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1 Summary

Forecasting is a method that helps companies to predict the future. In the case
of Call Centers it is possible to predict the incoming calls on different kinds of
levels. For example, a forecaster can forecast on a yearly, quarterly, monthly,
weekly, daily and intra-daily level. A well-executed forecast can help both cus-
tomers and companies alike. Reducing both costs for the company and waiting
times for the customers. This paper sets out to investigate several traditional
methods of forecasting. Furthermore, weekly fractions are introduced. Weekly
fractions help expand the scope of a one-day ahead forecast to a one-week ahead
forecast. This one-week ahead forecast is still on a daily level and still uses the
traditional methods. Last, a simple linear regression method is introduced to
compare to the aforementioned methods. The performance of each method is
measured via the WAPE. The result of this paper is that the weekly fractions
help reducing the WAPE significantly, while still using simple methods. Linear
regression is very suitable for this kind of data by using dummy variables. More
research needs to be done on linear regression to see how much can be improved
upon.
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2 Introduction

The 21st century is nicknamed the Information age, where the economy is based
on information technology. Companies have stored huge amounts of data for
years. Yet, the analysis of this data is a recent phenomenon. For example:
Exastax, a Big Data Solution company, noted that in 2017 most airlines did not
take advantage of big data technology [1].

Call centre Helper, a leading online Contact Centre and Customer Service
magazine, found that about half of all contact centres in 2016 used manual
forecasting [2]. In Figure 1 other methods of forecasting can be seen, some of
which are discussed later.

Figure 1: Usage of Forecasting methods

The 50% of manual forecasting shows that no formulas or algorithms are
used, rather there is an educated guess. However, forecasting can be a tedious
and repetitive task. Humans tend to cut corners on repetitive tasks leading to
errors. Furthermore, humans are biased and tend to look at data that favors
them. A study done by Briony D. Pulford [3] shows that humans tend to be
overconfident in situations with positive outcomes than for those with negative
outcomes. Mathematical models are able to cope with all kinds of data and they
can do it without bias or getting bored and tired. Hence, a more mathematical
approach to forecasting is advisable. Indeed, Davenport and Harris [4] argue and
show that data-driven insight via predictive modelling and statistical analysis
generate impressive business results.

This paper shows which methods can be used and on what scope of time.
It compares the traditionally known methods like moving average and Holts’
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method to a method that incorporates weekly fractions. Last a comparison is
drawn between the aforementioned methods and a simple linear regression with
dummy variables.

In order to not make the scope of this paper too broad, the focus of this
paper lies on the forecasting of incoming calls. Namely:

• Which forecasting methods can be used?

• Which forecasting methods are used in practice?

• How do these methods perform on real data?

Furthermore, the paper incorporates a method to forecast on a longer time
span while still using classical methods. This method aims to help these methods
and lower the overall error.

This paper starts with the application in practice for call centers in section 3.
Section 4 shows which methods can be used and which methods are researched in
this paper. This section also discusses the new method. Moreover, this section
looks at other literature as well. Section 5 will go in depth into the data and the
struggles when working with this data. Furthermore this section discusses how
the best method is determined in this paper. Section 6 will show the results
found in the research, together with an analysis of the results. Section 7 will
cover the conclusion found via the previous section. Last, section 8 will cover a
discussion about the algorithm used and future endeavors on forecasting.
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3 Application in Practice

Since call centers are usually the first line of contact between customers and
companies, a fast handling of calls can be crucial for a company. In most call
centers the capacity costs in general, and human resource costs in particular,
account for 60–70% of operating expenses [5]. Hence, a good staffing level can
drastically reduce costs. The fast handling of calls can be done with enough
staffed call center employees. In order to staff the right amount of people a
forecast for the number of calls is necessary. This whole cycle from forecasting
calls to staffing the employees is commonly referred to as Work Force Manage-
ment (WFM). The definition of WFM, according to Koole [6], is: ”The common
name of the planning cycle that results in the schedules of the call center agents,
usually a few weeks before the period for which the schedule is made. As in-
put it uses historic call center data on traffic loads and information on agent
availability”. Figure 2 shows the idea of WFM where each column represents a
stage of WFM and the rows represent the time span in which each process of
each stage happens. The process range from a year in advance (Strategic) to a
day in advance (Operational).

As mentioned in the introduction, the scope of this paper lies in the use
of historic traffic loads of call centers to predict future traffic loads. Namely,
a daily forecast with one day and one week in advance. This paper does not
research the influences of events like commercials or advertisements. Nor does
this paper research long-term forecasting.

3.1 In-house forecasting

While a forecast is easily made, the hardest part of forecasting is to be accurate.
The forecaster is required to have considerable knowledge about the data and
the methods used in forecasting. Furthermore, working with data follows the
”Garbage In, Garbage Out” principle, where bad input of data results in bad
forecasting. A bad forecast can result in overstaffing or understaffing. When a
call center is overstaffed agents are idle for a lot of time. This means that the
call center could have had less agents in service and thus reducing costs. On the
other hand if the call center is understaffed, all agents will be occupied and not
able to help arriving calls. If a customer has to wait for too long before being
assisted by a call center worker, the customer is prone to hanging up the phone.
This, in turn, results a dissatisfied customers.

