
Recommender system techniques applied to Netflix movie

data

Research Paper Business Analytics

Steven Postmus (s.h.postmus@student.vu.nl)

Supervisor: Sandjai Bhulai (s.bhulai@vu.nl)

Vrije Universiteit Amsterdam, February 2018

Abstract. This paper contains the approach, methodology, elaboration, and eval-
uation of several common recommender system techniques, applied to Netflix
ratings. The data contains many user ratings on a 1-5 Likert scale on different
movies. The goal is to recommend movies to users which they have not watched
yet.

First, we start with a general introduction and discuss the recent work that has
been done in this field, followed by a data preparation section where we explain
the extension of the original data with features gathered from IMDb. Next, we
will discuss collaborative filtering (item-based, user-based and singular value de-
composition), content-based filtering, and hybrid filtering as techniques for a rec-
ommender system. After evaluating, the singular value decomposition model
came out as the most suitable model for this dataset.

Keywords: Recommender system, collaborative filtering, content-based filter-
ing, hybrid filtering, evaluation, data mining techniques, machine learning.

2

1 Table of contents

1 Table of contents ... 2

2 Introduction ... 3

3 Related work .. 6

4 The data ... 8

5 Data preparation .. 10

5.1 Data extension... 10

5.2 Data selection .. 12

6 Data analysis .. 14

7 Models ... 17

7.1 Random recommendations .. 17

7.2 Item-based Collaborative Filtering ... 17

7.3 User-based Collaborative Filtering ... 18

7.4 Singular Vector Decomposition based Collaborative Filtering 20

7.5 Content-based Filtering ... 22

7.6 Hybrid Filtering .. 23

8 Experiment .. 25

8.1 Experiment configurations .. 25

8.2 Evaluation ... 25

9 Conclusions and discussion ... 29

9.1 Conclusion .. 29

9.2 Discussion ... 29

9.3 Further work and improvements ... 30

10 References ... 31

3

2 Introduction

Nowadays, many people want to watch TV-shows or -series anytime and anywhere
they want. In recent years, online TV has experienced exponential growth. To be exact,
regarding the Digital Democracy Survey by Deloitte, which is an annual survey about
changes in the digital environment, 49% of the United States households are subscribed
to one or more streaming video services in 2016, compared to 31% in 2012 [1].

An interesting aspect of this exponential growth is the difference in age and the way
people watch TV-shows. As can be seen in Fig. 1, there is a big difference between the
millennials (age between 14 and 31) and the seniors (age of 68 +) regarding watch
behaviour. The millennials prefer not to watch on TV only anymore, as seniors watch
on TV almost all the time [2]. Instead, the millennials often choose a mobile device.

Fig. 1. Share of time spent watching TV-shows per device and age group

Besides the time management advantages that online TV brings to people, another rea-
son people often choose for online and on-demand TV is the absence of commercial
breaks, the ability to watch where they want, on which device they want, and the ease
to discover new content.

Netflix is one of the parties that jumped into the world of online streaming services.
Netflix, which was founded in 1999 as an online video shop, has become the most-
used, and a still strong growing American online streaming provider specialized in
video-on-demand distribution. Currently, they are active in over 190 countries all over
the world with over 100 million subscriptions [3]. Recently, the number of Netflix sub-
scriptions within the United States exceeded the number of subscriptions for regular
paid cable TV, see Fig. 2. Every day, over 125 million hours of video is watched on
Netflix, and the number of titles keeps increasing.

4

Fig. 2. Number of subscriptions in the United States

From these numbers, one can conclude that Netflix collects a lot of data, which can be
used in many ways. For example, they can analyze data to increase the revenue, for
marketing purposes, and to improve their customer satisfaction.

Regarding customer satisfaction in general, recommendations based on the user’s be-
haviour has played an important role in the e-commerce customer satisfaction. Many
web shops, like Amazon and Alibaba, use recommender techniques to recommend
items to their visitors, which are items that are similar to the one they searched for, or
they have bought recently.
Next to that, recommender systems are also widely used by online travel agencies like
booking.com and Expedia, so that visitors can discover their ultimate holiday destina-
tion match, based on their search behaviour, historic bookings, or similar users.

In fact, recommender systems are used in all kinds of industries due to the enormous
data-driven environment we are living in nowadays. Besides the increasing number of
social media platforms, which all generate a tremendous amount of data, the need of
users to personalize content has also played an important role in the development of
recommender systems.

