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Preface

This research paper was written as part of the Business Analytics master pro-
gram at the VU University Amsterdam. The research paper (6 EC) is a required
component within the program in which the student should address a topic of
choice that incorporates the business-related aspect of the program as well as
the computer-science and mathematics aspects. The production of the paper is
planned at the end of the second semester (June) of the master.

In this paper I address how deep learning, a field of study within computer
science, could assist (histo)pathologists with some of their tasks. Tasks that
are often time consuming and tedious, and known for being exposed to inter-
observer variability. My goal throughout this paper is twofold. On one hand, I
hope to show how deep learning can assist pathologists in their work. On the
other, I like to show practitioners of machine learning some problems within
histopathology that are currently addressed with deep learning techniques.

Bram Rodenburg
Amsterdam, June 2016
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Management Summary

In clinical practice a task of the pathologist is to analyze human tissue for
disease by microscopic examination. However, many of these tasks are exposed
to inter-observer variability and are time consuming (therefore costly). Clearly,
automating these tasks has two main advantages. First, the quality of diagnoses
could be improved since an automated approach could give more consistent and
accurate outcomes. This in turn can result in a better assessment of a patient’s
treatment. Second, time and costs of these tasks can be reduced since manually
performed tasks by a pathologist are now automated.

The automation of tasks within pathology is now possible since in the recent
years pathology labs started to move towards more digital workflows. In these
approaches microscopes are substituted by scanners, resulting in the availability
of digital tissue images (called whole slides). As a result, it is now possible to
apply image analysis techniques - techniques that can perform some of the tasks
a pathologist would normally need to do manually.

A technique for image analysis that has proven to work extremely effective
in practice is called deep learning. Deep learning is a class of methods that can
automatically discover representations from raw data. One such a method is
the convolutional neural network (CNN). Namely, CNNs have shown to work
particularly well on image detection and classification tasks. For this paper, a
literature study was conducted to demonstrate how deep learning is applied to
certain tasks in histopathology.

One task in histopathology is mitosis counting. Namely, the mitotic count
can be used as a factor to grade the severity of breast cancer. For this task, a
pathologist needs to select several regions of interest within a whole-slide and
count the mitotic figures in these regions. Several deep learning techniques have
been researched for the actual mitosis counting, outperforming all other non-
deep learning methods. However, selecting the regions of interest has not been
addressed yet in a deep learning setting.

Another task addressed with deep learning is that of gland segmentation.
Namely, to determine the severity of colon cancer, a pathologists requires to
obtain several statistics of the glands in the colon to make a correct diagnosis.
To automatically obtain these statistics an automated approach must first need
to segment the glands and determine whether the gland is malignant or benign.
CNNs have shown to be able to perform these tasks also quite well.

Two other tasks addressed with deep learning are glioma grading and tissue
segmentation. For the glioma grading, a deep learning approach was capable
of accurately determining the grade of a glioma. For the second task, a CNN
was used to segment regions in a whole slide into epithelial and stromal regions.
Although this task is not directly related to grading a disease, it can be viewed
as an intermediate step that could be required for such a task.

To bring automated tasks such as the previous mentioned into clinical prac-
tice at least three obstacles need to be addressed. First, more data needs to
be made publicly available so that other tasks than the ones described in this
paper can be addressed as well using automated methods. Second, bringing au-
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tomated methods into clinical practice requires regulatory approval. Obtaining
this approval can be a costly and time consuming process. Third, training deep
learning models requires a sufficient amount of data. However, this data can
often not leave the hospital due to regulations and privacy concerns. Therefore,
methods should need to be developed that enable the training of deep learn-
ing models that can be shared between hospitals while respecting the privacy
concerns.