3.2 Outsourced forecasting

A good forecast is not only crucial for in-house call centers. Whenever a com-
pany decides to outsource their call center, a contract is made where an agree-
ment on a number of handled calls is made. When the handled number of
calls is exceeded, the company usually has to pay a fee for the extra number of
calls the outsourced company has made. Additionally, when a company expects
that they are not able to handle the traffic load with the current amount of
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Figure 2: The WFM Processes courtesy of CCMath

staff, a percentage of calls can be redirected to the outsourced company. Hence,
forecasting is crucial for both when the call-center is outsourced or in-house.

3.3 Effectiveness of methods in practice

The effectiveness of each of the methods discussed in the next section depends
on the kind of data presented. According to Makridakis, Wheelwright and
Hyndman, four different of data patterns can be distinguished. These four are:
horizontal, seasonal, cyclical and trend.

First, a horizontal pattern occurs whenever the data fluctuates around a
certain mean. One can imagine this happening whenever data does not increase
or decrease over time. One example can be a product which sales stay constant.

Second, a seasonal pattern occurs whenever a time series is influenced by
certain seasonal factors. These seasonal patterns can occur intra-weekly, per
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quarter of the year, every month and so on. An example of this is the increase
in sales of kids toys around December or the increase in consumption of ice
cream in the summer.

Third, a cyclical pattern happens whenever data rises or falls without a fixed
period. The difference between a cyclical pattern and a seasonal pattern is the
fact that the former does not happen at regular periodic basis and tends to
vary in length. An example of cyclical patterns is an economic time series that
changes due to economic fluctuations.

Last, a trend pattern exists whenever there is a long-term increase or de-
crease in data. For instance, a company that grows usually exhibits an increase
in sales over time.

These four methods are not mutually exclusive. A time series can both
exhibit a trend and a seasonality. The aforementioned company that grows
over time can still have a lower number of sales in a certain period, but in the
long run have an increase of sales. The existence of these four patterns in the
data all influence how effective each method is. For example, a method not
equipped to deal with seasonality will fare far worse than a method that is able
to handle that seasonality. The next section will mention what every method is
equipped to deal with besides the explanation of each method.
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4 Methods and focus

Several methods for forecasting exists, ranging from naive to more complex
mathematical structures. Several methods used for forecasting are:

• Mean

• Moving Average

• Single Exponential Smoothing

• Adaptive Single Exponential Smoothing

• Holt’s Linear Method

• Holt-Winters’ Method

• Weekly fractions

• Linear Regression

• ARIMA models

• Neural Networks

The methods in bold are used in this research. Either these methods are
used in practice (e.g. Linear regression or Holt-Winters’) or are well known
forecasting methods. These methods are also found in the book Forecasting:
Methods and Applications [7]. The methods not in bold will be discussed in the
Discussion section of this paper.

Note that many variables in the next sections have a subscript denoting a
certain time (t, t − 1, etc). The context of time depends on the data provided
by the call center, more of which will be explained in Section 5. For the sake
of clarity and to avoid repetition, equal variables with different subscripts are
mentioned once, but all note to a different point in time.

4.1 Mean

This method takes the mean over a certain time span i− 1, . . . , t and uses this
mean as the forecast for the next time i = t+1. It is possible to take one general
mean and use it for all future forecasts. For a certain time t the mathematical
formula is:

Ft+1 =
1

t

t∑
i=1

Yi

Where Ft+1 is the forecast for time t + 1 and Yi is the observed number of
calls for time i = 1, ..., t
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Since more data becomes available at each time step, the mean is able to
change per day as well. Instead of using the data of all previous days, the mean
can also be calculated recursively via:

Ft+1 =
(t− 1)Ft + Yt

t

A big drawback of this method is that after a certain amount of time, the
forecast is prone to rigidity, as new observations have less impact on the mean.
Furthermore, this method suffers from the so-called ”Flaw of averages”, where
plans based on average are usually wrong. This is due to the fact that the
average does not take peaks and valleys into account. Hence, the mean would
only be useful when the data has a horizontal pattern. However, as section 5
will show, this is not the case.

4.2 Moving Average (MA)

The moving average expands on the idea of the mean, but only looks at a certain
time frame rather than the whole time. This means that after an observation
has happened far enough in the past, the observation is discarded for the calcu-
lations, while newer observations are taken into account. The idea behind this
is that old observations provide less value than newer observations. A common
practice is to take the time span of a season. For example, with daily data the
time span would cover a whole week, meaning that only the last 7 observations
are taken into account. This results in the following formula for the k-order
Moving Average (MA(k)):

Ft+1 =
1

k

t∑
i=t−k+1

Yi

Where Ft+1 is the forecast for time t + 1 and Yi is the observed number of
calls for time i = 1, ..., t and k is the order of the moving average.

The advantage of this can be found in the fact that a forecast made with a
Moving Average is not as rigid as the general mean, due the accountability of
only the latest k observations. However, big changes in the k observations are
still prone to the Flaw of averages. This means that data that is horizontal will
work for this method. While not entirely capable of handling trend, it does so
better than the mean.

Note that the first k observations cannot be forecast, as i will be earlier than
the earliest observation.