Not only is Netflix using recommender systems to improve customer satisfaction, but
also because people are bad in choosing between many options [4]. From consumer
research Netflix has conducted, it suggested that an ordinary Netflix user loses it inter-
est after 60 seconds of choosing or reviewed more than 10 to 20 titles in detail. There-
fore, Netflix developed a recommender system over the years, which exists of various
algorithms that are combined into an ensemble method.

5

It seems obvious that one could state a recommender system is vital for a company such
as Netflix. Therefore, optimizing and fine-tuning these kinds of models will tremen-
dously increase the customer satisfaction and therefore the overall revenue.

This paper will cover the process of building a recommender system from start to finish.
Therefore, the research question of this paper is:
Which recommender technique applied to Netflix movie data will perform best? And
will the extension of additional data improve this model?

First, we will discuss recent literature that has been conducted in the field of recom-
mender systems. Next, the data that is used to train the models will be pre-processed
and analyzed. Thereafter, the actual recommender systems will be trained. In this re-
search, we will use customer ratings only at first. Later on, it will be extended with
external metadata, such as actors, genres, IMDb ratings, and release dates. Finally, sev-
eral evaluation methods will be applied to the models, and one final recommender sys-
tem will be advised.

6

3 Related work

Since recommender systems are such a hot topic in recent data science research, many
scientific articles have been published in the field of recommender systems. In this sec-
tion, we will discuss several relevant works that have been published.

Recommender systems can be roughly divided into three groups: collaborative filtering,
content-based filtering, and hybrid filtering. Collaborative filtering is a recommender
technique that focusses on the interest of the user, by using preferences of other similar
users. The psychology behind this approach is that if user 1 and user 2 can be considered
as having the same interests, one can assume user 1 has also the same opinion about a
new item only user 2 has already an opinion of.

Sarwar et al. (2001) [5] divide collaborative filtering into two categories: memory-
based collaborative filtering algorithms and model-based collaborative filtering algo-
rithms.
Memory-based algorithms use all available user-item data to generate a prediction.
Based on all data it determines the most related users, similar to the target user. These
neighbours are similar because they have statistically common interests. To determine
these so-called neighbours, several statistical techniques are used. Finally, the top 𝑛
most similar items are recommended for the target user. The memory-based collabora-
tive filtering algorithms are also called user-based collaborative filtering algorithms.
The advantage of user-based collaborative filtering is the sparsity and scalability. Many
recommender systems use data with lots of users and items, but with relatively few
number of actual ratings. User-based collaborative filtering only uses necessary data,
which reduces the run time.
Model-based collaborative filtering first builds a model of user ratings only. To do this,
it uses several machine learning techniques, such as clustering, rule-based and Bayesian
network approaches. Each of the machine learning techniques uses its own approach.
The clustering model formulates collaborative filtering as a classification problem,
while the Bayesian network model treats it as a probabilistic model and the rule-based
model as an association-rule model. The model-based collaborative filtering algorithms
are also called item-based collaborative filtering algorithms.

Next to collaborative filtering, one is also able to build recommender systems by using
the content of items, and a profile matched to items. This approach is called content-
based filtering. Lops et al. (2011) [6] stated that the recommendation process of a con-
tent-based recommender system basically consists of matching the attributes of a user
profile against the attributes of a content object. The outcome of this process is just the
level of the user’s interest in an object. It is crucial for a content-based model that the
user profile is accurate.

A weakness of collaborative and content-based filtering mentioned by Lika et al. (2014)
[7] is the problem of handling new users or items. Both techniques mentioned before
are based on historic data of the users or items. This well-known problem is often called

7

the cold-start problem. Burke (2007) [8] suggests hybrid systems might resolve the
cold-start problem. In many fields in data science, different kind of approaches are
combined to come to the best result. This process of combining multiple algorithms
into one algorithm is often called an ensemble. In the area of recommender systems, a
common ensemble method is called hybrid filtering. According to Burke (2007), hybrid
recommender systems are any kind of recommender system that combines multiple
recommendation techniques to produce output. Therefore, Burke (2002) [9] proposes
that a collaborative filtering system and a content-based filtering system can ensemble
into one on several ways:

- Weighted: each recommender system in the ensemble has a weight and a nu-
merical combination is made for the final model.

- Switching: the final recommender system chooses a recommender system in
the ensemble and applies the selected one.

- Mixed: a combination of different recommender systems is made.
- Feature combination: different data sources are used to gather information and

is used in one recommender system.
- Feature augmentation: multiple recommender systems are applied after each

other such that the output of each recommender system creates a feature that
is used as input for the next recommender system.

- Cascade: there is a strict order in different recommender systems, where the
order is chosen such that weak recommender does not overrule the stronger
one. The methodology behind this approach is that the weak recommender can
only refine the stronger recommender.