Contents

Preface ii

Management Summary iii

Introduction 1

1 Histopathology 3
1.1 Need for Image Analysis Techniques . . . . . . . . . . . . . . . 3
1.2 Clinical Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Deep Learning 6
2.1 Feed-Forward Neural Networks . . . . . . . . . . . . . . . . . 6
2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 8

3 Deep learning in Histopathology 9
3.1 Mitosis Counting . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Grading Gliomas . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Segmenting Epithelial and Stromal Regions . . . . . . . . . . 13
3.4 Gland Segmentation . . . . . . . . . . . . . . . . . . . . . . . 14

4 Challenges and Opportunities 16
4.1 Availability of Data . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Regulatory Approval . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Conclusion 18

References 21

v



1

Introduction

One approach to study a disease is by microscopic examination of human tissue.
Often, this tissue is obtained by means of a biopsy. After a biopsy is performed
in an operating room, the tissue is send to a pathology lab. In this lab a
pathologist prepares the tissue and then analyzes it for a specific disease. The
field concerned with analyzing human tissue for a particular decease is called
histopathology.

Common practice in pathology labs is to analyze the tissue using micro-
scopes. However, in the recent years pathology labs started to move towards
digital workflows [1]. Instead of using a microscope, a scanner is used that pro-
cesses the tissue and produces a digital image of the tissue, called a whole-slide
image. As a result, it is now possible to apply image analysis techniques to
these images - techniques that could aid pathologists in solving several existing
problems.

An example of a problem that could be addressed using image analysis tech-
niques is mitosis counting. Namely, the number of mitotic figures can be used
as a factor for grading the severity of breast cancer [2]. However, obtaining the
mitotic count can be time consuming [3] and is exposed to inter-observer vari-
ability (different pathologists recognizing different mitotic figures) [4]. Clearly,
if an image analysis tool could perform this task, the inter-observer variability
and the duration of the task could be reduced.

A technique that has proven to be very successful in discovering complex
structures within high-dimensional data, such as whole-slide images, is called
deep learning [5]. Deep learning methods are capable of automatically learning
representations of the data that are needed for tasks such as detection and
classification. There already have been several scientific competitions in which
image analysis techniques were applied to histopathological problems [3][6][7].
In all of these competitions, deep learning methods were the best performing
methods.

This research paper addresses how deep learning is currently applied in the
field of histopathology and some opportunities on how it could be applied.
Therefore, the research question addressed in this paper is as follows:

Research Question. How can deep learning be used in the field of histopathol-
ogy to improve the quality of diagnoses while reducing time and costs?

To address this research question, a literature study was conducted to determine
how deep learning is currently applied within the field of histopathology. This
has not yet been performed. In [8] a general review of image analysis techniques
was given but did not address any deep learning techniques for histopathology.
In [9] the potential of deep learning in histopathology was shown but no review
of the actual techniques were given.
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Organization of This Paper

The remainder of this paper is organised as follows. In the first section, a brief
overview of the field of histopathology is given. In the second section, an intro-
duction to deep learning is given. In the third section, deep learning techniques
used in histopathology are reviewed. The fourth section discusses challenges
that need to be addressed to successfully embed deep learning techniques into
clinical practice.
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1 Histopathology

Histopathology is the field concerned with analyzing human tissue for a certain
disease. In clinical practice, the process of analyzing human tissue roughly goes
as follows [1]. First, a biopsy is taken from a patient and send to the pathology
lab. Next, in the lab the tissue is stained and prepared on a glass slide. The
purpose of the staining is to highlight specific structures of the tissue. For
example, staining tissue with hematoxylin and eosin (H&E) gives nuclei a dark
purple color and other structures a pink color. After the tissue is prepared and
stained, a pathologist can examine the tissue using a microscope.

1.1 Need for Image Analysis Techniques

In the recent years, pathology labs started to favor scanners instead of micro-
scopes [1]. Such a scanner can process a tissue and store the scan as a digital
image, called a whole-slide image. This whole-slide image can then be visual-
ized on a screen, substituting the need to examine the tissue using a microscope.
As a result of working digitally, pathology labs now start to collect whole-slide
image data. The presence of this data enables pathology labs to automate some
manual tasks by using image analysis techniques.

There are numerous of advantages for automating tasks performed by a
pathologist. First, automating tasks can increase the quality of the diagnosis.
Namely, several (histo)pathological tasks are exposed to inter-observer variabil-
ity, meaning pathologists can differ in their assessment. As a result, a patholo-
gist can (unknowingly) assign the wrong grade to the disease. Obviously, this
can result in giving the patient the wrong treatment. This can have (dramatic)
consequences for the patient, but it can also result in giving the patient a too
costly therapy.

