorical value in the case of OHE. ui defines the value of the
original variable (Makridakis, Wheelwright, and Hyndman, 1997, pp. 269–274;
Harvey, 1993, pp. 160–163).

xi = 1M(ui) =

{
1 if ui ∈ M
0 if ui /∈ M (5.24)

Section 4 showed a strong intra-week pattern, with a decreasing demand pattern
from Monday to Sunday. The use of one single variable containing the day of the
week (1-7) would not suffice, due to its non-linear relationship with the quantity
as shown in figure 4.7. Therefore, the following six dummy variables are intro-
duced according to equation (5.24).

D1 = 1Monday(ui)

D2 = 1Tuesday(ui) (5.25)
...

D6 = 1Saturday(ui)

The same methodology has been applied for the modeling of the month within
the year and the week within the year. This results in an additional (12− 1) +
(53 − 1) = 63 binary variables. These variables are called M1, M2, ...M11 and
W1, W2, ...W52 respectively.

5.5.3 Introductions

In a majority of cases, the introduction period heavily deviates from the remain-
ing time series as shown in figure 4.8. A binary dummy variable is added accord-
ing to definition (5.24), where M contains the first year of the time series.

5.5.4 Holiday Effect

The previously conducted data analysis showed the relative holiday effect where
some days result in a completely closed business, having demand equal to zero.
Contrary, some holidays result in a reduced demand bigger than zero. Lastly, de-
mand before or after a specific holiday can deviate due to the closure of a holiday.
This effect is for example strongly visible with new year, resulting in an increased
sales on the second of January.

Most holidays are reoccurring events on a fixed date such as new year and lib-
eration day. Other days such as Easter are depending on the specific year, where
most other days such as Ascension day can be derived from the Easter date.
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Therefore, seventeen holiday dates are incorporated and marked by a dummy
variable. For a detailed overview of the used holidays and the corresponding
date calculation, consult appendix B.2. Additionally, variables indicating days
before or after a holiday are given dummy variables as well, to capture a shift in
demand due to business closure.

5.5.5 Lag Variables

Lag variables describe the sales of a previous period or a previous moment in
time. The first type is added by use of the sum over a two week period, indicating
the total sales during the two weeks. The second indicates the sales at a specific
date, for example 28 days ago.

5.6 Parameter Estimation and Feature Selection

Estimation of the parameter vector β for both linear regression and Generalised
regression, is generally performed using the Maximum-Likelihood estimator
(MLE), where X should be of full rank to make it identifiable, that is Column
Rank(X) = p.

β̂ = (XTX)−1(XTY) (5.26)

One of the alternatives is the use of the Least Absolute Shrinkage and Selection
Operator, in short LASSO. This method minimizes the sum of squared errors by
estimating β. Furthermore, it performs feature selection alongside the minimiza-
tion, as it reduces some coefficients towards zero (Bühlmann and Van de Geert,
2011). The advantage obtained from LASSO is a reduced complexity of the model
which can reduce the variance without a large increase in bias. Furthermore, it
helps to reduce overfitting which is especially of use when the number of vari-
ables is large and the number of observations low. The used notation to define
this method originate from Bühlmann and Van de Geert (2011).

Lasso makes use of the penalty parameter λ to shrink some estimated values
of β to zero. For linear regression, estimation of β under the shrinkage parameter
λ, is performed using equation (5.27).

β̂(λ) = argminβ

(
∑n

i=1(Yi − (Xβ)i)
2

n
+ λ ·

n

∑
j=1
|β j|
)

(5.27)

The shrinkage parameter λ needs to be estimated, where a smaller value for λ
decreases the number of parameters incorporated in the model. From this, the
most important parameters are the ones first entering the model as λ increases.
Estimation of λ is done by use of k-fold cross-validation on the train data.
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5.7 Evaluation Metrics

The selection of the correct forecasting evaluation measure depends largely on the
underlying demand type. Some comparisons between the most common evalu-
ation measures will be made in this section, to find the best suited evaluation
metrics. We define the following parameters with time step t ranging from 1 to n.