- Meta-level: this technique is in some way equal to the feature augmentation
technique. However, the difference between these techniques is that the meta-
level approaches produce a model instead of a feature as output. Next, this
model is used by another recommender within the ensemble.

8

4 The data

The dataset used in this research comes from an open machine learning competition,
called the Netflix Grand Prize. This competition started in October 2006 and lasted till
2009. The main goal of this competition was to find a more accurate movie recommen-
dation system to replace their current system, called Cinematch.

The dataset contains a total of 100,480,507 ratings, based on 17,700 movies which
come from a total of 480,189 users from the United States.

Of each movie, titles and corresponding year of release were available. Besides, every
movie had a unique movie ID, which was a sequence from 1 to 17,700. One must note
that the movie ID does not correspond to actual Netflix movie IDs or IMDb movie IDs.
Besides, the release year might not correspond with the theatrical release, since the
provided movie ID corresponds to the release of the DVD. Finally, one must note titles
are always in English, and may not correspond to titles used on other sites. In Table 1,
one can obtain the movie data structure by showing the movie data for the first 5 mov-
ies.

Movie ID Year of release Title
1 2003 Dinosaur Planet
2 2004 Isle of Man TT 2004 Review
3 1997 Character
4 1994 Paula Abdul’s Get Up & Dance
5 2004 The Rise and Fall of ECW

Table 1. Movie data for the first 5 movies.

Next, of each movie a text file was provided, consisting of the rating of a user for the
specific movie, the date of the rating, and a user ID. In Table 2, one can obtain a snap-
shot of the first five ratings, corresponding to the first movie ID (for the movie Dinosaur
Planet).

Customer ID Rating Date
1488844 3 2005-09-06
822109 5 2005-05-13
885013 4 2005-10-19
30878 4 2005-12-26
823519 3 2004-05-03

Table 2. The first 5 ratings for the first movie ID (Dinosaur Planet).

One must note that the customer ID field is no sequence but has gaps in between. Fur-
thermore, the ratings a customer can assign to a movie, ranges from 1 to 5 stars.

9

Another important remark is the data available about each customer: Netflix decided
only to provide a randomly assigned customer ID to each customer, to anonymize the
data and to protect the privacy of its users. This makes it impossible to implement fea-
tures regarding the users, for example, country, gender, and age group.

10

5 Data preparation

In order to use the data in a proper way, the raw data as described in Section 4 (The
data) has to be extended and selected in several ways. In this section, we will elaborate
further on this process.

5.1 Data extension

In the early state, we decided to extend the data retrieved from Netflix with data from
the International Movie Database (IMDb). This online database contains information
related to movies and series, such as actor and genre information. Besides, IMDb is also
well-known of rating movies really well.

The main idea is to provide each movie in the original dataset with information from
IMDb. Therefore, each movie in the data must get the correct IMDb ID, which can be
used to retrieve the IMDb rating, genre(s) and starring actors. Each movie in the original
dataset is provided with a title. Based on this title, a web scraper has been made which
is able to repeat for each unique movie in the original data the six steps as described
below.

1. Generalize the movie title. If the original title contains ‘irrelevant’ words like

‘extended edition’ or ‘series’, remove these words.
2. Paste the generalized title of the movie at the end of an URL which will direct

you to an IMDb JSON-file containing all search results with the corresponding
movie title.

3. Save the JSON-file and iterate through all search results and choose the best
search result.

4. Paste the IMDb title ID in the URL corresponding to the IMDb page of the
found search result

5. Extract the 3 genres and 3 starring actors (if available) from this search result
and add them to the original dataset.

In the first step of the web scraper’s algorithm, irrelevant words are removed from the
movie titles. The main reason for this choice was that movie titles including such words
were less likely to be found in the IMDb database.
Thereafter, for each of the shrunk movie titles, an IMDb search result was generated
and exported in JSON-format.