A second advantage is cost reduction. Enabling a software solution to per-
form some of the work a pathologist does can reduce the amount of pathological
work. Depending on the degree of automation, a hospital could potentially de-
crease the number of working hours of the pathologist, assign the pathologist
to a different task or even employ less pathologists.

The third advantage is more pleasant working conditions for the pathologist.
Namely, some tasks within histopathology are regarded as tedious. Clearly,
automating these tasks can make the work of the pathologist more pleasant.
Furthermore, it also allows the pathologist to focus more on the diagnosis itself
and less on the supportive tasks required to do the diagnosis.

1.2 Clinical Use

Throughout the remainder of this section, a brief introduction is given to some
of the tasks in histopathology for which image analysis techniques have been
developed. Since a complete overview is out-of-scope for this paper, only tasks
are discussed for which deep learning techniques are presented in section 3 of
this paper.



1 Histopathology 4

1.2.1 Mitosis Counting in Breast Cancer

A commonly used grading system for breast cancer is the Nottingham grading
system [10]. The system differentiates three types of grades, indicating the
severity of the cancer. To determine the grade, three morphological features are
used by microscopic examination of the tissue. These features are:

1. Tubule formation

2. Nuclear grade

3. Mitotic activity

In practice, there has been up till now a lot of interest in automating the
determination of the mitotic activity [3]. To determine the mitotic activity, a
pathologist manually selects one or more regions in a whole-slide image. Stan-
dard practice dictates that a region is selected at the most invasive part of the
tumor, at the border and with the highest cellularity [11]. Next, the patholo-
gist counts the number of mitotic cells within this area. The size of the area is
generally 2 mm2, which corresponds to 8-10 high power fields (HPFs). A HPF
refers to the area visible under a microscope using maximum magnification. An
illustration is given in figure 1. After the number of mitosis are counted, a grade
between 1-3 can be assigned to the mitotic activity (see table 1).

Determining the mitotic count, however, is regarded as a subjective proce-
dure that is exposed to intra-observer variation. Furthermore, determining the
mitotic activity is regarded as a tedious and time consuming activity that can
take up to 5-10 minutes in a single area. Clearly, automating this task can be
useful.

Fig. 1: (A) Selected area within a whole-slide image. (B) Grid in which each
rectangle corresponds to one HPF. Source: [3]
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Mitotic Count Score
< 6 1

6− 10 2
> 10 3

Tab. 1: The mitotic count in a 2 mm2 area is used to determine the score for
the mitotic activity.

1.2.2 Grading Brain Gliomas

The most common malignant type of brain tumors in adults are gliomas [12].
To grade the severity of the glioma, a pathologist can use the WHO grading
system. The WHO grading system distinguishes four categories I-IV. Category
I (figure 2a) are the least severe gliomas, associated with long-term survival.
Category IV gliomas (figure 2b) are the most severe gliomas, associated with a
much lower long-term survival probability. To assign a grade to the glioma, a
pathologist examines a whole-slide by looking at factors such as mitosis, nuclear
atypia, microvascular proliferation, and necrosis [12].

(a) Grade I glioma (b) Grade IV glioma

Fig. 2: Two examples of H&E stained gliomas.

1.2.3 Obtaining Gland Statistics in Colon Cancer

To determine the treatment of a patient with colon cancer, morphological statis-
tics from whole slide images are often used [7]. These statistics are mostly based
on the glands within the colon. Namely, glands in the colon are visually differ-
ent in benign and malignant tissue (see figure 3). To obtain these statistics, a
pathologist first needs to identity the glands in the image. Clearly, if a com-
puter could identify the glands it could also produce the statistics required for
the diagnosis.
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Fig. 3: Example images of gland segementation. (a) benign tissue. (b) malig-
nant tissue. Source: [7]

2 Deep Learning

Deep learning is a class of techniques that can automatically discover rep-
resentations from raw data for tasks such as classification and detection [5].
Deep learning models have proven to be very powerful in performing tasks on
high-dimensional data, such as image recognition. A model that has proven to
work particularly well in image recognition is the convolutional neural network
(CNN). Throughout this section, a brief introduction is given to how CNNs
work. Since the CNN is a special case of the classical feed-forward neural net-
work, these networks are first briefly explained. After that, we move towards
how CNNs are a special class of the standard feed forward neural network.