4.3 Single Exponential Smoothing (SES)

Single Exponential Smoothing (SES) is an extension on the Moving Average.
However, rather than discarding the older observations, SES assigns exponen-
tially decreasing weights to older observations. In particular, this method
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uses the previous forecast and its forecasting error to forecast the next period,
namely:

Ft+1 = Ft + α(Yt − Ft)

Where Ft is the forecast for time t, Yt is the observed number of calls for
time t and α is a constant between 0 and 1. The higher α, the higher the
”adjustment-factor” of the forecasting error of time t is. When α = 1, SES is
taking the latest observation as its forecast-i.e., naive forecasting. The value of
α can be found by calculating the value on which the total error of all forecasting
is the lowest, either by grid search or non-linear optimization.

Seeing as F1 is not know, as it needs F0 and Y0, one should take F1 = Y1.
SES is able to handle horizontal patterns and tends to lag behind on trend
patterns. This lag is due to the fact that the method can only adjust the next
forecast for some percentage of the most recent error. Seasonal patterns and
cyclical patterns are still not recognized by SES.

4.4 Adaptive Single Exponential Smoothing (ASES)

Adaptive Single Exponential Smoothing (ASES) was developed by Trigg and
Leach [8] and takes the idea of SES but does not use a fixed α. Rather, α can
be modified as time passes and changes in the data occur. The motivation is that
some time periods require low adjustments and some require high adjustments.
ASES requires an α at every time t to use a formula similar to SES. The αt is
calculated via the smoothed estimate of forecast error and an absolute smoothed
estimate of forecast error:

Ft+1 = αtYt + (1− αt)Ft

where

αt+1 = | At

Mt
|

At = βEt + (1− β)At−1

Mt = β|Et|+ (1− β)Mt−1

Et = Yt − Ft

Here αt is the adjustment constant, Ft is the forecast and Yt is the observed
number of calls, all at time t. The At is the aforementioned smoothed estimate
of the forecast error, while Mt is the absolute estimate and Et is the error at
time t. Last the β is a constant between 0 and 1, defined by the user. Note
that the α calculated is calculated for one time step in future t+1. This αt+1 is
preferred as ASES is often too responsive to changes, hence a small lag of one
period is incorporated.

Just as with SES, there is a problem at the initialization (i.e. t = 1). When
calculating A1 and M1, A0 and M0 are required but are not defined, leading to
an unknown F2. Hence to intialize it is possible to take:

F2 = Y1,
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α2 = α3 = α4 = β,

A1 = M1 = 0

Different starting values for α will return different αt over time. Furthermore the
value of β determines the strictness of changes to α. It is once again possible to
find the best β to the data via non-linear optimization or grid search by taking
the lowest overall error.

The advantage of ASES is that the adjustment constant changes over time,
thus adapting to the data. However, there might be some lag between the data
changing and the αt to catch up. Hence, ASES is able to handle similar data
patterns as SES. Furthermore, it might be the case that SES with an optimal
α results in a lower overall error than ASES. Examples of this can be found in
Gardner and Dannenbring [9].

4.5 Holt’s Method

Holt’s Method (Holt’s) is an extension of SES. Holt’s allows forecasting for
data with a horizontal and trend pattern. Holt’s method uses two smoothing
constants, namely α and β. These constants are used to calculate the level
estimate of the forecast and the slope of the forecast respectively. This results
in:

Lt = αYt + (1− α)(Lt−1 + bt−1)

bt = β(Lt − Lt−1) + (1− β)bt−1

Ft+m = Lt + btm

Where Lt is the level estimate, Yt is the observed number of calls and bt is the
trend estimate at time t. The forecast Ft+m is made for time t+m, where m is
the number of time steps ahead the forecast needs to be made for. Furthermore,
α and β are the adjustment constants between 0 and 1 for level and trend,
respectively. Note that, unlike ASES, Lt and bt need to be calculated before the
forecast is made. Namely, the level is adjusted first via the observation at time
t and the predicted observation at time t− 1. The strictness of the adjustment
depends on the value of α. Next, the trend is adjusted via the difference in
levels and the trend of one time stamp earlier. Last, the forecast is calculated
by taking the calculated level and adding the trend, possibly multiplied by the
number of m time steps the users wants to predict. Hence, a one-day ahead
forecast will be just the trained level Lt plus the trained trend bt.

Once again the initialization is of importance here. At time t = 1 several
variables are not defined at time t = 0, hence estimates for L1 and b1 are neces-
sary. It is possible to set L1 = Y1 and b1 = Y2 − Y1. Here one should optimize
α and β to reduce the overall error via grid search or non-linear optimization.

Holt’s method works especially well on data that has a trend and tends to
outperform SES. However, once the data shows seasonality, Holt’s has a hard
time adjusting due to irregular movement of the data.
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4.6 Holt-Winters’ Method

All aforementioned methods have trouble adjusting to seasonality. However, the
Holt-Winters’ Method is able to handle seasonality, as well as horizontal and
trend patterns by introducing a seasonality factor. More on seasonality is ex-
plained in Section 5. The extension of Holts’ method was done by Peter Winters
and encapsulates two different types of data series: Additive and multiplicative.
An example of an additive and multiplicative time series can be found in Figure
3.

