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Preface

�is thesis is part of acquiring the Master’s degree in Business Mathematics and Informat-
ics. Business Mathematics and Informatics is a multidisciplinary programme, aimed at
improving business processes by applying a combination of methods based upon mathe-
matics, computer science and business management. �ese three disciplines will also play
a central role throughout this thesis.

In this thesis, I will give a basic introduction to polling systems together with a couple
of things related to them, such as their applications. Polling systems belong to an impor-
tant class of queueing systems, because a wide variety of applications lend themselves to
be modeled as a polling system, thereby opening possibilities for optimization purposes.
Because of this, the business aspect of Business Mathematics and Informatics is present in
the subject of polling systems. Also the mathematical and computer science aspects are
clearly present since polling systems are analyzed by means of mathematical methods, usu-
ally resulting in a certain computational scheme. �e results of this can then be computed
numerically.

After reading this thesis, one is able to formulate an answer to the following questions:
“What are polling systems?”, “How can polling systems be applied to real-life situations?”
and “Which techniques exist to analyze polling systems?”.

Finally, I would like to thank my supervisor prof. dr. Rob van der Mei for his help and
support and for acquainting me with the subject of polling systems.

Alex Roubos
Aalsmeer, 2007
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Summary

A queueing model is a mathematical model describing situations in which customers re-
quest for service from a server. Customers to whom service cannot be rendered immediately
take place in a queue. �e classical polling model is a special class of queueing models con-
sisting of multiple queues and a single server that visits the queues in some order to serve
the customers waiting at the queues. �e service policy determines which customers are
served during the visit of the server to a queue. �e routing scheme determines in which
order the server visits the queues. �e server typically incurs some amount of switch-over
time to proceed from one queue to the next.

Polling systems are applied for the analysis of situations in which different types of
user require service from a common server. In this way polling systems can for instance be
applied to the modeling and performance evaluation of computer systems, communication
networks, traffic systems, flexible manufacturing and production systems.

�e analysis of polling systems is very difficult. Most polling systems are not even exact
analyzable with the help of existing mathematical techniques. And even if a polling system
allows an exact analysis, the analysis still does not always lead to manageable expressions
for performance measures such as mean waiting times. Because of this, several numerical
techniques have been developed. Numerical techniques, unlike analytical methods, do
not give an exact expression for the performance measures as a function of the system
parameters, but they can be used to numerically compute performance measures for a given
system. �e buffer occupancy method and the descendant set approach are two most well-
known numerical techniques.

A different approach for computing performance measures of all kinds of models is sim-
ulation. Simulation can be applied to all polling systems, including systems for which no
numerical algorithms exist. For these systems, simulation is the only possibility for obtain-
ing these performance measures. In spite of their enormous flexibility, simulation comes
with two disadvantages. In many cases simulation techniques are rather inefficient and the
results based on simulation are relatively inaccurate compared with numerical algorithms.
�e latter can be partially solved by simulating for a longer time period.
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Chapter 1

Introduction

Queueing arises on a daily basis in many real-life situations. Waiting lines occur at post
offices, in traffic situations and at elevators, but also on a more abstract level in commu-
nication systems and computer networks. �e undesirability of congestion has raised the
need to reach a better understanding of queueing situations. For this purpose queueing
models are developed. �e main entities in queueing models are customers who arrive at
a station requiring service from a server. Arriving customers to whom service cannot be
rendered immediately take place in a queue. Typical performance measures are means and
standard deviations of waiting times and queue lengths. �is thesis is devoted to a special
class of queueing models called polling models.

A polling system is a multi-queue single-server system in which the server visits the
queues in some order to serve the customers waiting at the queues, typically incurring
some amount of switch-over time to proceed from one queue to the next. Polling models
occur naturally in the modeling of systems in which service capacity (e.g., CPU, band-
width, manpower) is shared among different types of user, each type having specific traffic
characteristics and performance requirements. Typical application areas of polling models
are computer communication systems, logistics, flexible manufacturing systems, produc-
tion systems and maintenance systems [25, 44]. Over the past few decades the perfor-
mance analysis of polling models has received much attention in the literature (cf., e.g.,
[41, 42, 43, 45] for some early work and [47] for a recent paper).

�e term polling originates from the so-called polling data link control scheme, in
which a central computer interrogates each terminal on a communication line to deter-
mine whether or not it has data to transmit. �e addressed terminal transmits data and the
computer then switches to the next terminal. Here, the server represents the computer and
a queue corresponds to a terminal [46].

A polling system can be expressed in a couple of parameters. Standard parameters for
queueing systems are the number of queues, which is usually denoted byN , and the traffic
characteristics at the queues, which consist of the arrival process and the service process.
With polling systems the switch-over process between the queues is introduced together
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2 CHAPTER 1. INTRODUCTION

with two other important parameters: the service policy and the routing scheme.
�e service policy or service discipline specifies how many customers are served during

the visit of the server to a queue. �emost common service policies are the exhaustive service
policy, under which the server continues to work until the queue has become empty, and
the gated service policy, under which exactly those customers are served who were present at
the moment when the server arrived. A whole abundance of service policies can be created
by putting some cut-off mechanism on the classical exhaustive and gated service policies
(cf., Section 3.2). A special possibility is mixed service, where not all queues are served
according to the same service policy.

�e routing scheme determines the order in which the queues are served. A distinction
can be made between static and dynamic routing. Static routing is independent of the state
of the system. �e traditional routing scheme is the cyclic routing, which is in the order
(1, 2, . . . , N). To prioritize certain queues, cyclic routing has been extended to periodic
routing, in which the server visits the queues periodically according to a polling table.
Typical examples are elevator routing, which is in the order (1, 2, . . . , N − 1, N,N,N −
1, . . . , 2, 1), and star routing, which is in the order (1, 2, 1, 3, . . . , 1, N). Dynamic routing
is state-dependent routing. �e decision of the server as to which queue to visit may depend
on some information available to the server, such as queue lengths. For instance, it might
not make sense to move to an empty queue while customers are waiting at other queues.
An example is the serve-longest-queue policy. A disadvantage of dynamic routing is the
possibility of having a huge state space dimension, resulting in an unfeasible computation
time. �is is called the curse of dimensionality.

1.1 Research objectives

�is thesis is concerned with a relatively small literature study of polling systems. It is
by no means meant to give a complete overview, but rather it should be considered as an
introductory survey consisting of themost important and basic results only. �ere are many
applications that allow themselves to be modeled as a polling system. �e first objective
of this thesis is therefore to identify the application areas of polling systems and to give
examples of how these applications can be modeled as polling systems.

Once applications are fit into the mathematical polling model, performance measures
are to be computed. �is is no easy task as illustrated by the hundreds of research papers
solely devoted to this extend, and the results that are available can only be applied to a
very limited class of polling systems. �e second research objective concerns the analysis
of polling systems. More specifically, this objective is to research the available techniques
to analyze polling systems.

Polling systems that cannot be analyzed by means of analytical methods or numerical
techniques are very unfortunate. Especially for such systems, simulation comes to the sal-
vation as simulation is then the only possibility for obtaining performance measures. At
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the same time, all kinds of derivatives of these performance measures can be obtained in
the same run requiring almost no extra effort at all. For these reasons, the third research
objective of this thesis is to develop a simulation program able to simulate a wide variety
of polling systems.

�e remainder of this thesis is organized as follows. In Chapter 2 the applications of
polling systems are discussed. In here, a number of application areas are elaborated in
further detail and it is explained how these applications can be modeled as polling systems.
�e mathematical analysis of polling systems is the subject of Chapter 3. An overview of
some successful techniques to analyze the performance of polling systems is given. Chapter
4 is about simulation. In here, the simulation program that is devised to simulate polling
systems is explained, and certain related aspects are discussed.





Chapter 2

Applications

Polling has been used as early as in the late 1950s, involving a patrolling machine repair-
man who inspects a number of machines to check whether a breakdown has occurred and,
if so, eliminates such breakdowns (cf., [27, 28]). Later, polling systems were used to study
the problem of vehicle-actuated traffic signal control (cf., [35, 36]). �e introduction of
computer communication networks in the 1970s has created a wide array of problems.
Initially, polling was used for data transfer from terminals on a communication line to a
central computer (cf., [18]). Later, it was used for token passing protocols in local area net-
works (cf., [5]). In the application to computer systems, polling systems were used for the
scanning mechanism of the hard disk drive, and for load sharing in multiprocessor com-
puters. Other applications of polling systems are found, among others, in transportation
networks (cf., [3]), public transportation systems (cf., [10]), shipyard loading (cf., [9]),
videotex (cf. [26]), mail delivery (cf., [34]) and elevators (cf., [15, 16]).

