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Abstract 
In recent years, the online community has moved a step further in connecting people. Social Networking was born to 
enable people to share more, on social and professional level. Due to its potential, significant scientific and technological 
efforts are made to better understand, control and extend this phenomenon. The public accessibility of web-based social 
networks stimulated extensive research in this domain. Understanding how networks grow and change, and being able to 
predict their behavior, contributes to the evolution of other domains such as business, education, social, biology, fraud 
detection, criminal investigation etc. This paper surveys fundamental concepts of social networking analytics as well as a set 
of established models for the problem of link prediction. Two case studies are supporting the paper: the first study treats 
the problem of influential behavior by measurements of centrality and power; the second study compares the accuracy of 
three classification algorithms for a case of co-authorship link prediction.  
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Preface  
 

This paper is written as a compulsory part of the Business Mathematics & Informatics master program 
at the VU University Amsterdam. The purpose of the paper is to engage the student to research on a 
subject of his choice as extension to the knowledge acquired during the study. The addressed 
problem should be business related and a computer science and/or mathematical method should be 
used to find answers. During the project the student is supervised by a staff member who is 
specialized in the chose subject. 

The topic of this paper is Social Networking Analytics, with focus on underlying concepts of the 
discipline, behavior aspects in social networks and link prediction modeling. The choice of the topic is 
reasoned by the personal interest in the phenomenon of Social Networking as well as in Predictive 
Analytics. The core message of the paper is the significant role of social networking analytics in 
various activity domains.  

The paper is structure in seven chapters: Chapters 1 introduces the studied topic; Chapter 2 presents 
briefly the evolution of Social Networking and Social Networking Analytics; in Chapter 3 there are 
introduced fundamental concepts and metrics in Social Networking Analytics; Chapter 4 focuses on 
behavioral aspects of Social Networking, introducing a set of established link prediction models. The 
presented theoretical aspect are supported and extended by two case studies: Chapter 5 presents a 
study of influence within the Bernard & Killworth fraternity, over a determined period of time. The 
analysis is based on measurements of centrality and power, using the UCINET 6 technology. Chapter 
6 proposes a comparison of accuracy of three learning algorithms: Support Vector Machine, K-Nearest 
Neighbor and Naïve Bayes for the link prediction problem in the DBLP co-authorship community. The 
specific of this study is the particular set of features applied in learning. Chapter 7 presents the 
conclusions of the conducted research in Social Networking Analytics. 

I would like to thank my supervisor, Dr. Sandjai Bhulai, for his support and guidance in scoping and 
writing this paper. 

 
Elena Pupazan 

Amsterdam, 2011 
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1. Introduction 
 

Before Twitter, there was Facebook, before Facebook there was Flickr, before Flickr there was 
MySpace and so on. All these virtual communities brought people together from all sides of the world, 
encouraging social and professional interaction.  

As the interest of individual in virtual social networking grows, more scientific attention is given to 
them. Systems are being developed for understanding how and who acts in such social networks. 
These are tracking every possible social networking activity: usage, topics, who interact with who, for 
how long, user specific interests etc. Social Networking Analytics (SNA) is the discipline incorporating 
such scientific interests, arose from a long standing practice called Social Network Analysis. Social 
scientists trained in the latter study how people and groups are connected to each other (similar to the 
“Six Degrees of Separation” game). After the introduction of virtual social networks, it was a natural 
progression to apply the learned concepts and practices in the internet world. 

Due to the high popularity and flexibility of social networking sites, companies had to develop unique 
strategies of reaching customers through those channels. Many SNA services and applications are 
today cloud-based and offer organizations various ways to track and interpret customer activity on 
such sites.  

Understanding how people interact and what they are interested in will not only help the sales sector, 
but also the areas of marketing, HRM, CRM and so on. Some of the benefits of SNA are the abilities to 
better segment customers and estimate customer life cycles. A company is able to better see the key 
influencers who are leading the conversations. From there, an untapped pool of potential customers 
can be found and reached. Most of the services available now are offered at reasonably low costs. 
When leveraged by the right people and in the right way, businesses have the potential to grow and 
expand in a way that wasn’t thought possible just a few years ago. 

From a CRM perspective, being able to interact with customers on a personal level, in ways that are 
comfortable for them, will strengthen those customer relationships and make them last. Being 
proactive does not go unnoticed by customers, when their problems are recognized and fixed in a 
timely manner, these customers are more likely to continue using the company products or services. 
SNA should not be used to replace a customer service or the CRM program, it should be seen and 
used as an extension to the overall system.  

As networks continue to increase in numbers and technology becomes more advanced, even more 
tools for social networking analytics will come on the market, each delving deeper into the system and 
offering more and more insight. If used correctly, social networking analytics may be a key tool in 
helping an organization to find and connect to the right markets and audiences, on a personal level. 
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2. Evolution of Social Network Analytics  
 

Due to the recent globalization of the commercial environment and the impact of the new 
technologies, the analysis of social networks represents a major interest. This rather new area of 
research grew out of social and exact sciences, computers supporting today modeling and complex 
mathematical calculations, previously impossible. The analysis of social networks is driven by 
business and social interests, combining various academic fields. 

The term social networks was used for the first time in 1950 in sociometrics, the science that seeks to 
obtain data on social behavior and to analyze it. The latter incorporation of mathematical tools and  
computing triggered the evolution of Social Network Analysis and Analytics.  

The mathematical basis of SNA arose out of the fields of graph theory, statistical and probability 
theory, game theory as well as algebraic models. In fact, it was from these theories, especially graphs, 
that the Internet and various virtual networking concepts were derived.  

Networks are generally studied based on the participants and their actions in the network, with little or 
no emphasis on the relationships. Particularly, in Social Networking and SNA the type and the forms of 
relationships between the network members are fundamental.  

Social networking data comes today in many forms: blogs (Blogger, LiveJournal), micro-blogs 
(Twitter, FMyLife), social networking (Facebook, LinkedIn), wiki sites (Wikipedia, Wetpaint), social 
bookmarking (Delicious, CiteULike), social news (Digg, Mixx), reviews (ePinions, Yelp), and 
multimedia sharing (Flickr, Youtube). 

Online social networking represents a fundamental shift of how information is being produced, 
transferred and consumed. User generated content, in any data form, establishes a connection 
between producers and consumers of information. For consumers, the abundance of share data and 
opinions is a support in making more informed decisions. 

SNA is applicable in various domains and fields: organizational behavior, terrorist networking, political 
and economic systems, inter-relationships between banks and companies, social influence, 
educational systems and many others. Some of the current interests and challenges in the discipline 
of SNA are: 

 Collecting massive amounts of data and preventing information overload for the users 
 Extracting and modeling temporal patterns of information growth and fade over time 
 Correcting effects and biases generated by incomplete or missing data 
 Handling unreliable or conflicting information 
 Classification and tracking of topics 
 Identification of topic relevance 
 Predicting and identifying emerging or popular topics 
 Detecting, quantifying and maximizing the individuals influence 
 Determining implicit links between users 
 Understanding of sentiment flow through networks and polarization  

This paper treats fundamental concepts in social networking and addresses in particular two topics of 
interest in SNA: influence and link prediction.  
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3. Basic concepts in Social Networking 
 

A social network can be defined as a finite set of actors and their relationships. This is a simple and 
direct concept, allowing everyone to understand the social network according to the complete data 
and the connectivity of a considered network. This definitions does not say much though over the 
types of relationships of certain groups (i. e. the number of times they take part in the same programs 
or activities).  
 

 

Fig.1 Social Network  

 

An actor is the social entity who participates in a certain network and who is able to act and form 
connections with other actors. It could be an individual, a corporation or a social body. Examples of 
actors could be the students in a classroom, the departments in a company, the states of a federation, 
the web sites of a given business sector, the member nations of the UN etc. When all the actors of a 
network are of the same type, the network is called monomodal. But there are cases in which there 
are different actors in a network. In a multi-agent system, the actor is called an agent. 

A link between two actors in a social network is called a connection. It is defined by some type of 
relationship between these actors, depending on the type of society. Between companies, the 
connection could be a business contract of supply, between people in a company, it could be the 
hierarchic relationship, if considering the organizational structure, or it could be the sending of e-mails 
in a network of relationships between friends. Other examples include the relationships of friendship or 
respect between students in a classroom, the biological relationships (in a family), the associations of 
members to clubs, the diplomatic relationships between countries etc. In the graph theory section 
presented later in the paper it will be shown that connections may have a value as well as a direction. 

To study networks of various relationships in an objective way, models need to be created to represent 
them. There are three notations currently in use in the social network analysis:  

 Graph Theory  – the most common model for visual representation, it is graph based 
 Sociometrics   – proposes matrices representation, also called sociomatrices 
 Algebraic   – proposes algebraic notations for specific cases, especially for multiple 

relationships (Wasserman [1994]) 

Each notation scheme has different applications and will enable different developments and analyses. 
Further, this chapter presents concepts and notations used for representations with graphs and 
sociomatrices. The combination of these two techniques has helped significantly the evolution of social 
network analysis.  
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3.1 Graph theory 
 

The Graph theory has been widely used in analyses of social networks due to its representational 
capacity and simplicity. Basically, the graph consists of nodes (n) and of connections (l) which 
connect the nodes. In social networks the representation by graphs is also called sociogram, where 
the nodes are the actors or events and the lines of connection establish the set of relationships in a 
two dimensional drawing.  

Dyad is the simplest network, composed of only two nodes, that may be connected or not. If 
connected, this represents a property of the pair. 

 

Fig. 2  Example of Dyad 

Triad is a network formed by three nodes and the possible connections between them. The triad 
brings some important concepts into question, such as the equilibrium and the transitivity which are 
presented later on. There are maximum three dyads in a triad. In business relationships, this can be 
an important factor because if Node 1 has a relationship with Node 2, and they in turn with Node 3, 
there is a possible path through Node 2 and on to Node 1 to make transactions with Node 3. 

 

Fig. 3 Example of Triad 

Group. A group can be defined as the set of all the nodes and their connections, considering a limit 
defined for the group. For example, the set of nations belonging to the UN and the business 
transactions could define a group, with the links between the countries being the connections between 
them. The definition of the limit is important to be able to study the group. Of course the students in 
one classroom have relationships of friendship with others outside of this limit, just as nations may 
have business relationships with countries outside the UN. But for the purposes of analysis of the 
social networks, the definition of the limits defines the group. 

Subgroup. Within a group, there are many dyads and triads, but the concept of small sets of nodes 
can be extended within a group to be a subgroup. This can be very important in the study of complex 
and large social networks with the analysis of specific subgroups defined within the group. 

Relationship. The set of connections of a given type defines the relationship found in the social 
network under analysis. Whereas a connection is only between two actors or nodes, the relationship is 
defined for the whole set of connections. Thus, we can talk about social relationships, business 
relationships, educational relationships etc. In the social network, there may be a connection between 
two actors (a situation where often the variable is set to “1” in a table or matrix), or there is none 
(represented with a “0”). 
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There are also relationships which imply values, when there is a connection and this connection can 
be attributed with a value (i.e. the financial worth of the business relationships between companies). 
The social networks where values are also involved, have a greater degree of complexity. This also 
due to the possibility of direction within a graph (i.e. a given company buys from another, but sells 
nothing to it). 

Adopting next some of the nomenclatures, as in Wasserman and Faust [1994], the actors of a network 
will be noted n, and the set of actors as N. The connections of a network will have notation l, and the 
set of connections will be L. Thus, a network of “f” actors and of “h” connections will have the sets of 
actors and of connections defined respectively by: 푁 = 푛 ,푛 , … ,푛   and 퐿 = {푙 , 푙 , … , 푙 }. 

As the connection is always between two actors, then the connection defines a pair of actors (or 
dyad). If saying that a connection l1 refers to the connection between actors n2 and n5, then we can 
write:  푙 =< 푛 ,푛 >. 

Up to this point it has been defined a connection between two actors without being concerned about 
the type of relationship. Many of these connections are non-directional, meaning that a connection 
between two actors is established and that the relationship is not in any specific direction. For 
example, marriage establishes a relationship which is non-directional as it is not possible for a 
member to be married to another and that the inverse is not also true. If considering that the type of 
connection between companies to be the existence or otherwise of a contract, such a connection is 
non-directional. 

A directional connection is that which represents a connection which goes from an actor (origin) and 
ends at another (destination). For example, if making an analysis which considers purchases and 
sales between companies of a network, there will be a direction in the connections. The image below 
(Figure 4) exemplifies the concept. In the first case, the direction of the arrow shows that actor 1 sells 
to actor 2; in the second, actor 2 sells to 1, and in the last case, the graph represents that actor 1 sells 
to actor 2 and also that actor 2 sells to actor 1. 

 

Fig. 4 Directional connection in graphs 

So if a connection l1 refers to the directional connection of actor n2 to actor n5: 푙 = < 푛 →  푛 >. 

For a network with the number of actors equal to “f”, the maximum number lmax of connections in a 
non-directional graph can be written using the expression: 

푙 =
푓(푓 − 1)

2  

In other words, for two actors the maximum is one connection, for three the maximum is three, for four, 
it’s six, and so on, as shown in Figure 5 below: 
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Fig. 5 Maximum number of connections in non-directional graphs 

In directional graphs, the maximum number of connections (arrows) between two actors is two 
arrows (one in each direction), for three actors the maximum is six, and so on. The expression which 
defines the maximum number of directional connections is:   푙 = 푓(푓 − 1). 

One example of directional graph which has the maximum number of connections is the Brazilian 
soccer championship. There are twenty teams playing for the championship, each team plays against 
all the other teams, once at home and once away (outward game and return match, two directions). 
The total of the connections (games) in this network (championship) will be 380. 

Graphs enable many interesting analyses to be made and have visual appeal which help us to 
understand the structure and behavior of social networks. However, for networks with many actors and 
connections, this becomes impossible. Similarly, some important information, such as the frequency of 
occurrence and specific values, are difficult to apply in a graph.  
 

3.2 Sociomatrices 
 

For making possible the analysis of networks with many actors and connection, the matrices 
developed by sociometrics, sociomatrices, are being used. Thus, sociometrics and its sociomatrices 
complement the Graph theory, establishing a mathematical basis for analyses of social networks. 
 

 

Fig. 6 Network of non-directional business relations 

 

Figure 7 presents a matrix which shows the existence of the connections between the various actors 
of the network proposed in Figure 6, represented by a non-directional graph. In being non-directional, 
a matrix is symmetrical.  
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1 2 3 4 5 6 7 8 9 10 11 

1 0 1 1 0 0 0 0 0 0 0 0 
2 1 0 1 0 0 0 0 0 0 0 0 
3 1 1 0 0 1 0 0 0 1 0 0 
4 0 0 0 0 1 0 0 0 0 0 0 
5 0 0 1 1 0 1 1 1 1 0 0 
6 0 0 0 0 1 0 0 0 0 0 0 
7 0 0 0 0 1 0 0 0 0 0 0 
8 0 0 0 0 1 0 0 0 1 0 0 
9 0 0 1 0 1 0 0 1 0 1 1 

10 0 0 0 0 0 0 0 0 1 0 0 
11 0 0 0 0 0 0 0 0 1 0 0 

 

Fig. 7 Symmetrical matrix for the non-directional graph in Fig. 6 

Each element of the matrix shows a connection, or the lack of it, between two actors and is notated 
“xline, column”, with the sub-indices indicating the actor of a given line and the actor of a given column. If 
considering the values of “i” and “j” as these indices, each element will be identified by xij or 
algebraically: 

 푥 = 1   - when there is a connection between 푛  and  푛  
 푥 = 0   - when there is no connection  
 푥 = 푥 = 0      - when the connection does not exist 

and in the symmetrical matrix:  푥 = 푥  .  