Figure 3: Plot showcasing additive versus multiplicative time series

This figure shows as time progresses the additive series’ spread is constant,
while the multiplicative spread becomes bigger. Depending on how the time
series progresses the forecaster has to decide whether to use the multiplicative
Holt-Winters’ method or the additive Holt-Winters’ method. First the multi-
plicative method:

Lt = α
Yt
St−s

+ (1− α)(Lt−1 + bt−1)

bt = β(Lt − Lt−1) + (1− β)bt−1

St = γ
Yt
Lt

+ (1− γ)St−s

Ft+m = (Lt + btm)St−s+m

Here Lt is the level estimate, Yt is the observed number of calls, St is the
seasonal factor and bt is the trend factor at time t. Furthermore, s is the
length of the seasonality present in the data and m is the number of time steps
ahead the forecast needs to be made for. Last, α, β and γ are the adjustment
constants between 0 and 1 for the level, trend and seasonality respectively. The
value for these constants can once again be found via grid search or non-linear
optimization by minimizing the overall error. Holt-Winters’ is very similar in
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its calculations to Holt’s method, but the level takes the seasonality factor into
account. The seasonality factor is a ratio between the observed number of calls
and the level estimate. In case the actual calls are higher than the smoothed
estimate, the ratio is higher than 1 and lower than 1 when the actual calls are
lower than the smoothed level estimate. This ratio is then adjusted for via the
γ and the seasonal factor of s periods previous. For the level estimate, it can be
seen that there is an adjustment of the observed calls via the seasonality factor.
Furthermore, the seasonality factor is once again used for the actual forecast.

While less common, the additive Holt-Winters’ method is as follows:

Lt = α(Yt − St−s) + (1− α)(Lt−1 + bt−1)

bt = β(Lt − Lt−1) + (1− β)bt−1

St = γ(Yt − Lt) + (1− γ)St−s

Ft+m = Lt + btm+ St−s+m

The formulas are very similar. The main difference is that the seasonal factors
are subtracted and added, rather than divided.

For initialization, at least 2 seasons are required in order for Holt-Winters’
to work, hence some data is already required. The level is initialized at time
t = s and is the average of the first season:

Ls =
Y1 + Y2 + ...+ Ys

s

To initialize the trend, an average over all trends is taken:

bs =
1

s

[
Ys+1 − Y1

s
+
Ys+2 − Y2

s
+ ...+

Ys+s − Ys
s

]
Last, the season factors for the multiplicative method are calculated via the

ratio of the data values of the first season to the mean of the first season:

S1 =
Y1
Ls
, S2 =

Y2
Ls
, ... Ss =

Ys
Ls

While the additive method subtracts the level estimate from the observed
calls:

S1 = Y1 − Ls, S2 = Y2 − Ls, ... Ss = Ys − Ls

The main benefit of Holt-Winters is the fact it can handle seasonality very
well, compared to the other methods. A time series can consist of a repetitive
pattern where certain parts of the time series are consistently lower or higher
than expected. One can imagine this for a store that is closed on the weekends:
the next Monday likely has more customers than any other day of the week.

A drawback is that Holt-Winters’ is unable to handle data with zero’s. This
means that in case a company has a day where a data point is 0 (for a call
center meaning no incoming calls), Holt-Winters will crash. This is due to the
fact that observations used for the initialization results in at least one zero
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for S1 to Ss. Whenever this zero is used for the Lt calculation a division by
zero will occur. For non-initialization observations the same happens when two
observations that are one season are apart are zero. When both Yt−s and Yt are
zero and γ = 1, the St−s = 0 and Lt will give a division by zero. Furthermore,
since the multiplicative Holt-Winters uses fractions, the method will become
quite unstable. This can be counteracted by setting the adjustment constants
α, β, γ to 0 for that day. This means that the actual observations are not
taken into account and the variables used in the past will get the full weight
assigned. Last, Holt-Winters’ method requires that some data is already present
(the two periods for initialization). While this might be less of a problem for
already existing companies, seeing as they are likely to collect data already,
fresh starters without data are unable to use this method. Furthermore, the
longer the seasonality, the longer the initialization will be. This can be seen for
the weekly fractions.

4.7 Weekly fraction

Weekly fractions are used in conjunction with the previous methods. Weekly
fraction requires already present data as well. However, this method is able
to forecast further into the future, with an arguably simpler methodology than
Holt-Winters while still being able to handle seasonality. This method takes
the idea that different time stamps in a season all are a fraction of the entire
season. For example, if the season spans a week, every day of the week is a
certain fraction of the total of that week. Hence, it is possible to sum up the
days for one week, reducing the instability of the patterns and increasing the
use of the more simpler methods to forecast. An example of this can be found in
Figure 4. The result of summing up the days in a week removes the intra-week
seasonality pattern and helps the methods that are able to handle horizontal and
trend patterns. However, as seen in the Data section, the intra-year seasonality
still remains.

Since the data is smoother, the more simpler methods of forecasting like
Moving Average, Single Exponential Smoothing and Holt’s method can be used
to forecast one week ahead. Once this forecast for one season is made, this
forecast is multiplied by the fractions in order to return a one season ahead
forecast.

In order to retrieve the fractions in which to split up the forecasted season,
some data of several seasons is required. The fractions can be calculated by
summing up the fraction of the seasonality for multiple season and dividing by
the sum of all data points. For clarification: if the seasonality is a whole week,
split up in days, one should sum up all Mondays and divide by the total number
of observations. In mathematical terms:

pj =

∑k
h=1 Yh,j∑t
i=1 Yi

Where pj is the fraction of part j of the seasonality, Yh,j is the observed
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number of calls on the part j in season h = 1, . . . , k and Yi is the observed
number of calls on time i = 1, ..., t.