Before some of the successful applications are discussed, let’s first take a moment to
emphasize the importance of polling systems. Waiting time is a critical issue for problems
dealing with passengers (e.g., traffic lights and elevators) while queue lengths (e.g., storage
room) are more critical for problems dealing with freight. To this effect, it is very helpful to
know the moments of these performance measures beforehand. For example, the moments
of the queue lengths will help determine the size of a physical buffer. Additionally, a clear
understanding of polling systems will allow designers to optimize overall system perfor-
mance and improve efficiency by, e.g., reducing wasted resources and reducing complexity
of the network.

2.1 Communication networks

Takagi [44] showed how some of the results of polling systems can be used for the modeling
and performance evaluation of communication networks. �ree of these successful appli-
cations are highlighted in this section. �e main purpose of communication networks is
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6 CHAPTER 2. APPLICATIONS

to facilitate the exchange of information between two entities. �e information (e.g., files
and e-mail) is put into packets conforming to the network protocols and then sent over the
transmission medium. Within a network, users compete to have access to the transmission
medium.

2.1.1 Half duplex transmission

Half duplex transmission is a mode of transmitting data between two parties on a shared
communication line. Transmission is possible in either direction but not in both directions
simultaneously. (A similar situation can be observed in everyday life, e.g., a traffic light
at the intersection of two one-way streets, a narrow bridge or passage, conversation with
a walkie-talkie and other push-to-talk services.) Suppose that a central computer and a
communication control unit connected to several data terminals exchange messages over a
half duplex line. When the transmission from the communication control unit is complete,
a finite time is needed to reverse the direction of transmission on the line. Output messages
are sent from the computer to the communication control unit, which delivers them to
the terminals. After receiving a polling message from the computer and again reversing the
direction of transmission, the communication control unit can start sending inputmessages
to the computer, and this cycle is repeated.

In the queueing model of this system, customers correspond to the input and output
messages, and the server represents the communication line between the computer and the
communication control unit that allows the alternating transmission of messages. Denote
by queue 1 the computer and by queue 2 the communication control unit. �e service time
at queue 1 is the transmission time of an output message, and the service time at queue 2
is the transmission time of an input message. �e switch-over time from queue 1 to queue
2 consists of the time for sending the polling message and the facility reversal time. �e
switch-over time from queue 2 to queue 1 consists only of the facility reversal time.

2.1.2 Polling data link control

Polling control has often been employed in network configurations in which geographically
dispersed terminals are connected to a central computer in a tree topology or a loop topol-
ogy. �ere are two types of polling control. In roll-call polling, the computer has a polling
sequence table according to which it interrogates each terminal. �e addressed terminal
then transmits all waiting messages to the computer. When the transmission from one ter-
minal is complete, the computer starts polling the next terminal. In the polling sequence
table, the network designer can order terminals in exact cyclic order, or in any sequence
and frequency to prioritize terminals. Roll-call polling is suitable for a tree topology. In a
loop topology, on the other hand, hub polling is often used. In this case, a natural polling
sequence is determined by the position of terminals on the loop. �e central computer ini-
tiates polling by interrogating the terminal at the end of the loop. �is terminal transmits
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its waiting messages, to which it appends a polling message for the next downstream (in
the direction of transmission) terminal. �e latter terminal similarly adds its own messages
followed by another polling message, and so on. At the completion of a polling cycle, the
central computer collects all the messages and assumes control.

In polling models the central computer is represented by the server, the terminals are
represented by the queues and the messages of these terminals are represented by the cus-
tomers. �e switch-over time is the time between polling adjacent terminals and depends
on the network topology and whether roll-call or hub polling is used. �e service times
consist of the message length and the line speed.

2.1.3 Token ring network

A local area network consists of a number of stations or computers interconnected by a com-
mon communication medium for transmitting packetized information. To avoid collisions
when different stations want to transmit information at the same time, several conflict-free
protocols have been designed. One such protocol is the IEEE 802.5 token ring.

Stations on a token ring local area network are logically organized in a ring topology.
Traffic on the communication medium is usually unidirectional, so that each station re-
ceives messages from one of its neighbors and passes them to its other neighbor. Messages
sent from a source station to a destination station are thus relayed by all intermediate sta-
tions. A permit to transmit is controlled through the use of a token circulating around
the ring. Stations that have data to transmit must first acquire the token before they can
transmit them. When no station is transmitting data, the token circulates around the ring
and is passed from station to station until arriving at a station that needs to transmit data.
When a station needs to transmit data, it modifies the token into a busy token and inserts
the data when it sends out the token. �e transmitting station is responsible for removing
the busy token from the ring and for generating a new free token when its transmission is
over.

With respect to the time at which a new free token is generated by the transmitting
station, distinction is made between the multiple-token, single-token, and single-message op-
erations. For multiple-token operation, the transmitting station generates a new free token
and places it immediately after the last bit of a transmitted message. �erefore, for a long
ring, the chances are that there are several messages and a free token on the ring at one
time. For single-token operation, a new free token is generated as soon as the transmitted
message returns. If a message is long, the transmitting station will receive the busy token
before it has finished transmitting. In this case, a free token is generated only after the
last bit of a message has been transmitted, as in the multiple-token operation. For single-
message operation, a new free token is generated only after the last bit of the transmitted
message has been returned and erased. Both single-token and single-message operations
ensure that there is at most one free or busy token on the ring at all times.

A token ring may be viewed as a polling system where the server represents the token
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and the queues represent the stations. Customers arriving at the queues correspond to the
messages that need to be transmitted by the stations. �e switch-over time is the time
needed for a token to pass from one station to the other and is a combination of the ring
speed, station latency and the propagation time. �e service times are determined according
to the free-token generation policies discussed above and consist of the ring speed, message
size, switch-over times and the station latency.

2.2 Flexible manufacturing and production systems
Polling models are also useful for modeling flexible manufacturing and production systems,
where machines can be used to perform various types of task. Here, the server typically rep-
resents themachine, each of the queues represents a different type of job and the switch-over
times represent the times needed by the machine to change from one type of operation to
another. A typical application is multi-product economic lot scheduling, in which different
types of product have to be processed by a single machine.

2.2.1 Multi-product economic lot scheduling
Scheduling production of multiple products on a single machine under tight capacity con-
straints is one of the classic problems in operations research. �ere exist many variations of
multi-product single-machine scheduling problems, but these can mainly be classified by
the following three characteristics.

1. Presence or absence of setup times and/or costs. �e most important impact of setups
on the production plan is that the products need to be produced in batches, since
otherwise costly capacity is wasted on setups. Furthermore, setup times make it
impossible to be completely responsive to the demand.

2. Customized or standardized products. Since customized products can only be pro-
duced when there is a request for an order, these products have to be produced in a
make-to-order fashion. In case of standardized products one may choose a make-to-
stock production policy, because such products do not have to be produced to cus-
tomer specifications. It is obvious that standardized products thus give more freedom
in deciding when to make which product and in what quantity.

3. Stochastic or deterministic environment. In a completely deterministic environment
one can confine oneself to a rigid production plan which is repeated over and over
again. However, when the company has to be responsive to a stochastic environment
such a rigid schedule will not suffice anymore.

�e so-called stochastic economic lot scheduling problem deals with the make-to-stock
production of multiple standardized products on a single machine with limited capacity
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under random demands, possibly random setup times and possibly random production
times. �is is a common problem in practice, e.g., in glass and paper production, injec-
tion molding, metal stamping and semi-continuous chemical processes, but also in bulk
production of consumer products such as beers and shoes. �e stochastic economic lot
scheduling problem is analyzed by Winands [48].

�e following class of fixed-sequence base-stock policies is used in many firms for the
control of the inventory of each product. N products are distinguished, which are num-
bered 1, . . . , N . To each individual product a stock point is assigned which is controlled
by a base-stock inventory policy. Under such a policy, for each product there exists a pre-
defined desired number of items in stock, the base-stock level bi, i = 1, . . . , N . When
demand arrives at a stock point and the requested product is on stock, the demand is im-
mediately fulfilled. Otherwise, demand is backlogged and fulfilled as soon as the product
becomes available after production. A production order, also called replenishment order, is
placed immediately after demand for the corresponding product has arrived. �ese produc-
tion orders queue up at the production facility, where each product has its own designated
queue. �e products are produced according to a fixed production sequence. When the
machine starts production of a product, it will continue production until either the base-
stock level has been reached or a second local criterion, i.e., only dependent on the stock
level of the product currently setup, has been fulfilled.