2.1 Feed-Forward Neural Networks

Artificial neural networks are mathematical models, inspired by the human
brain, that are capable of learning complex transformations of some input
to a certain output. In general, the input is a D-dimensional vector xxx =
(x1, . . . , xD), corresponding to for example an image. The output is in gen-
eral a K -dimensional vector yyy = (y1, . . . , yK), corresponding to K labels we
wish to assign to the input. For example, whether there is a mitotic cell in the
image or not. The input-output transformation in the network is performed by
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neurons - the basic building blocks of a neural network. In these networks neu-
rons are grouped together in layers. Between these layers neurons are connected
to each other, feeding the output of the neurons in one layer as input to the
neurons in a consecutive layer. Furthermore, each of these connections between
neurons have a weight associated with them. In this section, we assume neurons
in a layer are only connected to neurons in a previous and next layer. Networks
that exploit this property are called feed-forward neural networks.

In a feed-forward neural network the output i of a neuron i in one layer is fed
as input to the neurons in a consecutive layer. Each neuron j in this consecutive
layer first linearly transforms the output of the neurons in the previous layer by
taking the dot product of the weights of the connections wwwj with the outputs of
the neurons. Next, a nonlinear activation function φ(·) is applied to the output
of the linear transformation (1). The output zj of this neuron is then fed to the
next layer in the neural network unless it is the last layer in the network. In
this case yyy is used as notation for the output.

zj = φ(
∑
i

[wjizi]) (1)

Now to evaluate an input for the network, one simply starts by computing
the outputs of the first layer. Next, the outputs of the first layer can then be
given to second layer and so on. Finally, the last layer of the network gives the
actual output. The process of transforming the input, using the network, to the
output is called the forward pass. However, to correctly predict the output the
network first needs to be trained. That is, the weights of the connections need
to be determined.

A common approach to train a neural network is by stochastic gradient
descent. In order to do this, a ground-truth labelled dataset {xxxn, tttn}Nn=1 is
used, where xxxn and tttn correspond respectively to the n’th input vector and the
n’th output label. For each input vector xxxn we can compare the output of the
network yyyn with the desired output tttn. Using an certain error metric E(yyy, ttt) we
can then compute the error of the network. Using this error and the gradient
of the error function we can then update the weights www of the network. These
updates can then be repeated through the dataset for numerous iterations. The
update rule for stochastic gradient descent takes in general the following form
(2), where τ corresponds to the current training iteration.

www(τ+1) = www(τ) − η∇En(www(τ)) (2)

To determine the gradient of the error function En, a technique called back-
propagation is used. Backpropagation basically consists out of four steps. First,
a forward pass is made through the network by applying an input vector xxxn to
the network and evaluating all activations of the hidden and output units. Sec-
ond, all the outputs of the network are evaluated, using the error function En.
Third, using the evaluated outputs, we can compute backwards to determine
all the errors throughout the network. Lastly, we can use the outputs of each
neuron and the corresponding errors to determine the gradient.
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2.2 Convolutional Neural Networks

A CNN is a special type of feed-forward neural network that works specifically
well for images. CNNs can be trained in the same manner as feed-forward
neural networks. However, CNNs basically differ from ’classical’ feed-forward
neural networks by exploiting two properties, namely: 1) local-connectivity and
2) weight sharing. The local-connectivity property implies that neurons from
one layer are only partially connected to the neurons in the previous or next
layer. This in contrast to the standard feed-forward neural network in which all
neurons from one layer are fully connected to the neurons in an adjacent layer.
The weight sharing property implies that groups of neurons within a layer share
the same parameters. The two properties together enable the CNN to learn
more complex feature representations in each layer. Furthermore, it ensures
training the neural network remains computationally feasible.