Yi,t := Observation at time t for time series i t ∈ [1, ..., n]

Ŷi,t := Forecast at time t for time series i t ∈ [1, ..., n]
ei,t := Error at time t for time series i t ∈ [1, ..., n]

Throughout this research paper, it is assumed that overestimating demand/sales
is equivalently important as underestimating the demand. From this, the absolute
forecasting error will be used, where the absolute error is defined in equation
(5.28).

|ei,t| = |Yi,t − Ŷi,t| (5.28)

Scale-dependent error measures such as the MAE, the MSE and the RMSE are
traditionally widely applied. However, these methods suffer from difference in
scale between time series and are therefore only applicable for comparison of dif-
ferent forecasting methods on the same data, rather than comparing performance
across time series (Hyndman and Koehler, 2006; Ragnerstam, 2015).

To allow for comparison of performance across time series, the percentage
error measures are introduced. These measures are independent of scale and
based on the APE (equation (5.29)). The MAPE is one of the most widely known
percentage error measure, taking the average over the APE for each time t.

APEi,t = |100 · ei,t

Yi,t
| (5.29)

MAPEi =
1
n

n

∑
t=1

APEi,t (5.30)

It is explained in chapter 4 that a large proportion of products follows a lumpy
demand pattern. The MAPE is not able to deal with zero demand, as the fraction
ei,t
Yi,t

could result in division by zero if Yi,t = 0 or being undefined when Yi,t = Ŷi,t =

0. Furthermore, Chase (1995) explained that the MAPE could result in unfair
measurement as it is skewed if Yi,t gets close to zero. Therefore, the WAPE should
be preferred. The WAPE has the advantage that it accounts for the total demand,
which weights extreme values against the actual demand volume (Ragnerstam,
2015). The WAPE is presented in equation (5.31) and will be used to evaluate the
performance between SKUs.

WAPEi =
∑n

t=1

(
APEi,t ·Yi,t

)
∑n

t=1 Yi,t
=

∑n
t=1 |ei,t|

∑n
t=1 Yi,t

(5.31)

The MASE, on the other hand, is also frequently used when the MAPE is not
applicable, due to the presence of division by zero (Hyndman and Koehler, 2006;
Davydenko and Fildes, 2013). The MASE was proposed by Hyndman and Koehler
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(2006), being independent of scale by focusing on a scaled error instead of an ab-
solute error while avoiding division by zero. Another advantage of this method
is that it compares directly with one-step ahead forecasting, where MASE < 1 in-
dicates on average smaller errors than the one step ahead forecasting (Hyndman
and Koehler, 2006).

However, the drawback of this method is that it puts more weights to time
series which are comparatively stable due to its difference between time t and
t−m (Ma, Fildes, and Huang, 2016). The MASE is defined in equation (5.32).

MASEi =
1
n

n

∑
t=1

|et|
1

n−m ∑n
t=m+1 |Yi,t −Yi,t−m|

(5.32)

Both the WAPE and the MASE are not commonly used in business perspectives
but are strong measures for comparison between SKUs and will therefore be used
throughout this paper. To overcome the lack of business understanding, the MAE
will be reported in addition to these two measures and is presented in equation
(5.33).

MAEi =
1
n

n

∑
t=1
|ei,t| (5.33)

5.8 Inventory Management

A detailed forecast is mostly not the final goal and primarily serving as an input
variable in further decision making. It can, for example, be of financial impor-
tance to estimate expected costs or of importance in supply chain management
to coordinate production and resources. In this section, we focus on the practical
implementation for inventory management.

Tijms (2013, pp. 249–250) elaborates on a wide range of practical inventory
models, making a distinction between deterministic inventory models and stochas-
tic inventory models. The first has both the EOQ and the EPQ model where the
EOQ model is the most widely known, assuming no lead-time and continuous
order moments. The EPQ adds a production time of p to the model, bringing it
closer to reality.

The stochastic inventory models mentioned by Tijms (2013, pp. 272–289) are
listed below. All models assume stochastic demand and a lead-time L.

1. (s,Q): Quantity Q ordered if inventory drops below s.

2. (s,Q) With lost demand: no back-orders.

3. (R,S): After each R time units, inventory is replenished until S.

4. (R, s, S): (R,s) but inventory only replenished if below s.