It is easy to see that the steady-state shortfall Li of product i (i.e., the number of out-
standing production orders at the production facility) is independent of the base-stock
levels. �is implies that the performance of the production facility can be analyzed inde-
pendently of these base-stock levels. Moreover, the shortfall distribution of a product at
the production facility is identical to the queue length distribution of the corresponding
queue in the polling system. �e arrival, service and switch-over time processes in such
a polling system are identical to the demand, processing and setup time processes in the
stochastic economic lot scheduling problem, respectively. For given base-stock levels, the
evaluation of a fixed-sequence base-stock policy is therefore equivalent to the evaluation of
the corresponding polling system.

To completely determine a fixed-sequence base-stock policy, a number of decisions have
to be made: the lot-sizing decision, the sequencing decision and the base-stock decision. �e
lot-sizing decision determines how many items of each product should be produced per
production run. �is is equivalent to the service policy of polling systems. �e sequenc-
ing decision decides on the order and frequency in which products are produced. �is
is equivalent to the routing scheme in terms of polling systems. �e base-stock decision
determines the values of the optimal base-stock levels. Since the control of the production
facility is independent of the base-stock levels, optimization of the base-stock levels can be
done separately from the analysis of the production facility. Given the first two decisions,
the shortfall distributions can be computed by analyzing the queue length distributions in
the corresponding polling system. �en, using the standard notation of inventory models
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with distribution function of the shortfall FLi
, holding costs hi and backlogging costs qi,

the optimal base-stock levels b∗i follow from the classical single-order model and are given
by, for i = 1, . . . , N ,

b∗i = min
{
n ∈ N0|FLi

(n) ≥ qi
qi + hi

}
. (2.1)

2.3 Traffic signal control

A common sight in daily life are traffic intersections. Looked at closely, a traffic intersection
can be modeled as a multi-queue single-server system where the road intersection and the
road lanes are represented by, respectively, the server and the queues. �ere is a competi-
tion between the lanes to use the intersection. In order to permit an orderly usage of the
intersection by the vehicles, traffic lights are used to control access to the intersection in a
pre-determined fashion. Each lane has a finite capacity and vehicles arrive according to a
random pattern. Since the input to a traffic intersection is a collection of outputs of up-
stream traffic lights, the arrival process has some correlation. In case of traffic intersections
in which each lane has a fixed time period, each lane can be analyzed separately. When the
traffic lights are vehicle-actuated, each lane can no longer be analyzed as a single queue and
therefore one can model it as a polling system (cf., e.g., [4] and references therein).

2.3.1 Vehicle-actuated control

Vehicle-actuated control takes into account the presence of vehicles to determine the ad-
justment of the traffic lights. With this system, vehicles on any intersection lane are sensed
by some detecting device, e.g., magnetic loops placed in the roadway. By recording the
vehicles as they cross the detector and by timing the intervals between the vehicles, the
traffic lights are automatically adjusted to give preference to the lane with the heaviest flow.
Vehicle-actuated control can thus take into account fluctuations in traffic flow so that, e.g.,
in light traffic conditions delays are less.

�e most commonly used vehicle-actuated control works as follows. A traffic light only
turns green when vehicles are waiting in front of the traffic light. �is can be detected by
short loops. When a traffic light turns green, it stays green for a minimum amount of time.
After this time it stays green until the loops have detected a gap time of at least a certain
duration. �e effective green time is bounded by a maximum time, when the traffic light,
no matter what, turns red.

Vehicle-actuated control may be translated into a polling system where the server rep-
resents the intersection and the queues represent the road lanes. Arriving vehicles are rep-
resented by the customers and the service process of the customers can be compared with
the departure process of the vehicles. �e switch-over time from one queue to another may
be viewed as the clearance time of the intersection. �e sequence in which the server polls
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the queues is defined by the routing scheme, which may either be static or dynamic. If the
effective green time of the traffic lights lasts until no vehicles are present anymore, then this
control corresponds to the exhaustive service policy. For the control scheme as discussed
above no standard service policy exists, but it may be viewed as some kind of limited service
where extra conditions are imposed upon.

Note that the possibility exists for multiple road lanes to have a green light phase at
the same time. �is is possible if those lanes are compatible (i.e., they can safely cross the
intersection simultaneously) with each other. In this situation a queue can be viewed as a
set of lanes which are all compatible. Usually, the assumption is made that the lane with
the highest occupation rate then characterizes the whole set.





Chapter 3

Analysis

�is chapter is devoted to the analysis of polling systems. Because themathematics involved
is pretty advanced, not all of it is discussed in great detail. It is mainly a summary of the
most important techniques and results available in the literature. It starts by describing the
mathematical model and by introducing some notation. �is notation is very important
as it is used in the remainder of this chapter.

3.1 Model description and notation
Consider a system consisting of N ≥ 1 queues, Q1, . . . , QN , in which there is infinite
buffer capacity for each queue. A single server visits and serves the queues in cyclic order,
switching from queue to queue. Customers arriving at Qi are called type-i customers and
arrive according to a Poisson arrival process with rate λi. �e total arrival rate is denoted
by Λ =

∑N
i=1 λi. �e service time of a type-i customer is a random variable Bi, with k-th

moment b(k)
i , k = 1, 2. �e k-th moment of the service time of an arbitrary customer is

denoted by b(k) =
∑N

i=1 λib
(k)
i /Λ, k = 1, 2. �e load offered toQi is ρi = λib

(1)
i , and the

total offered load is equal to ρ =
∑N

i=1 ρi. Define a polling instant at Qi as a time epoch
at which the server visitsQi. �e server serves each queue according to some service policy.
Upon departure from Qi the server immediately proceeds to Q(i mod N)+1, incurring a
switch-over time Ri, with k-th moment r(k)

i , k = 1, 2. Denote by r =
∑N

i=1 r
(1)
i the

expected total switch-over time per cycle of the server along the queues, and denote the
second moment by r(2) =

∑N
i=1 r

(2)
i +

∑
i6=j r

(1)
i r

(1)
j . All interarrival times, service times

and switch-over times are assumed to be mutually independent and independent of the
state of the system.

�e cycle length Ci is defined as the time between two consecutive polling instants at
Qi. By the balancing argument that the amount of work arriving during a cycle should
on average equal the amount of work departing during a cycle (i.e., ρECi = ECi − r), it
follows that the mean cycle length is given by ECi = r/(1− ρ), which is independent of

13
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the queue involved. �e visit period Vi is defined as the time the server spends servicing
customers atQi. Since the server is working a fraction ρi of the time onQi, the mean visit
period is given by EVi = ρiECi. Subsequently, the intervisit period Ii, the time between
a departure and the next arrival of the server to Qi, is defined as Ii = Ci − Vi.

�e main quantity of interest is the waiting timeWi incurred by an arbitrary customer
at Qi, defined as the time between the arrival of a customer and the moment at which
it starts to receive service. Note that all results for the mean waiting time can readily be
translated into results for the mean queue length Li — and vice versa — via Little’s law:
Li = λiWi.

3.2 Service policy

In the model description there is room to choose a service policy. �e service policy de-
termines how many customers are served during the visit of the server to a queue. �e
assumption is made that all queues are served according to the same service policy. �e
following policies are most commonly found in the literature.

• Exhaustive service: when the server visits a queue, the customers are served until the
queue is empty.

• Gated service: when the server visits a queue, only those customers are served who
were present at the polling instant.

• Globally gated service: at the beginning of a cycle, indicated by a polling instant at
Q1, all customers present at Q1, . . . , QN are marked. Only the marked customers
are served during the coming cycle. Customers who meanwhile arrive at the queues
will have to wait until being marked at the beginning of the next cycle.

• Binomial gated service: when the server visits Qi, a random number of customers is
served having a binomial distribution with parameters Xi and pi, where Xi is the
number of customers queued in Qi at the polling instant, and pi is some number,
0 < pi ≤ 1. Note that the case pi = 1 amounts to the gated policy.

• Multi-phase gated service: Qi consists ofKi ≥ 1 buffers: a phase-1 buffer, a phase-2
buffer up to a phase-Ki buffer. Arriving customers enter the phase-1 buffer. When
the server arrives atQi, it closes the gate behind the customers residing in the phase-1
buffer. �en, all customers waiting in the phase-Ki buffer are served. Subsequently,
all customers before the gate at the phase-k buffer are instantaneously forwarded to
the phase-(k + 1) buffer, k = 1, . . . , Ki − 1, and the server proceeds to the next
queue.
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• k-limited service: when visiting Qi, the server works until either ki ≥ 1 customers
have been served or the queue becomes empty, whichever comes first. Note that the
case ki = ∞ is equivalent to the exhaustive policy.

• Bernoulli service: when the server arrives at Qi, finding that queue non-empty, at
least one customer is served. If after the completion of the service of a customer
there are still customers waiting, with probability qi, 0 ≤ qi ≤ 1, another customer
at Qi is served. Note that the cases qi = 0 and qi = 1 correspond to the 1-limited
and the exhaustive policies, respectively.