In the third step of the web scraper process, one chooses the best search result for a
movie, from all retrieved results which are packed in one JSON-file.
First, one checks if the JSON-file is not empty. For some movies, where the title does
not lead to any search results on IMDb, no IMDb ID could be found.
Next, one checks all retrieved search results and chooses the right one. This process is
hard and mistakes are easily made: cases where the wrong movie is chosen from the
list. The big question is now: which is the correct movie? The algorithm first checks if

11

the year of release from the Netflix data exists in one of the search results items. If so,
the corresponding search results get priority over the other search results. This is done
by setting a penalty score (the difference between the actual year of release and the
retrieved year of release) on each search result
Thereafter, the difference between the original Netflix title and the title of the results
are compared. To be exact, the Levenshtein distance is calculated between the Netflix
title and the title of the search result. The Levenshtein distance is a widely used string
metric for measuring the difference between two strings that basically assigns a unit
cost to each edit operation that is needed to make two strings the same [10]. The Le-
venshtein distance is defined as:

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) =

{

 max (𝑖, 𝑗) 𝑖𝑓 min

(𝑖, 𝑗) = 0,

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1𝑎𝑖≠𝑏𝑗

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

In this formula, 𝑎 and 𝑏 are strings and 𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) is the distance between the first 𝑖
characters of 𝑎 and the first 𝑗 characters of b. A simple interpretation of the Levenshtein
distance is that it just counts the differences between two strings, where 𝑎 is the original
movie title, and 𝑏 one of the search results. For example, the Levenshtein distance be-
tween ‘First to Die’ and ‘1st to Die’ is 3, the distance between ‘Sci-Fighters’ and ‘Sci-
fighters’ is 1 (note the capital letter), and the distance between ‘What’s New Scooby-
Doo?’ and ‘What’s New, Scooby-Doo?’ is 1 (note the comma in the second spelling.
Of all search results, the movie with the smallest Levenshtein distance is preferred.
Note that a Levenshtein distance of 0 means that the strings are exactly equal.

In order to clarify these steps made by the web scraper, we will give an example. The
movie Horror Vision, which was released in 2001, is in the Netflix data. Table 3 below
shows the results retrieved from the web scraper.

Search
result #

Title Year of release Levenshtein
distance

IMDb ID

1 Monster Vision: A History and
Analysis of Horror Cinema

2016 46 tt6425838

2 A Vision of Horror 2011 14 tt1997595
3 Visions of Horror 2007 13 tt1077402
4 Visions and Horror from ‘The

Dead Zone’
2006 30 tt0926345

5 Horrorvision 2001 2 tt0275410

Table 3. Search result from IMDb for the movie Horror Vision (2001).

As one can obtain from the table above, the fifth search result is clearly the best one,
and is therefore chosen by the algorithm.

12

In the last steps, the web scraper visits the IMDb movie page of each movie in the
original dataset, using the IMDb ID. On this webpage, the IMDb rating, genre(s) and
starring actors are scraped and linked to the original dataset.

5.2 Data selection

Now that the data is extended with IMDb data, one is able to remove certain movies
and users in order to clean the data and make it ready for the recommender systems.

First, the search results from the web scraper are checked on correctness, and the best
one is chosen in the end. Specifically, the best search result is the one with the closest
year of release in combination with the minimal Levenshtein distance. Therefore, the
following thresholds are introduced:

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) ≤ 2,

|𝑌𝑂𝑅𝑎 − 𝑌𝑂𝑅𝑏| < 3.

The chosen movie must satisfy these thresholds to make sure it is the correct one. They
are set in such a way that it is almost impossible to choose the movie with a different
movie title (first formula) or a movie that was released in another period (second for-
mula). The second formula was introduced because sometimes a movie has a different
year of release in both datasets. As explained in Section 4, the original dataset makes
use of the release of the DVD, while IMDb makes use of the theatrical release. In some
cases, this year of release is not the same. With the introduction of the second threshold,
this problem is solved.
If no search result satisfies both constraints, no search result is chosen and the movie in
the original dataset is removed. Besides, if there is a search result which satisfies both
constraints, the IMDb ID is saved and linked to the movie in the dataset.

Thereafter, not all movies were found in the IMDb database. As a result of that, no
extended data was found for these movies, and we decided to remove these movies
from the original dataset.

Next, we removed all movies that contained any NA values in the data. Often these NA
values were obtained in the extended data, for example, a missing IMDb score or miss-
ing genres. This is not a result of an error in the script, but in a few cases IMDb has too
little information about a movie. Moreover, this only concerns unknown movies that
have not many ratings (on both IMDb and the original data), and therefore has almost
no impact on the overall structure and distribution of the dataset.

Now that all NA values are removed, one can take a closer look at the reliability of
ratings and movies. The methodology behind this approach is that a movie must have
a certain number of ratings before the overall rating becomes reliable. If a movie is
rated just 2 times, it might be biased and not give a good representation. Therefore, the
following threshold has been set for each movie 𝑖 from the set of 𝐼 movies, where 𝑖 ∈ 𝐼:

13

#𝑟𝑎𝑡𝑖𝑛𝑔𝑠𝑖 > 𝑄1(#𝑟𝑎𝑡𝑖𝑛𝑔𝑠𝐼).