The listed models require a demand distribution, without the use of any fore-
casting information. Therefore, we will propose a small adaptation to use the
forecast results as a foundation for the inventory management. Forecasting re-
duces the uncertainty of the demand, which in turn, reduces the required safety
stock. Safety stock is the additional stock required to compensate for short term
unpredictable fluctuations. Therefore the required stock R at time t can be de-
fined as Rt = F̂t + St(α) where F̂t is the forecasted amount for time t. St(α) is the
required safety stock to meet service level α. The difference between our model
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and the models listed by Tijms (2013, pp. 272–289) is that we replace the total de-
mand distribution by the distribution of the errors, to calculate the safety stock.
Afterwards, the total sales is added to the safety stock to obtain the required in-
ventory. To calculate the order size and order moment, we define the following
parameters.

L := Lead time
St(α) := Required safety stock for service level α

It := Inventory available at the start of time t

The required stock at time t is only depending on the uncertainty of the forecast.
For L = 1, the required safety stock can simply be found by solving α = 1−P(e ≤
S) for the empirical error distribution.

S = P(1−α)(e) (5.34)

For L > 1, the required stock (Rt) is is the sum of the forecast values over the
lead-time plus the α-quantile of the joined error distribution eL.

RL =
L

∑
i=1

Fi + eL,(1−α) (5.35)

The joined error distribution (equation (5.36)), indicates that the error increases
by a factor L when taking the convolution over L i.i.d Normally distributed vari-
ables:

P(eL > S) = P(et+1 + et+2 + ... + et+L > S) (5.36)

For normal distributions, the sum of L distributions (called Z) is defined by:

Z ∼ N
(

∑
i

µi , ∑
i

σ2
i

)
. (5.37)

The total required order quantity at time t is then defined by:

Ot = It − Rt =
t+L

∑
i=t

Fi + eL,(1−α) (5.38)

Figure (5.3) shows the need for inventory management on top of point-forecasting.
An inventory management based on point-forecasting results in an error of ap-
proximately 50 percent. Higher service level requirements result therefore in
higher safety stock, where the drawback is that the required safety stock in-
creases exponentially as the service level increases. Companies generally strive
to achieve service levels between 95 and 99 percent, resulting in large inventory
costs.
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FIGURE 5.3: Influence of service level requirements on the safety
stock for µ = 0 and σ = 10.
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Chapter 6

Results

The results are obtained by programming the described forecasting models in
Python. The forecasting models are executed on a local machine. The HAC is
programmed in Python as well, where a cloud server was used to obtain the
distance matrix within a reasonable time frame.

6.1 Forecast Model Performance (Method I)

Figure 6.1 draws the comparison between the different forecasting models for
the MAE, WAPE and MASE. It is visible that, although there is no comparison
between time series, the MAE is difficult to compare due to its skewed boxplots.

It can be seen by comparing the WAPE and the MASE, that all regression
models outperform both benchmark models by far. Lasso linear regression and
Logistic linear regression are performing approximately equivalently in terms on
the median. Poisson linear regression performs significantly worse, based on the
median test (p < 0.01), compared with Lasso linear regression and Logistic linear
regression.

The logistic linear regression model shows a broader interval of performance
for both the WAPE and the MASE, compared with Lasso linear regression. There-
fore, the Lasso linear regression seems to perform more stable. It can be remarked
that the Naive last year forecast has a MASE of exactly one, which corresponds
with the given definition in section 5.7.
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FIGURE 6.1: Comparison between the different forecast models by
use of MAE (top), WAPE (left bottom) and MASE (right bottom).
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Figure 6.2 shows the forecast result for the test data of exactly one year, for Lasso
linear regression on a single product. The figure shows that the weekly sales
pattern as well as the yearly seasonality is captured by the model. The year trend
is not visible as only the test data is displayed. However, the trend is captured by
the model as no systematic error is found in the residuals of the test data.
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FIGURE 6.2: Forecast compared with the actuals over the test data,
using Lasso linear regression and method I for a single product.

6.2 Clustering

Figure 6.3 shows the within sum of squares for the identification of the optimal
number of clusters. Figure 6.4 shows the final clustering where the optimal num-
ber of clusters (k = 63) is used.

FIGURE 6.3: Within cluster sum of squares with an identified
number of clusters of k = 63.
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FIGURE 6.4: Dendogram of the final clustering for n ≈3000.