Numerous hybrid variants of service policies can be conceived by combining the various
types of cut-off mechanisms. Some of these have been studied, such as the probabilistically-
limited service (cf., [20]), fractional-exhaustive service (cf., [23]) and time-limited service
policies with exponential time limits (cf., [21]) and with constant time limits (cf., [39]).

Within a queue customers are served in the order defined by the scheduling discipline,
which most frequently is in a first come first served order. It is obvious that the mean waiting
times are the same under any work-conserving (i.e., the server does not create or destroy
work and never idles during a visit to a queue) non-preemptive scheduling discipline that
does not depend on the service times of the customers. However, the complete distributions
of the waiting times do depend on the scheduling discipline.

3.3 Stability
�e stability of a queueing system is very important. A polling system is said to be stable if
it admits a stable regime (e.g., all steady-state queue lengths are finite) with integrable cycle
length. In order for the cycle length to be positive and finite, ρ < 1 is obvious a necessary
condition, but this condition is not always sufficient. In [14] the following necessary and
sufficient condition for stability is derived

ρ+ max
1≤i≤N

{λi/G
∗
i }r < 1, (3.1)

where G∗i is the maximum expected number of customers served in Qi during a cycle and
is determined by the service policy used to serve the queue. It is assumed that λi/G

∗
i = 0 if

G∗i = ∞. For the exhaustive and all gated service policies G∗i = ∞, and for the k-limited
service policy it is obvious that G∗i = ki. �is condition also provides some insight in the
long-run behavior of the polling system, since in case of heavy traffic, the order in which
the queues become unstable is given.

3.4 Pseudo-conservation law
In the case of zero switch-over times, a conservation law holds for the total amount of
work in the system. �is amount is independent of the service policy and equals the
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amount of work in an M/G/1 queue with arrival rate Λ and with service time distri-
bution

∑N
i=1(λi/Λ)Bi(·). By applying the celebrated Pollaczek-Khintchine formula, the

following conservation law is obtained

N∑
i=1

ρiEWi = ρ

∑N
i=1 λib

(2)
i

2(1− ρ)
. (3.2)

In the case of non-zero switch-over times, a similar relationship holds for the weighted
sum of the mean waiting times. �is is then called the pseudo-conservation law, because
the amount of work is no longer independent of the service policy. On the basis of the
principle of work decomposition, Boxma and Groenendijk [1] show the following classical
result

N∑
i=1

ρiEWi = ρ

∑N
i=1 λib

(2)
i

2(1− ρ)
+ ρ

r(2)

2r
+

r

2(1− ρ)

[
ρ2 −

N∑
i=1

ρ2
i

]
+

N∑
i=1

EMi,

(3.3)

whereMi stands for the amount of work at Qi at an arbitrary moment at which the server
departs from Qi. �e term EMi is completely determined by the service policy at Qi and
is independent of (the service policy at) the other queues. �is law is applicable to a large
variety of polling systems since for most service policiesEMi can be derived in closed-form.

• Exhaustive service: since the queue is empty the moment at which the server departs
from Qi, EMi = 0. �e pseudo-conservation law can then be simplified to

N∑
i=1

ρiEWi = ρ

∑N
i=1 λib

(2)
i

2(1− ρ)
+ ρ

r(2)

2r
+

r

2(1− ρ)

[
ρ2 −

N∑
i=1

ρ2
i

]
. (3.4)

• Gated service: the amount of work that remains is equal to the amount of work that
arrived during the visit period ofQi, EMi = ρ2

i r/(1−ρ). �e pseudo-conservation
law can then be simplified to

N∑
i=1

ρiEWi = ρ

∑N
i=1 λib

(2)
i

2(1− ρ)
+ ρ

r(2)

2r
+

r

2(1− ρ)

[
ρ2 +

N∑
i=1

ρ2
i

]
. (3.5)

• Globally gated service: Boxma et al. [2] derive the following result for the expected
amount of work left at Qi when the server leaves this queue

EMi = ρi

i−1∑
j=1

(
ρj

r

1− ρ
+ r

(1)
j

)
+ ρ2

i

r

1− ρ
. (3.6)
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�e pseudo-conservation law can then be simplified to

N∑
i=1

ρiEWi = ρ

∑N
i=1 λib

(2)
i

2(1− ρ)
+ ρ

r(2)

2r
+

r

1− ρ
ρ2 +

N∑
i=2

ρi

i−1∑
j=1

r
(1)
j . (3.7)

• Binomial gated service: Van derMei [31] derives the following result for the binomial
gated policy as a special case of cyclic polling models with general branching-type
service policies

EMi =
ρi(1− pi(1− ρi))

pi

r

1− ρ
. (3.8)

• Multi-phase gated service: Van der Mei and Roubos [33] show the following result

EMi = ρi ((Ki − 1) + ρi)
r

1− ρ
. (3.9)

• k-limited service: the general form of the pseudo-conservation law as shown in (3.3)
still holds. However, the unknowns EMi cannot be derived in closed-form. Everitt
[12] expresses these unknown quantities in terms of g(2)

i , the second factorial mo-
ment of the number of customers served during a visit toQi. �e following pseudo-
conservation law is obtained

N∑
i=1

ρi

(
1− λir

ki(1− ρ)

)
EWi = ρ

∑N
i=1 λib

(2)
i

2(1− ρ)
+ ρ

r(2)

2r

+
r

2(1− ρ)

[
ρ2 −

N∑
i=1

ρ2
i

]
+

r

1− ρ

N∑
i=1

ρ2
i

ki

−
N∑

i=1

ρi(1− ρi)g
(2)
i

2λiki

.

(3.10)

For ki = 1, g(2)
i = 0, but for ki 6= 1, g(2)

i is not known exactly.

Pseudo-conservation laws seem to be very useful in several respects. Firstly, they are
useful for obtaining or testing approximations for individual mean waiting times. Such
approximations are badly needed in analytically intractable cases (e.g., in the case of lim-
ited service) but also in analytically tractable cases. �e latter because, when the number of
queues is large, the numerical computation of the exact formulas can become very cumber-
some. Secondly, pseudo-conservation laws can also be used to study asymptotics, yielding
information about what happens when the number of queues becomes very large or when
the offered load at a particular queue approaches its stability limit. Furthermore, it gives
a relatively simple expression for the weighted sum of the mean waiting times, which may
be used as a first indication of overall system performance.
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3.5 Analysis techniques
�ere exists a striking difference in the complexity of the analysis of polling systems. If the
service policy satisfies a certain property, the corresponding polling system allows an exact
detailed analysis by rather standard methods. However if this property is violated, detailed
exact results are very scarce and are mainly restricted to two-queue models and symmetric
systems. �e class of service policies which are easy to analyze satisfy the following property
[37].

Property 3.1. If the server arrives atQi to find ki customers there, then during the course
of the server’s visit, each of these ki customers will effectively be replaced in an i.i.d. manner
by a random population having probability generating function hi(z) = hi(z1, . . . , zN),
which can be any N -dimensional probability generating function.

For instance, the gated service policy satisfies Property 3.1, because at the end of the
server’s visit, each customer present at the beginning of the visit has effectively been replaced
in an i.i.d. manner by all customers who have arrived during its service. Similarly, it is
readily verified that, e.g., the exhaustive policy, the binomial gated policy and the fractional-
exhaustive policy satisfy Property 3.1. Property 3.1 does not hold for the k-limited service
policy. At the end of the server’s visit to Qi, each of the served customers has effectively
been replaced by a population of all customers who arrived during its service. �e other
customers present at a polling instant are not served at all and are each “replaced” by a
single customer at the queue under consideration. Consequently, not all customers are
replaced in an i.i.d. manner and Property 3.1 is violated. Other service policies violating
Property 3.1 are, e.g., the Bernoulli policy and the time-limited policy.

Example 3.1. �e k-limited service policy does not satisfy Property 3.1 and is therefore
very hard to analyze. However, in case of a symmetric system some performance measures
can easily be obtained. To show this, consider the model defined by the following param-
eters. �ere are N = 3 queues, arrivals occur according to a Poisson arrival process with
rate 0.25 and the service times are gamma distributed with shape parameter 0.5 and scale
parameter 2 for each queue. �e server serves the queues according to the 1-limited service
policy and the switch-over times are uniformly distributed over the interval [0.2, 0.4].