Next the forecast for one season is, as mentioned before, made by multiplying
the fractions by the one season ahead forecast Hk. In mathematical terms for
j = 1, ..., s:

Fk,j = pjHk

Where Fk,j is the forecast for season k on part j of that season, pj is the
fraction and Hk is the one season ahead forecast for season k.

Note that this method changes the seasonality from weekly to yearly. With
methods like Moving Average and Holt-Winters and the error measurements
discussed later in this paper might give a skewed image on the performance of
these methods. More on this can be found in the results for Moving Average
and Holt-Winters respectively.

4.8 Linear Regression

The last and, according to Wout Bakker of CCMath, most commonly used
method in forecasting in call centers nowadays is linear regression. Linear regres-
sion is usually done by ”Explanatory variables” which will predict one variable.
In mathematical terms for forecasting:

Ft = f0 + f1X1,t + ...+ fkXk,t + et

Where Ft is the forecast for time t; f0 is the intercept,f1, ..., fk are estimates of
coefficients, X1,t, ..., Xk,t the t-th observation of each explanatory variable and
et is the estimated error at time t.

An example of this is the Consumer Report ratings of 77 cereals in the
”Healthy Breakfast” dataset (found here) in R [10]. This dataset contains the
number of grams of fat and sugar per serving. It can be possible to calculate the
ratings of each cereal via the number of grams of fat and sugar in the cereal. In
this case the regression would result in Rating = 61.1−3.07∗Fat−2.21∗Sugars.
Where −3.07 is the coefficient per gram of fat and −2.21 is the coefficient per
gram of sugar. These coefficients are found by minimizing the sum of squared
errors: S =

∑n
i=1 e

2
i . More information on this topic can be found in the book

of Makridakis, Wheelwright and Hyndman[7].
However, time series data, like most call centers possess, do not have clear

explanatory variables. Rather, the data is just the number of calls at a certain
time. Hence, the introduction of so-called ”dummy variables” is necessary.
Dummy variables are either 0 or 1 depending on the context. This means that
for daily data, the following 6 dummy variables can be created:

• D1 = 1 if the day is Monday, zero otherwise

• D2 = 1 if the day is Tuesday, zero otherwise
...
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• D6 = 1 if the day is Saturday, zero otherwise

Note that the Sunday is absent. Linear regression requires 1 less dummy variable
than possible to avoid multicollinearity. Multicollinearity is the phenomenon
where one explanatory variable can be predicted from the others, hence some
statistics about the individual variables might be skewed. For example, if the
Sunday was present in the aforementioned lists, it could be predicted via the
other days of the week as well-i.e., if all days except Sunday are zero, the Sunday
has to be one. Therefore, Sunday is omitted.

For the daily data (5) without Sundays, 5 dummy variables are created for
each day of the week. Note that the sixth day is absent, due to the aforemen-
tioned multicollinearity. Furthermore, at the end of the year a spike in calls
can be seen as well, due to holidays and people contacting call centers. This
suggest that dummy variables for the week of each year is helpful as well. With
on average 52 weeks and 1 day per year, there are a total of 53 weeks per year,
resulting in 52 dummy variables.

A linear regression should be able to handle horizontal, seasonal, cyclical and
trend patterns. However, how well linear regression is able to handle these pat-
terns depends on the skill of the forecaster. Furthermore, statistical knowledge
is required in order to use this method correctly.
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5 The Data

In order to forecast, data needs to be collected. The forecaster also needs to
have some understanding about the data as numerous problems can arise when
a forecaster blindly forecasts. A call center has systems in place in order to
collect data: from when the call arrived to who called [5]. A plot of the whole
data can be found in Figure 6, while a small excerpt of the data can be found
in Figure 5 starting on the first of January 2009. This data was provided by an
Indian call center.
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Figure 5: Plot of the first few weeks of 2009

As can be seen in Figure 5 a weekly pattern occurs, hence a seasonality of
a week (s = 7) is present, while when looking at Figure 6 a yearly trend can
be seen as well, where close to New Year and Christmas the calls spike. Next,
there is no clear pattern seen on weekdays. Furthermore, as seen in Figure 8,
the Saturdays show a big dip and there are no calls on Sunday. In order to avoid
problems with the 0 calls (as can happen with Holt-Winters), it was decided to
remove all Sundays from the data, resulting in Figure 7 and thus reducing the
seasonality (s = 6). With the sum of all calls on a certain day it is possible to
calculate the fractions, with the results found in Table 1.

The plot for the summed days into weeks can be found in Figure 9. The
blue vertical lines are the week where a new year starts. This figure shows the
intra-year period as well. Close to the new year, the calls spike. On the other
hand, the calls seem to dip in the middle of the year.

Last, the plot without Sundays still shows days where no calls are coming in.
This is due to the fact that these days fall together with special holidays. Hence,
it can be assumed the call center was closed. However, unlike the Sundays it
is inadvisable to remove these holidays from the data. First, as removing these
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Fractions
Monday 0.1803
Tuesday 0.1970
Wednesday 0.1983
Thursday 0.1877
Friday 0.1883
Saturday 0.0483

Table 1: Fractions for each day of the week

holidays can make the seasonality per week very inconsistent as there might be
4 or 5 days compared to 6 days in a normal week. In addition, some holidays
fall on different days per year and thus can be hard to take into account. It
can be expected from the data, that the methods mainly relying on trend and
predictable data will have a hard time to successfully forecast.