Therefore, if the connections are directional, the graph is directional, and in this case the notation will 
be: 

 푥 = 1   - when there is a connection from 푛  to  푛  
 푥 = 1    - when there is a connection from 푛  to  푛  
 푥 = 0       - when there is no connection  

and here the matrix is rarely symmetrical. In Figure 8 is presented a directional graph where the 
companies have selling relationships between each other. The arrows point in the direction of the sale.  

 

Fig. 8 Directional graph with sales connections between companies 
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Figure 9 presents the corresponding sociomatrix, where can be seen the asymmetry and that the main 
diagonal is empty. 

 
1 2 3 4 5 6 7 8 9 10 11 

1 - 0 1 0 0 0 0 0 0 0 0 
2 1 - 1 0 0 0 0 0 0 0 0 
3 0 0 - 0 1 0 0 0 1 0 0 
4 0 0 0 - 1 0 0 0 0 0 0 
5 0 0 0 0 - 0 1 1 0 0 0 
6 0 0 0 0 1 - 0 0 0 0 0 
7 0 0 0 0 0 0 - 0 0 0 0 
8 0 0 0 0 1 0 0 - 0 0 0 
9 0 0 0 0 1 0 0 1 - 1 1 

10 0 0 0 0 0 0 0 0 0 - 0 
11 0 0 0 0 0 0 0 0 0 0 - 

 

Fig. 9 Sociomatrix corresponding to the directional graph in Fig. 8 

In the next section, using the basic knowledge of graphs and sociomatrices, various characteristics of 
the networks of business relationships, such as prestige, social role of the actors and other definitions 
which are useful in the practical analyses in business and social environments are being defined. 

 

3.2 Measures in Social Networking 
 

The use of graphs and sociomatrices is necessary in order to create models, or simplified 
representation systems of networks of relationship. However, with graphs and sociomatrices it is not 
possible to represent the whole of the characteristics and attributes of a network, nor all of its limits 
and variations. In order to make analyses therefore, the model is simplified and the analysis is based 
on various measures. The main measures used for social network analysis are presented in this 
section. 

 

Nodal degree 

In a non-directional network, it is measure the number of connections at a node and this number is 
called the nodal degree. The degree of a node can vary from zero, when there is no connection at this 
node to any other node of the network, through to the value f – 1, when there is a connection at this 
node with all the other nodes on the network. The measure of the degree of a node can define its 
importance, for example, in a network where there are various connections, this is something of 
interest to the members of the network. 

To obtain a graph of the degree of a given node, g(ni), count the number of lines which are connected 
to this node. Considering the example shown in Figure 6 and then checking the degree of each node, 
in decreasing order, as follows: 

 푔(푛 ) = 6 
 푔(푛 ) = 5 
 푔(푛 ) = 4 
 푔(푛 ) =  푔(푛 ) =  푔(푛 ) = 2 
 푔(푛 ) =  푔(푛 ) = 푔(푛 ) = 푔(푛 ) = 푔(푛 ) =  1 
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An important piece of data in business networks is the average number of relationships between the 
members of the network. This can be measured by obtaining the average degree of the network. The 
average degree is defined by the sum of all the degrees divided by the number of actors in the 
network or algebraically: 

푔̅ =
∑ 푔(푛 )

푓 =
2퐿
푓  

where L is the number of connections of the network and f is the total number of actors (nodes). For 
the network from the previous example, the value of 푔̅ = 2.36. 

 

Nodal degree (directional graph) 

In directional graphs, the measure of the degree is slightly different, as it is interesting to know how 
many connections the origin node has and how many connections it has as destination. 

The number of connections this node has as destination is called nodal-in degree. For the nodal-in 
degree of node ni, obtained by counting the number of arrows pointing towards it. The used notation is 
gi(ni). 

The number of connections this node has as origin is called nodal-out degree. For the nodal-out 
degree of node ni, obtained by counting the number of arrows pointing from it. The used notation 
is go(ni). 

These measures are very important in a network, as the nodal-out degree can indicate the capacity 
of expansion of a given actor, whilst the nodal-in degree can represent their popularity. The measure 
of the nodal-in degree, for example, is one of the factors which determines the status of a given web 
site when making a search using Google. The position in the ranking of a page shown in the search 
results is determined by the number of sites which link to that page on the network, in other words, the 
nodal-in degree of the page. 

For the business network considered in Figure 8, showing the directed connections for sales from one 
actor to another, the next nodal-out degree and the nodal-in degree are calculated for each node: 
 

Nodal-out degree Nodal-in degree 

go(푛 ) = 1 gi(푛 ) = 1 
go(푛 ) = 2 gi(푛 ) = 0 
go(푛 ) = 2 gi(푛 ) = 2 
go(푛 ) = 1 gi(푛 ) = 0 
go(푛 ) = 2 gi(푛 ) = 4 
go(푛 ) = 1 gi(푛 ) = 0 
go(푛 ) = 0 gi(푛 ) = 1 
go(푛 ) = 1 gi(푛 ) = 2 
go(푛 ) = 4 gi(푛 ) = 1 
go(푛 ) = 0 gi(푛 ) = 1 
go(푛 ) = 0 gi(푛 ) = 1 

 

Table 1 Nodal-out and Nodal-in degrees corresponding to the directional graph in Fig. 8 
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In the table above can be seen that for the same node the nodal-out degree and the nodal-in degree 
may be either equal or not. Based on the differences of in and out degrees, the theoreticians of 
directional graphs have created different names for the roles of the nodes (Wassermann [1994]). This 
is of special interest in business networks, as they define the behavior of the actor in the network of 
relationships.  

Furthermore, depending on the number and type of connection, different types of node are defined: 

 Isolated  if 푔푖(푛 ) =  푔표(푛 ) =  0  - neither the origin nor destination of connections 
 Transmitter  if 푔푖(푛 ) = 0 and 푔표(푛 ) ≥ 1  - not the destination of connection, but the origin 
 Receptor  if 푔표(푛 ) = 0 and 푔푖(푛 ) ≥ 1- not the origin of connection, but the destination 
 Carrier   if 푔푖(푛 ) ≥ 1 and 푔표(푛 ) ≥ 1 - the origin and destination of connection 

For the considered example, the company node 5 is a carrier and acts as intermediary as a seller in 
this network, but also concentrates most of the buying (its nodal-in degree is by far the highest).  

As for the non-directional graph, it is important to find the average nodal-in degree and the average 
nodal-out degree of the members of such a network. The average nodal-in degree, denoted by 푔푒, is 
defined as the sum of all the nodal-in degrees divided by the number of actors of the network, that is: 

푔푒 =
∑ 푔푒(푛 )

푓  

where f is the total number of actors (nodes). Similarly, the average nodal-out degree, denoted by 푔푠 , 
is defined as the sum of all the nodal-out degrees divided by the number of actors of the network, that 
is: 

푔푠 =
∑ 푔푠(푛 )

푓  

The total number of “ins" have necessarily to be equal to the total of the “outs” (the sum of all the 
origins should be equal to the sum of all the destinations). The next formulation is possible: 

푔푠 =  푔푒 =
퐿
푓 

where L is the number of connections of the network. For the network in the above example, the value 
of 푔푒 =  푔푠 = 1,27 , which represents a directional network with low connectivity. 

 

Density of the network. Whilst the degree of the node is important to define the number of 
relationships of a given actor, another important piece of data of a network is its density, in other 
words, the measurement of the number of existent connections. Dense networks are those in which 
there are many connections and sparse networks are those where there are few connections. 
Environments where there are intense business relationships, such as between the countries of the 
European Union form dense networks. 

The measurement of the density of a non-directional network is denoted by ∆ and it is defined by the 
number of connections L of this network divided by the maximum number lmax of connections. 

The expression for the density for the non-directional graph is: 

∆ =
퐿

푓(푓 − 1)
2

=
2퐿

푓(푓 − 1) 
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If the graph has no connections, it is said to be empty and the density is equal to 0. If it has the 
maximum number of connections, then it is said to be full and the density is equal to 1. Figure 10 
exemplifies the empty, the full and the intermediate graph, for a network with four nodes. 

 

 

Fig. 10 Density of different non-directional graphs 

For a directional network, the measurement of the density is denoted by and is defined by the number 
of L connections (arrows) of this network divided by the maximum number lmax.dir. The expression for 
the density for the directional graph is: 

∆ =
퐿

푓(푓 − 1) 

 

Walk, trail and path 

In a network, there may be some type of relationship between two nodes, even if there is no direct 
connection between them, but through a third node, for example, with which both nodes have a 
connection. An example can be: if Mary is a friend of Jon and Jon is a friend of Joyce, it is possible 
that Mary and Joyce get to know each other and also become friends. 

 

Fig. 11 Walks, Trails and Paths in a network 

The various connections function as a kind of network of channels, and as the network becomes more 
complex, the complexity of paths through these various channels becomes greater. In a graph 
representing a network, from one actor to any other one it is possible to trace paths passing through 
various connections. For these paths, there are used the following definitions: 
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Walk – sequence of nodes and connections, starting out from one node and ending at another node, 
passing through the connections which join the various nodes of the route made. Nodes and 
connections can be repeated or not, with the length of the walk being defined by the number of 
connection lines travelled. In the example in Figure 11, the sequence {n6, l8, n5, l7, n4, l6, n7, l6, n4} is 
one walk in which the nodes n4 and l6 are repeated, and the total length of the walk equal to 4. 

Trail – a trail is a special type of walk in which all the connection lines are distinct, but the nodes can 
be repeated. In Figure 11, an example of a trail is the sequence {n5, l7, n4, l3, n3, l1, n2,l4, n4}, in which 
the node n4 is repeated. In this trail the total length is equal to 4. 

Path – the path is another special case of walk in which all of the nodes and connection lines are 
distinct, and there can be no repetitions. One example of path in Figure 11 is the sequence {n6, l8, n5, 
l7, n4, l6, n7}, whose length is equal to 3. 

Note: In a network of relationships these concepts are fundamental for calculating the distances 
between actors, and then to set up, between companies, for example, possible negotiations based on 
mutual relationships. 

If the graph is directional, as in the example in Figure 12, these paths can be interpreted slightly 
differently. The idea of direction has to be attributed and if designating the connections as “arrows”, 
the next measures can be considered: 

Directed walk – sequence of nodes and arrows, leaving from a node and ending at a node, passing 
along the arrows always in the same direction, which link the various nodes of the path travelled. 
Nodes and arrows may be repeated or not, and the length of the directed walk is defined by the 
number of arrows. In the example in Figure 12, the sequence {n7, l6, n4, l4, n2, l1, n3, l3, n4, l4, n2, l2, n1} 
is the directed walk in which the nodes n4 and n2 and the arrow l4 are repeated, and the total length of 
the walk is equal to 6. 

 

Fig. 12 Directed walks, Trails and Paths in a directional network 

Directed Trail – similarly, the directed trail is a special type of walk in which all the arrows of the 
connection are distinct and always in the same direction, but the nodes may be repeated. For the 
proposed example, the sequence {n7, l6, n4, l4, n2, l1, n3, l3, n4, l13, n9} is a directed trail in which the 
node n4 is repeated, and the total length is equal to 5. 
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Directed Path – in this case, all the nodes and connection arrows are distinct, and the arrows are 
always in the same direction, without repetitions. An example of directed path in the previous figure, 
Fig. 12, is the sequence {n2, l1, n3, l3, n4, l13, n9, l14, n10 whose length is equal to 4. 

Note: If for the previous three cases some of the arrows on the path travelled had the opposite 
direction, then the denominations would be semi-walk, semi-trail and semi-path respectively. 

Closed walk 

A sequence is called a closed walk when the walk begins and ends on the same node. There is no 
problem if some lines and nodes are repeated. An example of closed walk in the graph in Figure 11 is 
the sequence {n5, l7, n4, l3, n3, l1, n2, l4, n4, l7, n5} in which nodes n4 and n5 are repeated, and the walk 
begins and ends at node n5. 

Cycle 

A sequence is called a cycle when there are at least three nodes and the start-node is the same as 
the end-one and the connection lines are not repeated. An example of a cycle in the graph in Figure 
11 is the sequence {n4, l3, n3, l1, n2, l4, n4}. The concept of cycle is the same for directional graphs, 
provided that all the arrows point in the same direction on the path travelled. In Figure 12 a cycle is 
defined by the sequence {n2, l1, n3, l3, n4, l4, n2}. 

Semi-cycle 

In a directional graph a semi-cycle sequence is a cycle in which at least one of the arrows points in 
the opposite direction to the others. An example of semi-cycle in the graph in Figure 12 is the 
sequence {n4, l9, n12, l10, n14, l12, n13, l11, n4}. 
 

Searchability and directional connectivity 

In a network, if there is a path between two nodes, this means that these two nodes can establish 
some type of relationship along this path formed by the path, that is, a node can find the other node 
along the path. This possibility of relationship is called searchability.  
 

 

Fig. 13 Types of connectivity in directional graphs 



 
 

17 
 

In a directional graph, searchability can be established at different levels, depending on the direction 
of the arrows along the path. For a node to be able to find the other node in a directional network, 
there are four types of connectivity, as shown in the example of types of paths between 
nodes A and B in Figure 13. These are the four types of connectivity: 

 The nodes A and B have weak connectivity between then when there is a semi-path between them (at least 
one arrow in the opposite direction) 

 The nodes A and B have unilateral connectivity between then when there is a directional path from A to B 
or from B to A between them (all arrows point in the same direction) 

 The nodes A and B have strong connectivity between then when there is a directional path from A to B and 
another directional path from B to A (passing through different nodes and connections) 

 The nodes A and B have recursive connectivity between then when there is a directional path from A to B 
and from B to A passing through the same nodes and connections.  

 

Every directional graph comes within one of these types of connectivity. Their interpretation is:   

 The directional graph has weak connectivity if all the pairs of nodes have weak connectivity 
 The directional graph has unilateral connectivity if all the pairs of nodes are connected unilaterally 
 The directional graph has strong connectivity if all the pairs of nodes have strong connectivity 
 The directional graph has recursive connectivity if all the pairs of nodes have recursive connectivity 

Note: These ideas are important for the analysis of cohesion between the members of a given 
network. If there is weak connectivity between A and B in a business network of sales, the possibility 
of A selling to B is less than if the connectivity were strong. 
 