A gamma distributed random variable with shape parameter k and scale parameter θ
has mean kθ, variance kθ2 and (hence) second moment (k + k2)θ2. So b(1)i = 1 and
b
(2)
i = 3, i = 1, 2, 3. Since λi = 0.25, ρi = 0.25, i = 1, 2, 3, Λ = 0.75 and ρ = 0.75.
�e total switch-over time is r = 0.9 and the second moment is r(2) = 0.82. Note that
this system is stable since the necessary and sufficient condition for stability (3.1) holds:
0.975 < 1. Because the system is symmetric, the waiting times at the queues are equal.
Denote this waiting time by W . �e mean waiting time can now directly be computed
using the pseudo-conservation law in (3.10). It follows that EW = 608/9 ≈ 67.56 and
then that EL = 152/9 ≈ 16.89.
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Although the class of service policies which satisfy Property 3.1 allows, at least formally,
an exact analysis, the problem of efficiently determining numerical values for performance
measures like mean waiting times and mean queue lengths is generally non-trivial. In the
past several numerical approaches have been proposed for computing these performance
measures. In the next subsections an overview is given of some of the available techniques.

3.5.1 Buffer occupancy method
One such technique is the buffer occupancymethod as developed in [7, 8, 11]. �is method
is based on the buffer occupancy variablesXi,j , which denote the queue length at queue j at
a polling instant at queue i, i, j = 1, . . . , N . �e relationship between queue i and queue
i + 1 is used to obtain expressions for the mean queue length, EXi,j . For the exhaustive
service policy these relations are given by

fi+1(i) = r
(1)
i λi, (3.11a)

fi+1(j) = r
(1)
i λj + fi(j) + fi(i)

λjb
(1)
i

1− ρi

, j 6= i. (3.11b)

�e solution is given by

EXi,i = fi(i) = λi(1− ρi)
r

1− ρ
, (3.12a)

EXi,j = fi(j) = λj

(
i−1∑
k=j

r
(1)
k +

r
∑i−1

k=j+1 ρk

1− ρ

)
, j 6= i. (3.12b)

For the gated service policy these relations are given by

fi+1(i) = r
(1)
i λi + ρifi(i), (3.13a)

fi+1(j) = r
(1)
i λj + λjb

(1)
i fi(i) + fi(j), j 6= i. (3.13b)

�e solution is given by

EXi,i = fi(i) = λi
r

1− ρ
, (3.14a)

EXi,j = fi(j) = λj

(
i−1∑
k=j

r
(1)
k +

r
∑i−1

k=j ρk

1− ρ

)
, j 6= i. (3.14b)

�e buffer occupancy method requires the solution ofN3 linear equations with unknowns
EXi,jXj,k to compute the mean waiting times in all N stations simultaneously. �ese
equations may be efficiently solved in an iterative manner requiring O(N3 logρ ε) elemen-
tary operations, where ρ is the total occupation rate and ε is the relative accuracy required
[24]. �e buffer occupancy method is applicable to the complete class of service policies
satisfying Property 3.1. However, it is limited to systems in which the interarrival time is
exponentially distributed.
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3.5.2 Descendant set approach
Based on this buffer occupancy method, the descendant set approach is developed [17];
an iterative technique that computes the mean waiting time at each queue independently
of the other queues. �e descendant set approach is based on counting the number of
descendants of each customer in the system. Each customer is classified as either an original
customer or a non-original customer. An original customer is a customer who arrives at the
system during a switch-over period and a non-original customer is a customer who arrives
at the system during the service of another customer. �e queue length distribution at
polling instants is then derived based on the relationship between the number of original
and non-original customers. �is method requires O(N logρ ε) elementary operations for
the computation of the mean waiting time in a single station. �ese mean waiting times
are given by, for the exhaustive service policy,

EWk =
1 + ρk

2

r

1− ρ
+

1

2(1− ρk)

[
λkb

(2)
k +

(
r
(2)
k−1 −

(
r
(1)
k−1

)2)1− ρ

r

+
1

λ2
k

N∑
i=1

ψi,k

ρ2
i

(
λib

(2)
i +

(
r
(2)
i−1 −

(
r
(1)
i−1

)2)1− ρ

r

)]
,

(3.15)

and for the gated service policy by

EWk =
1 + ρk

2

r

1− ρ
+

1 + ρk

2λ2
k

N∑
i=1

ψi,k

ρ2
i

(
λib

(2)
i +

(
r
(2)
i −

(
r
(1)
i

)2)1− ρ

r

)
,

(3.16)

where

ψi,k =


λ2

i

∞∑
c=1

α2
(i,c),k, i = 1, . . . , k − 1,

λ2
i

∞∑
c=1

α2
(i,c−1),k, i = k, . . . , N.

(3.17)

�e coefficients α(i,c),k are given by, for the exhaustive service policy, for c = 0, 1, . . . ,

α(i,c),k =
b
(1)
i

1− ρi

[
N∑

j=i+1

λjα(j,c),k +
i−1∑
j=1

λjα(j,c−1),k

]
, (3.18)

and for the gated service policy by, for c = 0, 1, . . . ,

α(i,c),k = b
(1)
i

[
N∑

j=i+1

λjα(j,c),k +
i∑

j=1

λjα(j,c−1),k

]
. (3.19)



3.5. ANALYSIS TECHNIQUES 21

Starting with the initial values α(k,0),k = 1, α(i,0),k = 0, i = k + 1, . . . , N , α(i,−1),k = 0,
i = 1, . . . , k − 1, all coefficients α(i,c),k can then be recursively determined.

Like the buffer occupancy method, the descendant set approach can be applied to all
variations of polling systems with the service policy satisfying Property 3.1 in which cus-
tomers arrive according to a Poisson arrival process. �e main advantage of the descendant
set approach is that the waiting time computation of one queue is independent of that
of the others, so that its superiority is mostly expressed when not all N waiting times are
needed.

3.5.3 Individual station technique

A second well-known method based on the buffer occupancy method is the individual sta-
tion technique [40], which also allows, as the name suggests, the individual computation
of the mean waiting time at each queue. �e individual station technique is, however, not
an iterative approach. �e mean waiting time at a single queue is computed in O(N2) el-
ementary operations, which obviously does not depend on the system utilization contrary
to the computational complexities of the aforementioned methods. A characteristic of the
individual station technique is that the accuracy typically does not degrade significantly
when the system is heavily loaded, while this is the case with the descendant set approach.
�erefore, the descendant set approach and the individual station technique can be con-
sidered as complementary to each other. �is technique is also applicable to the same class
of polling systems as the buffer occupancy method and the descendant set approach.

3.5.4 Station time technique

Besides the techniques based on the buffer occupancy method, a completely different tech-
nique for solving the mean waiting times exists based on the station time [13]. �e station
time technique computes all mean waiting times simultaneously starting from the station
time variables Si, i = 1, . . . , N . �e station time Si is composed of the time the server
spends servicing customers at queue i plus the preceding switch-over time in case of ex-
haustive service or plus the succeeding switch-over time in case of gated service. �e station
time technique induces a set of N2 linear equations with unknowns ESiSj , which can be
solved iteratively in O(N2 logρ ε) elementary operations leading to all N mean waiting
times. �e station time technique can be applied to a restricted class of polling systems
only, that is, to polling systems with either exhaustive or gated service at all queues.

An extension of the station time technique is the approach developed in [38] and in-
duces a set of only N linear equations. However, the resulting N equations are less sparse
and the benefit of reducing the number of equations is off set by using a numerical method
that requires O(N3) elementary operations to obtain all N mean waiting times.
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3.5.5 Approximate methods
One method to approximate the behavior of polling systems is based on the decomposition
approach (cf., e.g., [6, 19, 22, 49]). In this method each queue is treated separately as a
single-server queue with vacation. �e analysis is done in two stages. In the first part, which
is exact, the performance measures of the single-server queue with vacation are derived. �e
second part of the analysis focuses on obtaining an approximation for the vacation period
distribution. When possible, the vacation period distribution is taken as the convolution
of the visit periods of the otherN−1 queues. However, when the vacation period does not
lend itself to a simple convolution of the visit periods, an approximation of the vacation
period based on a dependent and an independent part is taken. In either case, using an
iterative procedure the decomposition approach converges fairly fast to within an acceptable
error. �is approach is being used more frequently because more realistic traffic models
no longer assume Poisson arrivals, but rather bursty traffic, e.g., packetized voice and data
traffic. Also, the limited service policy is emerging as the preferred service policy, as reflected
by several ANSI/IEEE standards such as the IEEE 802.4 token-passing bus method.