This threshold tells one that each movie 𝑖 must have more ratings than the first quantile
of the total distribution of the number of ratings per movie. In this re-
search, 𝑄1(#𝑟𝑎𝑡𝑖𝑛𝑔𝑠𝐼) = 191, which means that every movie in the data must have at
least 191 ratings.

Likewise, one must set a similar threshold for each user, because if a user only rates a
few movies, these ratings are not reliable. Hence one sets the following threshold for
each user 𝑗 from the set of 𝐽 users, where 𝑗 ∈ 𝐽:

#𝑟𝑎𝑡𝑖𝑛𝑔𝑠𝑗 > 𝑄1(#𝑟𝑎𝑡𝑖𝑛𝑔𝐽).

The threshold above requires each user to have rated more than the first quantile of the
total distribution of the number of ratings per user. In this research, 𝑄1(#𝑟𝑎𝑡𝑖𝑛𝑔𝑠𝐽) =
39, which means that every user in the data must have rated at least 39 movies.

In the last step of the data selection, we take a look at the quality of the remaining
ratings of users. Since the purpose of this research is to recommend movies, each user
should have rated a movie with at least one good rating (a rating of 4 or 5 stars). If this
is not the case, thus when a user has only rated movies with 3 or fewer stars, it is not
usable for a recommender system, since recommender systems are built on good rat-
ings.

To provide better insight in the reduction of data, one can visualize the above section
in a so-called data reduction funnel, where the result of each step above is represented,
for the number of movies, users and ratings. These funnels are presented in Fig. 3.

Fig. 3. The data selection process visualized for movies, users and ratings per data selection
step. The top of the funnels is the starting phase, the bottom is the outcome of the data selection
process.

14

6 Data analysis

Before one is able to make an initial recommendation based on historic ratings, one
must get more insight of the data. Therefore, a data analysis is done to get more ac-
quainted and familiar with the reduced and selected data.

To start, the distribution of ratings is important for the recommender system: it is es-
sential for such a system that there is some kind of diversity in this distribution. As can
be obtained in the first histogram below (Fig. 4), most common ratings are 3 or 4 stars.
Besides, the second histogram on the right shows the average rating, which is between
2.5 and 4 stars.

Fig. 4. Histograms that shows the distribution of the ratings (left) and average rating (right)

Furthermore, it is important to check the correlation between the average rating in the
original dataset and the retrieved IMDb rating of the movies. In the scatter plot below
(Fig. 5) the average rating of every movie is plotted against the IMDb rating of the
corresponding movies. As can be concluded from this plot, many movies have a com-
parable IMDb rating, but there seems no clear correlation between these features in the
movie dataset.

15

Fig. 5. Scatter plot that shows the correlation between average and IMDb rating of the movies.

Next, a more detailed inspection of the gathered movie genres is done, to check whether
the externally retrieved data from IMDb is useful. In order to do a proper analysis, a
closer look is taken in the number of ratings and number of movies per genre. The result
of this analysis is shown in Fig. 6. From these figures, one can state that the most com-
mon genres are drama, comedy, action, adventure and crime. In the bottom histogram,
the same genres are in the top 5 occurrences of movies.

Fig. 6. Histograms that shows the number of ratings (top) and the number of movies (bottom)
per genre.

16

In addition, it is interesting to see if the behaviour of people changes over the years.
Therefore, two other histograms have been made to provide more insight into the num-
ber of movies rated over time, and the average rating over time. As can be obtained in
the graphs below (Fig. 7), the number of ratings increases over time, with one big out-
lier somewhere in 2005. An obvious cause for this is that Netflix sampled its data ran-
domly, so that it would protect user privacy. On the right-hand side one sees the average
ratings over the years. It must be noted that the average rating increases over time.
Besides, the average rating becomes more stable over time. This can be explained by
the fact that there are fewer movies rated in the early 2000’s, which causes a higher
standard deviation in the average rating.

Fig. 7. Histograms that shows the number of ratings (left) and average rating (right) over time.

17

7 Models

In the next phase of this research, we can finally build the models. In this section, a
further elaboration of the different used techniques will be discussed and explained in
detail. First, a random recommendation is created to create a benchmark. Next, more
advanced techniques are applied to achieve more accountable recommendations.

7.1 Random recommendations

The first recommendation system is built on random recommendations. In this system,
random movies were determined from the movie dataset to the users in the test set. In
other words, this system does not consider the historic rating behaviour of the user.
Note that the set from which movies were picked, were excluding the already seen
movies. This was done to prevent recommending already seen movies.