A forecast can almost never be 100% accurate. Hence, in order to see how
accurate each method is, a measure of error needs to be established. The error in
forecasting is the difference between the forecasted value and the actual observed
value (e.g. someone forecasts 1000 calls, but the actual was 990, there is an error
of 10 calls). One of the most used measures of accuracy is Mean Squared Error
(MSE), which can be calculated by squaring all errors of each observation and
dividing by the number of observations. However, the result of MSE can be very
hard to interpret (e.g. an MSE of 1187212.5 is very ambiguous). Furthermore,
a big error will be amplified due to the squaring, hence the MSE is prone to
big outliers. According to Koole [6] a better measure of error would be the
Weighted Absolute Percentage Error (WAPE). The WAPE puts higher weights
on days with higher call volumes and gives clearer measure of error as it returns
a percentage. The WAPE can be calculated as follows:

WAPE =

∑n
i=1 |Yi − Fi|∑n

i=1 Yi

The WAPE is the measure of error to optimize the aforementioned α, β and
γ for SES, Holt’s and Holt-Winters’ method. The goal in determining whether a
method works lies in the WAPE. The lower the WAPE, the lower the error and
thus the better the method is. However, other factors, like data requirements
and ease of use will play a role as well.
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6 Results

Table 2 shows the WAPE of every method for both the traditional way and
the weekly fractions as well as Linear Regression. In order to make sure the
WAPE is calculated fairly, days with 0 calls are not taken into the calculations.
Furthermore, the table also shows which figures in the appendix correspond to
which method. The figures are taken on the time period ranging from the 19th
of August to the 14th of November 2008 with no Sundays included. Note that
the Moving Average and Holt-Winters’ method are marked with an ∗, this is
due to the data required for this method. Hence the graphs span a time period
of about one year later. More on this is explained per method.

Traditional Weekly fractions
WAPE Figure WAPE Figure

Mean 0.2637 10 0.1512 16
Moving Average 0.2689 11 0.0776* 17
Single Exponential
Smoothing

0.2857 12 0.1096 18

Adaptive Single
Exponential Smoothing

0.2690 13 0.1099 19

Holt’s Linear Method 0.3020 14 0.1119 20
Holt-Winters’ Method 0.0951 15 0.0651* 21

Linear Regression 0.1208 22

Table 2: Results of forecasting

It can be seen from the table that the weekly fractions vastly decrease the
WAPE for every method. The table also shows that the fractional Holt-Winters’
method has the lowest WAPE, with fractional MA a close second and traditional
Holt-Winters’ a close third. Even more, fractional SES is a very close fourth
with just one percentage point higher.

One common remark that all methods have in common is the fact that special
days or holidays are still not accounted for, as can be seen in the graphs below.
Most graphs have a steep rise in the beginning of the graph due to 2 consecutive
days without calls, resulting in the methods trying to correct themselves. Even
more, the last part of the graphs shows 2 days without calls, namely the first and
eleventh of November. This results in very erratic behaviour from the methods.

6.1 Mean

The result of the high WAPE of the traditional method can be clearly seen
from Figure 10. As mentioned in the method section 4, the data does not
change much when new observations are added. Furthermore, the plot shows
the Flaw of Averages very well: The deep valleys are not accounted for leading
to continuous overstaffing and thus high costs.
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The weekly fractions immediately shows the effectiveness of incorporating
the seasonality in the calculations. However, it still tends to overestimate the
actuals. This is due the fact that when looking at the entire plot, there is a
small downward trend until the end of 2008. This downward trend leads to the
average being slightly higher than what the actuals would be.

6.2 Moving Average

Like the Mean, the Moving Average overestimates the more quiet days, albeit
less than the Mean. However, the normal weekdays tend to be more under-
estimated than the normal Mean, due to the fact that only the last k = 6
observations are taken into account.

Since that data changed from daily to weekly the seasonality changed as
well: from k = 6 to k = 52. This means that at least 52 weekly observations
are required for this method, which might make it infeasible. Furthermore, this
will skew the WAPE seeing as less observations are taken into the calculation.
Hence, caution should be taken when comparing this method. Nonetheless, this
method performs relatively well, due to the fact there are less higher peaks and
lower dips, which benefits MA.

6.3 Single Exponential Smoothing

Once again, the forecasts are dragged down by the low volumes on Saturday.
Furthermore, the clear dips after every low day are due to the weight assigned to
the most recent observation. The best weight, the one with the lowest WAPE,
is 0.05. This means that the data will be quite rigid, as not much adjustment is
done. This can be seen clearly seen for the day after a Saturday with low calls.
While the dip in calls is quite significant, the forecasting does not dip much. The
reason for such a low alpha is due to the nature of the error measurement WAPE.
A higher α would make SES more erratic, as it just takes the previous day as the
forecast. This would mean that the forecast from Saturday to Monday, would
lead to a really big WAPE, leading to a more smoothed SES.

The best α for weekly fractions SES is 0.7, resulting in a much more adapting
forecast than the traditional method. The likely reason for the higher α is the
fact the weekly data is less erratic. Hence, the difference between the weeks is
less. This means that a higher α will not affect the WAPE as much as with the
traditional method.