Another method that can be seen as an approximation is based on heavy-traffic asymp-
totics (cf., e.g., [29, 30, 32]). Heavy-traffic asymptotics give closed-form expressions for
the complete waiting time distributions when the load tends to unity (ρ ↑ 1). �e analy-
sis of heavy-traffic asymptotics has been motivated by the observations that the efficiency
of numerical techniques degrade significantly for heavily loaded systems and that exact
closed-form expressions provide much more insight into the dependence of the perfor-
mance measures on the system parameters. �e results in the limiting case can easily be
used for approximating the distributions of the waiting times for stable systems, using a
linear scaling in the offered load. �e time required to evaluate these approximations is
negligible, but the downside is that they are only accurate for high values of the load, typi-
cally in the range 85–90% or more. Heavy-traffic asymptotics can be applied to all polling
systems satisfying Property 3.1.

3.5.6 Results
In this subsection the most important results of the analysis for the exhaustive and gated
service policies are presented. �e complete algorithms for computing the mean waiting
times are given together with an example to illustrate how these algorithms can be applied.

Exhaustive service

�emost efficient algorithm for computing themean waiting times in case of the exhaustive
service policy is given by

EWi =
EI2

i

2EIi
+

λib
(2)
i

2(1− ρi)
, (3.20)
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where

EIi =
(1− ρi)r

1− ρ
(3.21)

and

EI2
i = r

(2)
i−1 −

(
r
(1)
i−1

)2
+

1− ρi

ρi

N∑
j=1
j 6=i

rij + (EIi)2. (3.22)

Here, rij represents the covariance of the station time for queues i and j, where for ex-
haustive service systems, the station time for queue i is defined as the time interval be-
tween the successive instants when the server leaves queue i − 1 and queue i. �e set
{rij; i, j = 1, . . . , N} is computed by solving a system of N2 linear equations

rij =
ρi

1− ρi

(
N∑

m=i+1

rjm +

j−1∑
m=1

rjm +
i−1∑
m=j

rmj

)
, j < i, (3.23a)

rij =
ρi

1− ρi

(
j−1∑

m=i+1

rjm +
N∑

m=j

rmj +
i−1∑
m=1

rmj

)
, j > i, (3.23b)

rii =
r
(2)
i−1 −

(
r
(1)
i−1

)2
(1− ρi)2

+
λib

(2)
i EIi

(1− ρi)3
+

ρi

1− ρi

N∑
j=1
j 6=i

rij. (3.23c)

Example 3.2. Consider a three-queue polling system with exhaustive service. Arrivals oc-
cur according to Poisson arrival processes with rates 0.3, 0.4 and 0.2 for queue 1, 2 and
3, respectively. �e service times at queue 1, 2 and 3 are exponentially distributed with
mean 1, uniformly distributed over the interval [0, 1], and gamma distributed with shape
parameter 1 and scale parameter 2, respectively. �e switch-over times from queue 1 to 2
are exponentially distributed with rate 1, those from queue 2 to 3 are exponentially dis-
tributed with rate 2, and those from queue 3 to 1 are exponentially distributed with rate 3.
�e following system parameters can then be identified

λ1 =
3

10
, b

(1)
1 = 1, b

(2)
1 = 2, ρ1 =

3

10
, r

(1)
1 = 1, r

(2)
1 = 2,

λ2 =
2

5
, b

(1)
2 =

1

2
, b

(2)
2 =

1

3
, ρ2 =

1

5
, r

(1)
2 =

1

2
, r

(2)
2 =

1

2
,

λ3 =
1

5
, b

(1)
3 = 2, b

(2)
3 = 8, ρ3 =

2

5
, r

(1)
3 =

1

3
, r

(2)
3 =

2

9
,

ρ =
9

10
, r =

11

6
, EC =

55

3
, EI1 =

77

6
, EI2 =

44

3
, EI3 = 11.



24 CHAPTER 3. ANALYSIS

Further, the following set of linear equations is obtained for computing rij

r11 =
10000

441
+

3

7
r12 +

3

7
r13,

r22 =
775

144
+

1

4
r21 +

1

4
r23,

r33 =
8875

108
+

2

3
r31 +

2

3
r32,

r12 =
3

7
r22 +

3

7
r32,

r13 =
3

7
r32 +

3

7
r33,

r21 =
1

4
r13 +

1

4
r11,

r23 =
1

4
r33 +

1

4
r13,

r31 =
2

3
r11 +

2

3
r21,

r32 =
2

3
r21 +

2

3
r22,

with solution

r11 =
370555

4716
, r12 =

1771415

49518
, r13 =

1339195

14148
,

r21 =
612715

14148
, r22 =

115870

3537
, r23 =

17345

262
,

r31 =
862190

10611
, r32 =

1076195

21222
, r33 =

2407325

14148
.

From these, the second moments of the intervisit periods can be computed to obtain

EI2
1 =

9956101

21222
, EI2

2 =
2313730

3537
, EI2

3 =
41815

131
.

Finally, the mean waiting times can now easily be computed. One obtains

EW1 =
1455649

77814
≈ 18.71, EW2 =

290297

12969
≈ 22.38, EW3 =

136973

8646
≈ 15.84.

Gated service

�e mean waiting times in gated service systems are given by

EWi =
(1 + ρi)EC2

i

2EC
, (3.24)
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where

EC =
r

1− ρ
(3.25)

and

EC2
i =

1

ρi

N∑
j=1
j 6=i

rij +
N∑

j=1

rji + (EC)2. (3.26)

Here, rij is again the covariance of the station time for queues i and j, but the station time
for queue i for gated service is defined as the time interval between the successive instants
when the server visits queue i and queue i+ 1. �e set {rij; i, j = 1, . . . , N} is given as a
solution to the following set of N2 linear equations

rij = ρi

(
N∑

m=i

rjm +

j−1∑
m=1

rjm +
i−1∑
m=j

rmj

)
, j < i, (3.27a)

rij = ρi

(
j−1∑
m=i

rjm +
N∑

m=j

rmj +
i−1∑
m=1

rmj

)
, j > i, (3.27b)

rii = r
(2)
i −

(
r
(1)
i

)2
+ λib

(2)
i EC + ρi

N∑
j=1
j 6=i

rij + ρ2
i

N∑
j=1

rji. (3.27c)

Example 3.3. All input parameters are taken the same as in Example 3.2, but the customers
are now served according to the gated service policy. �e following set of linear equations
can be obtained

r11 = 12 +
3

10
r12 +

3

10
r13 +

9

100
r11 +

9

100
r21 +

9

100
r31,
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36
+

1

5
r21 +

1

5
r23 +

1

25
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1

25
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1

25
r32,

r33 =
265

9
+

2

5
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2

5
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4

25
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3
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3
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5
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r31 =
2

5
r13 +

2

5
r11 +

2

5
r21,

r32 =
2

5
r23 +

2

5
r21 +

2

5
r22.

�e solution of this set reads

r11 =
469051705

11319484
, r12 =

165387910

8489613
, r13 =

263822095

5659742
,

r21 =
730327865

33958452
, r22 =

1613606705

101875356
, r23 =

179040275

5659742
,

r31 =
372041555

8489613
, r32 =

702731525

25468839
, r33 =

2138475235

25468839
.

�e second moments of the cycle lengths are then given by

EC2
1 =

16890807200

25468839
, EC2

2 =
33859584775

50937678
, EC2

3 =
17238856150

25468839
.

Finally, the mean waiting times can be quantified

EW1 =
2195804936

93385743
≈ 23.51, EW2 =

1354383391

62257162
≈ 21.75,

EW3 =
2413439861

93385743
≈ 25.84.

When comparing these waiting times to the values obtained in Example 3.2, two observa-
tions can be made. Firstly, the waiting times in queues 1 and 3 have increased, whereas the
waiting time in queue 2 has become smaller. Secondly, a well-known qualitative property
of polling systems comes to light, i.e., in exhaustive systems heavily loaded queues experi-
ence lower waiting times than lightly loaded queues, whereas in gated systems the opposite
is true.

3.6 General parameter settings
Many queueing models require that the interarrival times are independent and exponen-
tially distributed. �e results of the analysis presented in this chapter rely on these assump-
tions as well. However, in a wide range of applications assuming exponential interarrival
times is not appropriate, whereas the independence assumptions do appear to be valid.
�erefore, in the more general case, one can model the arriving customers at all queues as
independent general renewal processes. �e mean and second moment of the interarrival
times are denoted by EAi and EA2

i , i = 1, . . . , N , respectively. �e arrival rate at Qi is
then denoted by λi = 1/EAi. So far, hardly any exact results have been derived for polling
systems with general arrival processes apart from stability conditions and some mean value
results for global performance measures such as cycle lengths.
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�e same situation is to some extend applicable to the service times. In some trans-
portation systems, service times at the beginning of a phase tend to be longer than the rest;
they are not identically distributed. It has been observed that during the green phase of
a traffic signal, the first two or three headways (i.e., times between cars in the same lane)
are longer on average than the rest. Something similar happens for boarding and alighting
passengers in buses and elevators.