7.2 Item-based Collaborative Filtering

After building a basic random recommender, more advanced techniques were imple-
mented to create more explainable and accountable recommendations. As already
stated in Section 3 (Related work), the item-based collaborative filtering technique is a
well-known and widely used recommender technique. In this section, this technique
will be explained in detail.

Item-based collaborative filtering is a technique that produces recommendations based
on the relationship between items (in this research: movies) inferred from the rating
matrix.

The first step of this technique is to calculate the 𝑛 × 𝑛 similarity matrix 𝐒 that contains
all item-to-item similarities. In this process, a given similarity measure is used, for ex-
ample Pearson correlation and Cosine similarity. In this research, Cosine similarity is
used as proposed by Sarwar et al. (2001) [11].
The Cosine similarity is defined by the following formula, where 𝑖𝑥 and 𝑖𝑦 are two
items, 𝑥⃗ and 𝑦⃗ are the row vectors that represent the two item’s ratings:

Next, it is usual to store only the 𝑘 most similar items of an item to reduce the size of 𝐒,
so it becomes a 𝑛 × 𝑘 matrix where 𝑘 ≪ 𝑛. The 𝑘 items which are most similar to item
𝑖 are denoted by vector 𝑆(𝑖).

The second step is to calculate the actual recommendations based on 𝐒. This is done by
calculating a weighted sum of the user’s rating for the corresponding items, according
to the following formula

18

𝑟̂𝑎𝑖 =
1

∑ 𝑠𝑖𝑗𝑗∈𝑊(𝑖)

∑ 𝑠𝑖𝑗𝑟𝑎𝑗.
𝑗∈𝑊(𝑖)

In this formula, 𝑟̂𝑎𝑖 is the predicted rating of user 𝑎 for item 𝑖 and 𝑠𝑖𝑗 is the similarity
between item 𝑖 and 𝑗. In addition, item 𝑗 must be in 𝑊(𝑖), which is defined as a subset
of 𝑆(𝑖) that contains all known ratings of user 𝑎 that are in 𝑆(𝑖).

To clarify this technique, we will show an example. In Table 4, an example similarity
matrix 𝐒 is given, which contains the Cosine similarity of 6 items. Furthermore, as-
sume 𝑘 = 3, which means that only the 3 largest entries are stored per row (these en-
tries are marked in bold, other entries can be considered as lost). In addition, the ratings
of some items for the active user 𝑎 are already known, they are represented below the
table. The task of the recommender is to recommend one of the items that do not have
a rating yet (item 𝑖1, 𝑖4 and 𝑖6).

𝐒 𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6 𝑟̂𝑎
𝑖1 - 0.1 𝟎. 𝟒 𝟎. 𝟔 𝟎. 𝟕 0.2 4.23
𝑖2 0.1 - 𝟎. 𝟐 0.1 𝟎. 𝟑 𝟎. 𝟒 -

𝑖3 0.4 0.2 - 𝟎. 𝟒 𝟎. 𝟒 𝟎. 𝟑 -

𝑖4 𝟎. 𝟔 0.1 𝟎. 𝟒 - 𝟎. 𝟐 0.1 4.29
𝑖5 𝟎. 𝟕 0.3 𝟎. 𝟒 0.2 - 𝟎. 𝟒 -
𝑖6 0.2 𝟎. 𝟒 𝟎. 𝟑 0.1 𝟎. 𝟒 - 4

𝑟𝑎 ? 4 3 ? 5 ?

Table 4. An example of item-based collaborative filtering where 𝑘 = 3.

Now the prediction for the items 𝑖1, 𝑖4 and 𝑖6 can be calculated according to the formula
above:

𝑟̂𝑎1 =
1

0.4 + 0.7
∗ (0.4 ∗ 3 + 0.7 ∗ 5) = 4.27,

𝑟̂𝑎4 =
1

0.4 + 0.2
∗ (0.4 ∗ 3 + 0.2 ∗ 5) = 3.67,

𝑟̂𝑎6 =
1

0.4 + 0.3 + 0.4
∗ (0.4 ∗ 4 + 0.3 ∗ 3 + 0.4 ∗ 5) = 4,09.

In the end, item 1 will be recommended, since it has the highest predicted rating 𝑟̂𝑎.

7.3 User-based Collaborative Filtering

Another widely-applied collaborative filtering technique is the user-based technique.
Instead of searching similar movies as one has seen in the previous section, user-based
collaborative filtering will search for similar users.