The type of layer within the CNN that incorporates the previous mentioned
properties is called the convolutional layer (see figure 4). Groups of neurons
within this layer that share the same weights are called filters. Each neuron
is such a filter is only locally connected to the previous layer. A layer can
have multiple of these filters (corresponding to the depth of a layer), each that
basically will learn an aspect of the data. Furthermore, each filter also has a
width and height, multiplied together corresponding to the number of neurons
in the filter.

Fig. 4: An illustration of how a convolutional layer is connected to a previous
layer. Here the depth of the cube corresponds to the number of filters
within the layer. Source: [13]

Another type of layer that is commonly used within a CNN is the subsam-
pling layer (see figure 5). The purpose of the subsampling layer is to reduce
the dimensionality of the network. As a result, the number of parameters in
the network that need to be estimated are reduced. The max-pooling layer is
generally used as subsampling layer. An unit in the max-pooling layer takes the
maximum of a certain area within a filter. However, it maintains the depth of
the layer it is applied to.
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3 Deep learning in Histopathology

In this section several deep learning approaches to tasks within in histopathology
are discussed.

3.1 Mitosis Counting

As discussed in the histopathology section of this paper, the mitotic activity
can be used as a factor to grade the severity of breast cancer. To determine the
mitotic activity, two tasks need to be performed. First, a pathologist selects one
or more areas in the whole-slide image in which to perform the mitosis counting.
This task is referred to as region of interest selection task. After the areas are
determined, the pathologist can perform the actual mitosis counting. In order
to do this, the pathologist needs to correctly identify mitosis in the selected
areas. This task is referred to as the mitosis detection task.

3.1.1 Region of interest selection

Although selecting the regions of interest within a whole-slide image for the
mitosis counting is required, it has not yet been addressed in a deep learning
setting. Most deep learning approaches up till now solely address the mitosis
detection task. However, at the time of the writing of this paper a competition
was organized that incorporates both the mitosis detection as well as the region
of interest selection task [11].

3.1.2 Mitosis detection

In 2008, [14] were the first to apply deep learning to mitosis detection. To detect
mitotic cells in an image, two different classifiers were used. First, support vector
regression (SVR) was applied to the color histogram of the image to predict a
mitotic color threshold. The rational behind this threshold is that mitotic nuclei
exhibit a different color than ordinary nuclei. Therefore, the threshold can be
used to filter obvious non-mitotic figures. Images that pass the SVR classifier
are passed to the second classifier, a CNN. Although the exact architecture of
the CNN is not given, it is revealed that it is loosely based on LeNet5 [15] (see
figure 6). The complete mitosis detection method was trained and evaluated on
a private dataset of 728 images. Each image had a resolution of 1024 by 768

Fig. 5: An illustration of the pooling layer, in which the size of the filters is
shrunk but the number of filters remained the same. Source:[13]
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pixels. The dataset was manually annotated by a pathologist, identifying 434
mitotic cells in total. Final evaluation of the method on the data resulted in
detecting 80% true positives and 5% false positives. However, since the data
was private, it is not possible to compare the method with the performance of
other methods.

Fig. 6: The LeNet-5 architecture, as described in [15].

This problem was solved by the organization of a public mitosis detection
competition held for the ICPR 2012 conference [6]. The task in this competi-
tion was to detect mitotic cells in a provided dataset. Contestants were provided
public ground truth training data from two scanners and a multispectral micro-
scope. The dataset from each scanner and the microscope contained 50 HPFs
from 5 different whole slides. The slides were manually annotated by a patholo-
gist, identifying 326 and 322 mitotic cells in the scanner and microscope datasets
respectively. Approximately 30% of the data was withheld from the contestants
in order to evaluate the methods proposed by contestants. Note that selecting
the areas of interest in the whole-slide images was already performed, so the
task was solely to detect the mitotic nuclei in the preselected areas.