Concerning the routing scheme most results are available on cyclic routing, but there
are many systems in which the server does not visit all the queues exactly in cyclic order.
For example, the physical structure of the system may require the server to visit queues first
in one direction and then in the reverse direction. Such cases apply to the elevator in a
building and to the scanning policy in the moving-arm disk device of a computer. Systems
may be designed so as to visit some queues more often than others in a cycle to establish
priority service, hence the rise of periodic routing according to a polling table. Some results
are available for these systems in which the server movement does not depend on the state
of the system.





Chapter 4

Simulation

Simulation is a widely used technique for computing performance measures of all kinds of
models, such as queueing models. However, in spite of their enormous flexibility, simula-
tion techniques may be rather inefficient in many cases. For instance, when in a polling
model the switch-over times are small, the majority of events will be switch-over comple-
tion epochs. �is is because the server will be quickly spinning around in the system when
the server is empty for some time interval. Moreover, in many cases the results based on
simulation are relatively inaccurate compared with numerical algorithms. Nevertheless,
simulation is in many polling systems the only possibility for obtaining these performance
measures because, e.g., the service policy violates Property 3.1 and therefore does not al-
low an exact analysis. In addition, derivatives of the system performance measures can be
obtained in one simulation run, opening many possibilities for optimization purposes.

4.1 Simulation program

To simulate a polling system, a discrete-event simulation program has been implemented
in the programming language Java. �is simulation program is able to simulate a wide di-
versity of polling systems by varying one of its many parameters. �ese parameters include
the following.

Simulation time. �e simulation program continues simulating until a predefined max-
imum system time has been reached. During this time period arrivals, departures
and server switches occur and various counters are incremented accordingly to be
able to output the desired performance measures. Alternatively, one can choose to
omit inputting a simulation time and to select the option to continue simulating
until the performance measures have been converged. In this case, first a minimum
amount of time is simulated and after that the time is gradually increased until the
mean waiting times do not change more than a small fixed percentage.

29
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Warming-up time. When the simulation starts, the system resides in an empty state. �is
state is usually not representative for the state of the system in equilibrium. �erefore,
it is wise to simulate a certain time such that the effects of an empty system have
disappeared, before beginning with the real simulation. �e counters that may have
increased during the warming-up period are reinitialized in order not to influence
the start of the real simulation.

Number of queues. �is parameter specifies how many queues the server has to visit. Af-
ter one has entered the desired number of queues, the possibility of choosing the
arrival process, service process and switch-over process for each queue becomes avail-
able.

Arrival process. �e arrival process is characterized by the interarrival time distribution.
�is is the distribution of time between two subsequent customer arrivals to the same
queue. �e traditional Poisson arrival process with rate λ corresponds to an inter-
arrival time that has an exponential distribution with parameter λ. One can choose
from an exponential distribution, a gamma distribution, a deterministic distribu-
tion, a two-phase hyper-exponential distribution, a log-normal distribution and a
uniform distribution.

Service process. �e service process determines the type of probability distribution of time
it takes for the server to finish servicing a customer. One can choose from an expo-
nential distribution, a gamma distribution, a deterministic distribution, a two-phase
hyper-exponential distribution, a log-normal distribution and a uniform distribu-
tion.

Switch-over process. After the server is finished servicing customers in a queue, it switches
to the next queue. In the simulation program switching takes some time that is
only dependent on the queue the server switches from. �e switch-over process is
defined by another probability distribution. One can choose from an exponential
distribution, a gamma distribution, a deterministic distribution, a two-phase hyper-
exponential distribution, a log-normal distribution and a uniform distribution. �e
simulation program is able to handle special systems in which the switch-over times
are zero. An option is present that puts all switch-over processes at a deterministic
probability distribution with value zero to achieve this.

Service policy. �e number of customers that are served during the visit of the server to
a queue is determined by the service policy. One can choose from the exhaustive,
gated, globally gated, binomial gated, multi-phase gated and k-limited service poli-
cies. �e last three service policies require the input of an extra parameter for each
queue, which is made available as soon as one of those is selected. �e binomial gated
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service policy requires a probability, while the multi-phase gated and k-limited ser-
vice policies require a natural number. All queues are served according to the selected
service policy, but the parameters, if present, may be different.

Routing scheme. When the server is finished servicing customers in a queue, as defined
by the service policy, it switches to the next queue. �e order in which the queues
are visited and served by the server is defined by the routing scheme. �e simulation
program allows the server to visit the queues periodically according to a polling table.
�is polling table may be filled in to anyone’s liking. Default presets are available
for the traditional cyclic routing, star routing and elevator routing. Additionally, a
second kind of static routing is offered: Markovian routing, where the server switches
from Qi to Qj with probability pij , i, j = 1, . . . , N ,

∑N
j=1 pij = 1, i = 1, . . . , N .

Customer routing. Customers who have been served by the server normally leave the
system. �e simulation program allows routing of customers, where on completion
of service atQi the customer goes toQj with probability pij and the customer leaves
the system with probability pi0, i, j = 1, . . . , N ,

∑N
j=0 pij = 1, i = 1, . . . , N .

�e simulation program uses all these parameters for a long-term simulation of the be-
havior of the system. After the simulation run is completed, several performance measures
have been computed. �ese performance measures consist of, for each queue, the means
and confidence intervals of the waiting time and the queue length. �e simulation program
is also able to compute higher moments and tail probabilities of the waiting times. Which
moments and tail probabilities have to be computed, can be defined before the simulation
begins. A simple strategy to determine which tail probabilities are useful is to simulate for a
short time in order to get an indication of the order of magnitude of the waiting times. �is
should only take about a second in real-time. Useful tail probabilities are then values in the
range between zero and twice the obtained mean waiting times. �e confidence intervals
of these higher moments and tail probabilities are included in the output as well.

�e output of the simulation program is divided into three parts. �e first part lists
the inputted parameters, together with the total offered load to the system. �is is to be
able to easily distinguish the output of one simulation run from others. �e second part
reports the performance measures, as discussed above. �ese are the means and confidence
intervals of the waiting times and the queue lengths, and those of the higher moments and
tail probabilities of the waiting times. �e third part of the output is concerned with veri-
fication. In here, the pseudo-conservation law (i.e., the weighted sum of the mean waiting
times) is computed both analytically and by using the obtained results of the simulation.
�e relative difference between these two values gives an indication of the precision of the
simulation. �e verification part is only present if the pseudo-conservation law can be com-
puted analytically, which is in all systems with Poisson arrivals, a cyclic routing scheme and
no customer routing, except for the k-limited service policy where ki 6= 1. In this case the
confidence intervals of the mean waiting times can be used as an indication of the accuracy.
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�e simulation program makes use of long-term simulation in order to compute sev-
eral performance measures, of which the mean and confidence interval are presented in
the output. During the simulation a large amount of observations for a certain perfor-
mance measure is obtained. �ese observations can be used straightforwardly for a point
estimation, but a complicating factor arises when constructing the confidence interval: the
observations are strongly correlated. In order to get around this problem the batch-means
method is used. �e observations are aggregated in such a way that the aggregated observa-
tions are approximately independent of each other. �is can be achieved by dividing the
simulation run into a number of subruns, each of them having a sufficiently large amount
of observations. �e aggregated observations are then formed by taking the mean of those
observations in a subrun. It does not matter if the original observations or the aggregated
observations are used for computing the point estimate. However, if the number of obser-
vations in a subrun is sufficiently large, then the aggregated observations are approximately
independent of each other. In addition, if the number of observations in a subrun is suf-
ficiently large, then the aggregated observations can be for practical purposes assumed to
be normally distributed. �e confidence interval can now be constructed in the traditional
way using as percentile that of the Student-t distribution with the number of subrunsminus
one degrees of freedom.

In addition to the previously mentioned properties, the simulation program offers the
following features.

1. �e ability to save and load settings. All parameter settings can be saved to a file and
can any time later be loaded again to restore all input. �is is mainly convenient if
one needs to run several experiments, and each experiment is just slightly different
from the others.

2. Error checking. Before the simulation starts all parameters are checked to make sure
that all entries are valid, that there are nomissing values and that the polling system is
stable. �e simulation starts if everything is all right. Otherwise, a warning message
is displayed with a clear message indicating the mistake. In addition to the error
checking, some fields like, e.g., the parameters of a probability distribution, allow
only valid entries and are being checked while typing.

3. Graphical user interface and command line versions. �e simulation program features
a complete graphical user interface, but can also be used through the command
line. When working with the command line, simulation starts by specifying the file
containing the parameter settings. �e command line version can typically be used
for simulation of a batch of experiments and when one is interested in a function of
the waiting times.