19

The first step of this technique is to find a neighbourhood of similar users and then
aggregate the ratings of these users to form a prediction. To find the 𝑘 nearest neighbors
of a given user 𝑢, similarity measures like the Pearson correlation coefficient or the
Cosine similarity is used. For user-based collaborative filtering, the Cosine similarity
is used again, as described in the item-based collaborative filtering section. However,
the items are now replaced with users. This now becomes

where 𝑢𝑥 and 𝑢𝑦 are two users, 𝑥⃗ and 𝑦⃗ are the row vectors that represent the two user’s
profile ratings.
After the neighborhood of active user 𝑢𝑎 is created, the top 𝑘 users are picked and will
be represented as the set 𝑁(𝑎) of active user 𝑢𝑎. Next, a prediction of a specific movie
for active user 𝑢𝑎 can be made by averaging the ratings of the same movie of the users
in 𝑁(𝑎). In a formula, this would be written as

𝑟̂𝑎𝑗 =
1

|𝑁(𝑎)|
∑ 𝑟𝑖𝑗

𝑖∈𝑁(𝑎)

,

where 𝑟̂𝑎𝑗 is the predicted rating for active user 𝑢𝑎 of movie 𝑗 and 𝑟𝑖𝑗 is the predicted
rating for user 𝑖, 𝑖 ∈ 𝑁(𝑎) of the same movie 𝑗.

To clarify this technique, a simple example is shown in Table 5. In this table, a rating
table 𝐑 is given, which contains ratings from 6 users of 6 movies. Besides, we again
assume 𝑘 = 3, which means that only the 3 most similar users are in 𝑁(𝑎) and therefore
will be used to compute the predictions for the active user. In this example, the active
user has already seen some movies, and are used to determine the similar users. The 3
most similar users are marked in bold (users 𝑢2, 𝑢3 and 𝑢6).

20

𝐑 𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6
𝑢1 3 2 5 ? 3 4
𝒖𝟐 ? 4 ? 4 4 5
𝒖𝟑 2 4 4 ? ? 5
𝑢4 3 3 3 5 5 4
𝑢5 4 4 5 3 4 ?
𝒖𝟔 2 ? 4 4 5 3

𝑟𝑎 ? 4 3 ? 5 ?
𝑟̂𝑎 2 4 4.33

Table 5. An example of user-based collaborative filtering where 𝑘 = 3.

The prediction 𝑟̂𝑎for items 1,4 and 6 are the averages of the movie ratings of the users
𝑢2, 𝑢3 and 𝑢6. In the end, movie 6 will be recommended to the active user 𝑢𝑎, since it
clearly has the highest predicted rating.

7.4 Singular Vector Decomposition based Collaborative Filtering

Another form of collaborative filtering, one that is not ‘neighbourhood-based’ like one
has seen in this section so far, is the Singular Vector Decomposition (SVD) Collabora-
tive Filtering technique. In general, SVD is used to reduce the number of features of a
data set. For recommender systems, one is only interested in the matrix factorization
part where one keeps the same dimensionality. Roughly said, matrix factorization is the
process of finding matrices whose product is the rating matrix. In formula, it is

𝐴 = 𝑈𝑆𝑉𝑇 ,

where 𝐴 is the given 𝑛 × 𝑚 matrix, 𝑈 is the 𝑛 × 𝑛 matrix containing the eigenvectors
of 𝐴𝐴𝑇, 𝑆 is the 𝑛 × 𝑚 matrix containing the square root of the eigenvalues associated
with 𝐴𝐴𝑇 on its diagonal, and 𝑉 is the 𝑚 ×𝑚 matrix that contains the eigenvectors of
𝐴𝑇𝐴.

The methodology behind using this technique in recommender systems is the assump-
tion that it is highly likely that there are some generalities to be found in so many rat-
ings. For instance, a movie can in some way be described in some attributes such as
genre, overall quality and so on. Likewise, a user can be described in some way that it
likes specific genres or stars. Based on this, the data may be described in a lot fewer
data values, such as a single number that describes how specific users like specific
movies.

So let us assume that each movie 𝑖 is associated with a vector 𝑞𝑖 and each user 𝑢 is
associated with a vector 𝑝𝑢. This means that for a given movie 𝑖, the elements of 𝑞𝑖

21

measure the extent of interest the user has in items that are high on the corresponding
factors. The same holds for a given user 𝑢 and its corresponding vector 𝑝𝑢. When one
takes the dot product of these vectors, one will get the approximated rating 𝑟̂𝑢𝑖 of user
𝑢 for movie 𝑖. In formula, it is

𝑟̂𝑢𝑖 = 𝑞𝑖
𝑇𝑝𝑢.