The method that won the ICPR 2012 competition was a deep learning
method [16]. The proposed method was a combination of two max-pooling
(MP) CNNs that operated directly on the raw RGB pixels of the image. The
architecture (see figure 7) of both CNNs consisted of several pairs of convolu-
tional and MP layers followed by two fully connected layers, of which the last
one is activated by a softmax function. To train each network every pixel in
the training data was labeled as either mitosis or non-mitosis. From the total
dataset, 132000 smaller images were sampled, of which 50% contained a mitosis
pixel in the center and the other 50% a non-mitosis pixel. Furthermore, each
of these images was processed 16 times during training by rotating and mir-
roring the image. The weights of the network were optimized by minimizing
the misclassification error over the training set. To detect mitosis in unseen
images both networks were applied using a sliding window. The output of both
networks was averaged to obtain the final output label. The method achieved
the highest F1 score and precision in the competition.

Another deep learning method for the ICPR 2012 competition was proposed
by [17]. In this method, first a set of possible mitosis candidates was extracted
using two color thresholds. Second, using these candidates a support vector ma-
chine was trained using two types of features: 1) handcrafted features and 2) the
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Fig. 7: The architectures of the two CNNs used in [16].

output of a CNN. The CNN itself was trained using all positive mitosis instances
and approximately 1000 randomly chosen negative non-mitosis instances. Each
instance was processed multiple times by mirroring and rotating. The CNN it-
self was modelled after the LeNet 5 architecture, using two convolutional layers.
The method achieved an f -measure of 0.659 and 0.589 on respectively the color
scanner and multispectral scanner images.

The dataset used for the ICPR 2012 competition was however relatively
small. Furthermore, the dataset also did not take variability in the tissue
appearance and staining into account. To address this problem, in 2013 the
AMIDA13 challenge was organized [3]. The dataset from the challenge con-
sisted of 23 whole slides images. From these images, HPFs (represented as
images of 2000 by 2000 pixels) were extracted that at least contained one mi-
totic cell. Furthermore, variability in tissue appearance and staining was also
taking into account. Namely, the slides were selected from a longer period of
time to incorporate the differences in staining. Furthermore, pathologists from
different institutions were asked to annotate the data in order to reduce the
inter-observer variance.

The same team that won the 2012 competition also won the AMIDA13 com-
petition. The team used a similar approach to their previous work [16], but
instead employed a Multi-Column MP CNN [3]. Three CNNs were trained on
20 million samples extracted from the dataset. Of these 20 million samples, 10
percent were randomly sampled images with a mitosis pixel in the center. The
remaining images were images in which the center had a non-mitosis pixel. Of
these remaining images, 50 percent were non-mitosis images that looked rela-
tively similar to the mitosis images. The training of each network took approx-
imately 3 days for GPU optimized implementation. The output probabilities of
the CNNs were averaged and used to obtain the final mitotic figures.

Another deep learning method was proposed by [18], in which an approach
was presented that combines a lightweight CNN with handcrafted features. The
approach consists out of two stages. In the first stage a CNN on the raw pixels
and a random forest classifier using handcrafted features are trained indepen-
dently to classify whether an instance contains mitosis or not. If both classifiers
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Fig. 8: Classification workflow as described [18].

agree upon the label, the label is assigned to the instance. For the instances
on which the classifiers disagree, a second stage exists. In this stage, a third
classifier is trained that combines the outputs of the previous two classifiers
and makes the final decision on the label (see figure 8 for an illustration of the
process).

After the competition ended, [19] proposed a deep cascaded neural network
approach that consists out of two phases. In the first phase a CNN is used
for fast retrieval of mitosis candidates in the image. The model processes non-
overlapping patches of 94 by 94 pixels extracted from the image and assigns an
output score to the patch in the image. The CNN is composed out of three
pairs of convolutional and max-pooling layers, followed by two fully connected
layers. In the second step three CNNs are used to detect mitosis in all positive
patches determined by the first CNN. To detect mitotic cells in these patches,
the CNNs moves through the patch by using a sliding window. The CNNs in
the second step were based on CaffeNet [20]. However, the CNNs differ in the
number of neurons in the output layers.