6.4 Adaptive Single Exponential Smoothing

From the plots can be seen that ASES does a better job than SES when it comes
to following weekdays. However, the fact that Saturdays are overestimated and
the small dips on the Mondays still show that ASES lags behind the actuals.
With a β = 0.05, small changes in αt will occur. These small changes are very
consistent with SES, seeing as large changes will increase the WAPE in the same
way as SES.
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For ASES with fractions the best β is 0.45, resulting in moderate changes
to αt. The comments that applied to fractional SES also applies here. The fact
that the data is less erratic helps to better the forecast.

6.5 Holt’s Linear Method

Holt’s Linear method clearly shows the inability to handle seasonality. Very
notable in the Figure is the steady climb at the start of the figure. This is due
to the aforementioned fact that a few days earlier 2 consecutive days with zero
days were present resulting in a big dip. With α = 0.15 and β = 0.2, the lowest
WAPE is achieved for the traditional method.

For the weekly fractions the best α and β are 0.65 and 0.1 respectively, This
shows that the level needs more adjustment in the fractional method than the
traditional method, while the trend needs less adjustment. This is due to the
fact that while the level changes over the time, the general trend stays the same.
Surprisingly, the WAPE is higher than the WAPE for SES and ASES, albeit
very small. This is likely due to the fact that grid search and not non-linear
optimization was used to find the best parameters.

6.6 Holt-Winters’ Method

Holt-Winters’ immediately shows its strength for the traditional method. The
fact that the seasonality component is added, drastically lowers the WAPE.
Figure 15, shows that the low call volumes of the Saturdays are taken into
account. The optimal WAPE is achieved with α = 0.45, β = 0.05 and γ = 0.25

The fractional method of Holt-Winters’ results in the lowest WAPE of every
method. However, caution should be taken when looking at this method. This
is due to the fact that, just like the Moving Average, one whole seasonality of
52 weeks is not used in the calculations of the WAPE. Furthermore, at least 2
seasons are required to use the weekly fractions method, meaning that at least
2 years of data is required. However, the data provided covers a little more
than two and a half years. With the first year already not forecasted on due to
initialization, leads to little room for error measurement. Furthermore, data of
the second year is used for the initialization and is forecasted on. Hence the error
measurement might be skewed. This means that the calculated WAPE should
be looked at cautiously due to the two aforementioned points. Nonetheless, the
best parameters for this method are: α = 0.45, β = 0.25 and γ = 0.75.

6.7 Linear Regression

Last, linear regression has a low WAPE compared to its simplicity. All 57 co-
efficients and the intercept can be found in table 3. Every coefficient shows
the effect of that certain day or that certain week in the month. The inter-
cept shows the ”normal” level of calls without any day or week effects. The
table shows that weeks 2 and 3 and weeks 47 to 52 increase the call volume,
likely due to holidays. Some assumptions need to be checked, before this model
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is valid. More on these validations can be found in the book of Makridakis,
Wheelwright and Hyndman[7] . First, the variables need to be significant- i.e.,
the coefficient is not 0 or the coefficient is significantly different than 0. However,
since this model deals with dummy variables rather than traditional explana-
tory variables, the assumption is made that once a single dummy variable is
significant, all are significant. In this case an example of a significant variable
for the Weeknumber would be week 33, with a p-value of 0.000245. In case of
the weekday, Saturday would be a statistical significant day with a p-value of
less than 2e − 16. Hence, all variables can be taken into account. Besides the
significance of variables, the assumption of uncorrelated variables and uncor-
related, normally distributed errors. Since all variables are dummy variables
and the presence of multicollinearity has been taken care of by taking one less
number of dummy variables than possible the uncorrelated variables are taken
care of. In order to show the normality of the errors a Q-Q plot for the residuals
versus the Normal Distribution can be used and can be found in Figure 23. The
plot shows skewness on the left and rightmost part of the plot. After further
investigation these residuals seem to stem from days with seemingly inexplicable
low or high calls (e.g. a Monday with just 200 calls). Nonetheless, the Q-Q plot
looks good enough to assume a normal distribution.
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7 Conclusion

This research aims to research the use of simple and more complex forecast-
ing techniques as well as the impact of weekly fractions and the use of linear
regression.

The more traditional standard forecasting methods rely on non-erratic data
with only a trend and not a seasonality. This is why the traditional way of
forecasting has a high error measure and are therefore not advised to use.

From the results it can be seen that Holt-Winters works really well on call
center data. The main benefit of this method is the implementation of season-
ality, which other methods lack. This explains the effectiveness of the weekly
fractions. The seasonality is incorporated in the calculations and the data can
adapt. An additional benefit of weekly fractions is the longer term forecasting
for a week rather than a day, while still preserving a low error. Furthermore, the
general methods stay simple, but with a slight modification for the weekly to
daily forecasts. This longer term forecasting gives opportunity for longer term
scheduling.