Connected and disconnected network 

A network is considered connected if there is a path between any pair of nodes of this network, that 
is, if any actor in the network can establish a relationship with any other, even if it means going 
through various intermediate connections and actors. If this is not possible, the network 
is disconnected. 

This concept is very important because it allows one to see if a business relationship can be 
established using a given network, or because it enables one to see which connections could be taken 
out to “disconnect” the network and, for example, the connections of a terrorist network could be 
destroyed, if that were so desired. 
 

 

Fig. 14 Examples of connected and disconnected network 

 



 
 

18 
 

Geodesic 

The shortest path between two nodes is called geodesic, and the length of this path, in number of 
intermediate connections, is called geodesic distance. This minimum distance is very interesting 
because it allows the analyst to see how many connections and how many nodes are intermediaries in 
a relationship between two actors of a network. The geodesic distance between any two 
nodes ni and nj, is noted d(ni, nj).  

If there is no geodesic for any two nodes, that is, if there is no possibility of any path between them, 
their distance is considered infinite and the network will be disconnected. 

For a directional network, the geodesic is considered as the shortest directed path between two 
nodes. Considering that in a directed path all the arrows have to be in the same direction, the 
geodesic from ni to nj will not always be the same geodesic from nj to ni. See an example of this type 
in figure 2.15. The sequence which defines the geodesic from n1 to n3 is {n1, l2, n2, l3, n4, l4, n3}, with 
the geodesic distance d(n1, n3)=3. Whereas for the geodesic from n3 to n1, the sequence is {n3, l5, n1}, 
with the geodesic distance d(n3, n1)=1. 

 

Fig. 15 Examples of geodesic in an undirected and a directed network 

 

Diameter 

Having established the geodesic distances of a connected network, the greatest distance will 
determine the diameter of this network. In the example in Figure 15, the diameter of the undirected 
network is equal to “4”, as the greatest distance is established by the geodesics: 

 d(푛 , 푛 ) = 4  and   d(푛 , 푛 ) = 4 

The diameter for a directional network follows the same principle, considering the greatest directional 
geodesic distance of any pair of nodes of the network. For the directional network in Figure 15, the 
diameter is equal to 4, defined by the geodesic distance from n5 to n3 : 

 d(푛 , 푛 ) = 4 
 
 
 
 
 
 
 
 
 
 

“Cut node” - Cut-point 

A cut-point is a node which if it was taken out, would make the network disconnected, dividing it into 
different “components”. There are very important cut-points, because they can divide the network into 
different and non-communicating parts, which weakens the network considerably. The taking-out of a 
node implies the disappearance of all its connections. As example, if taking-out node n4 from the 
network in Figure 12.10, the result would be as shown below, in Figure 16. 
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Fig. 16 Disconnected network by taking out the cut-point 푛  

The network became fragmented (disconnected) and five sub-graphs or components resulted from the 
original graph. No other cut-point from this network can cause so much damage. Most of the nodes in 
this network are not cut-points (as they do not separate the network into different components). In the 
considered example, other cut-points are n2, n5, n7 and n9. Obviously taking- out another node affects 
the network quite differently than the previous one. This type of study in terrorist or organized crime 
networks has been done to find out which are the most important cut-points that could weaken the 
organization. 

 

Bridge 

The idea of bridge is similar to that of cut-point, but it refers to the connection which if it was taken out 
from the network, would make the network disconnected, dividing it into different “components”. All the 
nodes remain in the network, and just the connection which represents the bridge is taken out, 
resulting in a disconnected network. In the example in Figure 17, line l3 is the bridge. If it is taken out, 
the network becomes two components and nodes n1, n2 and n3 are not paths to nodes n4, n5 and n6. In 
a business environment, the connection which acts as a bridge could be a contract or an agreement. 
The termination of such an agreement could cause isolation, for example, of two groups in the 
business network who would no longer relate to each other. 

 

 

Fig. 17 Disconnected network by taking out bridge l3 
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Cyclic graph and tree 

Every graph which contains cycles can be called a cyclic graph. However, if a network represented 
by this graph has no cycle, it will be called a tree. The tree is a special network because it is weakly 
connected and each connection is a bridge. Any connection, if it is a taken-out, will cause a 
disconnection of the network. For this reason, networks in the form of a tree are not good for the 
business environment and any problem with an actor or a connection will affect the development 
capacity of the network. 

 

Fig. 18 Example of cyclic graph and tree type network 

 

Bipartite graph 

A graph can be considered bipartite if the relationships get established between two sets of actors, 
but with no connections between the actors within the same set. This is a special case of networks, 
and a practical example is in the formation of the network of distance learning relationships. 

Suppose that one set of actors consisting of teacher-tutors and the students are using the tutoring 
tool. The teachers will be in one of the sets and the students in the other, and the connections are the 
various questions and answers. Not all the students establish communication with all the teachers, 
and not all the teachers answer all the students. If there are connections from all the actors in one set 
to all the actors in the other, it will be a fully bipartite graph. The concept is presented also graphically 
below, in Figure 19.  
 

 

Fig. 19 Examples of bipartite graph and fully bipartite graph 
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Graphs with sign and with value 

For each relationship established by a connection in a graph, two further pieces of additional 
information can be included: a sign and a value. The inclusion of a positive or negative sign for a 
connection can show us that a relationship is good or bad. An example of this type of network is a  
graph showing the relationships of affinity between students in a classroom. Usually (+) indicates that 
there is friendship and (–) indicates enmity. 

The inclusion of value can add a number to a connection. An is indicating on the graph the business 
relationship between companies, the value of the connection representing the amount in millions of 
dollars in a sale transaction.  
 

Centrality and prestige 

Two important concepts in a network are the ideas of centrality and prestige of an actor. There are 
various definitions and forms of calculating centrality.  

For a given actor ni, the centrality is denoted as C(ni) and the measure will be given by the degree of 
the node, that is, by the number of connections of this node in the network. Centrality can be also 
considered the measure that gives the indication of power and influence of the individual nodes of the 
network based on how well they are connected. The fundamental measures of centrality are: 
Betweenness, Closeness, and Degree. 

Betweenness measures the number of subjects whom an individual is connecting indirectly, through 
their direct links.  

Closeness indicates how near is a subject to all other individuals in a network, directly or indirectly. 
Closeness centrality is the inverse measure of the sum of the shortest distances between each 
individual and everyone else in the network.  

 

Fig. 20 Example of centrality 

 

Centralization is the difference between the numbers of links of each node in the network divided by 
maximum possible sum of differences. A centralized network will have many of the links dispersed 
around a certain node(s) while a decentralized will have nodes with comparable number of links.  

The concept of prestige of an individual ni is related to the concept of directional networks. The 
centrality of an individual ni , considering the arrows directed towards them (i.e. their nodal-in degree) 
defines his prestige, P(ni), in the network.  
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Other metrics in Social Networking 

 Clustering coefficient is the measure representing the probability of a future link between 
two unconnected neighbors of a considered node.  

 Cohesion represents the degree in which nodes are connected directly among each other by 
cohesive bonds.  

 Radiality represents the degree with which the network of a certain individual reaches out into 
the global network providing content and inducing influence.  

 Reach represents the degree in which any node of a network can reach the other nodes.  
 Structural cohesion measures the minimum number of nodes that would disconnect the 

network or the group if removed.  
 Structural equivalence represents the degree in which nodes share a common set of links 

connecting them to other nodes in the network 

Analysis of network data can be done on different levels: node level  (i.e. centrality, prestige, node 
roles such as bridges, isolates etc.); dyadic level (referring structural distance and reachability, notions 
of equivalence, reciprocity etc.); triadic level (referring aspects of balance, transitivity etc.); subset level 
(i.e. cliques, (cohesive) subgroups, network components etc.); global network level (referring aspects 
of connectedness, diameter, centralization, density etc.).  
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4. Behaviour and Dynamics in Social Networks 
 

Connectedness in social networks implies two aspects: the structural connectivity (which network 
entity is linked to which network entity) and the behavioral connectivity (individual actions affect all 
other entities in the network). This is why, aside the understanding of the network structure, it is 
important to understand the network interaction and behavioral dynamics.  

Both the structural and behavioral levels present high complexity. Considering the behavioral aspect, if 
the entities in the network are actively involved in the considered community, these will appreciate 
their influence and will consider it with their new actions. A fundamental consideration must be the fact 
that community behavior is continuously changing. In any social network, the behavioral shifting and 
evolution is caused by both internal and external factors. The network behavioral models are based on 
the network entities strategic reasoning and behavior, considered in social context and not in isolation.  

Behavioral impact in a network should be considered both from the network and the individual point of 
view: as prior mentioned, an individual action has impact on the behavior or / and structure of the 
entire network and vice versa, the network behavior and evolution has impact on the individual 
behavior.  

Considering the first type of dependency, the network behavior and evolution are influenced either by 
individual characteristics, structural positioning, connectivity activity etc. This type of dependencies is 
described as the selection processes. An exemplification of such dependency is the homophily 
process: the creation of network relationships based on entity similarity.  

On the other hand, networks can affect the individual characteristics and their behavioral development.   
Such dependency is described as influence processes. An exemplification is the assimilation process: 
similarity of individuals that are highly socially connected.  

Influence and selection processes are strongly interdependent. Separating these is difficult as the 
network data is inherently interdependent.  

A future connection of two individuals might depend on their relationship with third-party individuals.   
Not many statistical models can detect such network dependencies. An established approach for the 
analysis of longitudinal network data is the Stochastic actor-based modeling, Snijders [1996]. 
Extensions of this approach can help the simultaneous analysis of selection and influence processes, 
based on the interdependence between these processes - Snijders, Van de Bunt and Steglich [2010]; 
Steglich, Snijders and Pearson [2010].  

Large real-world networks are highly dynamic and exhibit a range of interesting properties and 
patterns. One of the recurring themes in the line of behavioral and dynamics research is to design 
models that predict and reproduce the emergence of such network structures. Research then seeks to 
develop models that will accurately predict the global structure of the network. The following sections 
introduce the concept of structural balance in Social Networks and present specific models for the Link 
Prediction problem.  

Chapter 5 presents a behavioral case study of structural influence based on the centrality and power 
graph theory approach. The technology presented is UCINET, a dedicated tool for social networking 
analysis, the investigation being conducted on the UCINET dataset, Bernard & Killworth Fraternity 
(BFRAT). 

Chapter 6 presents a second study, with focus on the accuracy performance of link prediction models. 
A set of three models are used: Support Vector Machine (SVM), K-Nearest Neighbor and Naïve Bayes 
and the link prediction investigation is done on the DBLP co-authorship dataset using the following set 
of features: sum of papers, weighted sum of neighbors, weighted sum of secondary neighbors and 
weighted shortest distance. 
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4.1 Structural Balance of Social Networks 
 

Social relationships have a profound impact on human development, in all life stages. Such 
relationships are of positive nature (i.e. friendship, collaboration, trust, support etc.) or of negative 
nature (i.e. oppression, dislike, harassment, intimidation etc.). A social network captures all such types 
of relations defined between a finite set of members. Individual characteristics and shared 
relationships change in time and continuously impact the entire community (social network).  

Clearly, the tension executed between every two network entities, be it positive or negative is a 
fundamental aspect in social networking. The framework of this type of analysis is the structural 
balance, which aims to extract and store the relationship information in a clear and structured way. 
The structural balance concept is based on social psychology theories being helped by graphical and 
mathematical representations. The structural balance theory is based in fact on pure mathematical 
analysis. 

The structural balance theory is based on identifying the nature of relationship between two individuals 
by initially isolating them. If these individuals share some level of friendship, support or collaboration, 
their link is marked positive: “+”, else the link is marked negative: “-“. The theory looks at subgroups of 
three individuals sharing a particular configuration of positive and negative values. In fact, there are 
possible four distinctive configuration cases between three individuals A, B, C. These are presented in 
Figure 21 below. 
 

 
 

Fig. 21 Structural balance for sets of three nodes 

 

In such reduced systems, clear conclusion of structural balance can be drawn: 

Case 1: A, B, C are mutual friends. This is a natural situation of three persons that are mutually 
friends. There are no instability sources in such system, therefore the system is balanced. 

Case 2: A, B are friends and C is a mutual enemy. This is also a natural situation between three 
individuals, two of the three are in a relationship of friendship and both dislike the third individual. As 
the system has clear friendship and enemy bindings and therefore no instability sources, this system is 
balanced. 

 



 
 

25 
 

Case 3: A is friend with B and C, but B and C are enemies. In such system there is present, in some 
degree, a psychological stress or instability into the formed relationships: one individual is in a 
friendship relation with two other individuals that dislike each other. The instability source comes from 
the fact that individual A might try changing the negative relation between B and C in positive one or 
might take side and become enemies with one of the individuals B or C. Based on this instability 
reasoning, this system in unbalanced.   

Case 4: A, B, C are mutual enemies. In this type of system there are also present instability aspects. 
The reasoning is based on the fact that two individuals might start collaborating against the third 
individual in the system. In this case a negative link might transform in a positive one. This is why this 
system too is considered unbalanced. 

In conclusion, the structural balance of a sub-system of three individuals connected by three links is 
achieved if: either all three links are positive or else, only exactly one of the links is positive. This 
consideration is known as the structural balanced property and is at the basis of the global structural 
balance of the network.  

The global structural balance of the network is expressed as the problem of eliminating the 
unbalanced triangles. This expression is not convenient due to the involved computation, but it 
represents the basic start point in the concept of  structural balance of social networks. A more mature 
formulation of structural balance in a social network is the Balance Theorem, given by Frank Harary 
[1953]: 

“If a labeled complete graph is balanced, then either all pairs of nodes are friends, or else the nodes 
can be divided into two groups, X and Y, such that every pair of nodes in X like each other, every pair 
of nodes in Y like each other, and everyone in X is the enemy of everyone in Y.” 

Today structural balance is highly relevant in the on-line social media where individual opinion is 
intensively expressed, often in a context of influence. Another example is the international relations, 
representing the relationship between various countries.  

Understanding the mechanism of positive and negative relationships helps the studies of behavior, 
structure and influence in the social field. These are important aspects in managing social or business 
contexts. Research is only starting exploring these fundamental questions, aiming to understand how, 
out of large scale datasets, balance and related theories can bring out knowledge.  
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4.2 Link Prediction Models 
 

Social networks present high dynamics and a continuous transformation by adding new nodes and 
edges. This behavior causes changes in the nature of the social interaction and the structure of the 
network. For various domains it would be a great benefit to be able to understand and therefore 
control the mechanism of evolution of social networks.  

Apart from influence, another fundamental topic in the evolution of social networks is the link prediction 
problem. This subject has captured the attention of various scientists, especially in the artificial 
intelligence sector and data mining.  

Many studies refer business and professional collaborations generated by informal social interactions 
in such networks. Other studies focus on the impact of the social hierarchy in the professional network 
or inferring missing links. It is interesting to notice that most of these studies conclude that effective 
and concrete link prediction methods can be used to analyze social networks so to predict future 
interactions that might help organizations, businesses or investigations. 