6.3 Forecast Method Comparison

Figure 6.5 compares the three methods by use of the MASE. All three methods
make use of Lasso Linear regression for the forecast. The methods are perform-
ing quite equally when considering the median over the approximately 3000
products. Method III performs approximately 0.9 percent lower compared with
method I in terms of the median. Method II performs approximately 1.4 percent
higher than method I. According to the median test, only a significant difference
exists between the median of method II and method III (p = 0.023).
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FIGURE 6.5: Boxplot comparison in terms of the MASE between
the three methods over n ≈ 3000.

Figure 6.6-6.8 make a comparison between all three forecasting methods for re-
spectively the zero fraction, the time series variation and the time series length.
This comparison is made to compare the performance for the three method ac-
cross different time series. The previous boxplot showed that there is only a small
difference between the methods, when comparing the median over all time series
at once. However, when considering the different types of time series, a more
clear performance distinction can be created.
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Figure 6.6 shows that method I performs best for time series with a relatively
low fraction of zero demand. Additionally, method II has a dramatic increase
in the MASE for the same type of time series. Both method II and method III
outperform method I for time series with a large fraction of zero observations.
This result gives rise to the idea that the use of product groups or clusters is more
beneficial, when the time series contain a large number of observations without
demand (intermittent demand).
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FIGURE 6.6: Influence of the fraction of zero demand within a time
series on the MASE for all three methods.

When considering the coefficient of variation to classify the time series, a similar
distinction can be made. Figure 6.7 shows that method III outperforms the other
methods when the variation exceeds approximately 3.6. Both method II and III
outperform method I when the variation grows large and the other way around
when the variation is relatively low.
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FIGURE 6.7: Influence of the time series variation on the MASE for
all three methods.

Figure 6.8 shows a relative similar performance for short time series between the
three models. Method I seems to outperform the others on the middle length and
method III seems to dominate on the long time series above approximately 2200
days. Counter intuitively is the MASE growing when the history increases. A
similar pattern exists when considering the WAPE.
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FIGURE 6.8: Influence of the time series length on the MASE for
all three methods.

The following tables show a summary of the above discovered trends which can
be of guidance when selecting the appropriate forecasting method for a set of
time series.

Zero fraction <0.85 >0.85
Method I III

TABLE 6.1: Preferred method based on time series zero fraction.

Variation <3.6 >3.6
Method I III

TABLE 6.2: Preferred method based on time series variation.

Length <1700 1700-2200 >2200
Method - I III

TABLE 6.3: Preferred method based on time series length.
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Chapter 7

Conclusion

This study has shown that high variable sales data is rather difficult to forecast,
resulting in a high WAPE by default. Comparing the performance of regression
techniques with benchmark models such as the naive models, show that the re-
gression techniques are able to derive a comparably good forecast which outper-
form the benchmark models by far.

The case study suggests that, although the generalization of these results is
not yet known, there is no single method to use when considering forecasting.
The presented results show that the predefined product groups can be dangerous
when a low variation or a low zero fraction is present in the time series. The
forecasting accuracy can be negatively influenced when using these groups for
the wrong time series. Use of predefined product groups should therefore be
carefully considered before being applied.

The results show that forecasting can benefit from forecasts at an aggregated
level, when the aggregation is based on a clustering rather than a business group-
ing. However, this clustering method is no exception on the rule that there is no
uniform forecasting method. The results show that cluster based forecasting can
outperform the detailed method when the zero fraction is relatively high, the vari-
ation is high or the time series has a long history. Although clustering does not
always influence the forecasting accuracy positively, it retains the accuracy drop
relatively limited, when compared with the predefined product groups. Cluster-
ing is therefore a more robust solution then the predefined product groups when
applied to the wrong time series.

There is an unexpected correlation between the time series length and the
MASE. This behaviour might be explained by the nature of the dataset which
contains all types of time series, having long historical series with a small amount
of observations, making the MASE grow large.