While linear regression falls on a different category than both a traditional
method and weekly fractions it is still very useful. The linear method used in
this paper is very basic. This is due to the fact that the regression consists
only of dummy variables to check which day of the week and which week of the
year the forecast is. This means that the linear regression can be expanded to
include special days like holidays. More on this can be found in Section 8.
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8 Discussion

This paper focuses on the relatively short-term forecasting of incoming calls in
a call center. This is done to make the scope of this paper not too broad. This
also means that research can be done on middle to long term forecasting. While
the previous methods might not all be suitable for this type of forecasting,
linear regression can definitely be further tweaked to suit these needs. Next,
the linear model used in this paper is still simple. Other factors can be used
to better predict the incoming calls. Even more, the effect of events such as:
Commercials, holidays, world events and news are not taken considered in this
research. This research is a subject in and of itself. Researches can try to
transform the data as well, for example by using log-transformations, which
might benefit the forecasting methods.

Furthermore, other measures of error can be used and might yield different
results. Another way to find the optimal parameters for α, β and γ like non-
linear optimization might yield similar but somewhat different results as well.

Future studies could also combine the forecasting of calls with the other
aspects of WFM like the number of agents to use and the scheduling of these
agents.

Last, not all methods of forecasting are discussed in this paper, once again in
the interest of the scope of the paper. Two of such methods are ARIMA-models
and Neural Networks. Autoregressive Integrated Moving Average (ARIMA)
models are more sophisticated models and hence more complex. ARIMA-models
require a lot of attention from the forecaster to use the correct parameters and
estimations and results in iterations of ARIMA-models.

Practice shows that Linear Regression is still favored according to CCMath,
a company that excels in WFM. Further research should focus on the use of
Linear Regression in forecasting as it seems the most promising. Especially the
handling of special holidays where the call center is either closed or takes less
calls tends to throw of most algorithms.

Other sources like the M-competitions, organized by Spyros Makridakis, have
evaluated and compared different forecasting methods as well [11]. The most
recent competition, called the M4-competition, tried to replicate the results of
the previous three with an increasing number of time series and included the
use of Machine Learning. Namely, the use of Neural Networks. However, it
was discovered that the pure use of Machine Learning methods were inferior
in accuracy and higher in computational requirements [12]. This reinforces the
idea that Machine Learning methods should not be used in a vacuum, but are
rather suited in conjunction with statistical methods.
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Figure 6: Plot of the whole data set
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Figure 7: Plot of the whole data set with Sundays removed

m
aa

nd
ag

di
ns

da
g

w
oe

ns
da

g

do
nd

er
da

g

vr
ijd

ag

za
te

rd
ag

zo
nd

ag

0

200000

400000

600000

800000

Sum of all calls for every weekday

Figure 8: Sum of all calls for every weekday
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starts
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Figure 10: Traditional forecast for the Mean
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Figure 11: Traditional forecast for the Moving Average
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Figure 12: Traditional forecast for Single Exponential Smoothing
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Figure 13: Traditional forecast for Adaptive Single Exponential Smoothing
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Figure 14: Traditional forecast for Holt’s Linear Method
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Figure 15: Traditional forecast for Holt-Winters’ Method
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Figure 16: Fraction forecast for the Mean
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Figure 17: Fraction forecast for the Moving Average
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Figure 18: Fraction forecast for Single Exponential Smoothing
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Figure 19: Fraction forecast for Adaptive Single Exponential Smoothing
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Figure 20: Fraction forecast for Holt’s Method
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Figure 21: Fraction forecast for Holt-Winters Method
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Figure 22: Forecast using Linear Regression
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Figure 23: Q-Q plot of the Normal Distribution vs the residuals of linear Regression
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Variables Coefficients Variables Coefficients
Weeknumber 2 1384.89 Weeknumber 31 -798.75
Weeknumber 3 983.22 Weeknumber 32 -982.58
Weeknumber 4 -174.67 Weeknumber 33 -1978.75
Weeknumber 5 -530.83 Weeknumber 34 -1216.33
Weeknumber 6 -871.06 Weeknumber 35 -858.50
Weeknumber 7 -392.44 Weeknumber 36 -408.83
Weeknumber 8 -754.50 Weeknumber 37 -357.67
Weeknumber 9 -721.22 Weeknumber 38 -384.67
Weeknumber 10 -327.11 Weeknumber 39 -331.17
Weeknumber 11 -421.78 Weeknumber 40 -472.92
Weeknumber 12 -547.83 Weeknumber 41 -472.92
Weeknumber 13 -668.33 Weeknumber 42 -633.75
Weeknumber 14 -40.89 Weeknumber 43 -635.58
Weeknumber 15 -333.72 Weeknumber 44 -967.83
Weeknumber 16 -1205.67 Weeknumber 45 -565.25
Weeknumber 17 -1198.89 Weeknumber 46 -913.58
Weeknumber 18 -1304.94 Weeknumber 47 122.58
Weeknumber 19 -1238.67 Weeknumber 48 181.75
Weeknumber 20 -193.11 Weeknumber 49 609.25
Weeknumber 21 -756.44 Weeknumber 50 1181.33
Weeknumber 22 -240.06 Weeknumber 51 2126.17
Weeknumber 23 -477.67 Weeknumber 52 1854.50
Weeknumber 24 -328.94 Weeknumber 53 -589.33
Weeknumber 25 -685.92 Monday -535.84
Weeknumber 26 -666.50 Wednesday 41.68
Weeknumber 27 -552.42 Thursday -299.38
Weeknumber 28 -218.58 Friday -280.26
Weeknumber 29 -1321.00 Saturday -4784.52
Weeknumber 30 -427.08 Intercept 6737.05

Table 3: Variables and their coefficients for linear regression
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