The social network analysis proved a significant role in domains as security, terrorism, biology, sales 
and many others. In some of the domains, such as security and terrorism, the type of prediction is of a 
link between groups of individuals that collaborate, but not by an obvious connection. In domains 
similar to sales, a typical type of link predictions regards the potential collaboration based on 
observations of business and informal interests and actions.  

Today, due to the large amount of available social networking data, studies and simulation of different 
nature are possible. These contribute significantly to understanding the properties and the behavior of 
social networks.  
 

4.2.1 Mathematical framework 
 

Consider a social network 퐺 =(푉,퐸), where V is the set of network nodes and E is the set of edges 
between the network nodes, the problem of link prediction is the task to predict how likely a new link 
푒 ∉퐸 will exist between a pair of existing nodes in the network (푣 ,푣 ).  

Often the time dimension is added to the link prediction problem so to measure the growth of the 
network. In this case the discussed problem should be seen as the task of accurate prediction of the 
edges that will be added to the network between two deterministic points in time. 

The link prediction problem addresses four main aspects: link existence, link type, link weight and link 
cardinality. Many link prediction studies concentrate on the problem of link existence - whether a new 
link between two nodes in a given social network will exist in the future or not. The link existence 
problem is extended by the other two problems of link prediction: link weight – the links between 
different network nodes are given different weights and link cardinality – two nodes of a given social 
network are connected to more than one link. The fourth problem, the link type is a more particular 
problem - it refers to possible different roles of the one relationship between the same two nodes of 
the given social network. 

The link prediction problem can be treated with techniques of various natures: statistics, probability, 
graph theory, machine learning etc. Depending though on the approach of analysis, the techniques 
can be classified in three groups:  

 Models based on node similarity – regards the similarity measurement between two nodes  
 Models based on topological patterns - local or global patterns that could define the network 
 Methods based on probabilistic models – a defined model that could abstract the network  
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4.2.2 Models based on node similarity  
 

The models based on node similarity propose measurements of similarity for pairs of network nodes. 
In this context, the task of link prediction is the consideration of new edges between network nodes 
presenting a considerable similarity, usually measured against a threshold. In general, the 
measurement of similarity is either (pre)defined or learned (using machine learning techniques), 
depending on the studied domain or the type of network. 

According to Lin [1998] the similarity between two network nodes (푣 ;푣 ) can be defined by the 
percentage of the common information in the total set of properties characterizing the two nodes. The 
measurement is applicable in case of a probabilistic model for the studied case: 

푠푖푚 (푣 ;푣 ) =  
푙표푔  푃 ( 푐표푚푚표푛(휗 ;휗 ) )
푙표푔 푃( 푑푒푠푐푟푖푝푡푖표푛(휗 ;휗 ) ) 

where 휗 , 휗  are the sets of properties characterizing the two nodes 푣 ;푣 . 

Another similarity distance measurement was given by Bennett and Li [2004] and refers to the 
Kolmogorov complexity measurement between the set of properties of the two nodes (푣 ;푣 ). The 
Kolmogorov complexity measurement of a binary string ˅ is defined as the length of the shortest 
program for an Universal Turing Machine (UTM) to correctly reproduce the considered string, ˅. 
Consider ˅ , ˅  the binary strings corresponding to the set of properties of the two nodes, for a given 
UTM,  the Kolmogorov complexity measurement 퐾(˅ |˅ ) is the length of the shortest program for the 
UTM to output ˅  when given ˅  as input. In this context, the similarity measurement is formulated as: 

푑푖푠 (˅ ;˅ ) =  
푚푎푥 { 퐾(˅ |˅ ), 퐾(˅ |˅ ) }

푚푎푥 { 퐾(˅ ), 퐾(˅ ) }   

The disadvantage of such predefined similarity measurements is that they do not consider the network 
context. For this reason, the adaptive similarity functions are frequently learned using supervised 
learning techniques. Some of the most representative techniques are: Binary classifiers, Kernel 
methods and  Statistical Relational Learning (SRL). 
 

Binary classifiers are proposing training a binary classifier to determine the similarity between two 
network nodes, based on their content information. A mapping feature function is used to extract the 
content features of the two network nodes in a single vector 푎(푣 ;푣 ). Considering a simple linear 
regression, the objective of the function is learning a set of parameters 푤 that can indicate best 
similarity. For a candidate node pair, the link prediction problem is reduced to: 

푙푖푛푘 (푣 ;푣 ) =   퐷표푒푠 퐸푥푖푠푡,                   푖푓 푤 ′푎(푣 ;푣 ) > 0
퐷표푒푠 푁표푡 퐸푥푖푠푡, 푖푓 푤 ′푎(푣 ;푣 ) < 0

 

 

Within the set of pairs not selected as candidates (negative examples), it is possible and should be 
considered that new links might exist. Another conclusion is that in networks with few or sparse links, 
the number of candidates and non-candidates pairs is considerably unbalanced.  

The binary classifiers are best applicable when nodes of a certain class have many features in 
common, else finding pairs is very difficult and the consequence is a high recall.  
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Kernel matrices methods are proposing an alternative to the binary classifiers that suit also the case 
when the set of common features between nodes of the same class is reduced. One approach is 
capturing the content information of the network nodes in Cartesian products for pairs of features 
< 푣 ; 푣 >:  

푎 
 ,  =  (푣 푣 , 푣 푣 , … , 푣 푣 ,푣 푣 ,푣 푣 , … , 푣 푣 ,푣 푣 , … ,푣 푣 ) 

The problem with this approach is that the dimension of the feature set is 푛 . Clearly, the involved 
computation is not practical in the case of networks with a large set of node-features. Also, conducting 
learning in a high dimensional feature-space is challenging and may lead to over-fitting. 

A better solution is the approach of Support Vector Machine (SVM) learning algorithms, suggesting 
pairing nodes as inner products < 푣 ;푣 > and not considering the nodes individually. In this way, by 
using kernel functions 퐾(푣 ;푣 )  for the defined inner products, the challenge of classification in higher 
dimensional feature-space can be solved.  Oyama and Manning [2004] suggested the next kernel, for 
any instance of node-pairs in the original feature-space:  

퐾 (푣 ,푣 ) =  퐾 푣 ,푣 , 푣 ,  푣 =< 푣 ,푣 >< 푣 ,푣 >  

when (푣 ) =  푣 ,푣  and (푣 ) =  푣 ,푣  are instances of feature-pairs of the considered nodes. 
The proposed kernel is actually a tensor product between two linear kernels representing the inner 
products.  

The link prediction problem considers the space of node-pairs as input space of nodes and the 
similarity between such pairs is defined by the explicit form of the proposed kernel. A high value of the 
kernel indicates high node-similarity. This approach has a wide applicability, especially in prediction of 
rating or collaborations. One specific domain of collaboration is the scientific co-authorship, and link 
prediction in such a community represents the subject of the second study presented in the paper.  
 

Statistical Relational Learning (SRL) incorporates a variety of approaches and techniques. The 
nature of these methods can be statistical, probabilistic,  logic-based algorithms etc. An established 
approach suggested for link prediction was established by Popescul [2003] and suggests using 
aggregation of relational features for measuring similarity. Various classification algorithms have been 
proposed and studied, many known from other disciplines such as data mining and machine learning. 
A particular approach is translating the link prediction problem in an optimization problem by mapping 
the network nodes to Euclidean spaces.  
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4.2.3 Models based on topological patterns 
 

This approach is focused on identifying global or local topological patterns in the entire network or 
partial network. For fundamental concept in this approach is scoring the weight of the link between the 
nodes of a pair (푣 ;푣 ) , in rapport to the determined topological pattern(s).  

Depending on the leading element in determining the topological patterns, there can be distinguished 
three types of topological patterns approaches: Node based, Path based or Graph based. 
 

Node based approaches take into consideration the neighborhood information of a node, for example 
the set of first neighbors that a node has. One consideration in this area is that two network nodes 
would more probably establish a link if they have a large number of common neighbors.  

In the proposed link prediction study in the co-authorship world, due to the nature of the domain, such 
information is relevant and important. Scientists and researchers tend to set new collaboration with 
colleagues in the same area, based on the recommendations received from their collaboration 
partners, the first neighbors. In other words there is a high probability that a scientist will collaborate 
with his second neighbors. This is one topological feature considered in the algorithm comparison. 

A number of measurements of this nature have been already formulated and standardized. These 
intend to define a scoring function for a potential link between two nodes 푣 ;푣 , most often based on 
structural considerations such as the number of direct neighbors a node has, noted 훤(푣 ) and 
respectively 훤 푣 . The most common node-based scoring functions are:   
 

 Common neighbors method – proposes a scoring function of the link between two nodes 
(푣 ;푣 ) based on the number of common neighbors these nodes share: 

푠푐표푟푒 (푣 ;푣 )   = |훤(푣 )∩ 훤(푣 )| 
 
 

 Jaccard coefficient – proposes a scoring function of the link between two nodes 
(푣 ;푣 )  based on the ratio between their common neighbors and the total number of  their 
neighbors: 

푠푐표푟푒 (푣 ;푣 )  =
|훤(푣 )∩ 훤(푣 )|
|훤(푣 )∪ 훤(푣 )| 

 
 

 Adamic/Adar coefficient –  proposes a scoring function of the link between two nodes 
(푣 ;푣 )  based on the number of their common neighbors, weighting more those neighbors 
푥 ∈  훤(푣 )∩ 훤(푣 ) that the two nodes share least with other nodes in the network:   

푠푐표푟푒 (푣 ;푣 )  =
1

푙표푔 |훤(푥)| 
 ∈ ( )∩ ( )

 

 

 Preferential attachment method – proposes a scoring function of the link between two 
nodes based on the premise that node 푣  will receive a connection from node two 푣  with a 
probability proportional to the number of neighbors of 푣 ,  |푙표푔 훤(푣 )|. And vice versa: 

푠푐표푟푒 (푣 ,푣 )  = | 훤(푣 ) | | 훤(푣 )| 
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Path based approaches take in consideration the path connectivity information between two network 
nodes. The main idea of this type of approaches is that the more indirect paths are connecting two 
nodes the higher the possibility that a link will connect them directly. Many studies contributed to the 
theory of shortest-path distance based on analysis of the entire set of indirect links connecting two 
network nodes.  

As in the case of the node similarity approach, a number of measures based on the path similarity 
have been already established. The main ones are: 
 

 Katz measure  - proposes a scoring function of the link between two nodes based on the sum 
of the total number of paths weighted according their length. If the 푝푎푡ℎ푠 ,

( )  denotes all paths 
of length l between two network nodes (푣 ;푣 ) then the formulation of the Katz measure is:  

 

 푠푐표푟푒 (푣 ;푣 )   =  훿 | paths ;  
( )  |

∞

 

where 훿 > 0 is a parameter of the predictor. 
 
,  

 Hitting time measure – proposes a scoring function of the link between two nodes based on 
the required steps to reach one of the nodes, 푣  when starting from a certain node 푣  and 
when using a random walk to move through the neighborhoods or the considered start node. 
The required number of steps is also called hitting time and is often notated with 퐻 ; . It is 
important to realize that this measure is not always symmetric. This is also why often an 
extension of the hitting time measure is used, the commute time:  퐶 ; =  퐻 ; +  퐻 ; .  The 
scoring function 푠푐표푟푒 (푣 ;푣 )  is obtained by negating one of the two measures, hitting time or 
commute time.  
 

 PageRank measure – proposes a scoring function of the link between two nodes (푣 ;푣 )  that 
measures the probability with which node 푣   is present in a random walk that is returning to 
푣  . The measurement uses a parameter 훿 ∈ [0,1] considering that, at every step, the 
stationary probability of 푣   in the walk is 훿 and the probability of a move to another random 
neighbor is 1− 훿. 
 

 SimRank measure – proposes a scoring function of the link between two nodes (푣 ;푣 )  
indicating weather the similarity of the considered two nodes is shared by also with other 
neighbors of theirs. The measure is in fact a fixed point of the previous recursive formulation 
defined by the condition that for a parameter 훿 ∈ [0,1] the scoring function 푠푐표푟푒 (푣 ;푣 ) = 1.  
In this context, the SimRank measure is formulated as: 

푠푐표푟푒 (푣 ;푣 )   = 훿 
∑ ∑ ( , )∈ ( )∈ ( )

| ( )|| ( )|   
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Graph based approaches consider that global structure patterns of a network can be captured by 
low-rank matrices and propose an approximation of the adjacency matrix M of the graph data G by a  
푀  product of such matrices. The link prediction problem is in this case a score function 푠푐표푟푒 (푣 ;푣 ), 
where (푣 ;푣 )  is an entry in the product matrix 푀 . Using for prediction 푀  and not M can be 
considered a noise-reduction technique that generates most of the structure in the matrix, with a more 
simple representation. 

A known approach of approximating the adjacency matrix M with 푀  is minimizing the sum-squared 
distance. As M represents the data of graph G, any link prediction problem could be formulated as 
finding a low-rank approximation 푀 for M. A representative example is Collaborative Filtering (CF), 
which is the problem of user interest prediction, considering patterns in prior preference observation. 
The adjacency matrix 푀 ∈  ℝ ∗  captures such observations of user preference for items as ratings. 
Methods of matrix factorization assume that the user-item ratings in M are determined by a reduced 
number of factors corresponding to the user and the item. Consider two low-approximations matrices 
푂 ∈  ℝ ∗  and 푃 ∈  ℝ ∗  to approximate M then 푀 = 푂푃′ where  k  is the rank of the resulted 
approximation. 푀  minimizes efficiently the sum-square distance to the target rating matrix M as: 

ʆ ( 푂,푃 ) =  (푀 ,
,

−  ( 푂푃′) , )  

The definition of the low rank matrices O, P is based on the leader component(s) in the adjacency 
rating matrix M. The rank of the defined approximation matrices, k, is in general smaller than the rank 
of the rating matrix.  

An extended formulation of the low rank approximation was given by Srebro [2004], the Maximum 
Margin Matrix Factorization (MMMF), considering the case of collaborative prediction where only some 
entries in M  are based on observation and 푀 , minimizing the sum-squared distance to these M 
entries, can no longer be defined in terms of a singular value decomposition. margining the norms of 
the low rank matrices: 

ʆ ( 푂,푃 ) =  
1
2 ‖ 푂 ‖ +  ‖ 푃 ‖  +  휆 (푀 , −  ( 푂푃′ ) , )

,

 

where ‖ . ‖  denotes the Frobenius norm of the low-rank approximation matrices O and P. By 
considering the two low-rank matrices identical, the MMMF formulation can be generalized for a 
normal form of the graph.  

Another method of determining global topological patterns is Graph Factorization Clustering (GFC), 
formulated by Yu et al.[2005]. The fundamental concept of this method is detecting hidden clusters 
based on a random walk approach that could bridge arbitrary node pairs. For a bipartite graph G = (A, 
B, M) - where A= {푎 } , B= {푏 }  are the two disjoint set of nodes corresponding to users, 
respectively items, M = { 푚 } – represents the preference adjacency matrix, with 푚 ≥ 0 the weight 
of a user-item link (푎 ,푏 ). The GFC method formulates the similarity between a pair of nodes (푎 , 푎 ) 
as:  

푤 =  
푚 푚
휆  

= (푀훬 푀 )     

where 휆 =  ∑ 푚  is the node degree of 푏 ∈ 퐵 and 훬 = 푑푖푎푔(휆 , . . , 휆 ). Considering the node 
similarity formulation 푤  in the context of Markov random walks on graphs, 푤  represents then a 
quantity proportional to the stationary probability of direct links between the pair of nodes (푎 ,푎 ) 
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denoted 푝 (푎 , 푎 ). In the case of a bipartite graph, the nodes {푎 }  are not linked directly (the user 
set), needing to pass through nodes of B (the item set).   