In practice, one would want to obtain a fast forecast model which might even
needs to be executed on a daily basis. The suggested clustering method requires
the construction of a n x n upper matrix of dissimilarities between all time series.
One can expect this operation to take up too much time when applied in practice
as the size of the matrix grows exponentially along the number of time series.
The changes in dissimilarity might not change fast for long existing products.
Therefore, it might be sufficient to update this matrix less frequently compared
with the forecast frequency.
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7.1 Further Research

This research considers a short term forecasting horizon which might yield differ-
ent results from a long term forecasting case study. Forecasting more steps ahead
could be of major interest for businesses. Therefore, conducting this research for a
larger forecasting horizon could be of interest, yielding potentially different result
from the current research.

Besides the used forecasting models, there is still a large variety of poten-
tial models which could increase the overall accuracy. Other forecasting models
could potentially outperform the currently used model. As this research has its
main focus on the three forecasting methods, no full comparison is made between
forecasting models. Therefore this research could be repeated with use of differ-
ent forecasting models to identify if the found results can be generalized.

Although the used dataset contains a large variety of time series, it would
be of major interest to repeat this study in other market segments. If the found
results can be generalized towards other market segments such as retail markets
is not yet clear.

This research did not incorporate time series with short historical informa-
tion. Identifying if time series with short historical information could benefit
from clustering, would be of major importance for companies as new product
introductions can frequently occur.

This research identified the best clustering method by use of a more theoret-
ical analysis. Further research could try to incorporate the effect of each cluster
method on the forecasting accuracy, by use of a case study. A clearer perfor-
mance analysis can then be conducted between the cluster methodology (method
III) and the detailed forecasting method (method I).

A detailed analysis of the influence from the cluster size on the forecasting
accuracy was out of scope for this research but is expected to largely influence
the performance of the forecasting method. Therefore, a case study with respect
to the cluster size influence on the performance differences between method I and
method III would therefore result in a stronger comparison.

Lastly, this research makes some distinguishes between different time series.
Further research could focus on a more clear separation in groups, to further in-
vestigate the performance per time series type.
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Appendix A

Data Sample

Data sample with hashed product codes.

Date Product Quantity
2017-09-19 14546 100
2017-09-19 14528 1
2017-09-19 14887 5
2017-09-19 14525 2
2017-09-19 14534 2
2017-09-19 14648 100
2017-09-19 14546 10
2017-09-19 14887 2
2017-09-19 14525 2
2017-09-19 14534 2
2017-09-19 14648 1
2017-09-19 14546 10
2017-09-19 14545 1
2017-09-19 14525 2
2017-09-19 14534 2
2017-09-19 14648 1
2017-09-19 14546 10
2017-09-19 14545 1
2017-09-19 14528 2
2017-09-19 14605 1
2017-09-19 14728 1
2017-09-19 14748 2
2017-09-19 14545 1
2017-09-19 14545 1
2017-09-18 14868 1
2017-09-18 14866 1
2017-09-18 14645 1
2017-09-18 14748 4
2017-09-18 14568 1
2017-09-18 14646 1
2017-09-18 14887 1
2017-09-18 14525 3
2017-09-18 14527 2
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Appendix B

Dummy Variables

B.1 Date Variables

The following date variables are created.

1. month

2. quarter

3. weekday

4. week of year

5. week of month

6. introduction year

B.2 Holidays

According to the Dutch system.

Holiday Calculation
New year’s Eve <year>-12-31
New Year <year>-12-01
First Christmas day <year>-12-25
Second Christmas day <year>-12-26

Kingsday
if year >2014: <year>-4-27
else: <year>-4-30
(-1 day if occurs on Sunday)

Liberation day <year>-5-5
Valentine’s day <year>-2-14
’Sinterklaas’ <year>-2-14
Mothers day second Sunday of may
Fathers day third Sunday of June
Commemoration day <year>-5-4
Three Kings’ Day first Sunday of January
Easter Butcher’s Algorithm
Easter Monday Easter +1 day
Good Friday Easter - 2 days
Ascension day Easter + 29 days
Whit Sunday Ascension day + 10 days
Whit Monday White Sunday + 1 day
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Appendix C

Dendogram Example
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FIGURE C.1: Dendogram with sample size n=100.
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Appendix D

Clustering sample

FIGURE D.1: Cluster sample for n=18 and k=5
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FIGURE D.2: Cluster sample for n=18 and k=5
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