4. Multi-threaded. When the simulation program is busy running a simulation, the
user interface maintains its fully responsiveness to user input. It also allows running
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multiple simulations at the same time, however each experiment incurs a reduction
in speed then.

5. Easy to extend. Because the simulation program is implemented in the program-
ming language Java and because it is divided into small components, it can easily
be extended. To give an example, probability distributions can easily be added to
the existing ones provided that a method to generate random variables exists. �e
only requirements that a probability distribution has to meet are that the mean and
second moment are finite and that it can take only positive values.

4.2 Accuracy of simulation

�e results based on simulation are often relatively inaccurate compared with numerical
algorithms. To obtain reliable results with simulation, one has to simulate for a sufficiently
long period. How long is sufficient depends on many factors such as the offered load with
respect to the system’s stability limit and the variability of the arrival processes, service pro-
cesses and switch-over processes. �e service policy may also influence the accuracy of
simulation. �e following example demonstrates the effects of the duration of the simula-
tion on the accuracy of the results.

Example 4.1. �e two models of Example 3.1 and Example 3.2 are considered. �e mean
waiting times of these models have been computed analytically and are exact. �ese models
are now simulated using the simulation program and the obtained results are compared
with the exact solution. For the warming-up time a setting of 104 time units is used and
the simulation time is varied between 104 and 2 · 106 time units. For each setting the
simulation is executed ten times and the results are averaged for a reliable measurement.
�e duration of the simulation is expressed in real-time and is measured as the time between
starting and exiting the program. �e command line version of the simulation program is
used for obvious reasons. Figure 4.1 shows the results of these experiments.

From this figure a couple of observations can be made. Firstly, simulation of the model
of Example 3.1 takes more time than simulation of the model of Example 3.2, whereas
the simulation time parameters are the same in both cases. �is can be observed from the
horizontal axes in the graphs. �e range of the axis of the left graph is more stretched than
that of the right graph. �e explanation for this can be contributed to the model properties.
�e switch-over times of the model of Example 3.1 are smaller than the switch-over times
of the model of Example 3.2. �is means that in the second model more time is elapsed
when a server switch occurs compared to the first model, and thus that fewer events are
needed to complete the simulation. Also, the arrival rates of the first model are lower while
the service times of both models are approximately the same. �us it occurs more often
that the system is empty and that during this time period the server is merely switching.
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Figure 4.1. �e relative error of the simulation results compared with the exact solution as a func-
tion of the simulation time, expressed in real-time. �e graph on the left corresponds to the model
of Example 3.1 and the graph on the right corresponds to the model of Example 3.2.

A second observation is that the error of the first model is higher than the error of
the second model. �is is not quite what one could expect when looking at the system
parameters. Since the first model is symmetric and has service and switch-over processes
with small variances, compared to the second model which has higher variances and is
asymmetric, one could expect that the first system is ‘easier’ to simulate. With this is meant
that the results of the simulation of the first model converge faster to exact solution than
the second model. However, this is not the case. After simulation of 2 · 106 time units
(6.4 seconds for the first model and 3.6 seconds for the second model) the relative error
of the first model is 7.0% while the relative error of the second model is only 0.7%. �is
difference is the consequence of the offered load in combination with the service policy.
While the load offered to the first system is 0.75 and the load offered to the second system is
0.9, the first system is closer to its stability limit. For the first system the stability condition
reads 0.975 < 1 and for the second system this condition is 0.9 < 1. So the first system is
evidently harder to simulate.

Finally, one can observe that the relative error reduces to zero eventually when the
simulation time increases. �is might not immediately be clear when looking at the left
graph, but this is indeed the case when one simulates longer. For example, after simulating
the first model for one minute an error of 1–2% is obtained and this error is reduced to
0.3–0.7% when simulating for ten minutes. When simulating the second model for the
same amount of time, an error of 0.2–0.5% is obtained after one minute and an error of
around 0.1% after ten minutes of simulation.

4.2.1 Effects of the service policy

In Example 4.1 it was shown that the relative error is a decreasing function of the simulation
time. It was also shown that differences in model parameters contribute to differences in
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the time it takes to simulate the model, and also to differences in the relative error. In
this subsection the effects of varying the service policy on the relative error are analyzed,
while keeping all other parameters the same. To this extend the switch-over times must be
zero, because otherwise the offered load with respect to the system’s stability limit is higher
in systems with the k-limited service policy. As a consequence, the conservation law can
now be used as a performance measure since it is easy to compute both analytically and by
means of simulation. It has the additional advantage that it is the same for every service
policy. �e following example describes the test environment that is used to compare the
different service policies.

Example 4.2. Consider a four-queue polling system where arrivals occur at all queues
according to Poisson arrival processes of which the rates are the same for each queue. �e
service times at queue 1 are exponentially distributed with rate 2. �e service times at queue
2 are gamma distributed with shape parameter 0.75 and scale parameter 2. �e service times
at queue 3 are uniformly distributed over the interval [0, 2]. �e service times at queue 4 are
deterministic distributed with value 2. �e switch-over times are all zero. �e simulation
is done for various service policies and for different values of the total offered load (by
changing the arrival rates) using a warming-up time of 105 time units and a simulation
time of 107 time units. �e simulations are repeated fifty times for each configuration and
the results are each time compared with the exact conservation law. �e averages are then
taken to represent that configuration. �e results are outlined in the graphs of Figure 4.2.

Aside from small fluctuations, which are inherent in simulation, the results are more or
less consistent with each other. �e relative error generally lies between 0.2–0.4% for values
of ρ between 0.2 and 0.8. However the error is much higher when ρ = 0.1 or ρ = 0.9.
�is is in accordance with the theory that both in lightly and heavily loaded systems results
become more inaccurate and thus that more time is needed to obtain the same level of
accuracy compared with medium loaded systems. �e conclusion that can be drawn from
this example is that the service policy does not affect the accuracy of simulation in any way.

4.2.2 Effects of the number of queues
�e required number of elementary operations of numerical techniques (e.g., the buffer
occupancy method) is polynomial-bounded by the number of queues. In the following
example the relation between the number of queues and the accuracy of simulation is in-
vestigated to find out whether a similar relation holds.

Example 4.3. Consider the model of Example 3.1 where the 1-limited service policy is
used in a symmetric system setting. From the previous example it is clear that the service
policy has no effect on the accuracy, and a symmetric design is chosen in order that all
queues are equally important. �e simulation is done for various number of queues, while
keeping the load of the system fixed. �is is achieved by changing the arrival rates. �e
simulation is performed twenty times for each configuration, using a warming-up time of
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Figure 4.2. �e relative error of the simulation results compared with the exact conservation law as
a function of the load, for various service policies.

105 time units and a simulation time of 107 time units. �e overall average waiting time
obtained from the simulation is then compared with the exact solution. Figure 4.3 shows
the results of these experiments.

From this figure it can be observed that the number of queues does not influence the
accuracy of simulation. For example, the mean of the system with only one queue is ap-
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Figure 4.3. �e relative error of the simulation results compared with the exact solution, as a
function of the number of queues. �e graph on the left shows the means of the results and the
graph on the right shows boxplots of the same results.

proximately the same as the mean of the system with nine queues. �e mean of the system
with ten queues is a bit higher on the other hand, but this can be explained by the two
outliers, as can be seen in the graph with the boxplots. Furthermore, all boxes overlap.
So there is clearly no evidence to believe that the number of queues has an effect on the
accuracy.

�e insensitivity of the number of queues on the accuracy of simulation is a remarkable
result, which has a striking consequence. �ere where at first it was advocated that simu-
lation is inefficient and that results based on simulation are relatively inaccurate compared
with numerical techniques, it now turns out that if the number of queues is large enough,
simulation techniques are to be preferred to numerical techniques. As an illustration, if
the model of Example 4.3 is simulated with hundred queues, while keeping the simulation
time and all other parameters the same, a relative error is obtained that is only slightly above
the errors presented in Figure 4.3. When the simulation time is doubled, then the results
(both the mean and the boxplot) are on par with the model with nine queues. But, if the
waiting times of a model with hundred queues are computed numerically with, e.g., the
buffer occupancy method, it will take about 106 times as long as a model with only a few
queues.

Remark 4.1. �e simulation time needs to be doubled to obtain the same level of accuracy
in case of the system with hundred queues. �e reason for this is the following. �e arrival
rate at each queue is becoming smaller while the total switch-over time is becoming larger,
as the number of queues increases. So during a cycle (i.e., the visit of the server along
each queue) there are approximately the same number of arrivals, but the cycle length has
increased. �is means that fewer cycles fit in the total simulation time, and thus that each
queue receives fewer arrivals. �e accuracy of simulation is thus not 100% insensitive to
the number of queues, but the influence is so small that it is negligible.
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