Considering 푑 = 푝(푎 ) the degree of a node and denoting the probability of conditional transition with 
푝 푎 푎 , the stationary probability can be written as:  

푤 =  푝 푎 ,푎 =  푝(푎 ) 푝 푎 푎 =  푑 푝 푎 푏  푝 푏 푎 =  
푝 푎 , 푏  푝 푏 ,푎

휆  

If the number of user nodes is greater than the number of items (n>m) then 푝 푏 푎  represents the 
likelihood that the data point i belongs to item node p.  

Yu et al.[2005] proposed also an approximation of a general data graph G = (V,E) by a bipartite graph 
G= (A, B, M) so to define a soft clustering structure where the node set V = A and the adjacency 
matrix E are observed, B represents the set of hidden clusters and M is the node-cluster association to 
be solved. Denoting 퐻 = 푀훬  where 훬 ∈  픻 ∗ ,  픻 ∗  representing the set of m x m diagonal 
matrices with positive diagonal values, the graph approximation can be found minimizing the 
divergence distance 푙 between the matrices: min ,  푙(퐸,퐻훬퐻 ) s.t. ∑ ℎ = 1. 

The diverge distance between two matrices X and Y was defined as:  

푙 (푋,푌) =  (푥  log
푥
푦 −  푥 +  푦 ) 
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4.2.4   Models based on a probabilistic model  
 

The fundamental concept of this approach is to learn a model based on a given network based on 
certain strategies of optimization such as Maximum Likelihood (ML) and Maximum a Posteriori (MAP). 
Consider a network graph G = (V,E) and 휕 the set of parameters of the learned model, the candidate 
future links 푙 ,  are defined as variables in probabilistic models and can be defined as: 푃 푙 , 휕).  

In this approach, three significant sub-categories of models are: Probabilistic Relational Models 
(PRM), Bayesian Relational Models (BRM) and Stochastic Relational Models (SRM). The first two 
categories are based on specific database structure representations: the PRMs are corresponding to 
the Relational Model and the BRMs, defined on the Directed Acyclic Probabilistic Entity Relationship 
(DAPER) framework, are corresponding to the Entity-Relationship Model. 
 

Probabilistic Relational Models, different than the classical graph models, propose a set of three 
graphical models for representing the network relational data: data graph ( 퐺 = (푉 ,퐸 ) ), model 
graph ( 퐺  = (V , E ) )  and inference graph ( G = (V , E ) ).  The original application of these models 
was in the problem of attribute prediction for relational data. The probabilistic relational models reduce 
the link prediction problem to the task of prediction of the existence of attributes for potential new 
network links. Therefore, with the PRM framework, the link prediction problem requires setting up an 
<exist> attribute.  

The data graph 퐺 = (푉 ,퐸 )  contains the network information as the set of nodes, 푣  ∈ 푉 , and the 
set of links defined between these nodes, 푒 ∈  퐸 . Each node and link have associated a type 푡  ∈  푇: 
풯(푣 ) =  푡 and 풯(푒 ) =  푡  and implicitly by a set of attributes corresponding to this type, 푍 =

(푍 , … ,푍 ). As the PRMs consider a joint probability distribution over the network data information 

(attributes), in the given context, this can be formulated then as: 

푧 = 푧 : 푣 ∈ 푉 ,풯(푣 ) =  푡 푧 : 푒 ∈ 퐸 ,풯(푒 ) =  푡  

The model graph  (퐺 = (푉 ,퐸 )) has the purpose to present the dependencies between the type 
attributes 푍 characterizing the set of network nodes 푉 . There can be probabilistic dependencies 
between attributes of the same type or different types. The model graph ties together the network 
entities with the same type as well as the attributes of these entities. In this way, a decomposition of 
the data graph per type can be achieved, this leading to a joint model of type attributes dependencies. 
Aside the structure of dependencies between the defined type attributes, a second component of the 
model graph is the Conditional Probability Distributions (CPD) associated with the network nodes . 

The inference graph (퐺 = (푉 ,퐸 )) is generated based on the prior two models 퐺  and 퐺  through a 
process similar to the one used by the Hidden Markov Models (HMM) to instantiate sequence models. 
In this process, the structure of 퐺  is defined based on the 퐺 and 퐺 , with the particularity that for 
each node-attribute pair in 퐺  a local copy of the correspondent CPD from 퐺  is made in 퐺 .  

The PRMs differ among them mainly in the definition of the model graph 퐺 , the learning models and 
inference procedures. A number of Probabilistic Relational Models are next introduced: 
 

 Relational Bayesian Networks (RBN) use the object oriented approach for extending the 
Bayesian networks concept. The model graph ( 퐺 = (푉 ,퐸 ) ) in this case is a Directed 
Acyclic Graph (DAG) representing the joint distribution over the network entity type attributes 
by a set of CPDs. A CPD corresponding to an attribute Z is specified by the likelihood 
푃 푍 푝푎(푍) , where 푝푎(푍) represents the value of the parents of Z. In general though, a 
network object is characterized by a set of attributes (푍 ,푍 , … ,푍 ), the DAG and CPT 



 
 

34 
 

specifying the Bayesian network and representing the distribution for the n- dimensional 
random attributes as: 

푃(푍 ,푍 , … ,푍 ) =  푃 (푍 |푝푎(푍 )) 

Corresponding to the dependencies in the DAG structure, the joint probabilistic distribution 
can be expressed as a factorization of the following form:  

푝(푧) =   푝(푧
: ( )

|푝푎 ) 푝(푧 |푝푎 )
: ( )∈∈

 

where 푣  ∈ 푉 are the network nodes, 푒 ∈  퐸  are the set of links defined between these 
nodes, 푡  ∈  푇 are the set of types associated to the network nodes and links: 풯(푣 ) =  푡 and 
풯(푒 ) =  푡 . Each 푡  ∈  푇 is defined by a set of attributes 푍 = (푍 , … ,푍 ). 

The structure learning problem in a Bayesian network is similar to searching the optimum in 
the space of all DAGs. RBNs use closed-form parameter estimation techniques, helping the 
structure learning. The learning methods for RBN are similar to the ones used for Bayesian 
networks, the efficiency of such parameter learning techniques representing the strength of 
this approach.  

For reasons of simplicity, accuracy and efficiency, the Relational Bayesian Networks propose 
a belief propagation inference.  
 

Relational Markov Networks (RMN) extend the concepts of conditional Markov Networks for 
relational data. The model graph in this case is an undirected graph ( 퐺 = (푉 ,퐸 ) ) and 
represents the joint distribution over the attribute z as a set of potential functions 흓 =
{휙  | 퐶 ∈ 푪},  where 퐶  ∈ 푪 is a set of templates of relational cliques specified by a RMN 
model for defining all cliques. For a graph G, a clique is a set of nodes Vc in G, not necessarily 
maximal (can be also one single node), such that each Vi, Vj ∈ Vc is connected by an edge in 
G. The combined probabilistic model for a set of variables Z is:  

 

푝(푍) =
1
푁  휙 (푧 )

∈  ∈푪

 

where N is a normalization constant and 퐶  represents all instantiations of the set of clique 
templates, C. 
 
The RMN models extend the learning techniques of the Markov networks with an approach of 
parameter estimation “maximum-a-posteriori" using Gaussian priors. The approach considers 
predefined clique templates, reducing the prediction problem to optimizing the potential 
functions 흓 = {휙  | 퐶 ∈ 푪}. With RMN models, the learning efficiency is not as high as in the 
case of RBN (the structure is not defined nor improved by learning) but this category of 
models presents flexible and detailed representations.  

Similar to RBN models, in this case too, a belief propagation approach is used as inference 
procedure. 
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 Relational Dependency Networks (RDN) propose an extension of the dependency networks 
for relational data. The model graph in this case is a bi-directed graph ( 퐺 = (푉 ,퐸 ) ), 
presenting a set of CPDs. RDN models try to maximize the pseudo-likelihood for each variable 
z independently. For a considered graph data 퐺 , the pseudo-likelihood PL is formulated as 
the product over network item types 푡휖푇, the set of type attributes 푍  and the nodes 푣  and the 
links 푒  of the considered type:   

푃퐿(퐺 ;휕) =  푝 푧  푝푎 ;  휕
: ( )

) 푝 푧   푝푎 ;휕)
: ( )

 

where 휕 is global the set of parameters of the learned model and 푝푎  represents the value of 
the parents of z. 

In this approach, there are used specific queries to define the relational neighborhoods. The 
learning algorithm used by the RDN models takes in consideration these queries, on one hand 
for structuring the learning and on the other hand for the parameter estimation. Different than 
RBN and RMN models, the CDPs of RDN models do not need factoring over the data model, 
being considered that for an attribute 푧  the parent values are conditioned 푝푎 , independent 

of the fact that the parent values might have been conditioned by the considered attribute in 
their CPD estimation. The downside of the approach of independent CPD learning is that it 
does not lead with certainty to a consistent joint distribution.  

In what concerns the inference approach, the RDN models propose the Gibbs sampling 
technique. 
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Bayesian Relational Models are based on the Directed Acyclic Probabilistic Entity Relationship 
(DAPER) framework, a probabilistic framework defined for the Entity-Relationship database model 
(Heckerman et. al [2004]). The framework proposes the modeling of data in specific classes: entities, 
relationships, arcs, attributes, constraints and local distribution. Classes are connected by dashed 
lines. For link prediction, the entities and relationship classes are given equal importance. In real-world 
it is often encountered that in the defined relationships, one part is defined with certainty and the other 
part presents uncertainty. In these cases, uncertainty referencing is used.  

A Bayesian approach is applicable to relational modeling as it proposes a clear representation of 
parameters and hyper parameters, not at global level, but at network component level (nodes and 
relationships). This approach supports the Hierarchical Bayesian Framework (HB), structure that 
centers the parameterization of the prior distribution on the consideration that the prior distribution 
should represent both the prior belief and learned prior. The DAPER framework is most often 
considered in the context of a Hierarchical Bayesian Framework, in either a parametric or a non-
parametric form. 

The parametric form, Parametric Hierarchical Bayesian Relational Mode, is applicable in cases when 
the individual parameterization of network entities can be assumed to derive from a common prior 
distribution which can be learned and shared globally by the network entities. 

Often the parameterization of prior belief and learned prior are different distribution types and therefore 
a non-parametric prior distribution presents more flexibility. This model is knows as the Non 
Parametric Hierarchical Bayesian Relational Model and is based on specifying the prior distribution as 
a sample from a Dirichlet Process (DP), seen as a generalization of the Dirichlet distribution, infinitely-
dimensioned.  

Xu [2005] formulated the Dirichlet Enhanced Relational Learning Model (DERL)  as: 퐺   ~ 퐷푃(퐺 ,훼 ), 
a sample from a DP where the base distribution 퐺  presents uncertain prior belief and 훼 ≥ 0 
represents the parameter reflecting the prior belief certainty. The flexibility of this approach lies in the 
fact that a multinomial parameter 휕.| ,  can be expressed as samples from the 퐺  prior, when this is 
rich:  휕.| ,  ~ 퐺 .  

A relational learning model is expected to predict new entities and relationship attributes based on the 
already defined relationship attributes. In non-parametric models, learning is based on a sampling 
approach such as Gibbs, Polya urn, Chinese restaurant etc.  

A generalization of the nonparametric DERL model is the Infinite Hidden Relational Model (IHRM), 
introduced as well by XU et al. [2005], which combines the Hidden Relational Model with a DP Mixture 
Model. The DP Mixture Model aims to determine in an organized manner the appropriate number of 
latent states by embedding an infinite number of DP mixture models, which based on the considered 
data, are limited automatically to a finite number of mixture components.  

A challenge in the relational learning the large number of features that might characterize an attribute. 
A solution is capturing information in latent variables so that information can be distributed at global 
level in the network and the need of extensive structural learning is reduced. From this perspective, 
the Hidden Relational Model can be considered as a generalization of Hidden Markov Models (HMM) 
using hidden Markov random fields. 

A second particular nonparametric model is the Infinite Relational Model (IRM) proposed by Kemp et 
al. [2006], very much alike IHRM, though independently formulated. The main difference between the 
two models is that IHRM is able to define a CPD for an attribute based on structural consideration 
(considering its structural parents) and IRM, by modeling attributes as unary predicates, represents 
the CPD in a logical binary from.  
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Stochastic Relational Models propose a Gaussian Process (GP) framework based on the 
consideration that, for prediction tasks, the training models using a discriminative approach perform 
better that the generative models. The pioneers of this framework are Yu and Chu. The principal of 
Stochastic Relational Models is defining a GP for each entity type and then using a tensor composed 
by the set of such defined GPs for modeling the stochastic network link structure. The approach 
considers that the candidate links are local derivates of a latent relational function: 휏 ∶  푈 푋 푉 →  퐸. A 
candidate link 푙 ,  is dependent on its correspondent latent value 휏 ,  and is modeled by the probability 
푝(푙 , |휏 , ). The candidate links introduce a set of Stochastic Relational Processes (SRP) defined on 
푈 푋 푉, generating the function 휏 via the tensor interaction of two GP kernel functions, one defined on U 
and one defined on V (U, V could have infinite number of network entities). The SRPs are described 
by a set of two hyper parameters 휎 =  휎 ,휎  , corresponding to the GP kernel functions on U, 
respectively V.  

In this context, the Stochastic Relational Models (SRM) define a Bayesian-prior for latent variables 휏, 
denoted 푝(휏|휎). For a set of candidate links C, the marginal probability is then formulated as:  

푝(퐿 |휎) =  푝(푙 ,
( , )  

휏 ,  푝(휏|휎) 푑휏,               휎 =  휎 ,휎  and 퐿 = {푙}( , )  

By estimating the hyper parameters 휎 =  휎 ,휎  with the maximum marginal probability, the link 
prediction problem is realized by marginalization:  푝(휏|퐸 , 휎). This type of prediction is similar to 
general GP regressions, with the difference that the GP approach makes use of a set of hyper 
parameters. With the same constraint, the GP approach can be compared to a classification task.  

A challenge of the approach is the scaling of GP inferences. Such attempts, due to the cubic 
complexity of GP inference, present computational risks even for networks of reduced size. If 
considering a network graph G = (V, E), where V represents the set of network nodes and E 
represents the set of links between these nodes, the size of observations of missing links scales in 
휃(푉퐸). GP inference has the computational complexity cubic to the missing data size, 휃(푉 퐸 ), an 
extremely complex computation. 