3.2 Grading Gliomas

In [12] deep learning is used for the automated grading of gliomas. For this
task, a pipeline of two CNNs was used. The first CNN in the pipeline classifies
whether the grade of the tumor is IV or II−III. If the first CCN assigns grade
II − III to the tumor, a second CNN is used to provide whether the grade is
actually II or III. Grade I tumors were not considered since these are usually
cured by surgical resection.

The architecture of the first CNN is modelled after the LeNet-architecture
[15] (see figure 9). The CNN consists of 8 layers, including convolution, pooling,
ReLU and fully connected layers. The last layer in a softmax layer. The second
CNN is deeper than the first CNN, incorporating 19 layers. To classify tissue in
a whole-slide image, the image was first split into smaller tiles of 1024 by 1024
pixels. If a tile contained less than 90% tissue it was rejected. The accepted tiles
were segmented into smaller images of 256 by 256 pixels, called e-microbiopsies
(see figure 10). The e-microbiopsies were eventually fed to the classification
pipeline. The proposed method was trained and evaluated on publicly avail-
able whole-slide images from The Cancer Genome Atlas (TCGA). The first and
second CNN achieved an accuracy of respectively 96% and 71% on this dataset.
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Fig. 9: Overview of the architecture of the two CNNs used for glioma grading
[12].. (Left) Shows the architecture of the first CNN in the pipeline.
(Right) Shows the architecture of the other CNN.

Fig. 10: (A) An whole-slide image is split into tiles of size 1024 by 1024 pixels.
(B) A tile is split into smaller images of 256 by 256 pixels called e-
microbiopsy samples. (C) The e-microbiopsy samples are eventually
fed to the classification pipeline. Source: [12]

3.3 Segmenting Epithelial and Stromal Regions

In [21] the task of segmenting and classifying epithelial and stromal regions in
both H&E and IHC stained tissue images is presented. The address this task a
two step process is described (see figure 11). First, the tissue is segmented us-
ing machine learning clustering techniques. H&E stained slides were segmented
using the Normalized Cut (Ncut) algorithm or the Simple Linear Iterative Clus-
tering (SLIC) algorithm, whereas the IHC stained images were segmented using
a fixed-size windows. Second, the segmented areas were classified as either ep-
ithelial or stromal by employing a CNN.

The CNN consisted out of two concecutive pairs of convolutional and pool-
ing layers, followed by two fully connected layers. The final classification was
performed by using a support vector machine (SVM) or soft-max. The architec-
ture of the CNN is as follows. First, two consecutive pairs of layers consisting of
a convolutional and pooling layer were used. Second, two fully connected layers
were employed. Lastly, the classification was performed using a support vector
machine (SVM) or using soft-max.

The complete approach was trained and evaluated on two different datasets.
The first dataset was acquired from the Netherlands Cancer Institute (NKI)
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Fig. 11: (Top row) Segmentation and classification of a H&E stained whole-slide
image. (Bottom row) Segmentation and classification of a IHC stained
whole-slide image. Source: [21]

and the Vancouver General Hospital (VGH). The dataset included 157 breast
cancer H&E stained image regions in which the epithelial and stromal regions
were manually annotated. The second dataset was acquired from the Helsinki
University Central Hospital. The dataset consisted of 27 IHC stained colorectal
cancer slides. On both datasets the approach outperformed non-deep learning
methods.

3.4 Gland Segmentation

To improve image analysis techniques for grading colorectal adenocarcinoma, [7]
organised a gland segmentation contest. Gland segmentation is an important
image analysis technique since it can be used to obtain morphological statistics
that can be used for the actual grading of the colorectal adenocarcinoma. In
the challenge, contestants were asked to develop algorithms that are capable
of segmenting and classifying glands in H&E stained images. The contestants
were provided a dataset consisting of 165 images containing from stage T3 or T4
colorectal adenocarcinoma sections. From these images, 52 were selected and
evaluated by a pathologist. The task of a contestant is to segment the glands in
these images and classify the gland as either benign or malignant. At the end
of the contest, all contestants proposed methods that incorporated a CNN for
the segmentation task.