A solution for this problem is given by the Stochastic Relational Process (SRP). This approach starts 
from the probabilistic model which considers that the link candidate solution is generated by the latent 
function 휏 ∶  푈 푋 푉 →  퐸 following the GP process 퐺푃(푢,퐾) where u is the mean function and K is the 
kernel function between network links. Considering two network links: (푣 ,푣  )  and (푣 , 푣′  ), the K 
covariance function can be expressed depending on the other two kernel functions,  휀 ,휗, defined on U 
and V:    퐾 (푣 ,푣  ), (푣′ ,푣′  ) =  휀 (푣 ,푣 ) 휗 (푣 ,푣  ).  

The link structure dependency can be expressed by node dependency. In this way, based on a 
similarity notion ensured by the kernel function, if considering two pair of similar nodes: 푣  with 푣′  and 
푣  with 푣′ , then also 휏(푖, 푗) is similar with 휏(푖′, 푗′). The edge descriptive function 휏  can be defined thus 
by a factorization of two node descriptive functions which are samples of the priors: 퐺푃(0, 휀) and 
퐺푃(0, 휗). In this way the computational complexity of the GP is of range 휃(푉 + 퐸 ), a significant 
complexity reduction.  

A second approach of improving the GP scaling complexity is based on a link descriptive covariance:  

퐾 (푣 ,푣  ), (푣′ ,푣′  ) =
1
√2

퐶 푣 ,푣 퐶(푣 ,푣  ) +  퐶(푣 푣  ) 퐶(푣 ,푣  ) ,   푤ℎ푒푟푒 퐶(푣 ,푣  ) = < 푧 , 푧 > 

This approach is very similar to the previous one presented, based on a node descriptive covariance. 
With this approach the computational complexity of the GP is of range  휃(휌 + 휌 |핆|),  where |핆| 
represents the input network links and 휌  represents a small value.  
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4.2.5 Conclusion  
 

The problem of Link Prediction can be approached in from various perspectives. This paper reviews 
the most significant link prediction models according to three perspectives: node similarity, topological 
patterns and probabilistic models. 

Prediction models based on node similarity propose measurements or learning techniques of the 
similarity of two network entities. The prediction task is in this case based on the similarity distance.  

Prediction models based on topological patterns focus on local or global patterns in the network data. 
In this approach, the prediction task depends on the determined or learned patterns.  

Eventually, the prediction models extending the probabilistic model intend to capture the network data 
in a compact object oriented structure. There are two categories of models within this approach: 
graphical models such as the frameworks: Probabilistic Relational Models (PRM) and Directed Acyclic 
Probabilistic Entity Relationship (DAPER)  or discriminative models such as: Stochastic Relational 
Models (SRM). In this case, the prediction task is based on the probabilistic distribution (i.e. joint, 
CPD, posterior) determined with the help of a learning model. These models are robust and accurate, 
but present the disadvantage of extensive computation. Recently the most attention is given to 
relational modeling. The main reason is that this approach provides a mean to capture any network 
informational data. More, node and link regeneration is possible using a learned model. 

 An overview of the advantages and disadvantages of the presented models is given in Table 2, 
below. 

Approach Advantage Disadvantage 

Node 
Similarity 

Predefined  Simple Exclude of network context  
Supervised learning Supervised learning Classification imbalance 

Topological 
Patterns 

Node based Simple Mainly local considerations  
Path based More detailed Mainly neighbourhood considerations  
Graph based More detailed Mainly global considerations 

Probabilistic 
Model 

PRM Factorization Parameterization 
Bayesian DAPER Nonparametric Computational complexity 
SRM Nonparametric Computational complexity 

 

Table 2 Comparison of the LP problem approaches 

Within the presented approaches, a variety of techniques are applicable for the link prediction 
problem. The nature of these techniques are disciplines such as machine learning, stochastic 
optimization, graph theory, probabilistic models etc.  Often mixed models are formed; combining these 
techniques as well as, due to domain correlation, a technique might apply within different approaches.  

Unfortunately the study of social networks and their evolutions is community dependent and is done in 
isolation. Therefore a major interest in this field is the study of link prediction in a dynamic social 
network as well as mechanism of knowledge transfer between different social networks. 

Considering the various models presented, the choice of models supporting the link prediction problem 
is wide. A current research interest is to identify the best fitting models and their correspondent tuning 
for certain types of analysis. For this purpose, the case study presented in Chapter 6, proposes an 
accuracy comparison of three algorithms: Support Vector Machine (SVM), K-Nearest Neighbor and 
Naïve Bayes, for the co-authorship link prediction problem, based on the DBLP dataset. The study is 
specific for the particular set of features applied to the three algorithms: sum of papers, weighted sum 
of neighbors, weighted sum of secondary neighbors and weighted shortest distance.    
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5. CASE STUDY 1: Influence in Virtual Communities 
 

Due to impressive technological progress, virtual communities involve today millions of individuals. 
Most of these individuals integrating successfully such activity into their daily practices. Aside their 
significant role in exceeding geographical boundaries in the individual interaction, virtual communities 
are the most valuable source of data on human behavior. The accessibility of such data supports the  
technological and scientific progress. Knowledge is gathered by explorations of individual profiling, 
relationship nature, patterns of interaction, arising interests, trends, influence, patterns of technology 
usage, etc. 

In the competitive business and social contexts we currently take part of, influence and leadership play 
an imperative role. Leadership is no longer resumed to the traditional face-to-face interaction, this 
concept includes nowadays elements of influencing others at a distance, on various virtual platforms. 
Both traditional and modern interaction share though the same concept: a leader is an active agent 
interpreting content for the lower-end users and influence is accomplished via special techniques, 
knowledge, personality or/and other uniqueness. Such agents are seen trustworthy and non-purposive 
on both platforms and today they have considerable more influence than media.  

For any business field, it is therefore critical to grow and identify such players. There are three aspects 
that need to be considered when identifying an influential actor in a social network:  who one is 
(identification); what one knows (his competence); who one knows (his positioning in the global 
network). Logistically it is not hard to advance some standards for such leaders, the challenge lies 
though in the fact that power and influence vary continuously within the members of a community.  

In very large networks, due to such high dynamics, it is impossible to monitor, track and measure 
influence players and patterns at all times. Today there is a fair large choice of software tools for social 
networking analysis and analytics. Most of these software packages facilitate quantitative or qualitative 
analysis of any type of network, through numerical and/or visual representation. Network features 
defined at various levels (i.e. node, dyads, triads, node links, groups or globally) are supporting such 
analysis. 

This paper presents an influence study based on the UCINET dataset Bernard & Killworth Fraternity,  
according to the fundamental concepts of centrality and power in social networking: degree centrality, 
betweenness centrality and closeness centrality. The technology used in this study is the UCINET 
software network analysis software, a program developed by Steve Borgatti, Martin Everett and Lin 
Freeman. The study proposes the exercise and comparison of six measures: Freeman Degree 
Centrality, Bonacich Degree Centrality, Freeman Betweenness Centrality, Flow Betweenness 
Centrality, Path Distance Closeness Centrality and Eigenvector of Geodesic Distances Closeness 
Centrality.     

The UCINET software package works in tandem with the freeware program NETDRAW for graphical 
network representations. NETDRAW is installed automatically with UCINET.   
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5.1 Data   
  

The proposed influence study is based on the UCINET dataset - BFRAT (Bernard & Killworth 
Fraternity). The data describes interactions among the students of a fraternity at a college in West 
Virginia, over a period of five days. The dataset gathers both observed behavior information (BKFRAC 
matrix) and cognitive (recall) information (BKFRAC matrix). 
 

Dataset BFRAT 58 nodes 

Two 58 X 58 
matrices 

BKFRAB symmetric, valued 1934 ties 
BKFRAC non-symmetric, valued (rankings) 3306 ties 

 

Table 3 Description of the BFRAT dataset 

 

BKFRAB matrix presents the number of times an external observer notice a pair of students in a 
conversation. For collecting the data, the observer agent walked through the main public areas of the 
community every quarter of an hour, twenty one hours a day. As the observation was made by an 
external agent, the information is symmetrical: subject 1 interacting with subject 2 implies subject 2 
interacting with subject 1. The link of two nodes represents at least one interaction between two 
subjects. The network links are weighted with the number of times the two subjects connected have 
been noticed interacting. 

Figure 24 below presents an overview of the gathered external observations:  
 

 

Fig. 24 BKFRAB Network Graph 
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BKFRAC matrix presents the post-statements of the subjects of their interaction with other subjects 
during the observed five days. As this information is based on recall, the resulted matrix is non-
symmetric: subject 1 stating an interaction with subject 2 does not imply that subject 2 remembers 
interacting with subject 1. The individual interactions have a range from 0 to 5, 0 representing no 
interaction during the surveyed period. These individual interactions represent the ranking of the node. 

The surveyed members could re-call more interactions than the interactions collected by the external 
observer: the BKFRAC graph has 3306 ties versus 1934 ties in the BKFRAB graph.  

The overview of the recalled interactions by the subjects is presented as a network graph in Figure 25.  
 

 
 

Fig. 25 BKFRAC Network Graph 
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5.2 Approach   
 

The most comprehensive method of evaluating influence in a graph is the network theory approach. 
This is used extensively in consumer analysis in closed networks (i.e. telecom), organizational 
consulting, terrorism analysis etc. The method incorporates three main objective measures of 
influence: 

 Degree Centrality – measures the number of adjacent links to a node of the network. Though 
simple, this measure is most often very effective in the measurement of centrality and power 
of a subject in the network. The underlying consideration is that the more ties a subject has, 
the better connected and therefore more influential he is. Subjects with a strong connectivity 
are also less dependent on others. In case of non-symmetric graphs, a distinction has to be 
made between in-degree and out-degree (concept introduced in Chapter 3).  
 

 Betweenness Centrality – measures the number of subjects that an individual is connecting 
indirectly, through their direct links. The underlying concept is that the more subjects depend 
on a certain individual to establish new connections, the more power that individuals has. In 
the case that two subjects can establish connection via more than one geodesic path, not all 
passing through the considered individual, the power of this individual is affected negatively. 
The implied computations are not easily made without computer assistance.  
 

 Closeness Centrality – is the measure inverse to farness - the sum of the shortest distance 
(geodesic path) between each individual and every other subject in the considered network. 
The measure can be seen as a synthesis of the previous two measures. The underlying 
consideration is that the connectivity of an individual should be considered broader than the 
size of the immediate neighborhood or the bridge role the individual, but as the number of 
subjects the individual can reach (both directly and indirectly) and the minimum number of 
steps required. The more subjects an individual can reach, in the least steps, the more power 
he has.  
 

 
These measures describe how a subject is embedded in the considered network structure. The 
resulted information helps the understanding of the individual influential potential within the network.  
Aside the individual considerations, sub-structures of the network such as groups and cliques are 
other mediators of understanding the network dependencies, behavior and dynamics. A group or a 
clique is a sub-set of subjects connected closer or more specific between one another than with other 
nodes in the network. A clique is specifically referring a dyad.  

UCINET offers a rich library of centrality measurements supporting influence analysis in various 
network types. The study considers a total of six measures, two for each concept: degree centrality, 
betweenness centrality and closeness centrality. The specific measures are presented in the next 
section as well as the discussions based on measurements and observations, both at concept and 
content level. 

In the network theory, non-symmetrical connections do not count. Therefore, the proposed 
measurement comparison study will be based on the symmetric matrix BKFRAB. The BKFRAC matrix 
will be initially considered only for a content comparison of the information resulted from regular 
observations and the information reflecting the subjects recall. 
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5.3 Results and Discussions   
 

 

The start point of any social networking analysis is the structure of a network. For small networks like 
the one used in this study, certain conclusions can be already drawn from the network structural 
statistics. Table 4 below presents a collection of basic ego network measurements for each actor in  
the BKFRAT network. 
 

 

 
 

Table 4 BKFRAT Ego Network Basic Measurements 
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From left to right, the measures in the table above represent: 

Nr. Measure Description 
1.  Size  Number of direct neighbors 
2.  Ties  Number of ties in the ego-network 
3.  Pairs  Number of ordered pairs in the ego network 
4.  Density  Ties divided by Pairs (%) 
5.  AvgDist  Average geodesic distance between pairs 
6.  Diameter  Longest distance within the ego network 
7.  nWeakComp  Number of weak components in the ego network 
8.  pWeakComp  nWeakComp divided by Size (%) 
9.  2StepReach  Number of nodes reached within 2 steps within the ego network 
10.  ReachEffic  2StepReach divided by Size (%) 
11.  Broker  Number of pairs not directly connected 
12.  nBroker  Broker divided by Pairs (%) 
13.  EgoBetweenness  Betweenness of ego in own network 

 

Table 5 Description of UCINET Density Measures 

In many cases though, a large number of direct neighbors or many direct and indirect links of a node 
does not necessarily represent a benefit. It is important to consider the structural measurements of a 
network in the context of the type of interactions in the community and the purpose of the analysis 
(competitive analysis, marketing analysis, sales analysis, relational analysis etc.).  

Besides the right context, ego-centric measurements are a good start for defining a set of focal nodes 
(egos) for an analysis. Such measurements are focused on the individual rather than on the network 
as a whole and provide information over the local networks or neighborhoods of this individual. The 
information helps understanding how the network affects the individual subjects and it describes in 
somewhat the general texture of the network. 

Considering the statistics presented in Table 5, a number of nodes stand out: 

 Nodes with high connectivity:   { #7, #3, #20, #57 }  
 Nodes with low connectivity:    { #51, #28, #52 } 

For the proposed study of influence, the nodes with high connectivity can be seen as central or 
popular individuals interacting frequently with many of the fellow students.  
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1. Degree Centrality  

This simple measure sums the number of adjacent links of an individual in a network. In case of  
directed data, it is important to distinguish between the centrality based on in-degree from the 
centrality based on out-degree.  

If an individual receives many connections, has a high in-degree, he is considered prominent or with a 
high prestige. The fact that many other subjects want to connect to this individual indicates his 
importance. Individuals who have a high out-degree are usually interested in exchanging knowledge 
with others or they want to bring awareness to the community of their opinions. Such individuals are 
considered influential actors. In case of symmetric graphs, the out-degree equals the in-degree of 
each node. 

Table 5 below presents the analysis on in-degrees and out-degrees of the BKFRAB (symmetric) and 
BKFRAC (un-symmetric) matrices. 

 

 

 

 
 

Table 5 Degree Centrality BKFRAB versus BKFRAC 
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Considering first the measurement on the BKFRAB matrix (Relation 1), the set of influential individuals 
- as having the highest out-degree – is presented in Table 6 below. As this graph is symmetric, the in-
degree of the nodes equals the out-degree.  

 
Node Nodal-out / Nodal-in degree 

7 go(푛 )  = gi(푛 )   = 402 
20 go(푛 ) = gi(푛 ) = 379 
3 go(푛 )  = gi(푛 )   = 315 
6 go(푛 )  = gi(푛 )   = 280 
57 go(푛 ) = gi(푛 ) = 276 

 
Table 6 BKFRAB Nodal-out / Nodal-in Degree  

With NETDRAW, UCINET offers the possibility to visualize the degree centrality of a network. In 
Figure 26 the node ranking according to the nodal-out / nodal-in degree is visualized by the size of the 
nodes. 