In [22] a three-step strategy is used for the gland segmentation and classifi-
cation task. First, images are preprocessed using H&E stained color devolution.
Of these deconvolved images only the red channel was retained. Second, two
CNNs are employed for the segmentation and classification task. The first CNN,
called ObjectNet, (see fig. 12a) is used to assign one out of four classes to a
pixel. These classes are: 1) background benign, 2) gland benign, 3) background
malignant and 4) gland malignant. However, since ObjectNet was not capable of
separating physically close glands, a second CNN called SeperatorNet was used.
This net was trained for a binary classification task to predict separate objects.
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Fig. 12: CNN architectures of the colon gland segmentation approach in [22]. (a)
Shows the architecture of Object-Net while (b) shows the architecture
of Seperator Net. Both are modelled after the LeNet-5 CNN.

The output of each CNN was individually fed to separate softmax functions to
produce two probability distributions. In the third step, the output probability
distributions were combined to assign the final class labels to a pixel. To train
the CNNs, images from the dataset were rotated. Furthermore, to improve the
execution speed of the proposed method, the original 775 by 522 pixels images
were resized to 387 by 261 pixels images. Lastly, the complete method was
applied to images using a sliding window approach.
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4 Challenges and Opportunities

Although research on deep learning in histopathology made real progress, there
still exists a gap between the proposed methods in research and actually using
those methods in clinical practice. Throughout this section, three challenges are
presented that need to be addressed to bring deep learning into clinical practice.

4.1 Availability of Data

As the mitosis detection competitions [6] [3] and the gland segmentation com-
petition [7] showed, making data available in the form of a challenge can greatly
help advance image analysis techniques in histopathology. Namely, these chal-
lenges can greatly incentivize others to develop new methods. Furthermore,
these challenges also make the evaluation of different types of methods more
transparent and easier to compare.

However, there are clearly many other tasks within histopathology that could
benefit from image analysis techniques but that not yet have been addressed yet.
Making data publicly available could create an incentive for others to develop
and test methods for this. Clearly, this can help to create better and more
advanced methods.

4.2 Regulatory Approval

A major obstacle for a business or institution can be to get regulatory approval
for using deep learning in clinical practice [23]. Regulatory approval is given in
the US by the Food and Drug Administration whereas in the EU this is done
by the European Medicines Agency (EMA).

To get approval in the US clinical software that employs deep learning needs
to be cleared under the agency’s 510(k) process. However, this process is known
for being both time and cost consuming. According to [24] the average cost to
get a 510(k) product from concept to market is 31$ million. Moreover, it takes
a company on average 51 months from first communication with the FDA to
approval. This in contrast to CE approval in the EU that takes on average 11
months according to the same report. Although the costs of solely a software
product is possibly lower than the average, getting approval is a huge barrier
for getting deep learning software into clinical practice.

4.3 Privacy

Another challenge for both business and hospitals that needs to be addressed
is that of privacy. Namely, hospitals and other health care providers are often
required to keep medical data of a patient confidential. As a result, medical data
can often not leave the institution. This imposes a challenge for deep learning
techniques since these techniques often are highly dependent on vasts amount
of data to be available for training. Clearly, both businesses as well as health
care providers need to determine how to address this problem.
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A possible solution to this problem is employing decentralized learning [25].
That is, instead of having a central data repository on which the learning algo-
rithm is trained, hospitals keep their data local. Instead, an algorithm is locally
trained on the data of the hospital and the parameters of the algorithm are then
pushed to a central host. From this central location the parameters can then
again be redistributed among other hospitals. As a result, health care providers
can still maximally make use of deep learning techniques while keeping their
data confidential.
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Conclusion

In this paper was reviewed how deep learning is used for several tasks within the
field of histopathology. Namely, it was discussed why image analysis techniques
such as deep learning can be beneficial for (histo)pathologists. Furthermore, it
was shown how deep learning is applied to 1) mitosis counting, 2) glioma grad-
ing, 3) gland segmentation and 4) epithelial and stromal region segmentation.
Lastly, three challenges for bringing deep learning into clinical practice were
discussed.

For future work, a more extensive review of deep learning techniques within
histopathology is possible. Namely, in this work only a handful of tasks to which
deep learning is applied were described. However, these tasks are not the only
tasks addressed with deep learning in histopathology.
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