  

Fig. 26 BKFRAB Degree Centrality Ranking 

 

In the student ranking graph, BKFRAC (Relation 2), though not symmetric, the picture of the 
interaction, influence and prestige of the subjects within the community is more balanced than in the 
BKFRAB graph. Also on individual level, the out-degree and in-degree measurements are in the same 
range and high. There is a high connectedness of the BKFRAC network – all nodes have both the in-
degree and out-degree greater than 100.   
 

Node Nodal-out degree Nodal-in degree 

1 go(푛 )  = 259 gi(푛 )  = 165 
4 go(푛 )  = 237 gi(푛 )  = 212 
32 go(푛 ) = 210 gi(푛 ) = 137 

57 go(푛 ) = 157 gi(푛 ) = 223 
20 go(푛 ) = 156 gi(푛 ) = 208 
3 go(푛 )  = 171 gi(푛 )  = 206 

 

Table 7 BKFRAC Nodal-out and Nodal-in Degree  
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Table 7 presents the nodes with the highest out-degree and the highest in-degree in the BKFRAC 
network but the conclusions of influence should not be drawn based only on maximum values. The 
analysis should consider both measurements, in rapport to the average values of in-degree and out-
degree in the network. The last two columns of the first panels in Table 5 presents the node degree 
counts expressed as percentages of the largest out and in-degree count in the dataset: go(푛 )  = 259  
and respectively gi(푛 ) = 223. Considering the overall context, a set of actors with influence potential 
in the BKFRAC network is {4, 1, 56, 57, 34, 35, 49, 54, 6}. 

The second panels in Table 5, Descriptive Statistics, present the mass level of the degree centrality 
analysis in the two networks. In other words, the score distribution of the actor's degree centrality. In 
the BKFRAB graph, actors have on average a degree of  109.79, while in the ranking BKFRAC graph, 
the average degree is of 168.45. Both are rather high given the fact that there are only 58 actors in the 
surveyed community. When looking at the range of degrees between the two matrices (minimum and 
maximum values), the BKFRAB matrix has a considerable larger range than the BKFRAC. The same 
is reflected in the standard deviation and variance measurements. These indicators tell that the 
BKFRAB graph has the central nodes more clearly defined, while in the BKFRAC graph the interaction 
between subjects is more balanced.  

The last information presented by the UCINET Freeman's degree centrality measures is the Network 
centralization according to the in-degree and out-degree measurements. These measures express the 
degree of inequality or variance in the global network as a percentage of the centralization of a perfect 
star network of the same size. A star network is considered reference as, independent of the number 
of nodes, it is the most centralized or the most unequal possible network.  

BKFRAB is a symmetric matrix and therefore the out-degree and in-degree graph centralizations in 
this network are equal, of value 10.22%. In the BKFRAC network the out-degree graph centralization 
is 32.33% versus the in-degree graph centralization of 19.47%. Both graphs present a low 
concentration or centralization. The measures of node centrality and overall  network or graph 
centralization should not be confused. Node centrality regards the connectivity of individual nodes 
while the network centralization refers to the overall cohesion or integration of the graph. In the 
considered case, BKFRAC presents a higher network centralization than BKFRAB due to a more 
balanced interaction, influence and prestige between the nodes in the network.  

The degree centrality analysis compared the connectedness and centrality of the two graphs, 
BKFRAB and BKFRAC.  The study focuses further on the comparison of various centrality 
measurements based on the BKFRAB network.  
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2. Betweenness centrality  

The measure is based on the consideration that a node has power if it falls on the geodesic paths of 
other pairs in the network. The more subjects depend on one individual to make connections, the more 
power the individual has. A disadvantage is when a pair of subjects is connected by more geodesic 
paths and the individual does not lie on all these paths, between the two subjects. The measure can 
be normed as the percentage of the maximum possible betweenness a node could have. Table 8 
presents the UCINET measurements of the betweenness centrality in the BKFRAB community. 

 

                

Table 8 BKFRAB Betweenness Centrality 
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From the statistics it can be observed that the betweenness of the individual network nodes varies on 
a range between 0 to 39.61 and that the overall network centralization is rather low, of value 1.76%. 
This can be justified by the fact that the network presents a high connectedness, with a large number 
of direct connections. Though there is little power in the network, the nodes # 7, # 9, # 20 and #3 
stand out. A similar conclusion was drawn also on structural basis, with the Freeman’s degree 
centrality measurement. 

Figure 27 presents graphically the BKFRAB node ranking according to node betweenness centrality. 

 

Fig. 27 BKFRAB Betweeneess Centrality Ranking 
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3. Closeness centrality  

The degree centrality measurements have the disadvantage that take into account only the direct links 
a node has, rather than also the indirect links to all other nodes in the network. Differently, closeness 
centrality emphasizes this aspect and considers the geodesic distance of a node to all other nodes in 
the network. The sum of the geodesic distances of a node is considered the farness of the node from 
all other network nodes. The reciprocal of farness (that is one divided by the farness) represents the  
measure of nearness or closeness centrality. This can be normed relatively to the most central node of 
the actor. The closeness centrality UCINET results for the considered information exchange data, 
BKFRAB, is presented in Table 9. 

 

               

Table 9 BKFRAB Closeness Centrality  
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The table above presents the results of individual closeness centrality ordered on nCloseness, the 
normalized closeness. Similar to the results of the prior centrality measurements, in this case too, 
nodes  #7; #3 and #20 are most central. 

Node #7, connected to 52 nodes with 1674 ties, is the closest or most central node in the network, 
meaning that the sum of its geodesic distances to all other nodes in the network is the smallest. Within 
the BKFRAB graph, node # 51 has the greatest farness. Figure 28 presents graphically the ranking of 
the node farness in the BKFRAB network. 
 

 

Fig. 28 BKFRAB Farness Centrality Ranking 

 

In a small network with high density as the one used in this study, the geodesic distance based 
centrality is usually similar to the centrality based on connectivity adjacency. This is justified by the fact 
that many geodesic distances in such a network are adjacencies. This does not apply in larger or less 
dense networks.  

As the other centrality measures, closeness centrality can also characterize the centralization of the 
entire network. In this case, the network centralization presents a better concentration in the network, 
41.15%. The measure presents how unequal is the distribution of centrality across the network nodes 
compared to the variance in a star network of the same size. In a star network the distribution of 
farness of actors presents the maximum possible concentration, with one node being maximally close 
to all others and all other nodes being maximally distant from one another. 

Each of the three basic centrality measurements – degree centrality, betweenness centrality and 
closeness centrality are capturing specific properties of the network based on which conclusions of 
individual node power and influence can be drawn. Further in the study, a set of other three centrality 
and power measures are considered, as alternatives to the ones already discussed.  
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4. The Bonacich Power index  

Phillip Bonacich suggested an extension of the degree centrality measure. The original degree 
centrality approach considers that the more connections and individual has, the more power he 
presents. Bonacich reasoned that the centrality of an individual depends on the number of direct 
connections he has as well as on the number of connections his neighbors have. In other words, being 
connected to many others in the network might imply that one is centrally positioned but not 
necessarily that he has a significant power in the network. An individual connected to others not too 
well connected has a great power on the consideration that those subjects depend more on him for 
information exchange then if they would have been better connected.  

Table 10 presents the Bonacich power index measurements based on the BKFRAB graph.  

 

Table 10 BKFRAB Bonacich Power Index 

 

The second column in the table above presents the absolute value of the Bonachich power index 
scores. With this measure too, for the reasons presented above, nodes # 7, # 20 and # 3 are seen 
most central and powerful.  
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5. Flow centrality 

The betweenness centrality measure prior discussed considers individuals in a positional advantage if 
they often fall on the shortest geodesic path between others in the network. The Flow Centrality 
approach expands this concept by assuming that subjects will make use of these indirect paths 
proportionally to the path length. With this consideration, the measure sums for each network node his 
involvement in all flows between all other pairs of the network. As the magnitude of such measurement 
increases with the sheer size of the network or the network density, the flow betweenness of a network 
node is calculated in ratio to the total flow betweeness in the network that does not involve the 
considered node.  

        

Table 11 BKFRAB Flow Centrality 

Also when using such elaborated betweenness centrality measure (Table 11), node # 7 is seen as the 
most influential and powerful individual. In fact, the overall picture of individual centrality and power 
does not change a great deal – the set of individuals that stand out in this case is: {#7; #9; #3; #20}.   

Looking at the descriptive statistics, the relative variability in flow betweenness for BKFRAB is rather 
high, of approximately 58%. Despite this aspect, the degree of concentration in the distribution of flow 
betweenness centrality among the nodes of the network, network centralization, is fairly low (4.44%) 
when compared with that of a star network. Still, this is greater than the network centralization index 
obtained in the case of geodesic distance based betweenness measurement (1.76%).  
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6. Eigenvector of the geodesic distances.  

The closeness centrality measure prior presented is based on the sum of all geodesic distances from 
one individual to all others in the network (farness). This measure can be though misleading in larger 
and more complex networks. The reasoning is that if considering two nodes: node 1- close to a small 
and closed sub-group of the network but far away from many others in the network and node 2 - at a 
moderate distance from all nodes in the network, the farness measures for the two nodes might be of 
similar magnitude. In the presented example, node 2 is though fairly more central placed that node 1 
as it is able to reach more nodes in the network, with a similar effort. This concept is fundamental in  
the eigenvector of the geodesic distances measure. 

This measure represents the effort to find the individuals with the smallest farness from all others in 
the entire network (the most central nodes) and not only locally. For this, the method used is factor 
analysis,  which identifies dimensions of the distances between network nodes. The positioning of a 
node with respect to each defined dimension is the eigenvalue. The collection of eigenvalues is called 
eigenvector. In general, global aspects of distances between nodes are described by the first 
dimension and more specific or more local properties and described secondary dimensions. This 
approach is more suitable for an analysis of information exchange relationships, rather than an 
analysis over the senders and receivers of information within a network.  

UCINET incorporates the eigenvector of geodesic distance measurement in the Bonacich Centrality. 
The calculated eigenvectors of the distance matrix for the BKFRAB is presented in Table 12.  

 

Table 12 BKFRAB Bonacich Eignevector Centrality 
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In the statistics above, the first measurements, the eigenvector, indicates how much of the overall 
pattern of paths between the network nodes can be considered global patterns. The rest of the 
patterns are considered additional or local patterns. The higher the score, the more central an 
individual is with respect to the main pattern of node pair distances in the network. The nodes with low 
scores are seen peripheral. For the BKFRAB graph, with this measure too, the nodes # 7, # 20, # 57 
and # 3 are most central and nodes # 51 and # 28 are most peripheral.  

The descriptive statistics third set of results presented in Table 9 examines the individual centralities 
distribution and the overall centralization of the network. The results indicate little variability in node 
centralities: the standard deviation is 0.08 relative to a mean of 0.1. This means that the centrality and 
power in the network is balanced.  

At global level, the degree of inequality or concentration of the BKFRAB network is 49% when 
compared with a star network of the same size. The result is slightly higher when compared with the 
network centralization based on closeness centrality, of 41%. 

Figure 29 below presents graphically the eigenvector measurement on the BKFRAB network.  

 

Fig 29 BKFRAB Bonacich Eignevector Centrality Ranking 

 

The factor analysis approach could be applied also in the degree or betweenness measurements. In 
general, geodesic distances between the network nodes are reasonable indicators of centrality. The 
indication of centrality might though refer more local or more global contexts.  
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5.4 Conclusions   
 

The social network analysis software UCINET provides a set of useful measures for some of the most 
important aspects of a social community, the sources and the distribution of influence. From a network 
approach, influence is seen as centrality and power, both at individual level as well as at group or 
global level.  The centrality and power of individuals can be determined on network structural basis 
and arises from relations with others in the network. In general, the individual power results from an 
advantageous relational positioning of a node in rapport with others in the network. At global level, the 
power of a social structure may result from variations in connectivity patterns between the individual 
nodes.  

In the social networking theory, there are three fundamental sources of centrality and power: high 
degree, high betweenness and high closeness. The proposed case study compared a set of six 
centrality and power measures, applied to the UCINET dataset BFRAT (Bernard & Killworth 
Fraternity): Freeman Degree Centrality, Bonacich Degree Centrality, Freeman Betweenness 
Centrality, Flow Betweenness Centrality, Path Distance Closeness Centrality and Eigenvector of 
Geodesic Distances Closeness Centrality. The first three measures are the basic measures of 
centrality, the other three measures are more elaborated formulations of centrality and power 
concepts. The purpose of the study was presenting and comparing the main centrality and power 
measurements and exercising them with UCINET 6.0.  

The different definitions and measures considered capture different concepts of sources of centrality 
and power and therefore present specific insights in the social structure. Applied to the valued, 
symmetric graph - BFRAB, a rather small but dense network, the six measures concluded in unanimity 
a set of influential nodes: { #7; #3; #20}. The main conclusion of the study is that there is no right  or 
wrong approach in the centrality and power measurement. Such measurements need to be 
considered in the context of the studied problem, the type of relationships in the network and 
according to the specifics of the considered measures. 

The question of how structural position confers influence or power in social networks, remains a topic 
of interest in the SNA research. Understanding how an entities (company, person, product) interact 
within virtual communities is a fundamental aspect for professional and social successes.  

The International Network for Social Network Analysis (http://www.insna.org/software/index.html) 
community collects and maintains information related to the Social Networking Analytics discipline: 
research papers, documentation, available data and the list of accredited SNA software packages. 
Furthermore, a number of social analysis tools are available today online, many free of charge:  

 PostRank Connect - in-depth analytics with social layer 
 Twitalyzer - in-depth analytics with Twitter layer 
 Crowdbooster - ranks own best Tweets and the optimal time to send these 
 Tweriod – measures active twitter followers  
 Yottaa - monitors and tracks website performance 
 Google Analytics - full traditional website analytics 
 Klout -  social influence rating based on Twitter, Facebook, and LinkedIn 
 PeerIndex - social score based on Twitter, Facebook, LinkedIn, Quora, and personal blog 
 BuzzFeed - social traffic tracking 
 Google Page Speed - tests and offers solutions to speed up personal site 
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6. CASE STUDY 2: Co-authorship Link Prediction  
 

 
The Link Prediction problem treats the probability with which two unconnected nodes will be 
connected in the future by a direct link. The prediction task is in fact a proximity measure between two 
network nodes. If knowing this, the objective over the entire network can be optimized. This problem is 
one of the main interests within social networking analytics as it facilitates the understanding of social 
groups and their behavior.  

Achieving this understanding can help the development of analytical applications specialized on 
identification of hidden patterns, behavior prediction, missing link detection etc. These types of data 
analysis are today applicable in most domains (i.e. marketing, health, security, sociology, criminal 
investigation, education etc.) 

The domain choice of this study is the scientific co-authorship and the considered problem is the 
prediction of prospective collaborations (links). This problem is identical with the link prediction task in 
many other social networks, from both the structural and conceptual point of view. The authors in the 
co-authorship community establish collaboration links with a mutual purpose. Such network respects a 
fundamental social networking property, the power-law distribution.  

The proposed study concerns the future collaborations between the author members of the DBLP 
community. The goal of the study is a comparative analysis of accuracy of a set of three classification 
algorithms: Support Vector Machine (SVM), K-Nearest Neighbor and Naïve Bayes applying a 
particular set of features: sum of papers, weighted sum of neighbors, weighted sum of secondary 
neighbors and weighted shortest distance.    
 

6.1 Data   
 

The DBLP (http://www.informatik.uni-trier.de/~ley/db/) is the largest bibliographic dataset of Computer 
Science publications available on Internet. The dataset has 442,886 members and 678,296 papers. 
The dataset gathers information over Computer Science publications, journals and conferences over 
the period 1936 – 2009. The DBLP dataset was built by manual entry, either by the authors 
themselves or by DBLP members.  

Number of Authors  696360 
Number of Papers  1158648 
Avg. authors per paper  2.11  
Avg. papers per author  3.26  

 

Table 13 DBLP statistics  

On average, the publication contribution in the network is of 3.26 per author. Looking at the 
connectedness of the network, the author in this network have frequently interacted and collaborated 
on their publications. The indicator of this behavior is the high average of authors per paper reported 
to the number of publications per author, 2.11 versus 3.26. The network is clearly a well formed 
research community.  

Also, different than other datasets (i.e. CiteSeer) the DBLP registers the full name of the authors per 
publication, this making the author identification easier and more accurate.  

The reasons for selecting the DBLP dataset for the proposed study are its size, accessibility, structure 
and the high connectedness degree of the captured community. For the same reasons, a large 
number of various other SNA studies have been based on this dataset.  
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6.2 Approach 
 

The link prediction problem is approached as a classification problem of candidate versus non-
candidate links. Today there are available numerous classification algorithms suitable for supervised 
learning. Many of them have a comparable performance, some though suiting better than others for 
specific types of data analysis. This study will investigate the accuracy and fit of three classification 
algorithms for the co-authorship problem, considering the DBLP data set:  

1. A Support Vector Machine (SVM) is a classification algorithm using an N-dimensional hyper 
plane and is best applicable for separating network data in two categories. In this case the 
classification regards exactly two categories: candidate and non-candidate. Using a sigmoid 
kernel function, the model relates somewhat to a two layer perceptron neural networks. The main 
difference is that the SVM teaching model uses linear constraints for solving a quadratic 
programming problem. The model uses attributes as predictor variables, features to define the 
hyper plane and vectors as the feature sets describing the classification classes. The SVM 
algorithm used in this study was the one provided by the SVM-Light implementation 
(http://svmlight.joachims.org/). The software offers two kernel functions: a linear and a nonlinear 
Kernel (also known as Radial Basis Function Kernel). Following prior recommendations, for this 
study the RBF kernel is used.  
 

2. K-Nearest Neighbor is a fundamental though rather simple classification algorithm. K-NN is a 
type of instance-based learning with the principle of classifying objects based on closest training 
examples in the feature space. Typically, the k indicator is a small positive integer. For this study, 
the K-NN algorithm was developed in MATLAB®. The tool offering a high-level programming 
language and enabling intensive computational tasks.  

 
3. Naive Bayes classifier is another fundamental classifier, though of probabilistic nature.  The 

applied concept is the Bayes’ theorem, the algorithm considering that all features contribute 
independently to the calculated probability for the classification. In general, Naïve Bayes 
algorithms can efficiently be trained for specific supervised learning. In this study the supporting 
technology for this algorithm was Weka.  Weka being a collection of machine learning algorithms, 
mainly applicable for data mining investigations.  

The core of any machine learning algorithm is though the applied feature set. Such features depend 
on the type of relationships in the considered network, the domain and the goal of the proposed 
analysis. For the link prediction problem, Mohammad et. al [2006] defined three categories of features: 
proximity features, aggregated features and topological features.  

Proximity features regard similarity aspects between network entities. Considering the case of a co-
authorship network, a suitable proximity feature could be the closeness of two authors based on the 
mapping of a set of identical keywords representing their research work. Authors with similar interests 
and expertise are more likely to collaborate. Aggregated features are mainly focusing on the individual 
characteristics of a node and are then combined for the evaluation of a candidate pair. An 
exemplification for this domain could be the joint indication of how prolific a pair of two authors is. The 
measure of prediction being defined as: if at least one author of a considered pair is prolific then it is 
more likely that the two authors will collaborate in the future. A topological feature could be the 
shortest path between two authors. The underlying consideration is that the shorter the distance 
between the authors, the better the chance that in the future these authors will collaborate.  
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As the considered dataset DBLP does not provide a matching indicator, be it keywords, classification 
or grouping dimensions, this study considers a particular set composed by only aggregated and 
topological features: 

1. Sum of papers – an aggregated feature summing the number of published papers by the authors 
of a candidate author-pair. An author having a large number of publications is considered prolific. 
The feature is supported by the consideration that if at least one of the considered pair is prolific, 
these authors will collaborate in the future with a higher probability.   
 

2. Weighted sum of neighbors – an aggregated feature indicated the social connectedness of a 
pair of authors by summing the weighted connections of these authors with their first neighbors. 
For this study, the weight of a connection is considered to be the number of publications between 
two actors.  The feature is supported by the consideration that the higher the connectedness of 
the candidate pair, the higher the probability that the two authors will collaborate in the future. This 
feature can be considered also of topological nature as the total number of neighbors of a node (in 
this case weighted) is in fact the degree of the node.  

 
3. Weighted sum of secondary neighbors – an aggregated feature indicating the second level of 

social connectedness of an author by summing the weighted connections between his direct 
neighbors and their first neighbors. Also in this case, the weight represents the number of shared 
collaboration between two specific authors. The consideration supporting this feature is strongly 
domain related: in the field of scientific collaboration, an author having established collaboration 
with a high connected other author might collaborate with high probability with the co-author’s 
highest ranked neighbor(s). In certain types of social networks, this feature has the disadvantage 
of large computations. Similar to the previous feature, this too can be considered a topological 
feature.  

 
4. Weighted shortest distance – a topological feature indicating the shortest path between two 

author-nodes. The proposed measurement is the weighted network hop count. The same 
weighting of the network connection is considered: the number of collaborations of two authors. 
The consideration supporting the feature is that the closer two nodes are positioned, the greater 
the probability that they will establish a collaboration in the future.  

 
Against this feature set, the performance and fit of the three algorithms: Support Vector Machine 
(SVM), K-Nearest Neighbor (K-NN) and Naïve Bayes will be measured by a set of standard indicators: 
accuracy, precision, recall and F-value. It is important to mention to point that alone, the precision and 
recall measurements are not strong indicators of performance. With respect to a classification class, 
Recall represents the percentage of objects that are relevant for classification and Precision 
represents the percentage of relevant objects that are classified. Therefore, these two measures alone 
are not good enough indicators of the performance of recognition on a specific class. The F-value 
measurement is the harmonic mean on the recall and precision: 퐹 =   and is a more suitable 
indicator of the power of a learning algorithm on a specific class.  

In conclusion, the most relevant indicators for the proposed comparison are in fact Accuracy and F-
value. The next section discusses the results and observations of the proposed performance testing. 
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6.2 Results and Discussions 
 

Initially, the three algorithms were measured independently for investigating any additional required 
tuning. For the considered dataset, the default parameter values of WEKA and SVM light performed 
satisfactory. The only sensitive improvement needed was for the K-NN algorithm, K = 25 performed 
best. 

The tests were run three times for consolidation of the obtained results. The graphics in Figure 30 
below present the average performance indication of the three classification algorithms:  
 

     

      

Fig. 30 Algorithm Performance Statistics on DBLP per Measurement 

 

Considering the averaged accuracy indicator, SVM with RBF kernel performed best, with an accuracy 
of 85.87%. The K-NN classifier had a satisfactory performance as well, with an averaged accuracy of 
84.93%, a difference of less than 1% when compared to SVM RBF performance. Such small 
difference is insignificant statistically, meaning that the two algorithms performed comparably with 
respect to accuracy. The precision-recall  and F-value measurements indicate too the similar 
capabilities of the SVM RBF and K-NN algorithms in detecting patterns for candidate classification of 
future author collaborations within the DBLP community. 

According to all metrics, the Naive Bayes algorithm performed considerable less. The averaged 
accuracy was only 79.42% and the averaged F-Value was 80,29%.  This means a difference of about 
5% when compared with the performance of SVM RBF. Clearly, the Naïve Bayes algorithm, used with 
this particular feature set, is rather weak in detecting patterns for link prediction classification in the 
DBLP dataset.  
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Fig. 31 Algorithm Performance Statistics on DBLP 

When comparing the precision and recall results, it can be noticed that all classifiers have the 
precision higher than the recall. This indicates that the models are missing actual links, more than they 
are predicting false links. In the domain of co-authorship this can be explained by the fact that some 
author pairs might co-authorship accidentally. This can be explained by the fact that in the research 
world it often happens that researchers of a the same branch name each other in various materials. 
Another reason might be that two different authors share the same name. In this dataset the author 
name is the identification criteria and clearly this might not always be sufficient.  

Looking then at the way the three algorithms ranked the four features, as presented in Table 14 below, 
the SVM RBF proposes a different approach than K-NN and Naïve Bayes: 

 
SVM K-NN Naive Bayes AVG. RANK 

Sum of papers 2 4 4 4 
Weighted sum of neighbors 3 2 2 2 
Weighted sum of secondary neighbors 4 3 3 3 
Weighted shortest distance 1 1 1 1 

 

Table 14 Feature ranking per algorithm 

 

 
 

All three algorithms ranked the  feature weighted shortest distance as main classification feature. It is 
interesting to notice that SVM is the only algorithm ranking as second important feature sum of papers. 
The other two algorithms give the second importance to the weighted sum of neighbors feature, third 
to weighted sum of secondary neighbors feature and only in the last instance to the sum of papers is 
considered.  

The comparable performance indications of the SVM and K-NN algorithms lead to the conclusion that 
the features sum of papers and weighted sum of neighbors have comparable weight. This is a realistic 
conclusion considering the high frequency of collaboration in this community: the average number of 
authors per paper of 2.40 with respect to the number of publications per author 3.67.  Both the SVM 
and K-NN algorithms and their proposed ranking schema suit this problem. The K-NN algorithm 
presents though a considerable less complexity from the point of view of implementation. 
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6.3 Conclusions 
 

The problem of link prediction can be effectively handled by various modeling approaches. The 
suggested approach in this study is modeling the link prediction as a classification problem. The core 
of any classification algorithm is the defined set of features. This needs to suit the dataset and the type 
of problem analyzed. 

For the link prediction problem there can be considered three categories of features: proximity 
features, aggregated features and topological features. In this study a set of four features were 
proposed, three of aggregate nature: sum of papers,  weighted sum of neighbors, weighted sum of 
secondary neighbors and one of topological nature: weighted shortest distance.  

The study investigated the highest prediction accuracy obtained with three different classification 
algorithms: Support Vector Machine RBF, K-Nearest Neighbor and Naïve Bayes. Even though the 
algorithm Support Vector Machine RBF leads in accuracy, the K-Nearest Neighbor algorithm, which is 
one of the most simple machine learning algorithms, proves a comparable accuracy and performance 
results. This is an important conclusion when considering that the modeling efforts required by the K-
NN algorithm are considerable less than in the case of the SVM RBF.  

Looking then at the feature ranking of the used algorithms, weighted shortest distance was chosen, in 
unanimity, the main feature. The two aggregated features: sum of papers and weighted sum of 
neighbor, have been ranked second by the best performing two algorithms. As the algorithm 
performance very similar, proposed feature ranking by the SVM and K-NN algorithms resulted in 
similar performance, an interesting extension of the study could be the performance of these 
algorithms with fixed feature ranking.  

The goal of the proposed co-authorship study was a link prediction exercise, using different models 
and techniques. Though this problem has been prior studies, the used set of features for the co-
authorship problem is unique. This could be considered as modeling alternative for the link prediction 
problem in contexts similar to the co-authorship problem. For best performance, small or medium 
datasets should be considered.  

A common weakness in the link prediction studies, is the fact that social structures and their evolutions 
are studied separately. Therefore, some of the major interests in the domain are the link prediction 
problem in dynamic social networks and the knowledge exchange between heterogeneous social 
networks. 
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7. Conclusions 
 

Social networks are a popular way to model the individual interaction within an organized group or 
community. Such social structure can be visualized as a network or graph, where an actor represents 
a group member and a link represents the form of association between two members of the group. 
Social Network Analytics combines the concept of the sociogram with elements of graph theory to 
analyze patterns of interaction among the group members, allowing quantitative comparisons between 
different network structures.  

Due to the recent globalization of the commercial environment and the impact of the new 
technologies, the analysis of social networks represents a major interest. This rather new area of 
research grew out of social and exact sciences, computers supporting today modeling and complex 
mathematical calculations, previously impossible. The analysis of social networks is driven by 
business and social interests, combining various academic fields. 

The current paper introduced the fundamental concepts and metrics in Social Network Analytics and 
proposed a set of mathematical models that can be applied for the problem of link prediction. Two 
case studies place in practice some of the presented concepts. The first study treats the problem of 
influential behavior in a Bernard & Killworth Fraternity (BKFRAT) social structure by measurements of 
sources and distribution of centrality and power in the network. The second study proposes a 
comparison of accuracy of three learning algorithms: Support Vector Machine, K-Nearest Neighbor 
and Naïve Bayes for the link prediction problem in the DBLP co-authorship community.  

The question of how structural position confers influence or power in social networks, remains a topic 
of interest in the SNA research. Understanding how an entities (company, person, product) interact 
within virtual communities is a fundamental aspect for professional and social successes. Today a 
considerable number of social network analysis software packages are available, offering various tools 
for visualization, analysis and analytics. Considering the type of data and analysis, certain software 
packages might be more suitable than others.   

Since new nodes and links are constantly added to a social structure, such entities are very dynamics.  
Understanding the behavioral concepts and the dynamics that drives the evolution of social networks 
is an important but a rather complex problem due to a large number of variable parameters. 

Link prediction is a measure of social proximity between two individuals in a community that can be 
used to optimize an objective function over the entire social network. The link prediction problem 
implies modeling the way an information, a trend, a piece of knowledge etc. propagates via a social 
network. Such knowledge supports the development of tools for detection of hidden, missing or 
potential new links within a group. These type of problems are critical in many domains: security and 
criminal investigation, biology, marketing and sales, CRM, knowledge management systems and so 
on. A common weakness in the link prediction studies, is the fact that social structures and their 
evolutions are studied separately. Therefore, some of the major interests in the domain are the link 
prediction problem in dynamic social networks and the knowledge exchange between heterogeneous 
social networks. 

Social networking provides clear advancements in communication and self expression. Businesses 
uses social networking to promote products, concepts and services. But if not understood and 
managed properly, social networking could cost the reputation of business and individuals.  
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