However, the problem with this technique as described above, is that SVD is not used
for sparse matrices, which is the case in this research. We have 3,592 unique movies
and 236.383 unique users in the original dataset, which results in roughly 850 million
possible ratings (note that there are actually ‘only’ 35 million ratings).
A method to make the rating matrix denser, and thus make it easier to compute the
movie vector 𝑞𝑖 and profile vector 𝑝𝑢, is to use an imputation technique. However, the
downside of using imputation is that it might distort the data considerably. Hence, an
alternative method by Koren (2008) [12] is using only the ratings that are available.
Besides, this method also avoids overfitting by using a regularized model. This is done
by minimizing the regularized squared error on the training set such that:

In this formula, 𝐾 is the set that consists of all 𝑟𝑢𝑖 that are in the training set. In addition,
by using this formula, one is able to learn from previous ratings and do it in such way
that it generalizes these previous ratings so it is able to predict future ratings as well. It
prevents overfitting by the constant 𝜆 which restricts the degree of regularization.

In order to find the actual 𝑞𝑖 and 𝑝𝑢 to predict the 𝑟̂𝑢𝑖’s, the formula above must be
minimized. This can be done using a stochastic gradient descent optimization, as was
suggested by Funk (2006) [13]. To be exact, for each given rating in the training set,
the system calculates the prediction error. The formula yields:

𝑒𝑢𝑖 = 𝑟𝑢𝑖 − 𝑞𝑖
𝑇𝑝𝑢.

Next, the 𝑞𝑖 and 𝑝𝑢 are modified such that

𝑞𝑖 ← 𝑞𝑖 + 𝛾(𝑒𝑢𝑖 ⋅ 𝑝𝑢 − 𝜆 ⋅ 𝑞𝑖),
𝑝𝑢 ← 𝑝𝑢 + 𝛾(𝑒𝑢𝑖 ⋅ 𝑞𝑖 − 𝜆 ⋅ 𝑝𝑢).

This process is done for all 𝑟𝑢𝑖 ∈ 𝐾, and the model learns to predict the 𝑟̂𝑢𝑖’s by mini-
mizing the regularized squared error on the training set, using a stochastic gradient de-
scent optimization function that is based on the prediction error.

22

7.5 Content-based Filtering

As seen in Section 7 so far, collaborative filtering focusses on the interest of the user.
In contrast, content-based filtering focusses on the contents of items, such as genres of
the movies. In this section, one will elaborate on this filtering technique.

For one to make use of content-based filtering, the external retrieved data from IMDb
was used, since only ratings of the movies were provided in the original dataset. These
ratings are usable for collaborative and content-based filtering, because this tells some-
thing about the interest of the user. However, the extracted data from IMDb, which
contains genres and actors, do tell something about the movie and not about the interest
of the user, and is therefore appropriate to use for content-based filtering.

The first step of the content-based filtering is to make a vector containing the predispo-
sition towards each genre for each user. For content-based filtering, only the 5 most
recent movie ratings rated with a 3 or higher are taken into consideration. This is done
because many users have seen movies and therefore also seen many genres. Therefore,
it would be hard to determine a good predisposition vector towards each genre.

After one has selected the 5 most recent movies of a user, a 𝑛 × 𝑚 rating matrix 𝐑 is
created that consists of 𝑛 users and 𝑚 movies, and is filled with ratings 𝑟𝑛𝑚. This rating
matrix is multiplied with the genre information of all movies. To be exact, this genre
information matrix 𝐆 is a 𝑚 × 𝑘 matrix with 𝑚 movies and 𝑘 genres. Matrix 𝐆 is filled
with genre information 𝑔𝑚𝑘, that is

𝑔𝑚𝑘 = {
 1 𝑖𝑓 𝑚𝑜𝑣𝑖𝑒 𝑚 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑔𝑒𝑛𝑟𝑒 𝑘,
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

The outcome of the dot product between the rating matrix and genre matrix is a 𝑛 × 𝑘
matrix 𝐏 that contains the predisposition of each user towards each genre, based on
their 5 most recent ratings that were 3 stars or more.

Next, based on this predisposition matrix 𝐏, a recommendation for a user can be made
by calculating the Jaccard distance between the user profile vector (the 𝑢-th row of
matrix 𝐏 for user 𝑢) and the genre information matrix 𝐆. In general, the Jaccard distance
measures the dissimilarity between vectors 𝐴 and 𝐵 by

𝑑𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) =
|𝐴 ∪ 𝐵| − |𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
.

The resulting list is ordered in an ascending way, which means the movie with the low-
est Jaccard distance will be recommended first. However, if there are two or more mov-
ies with the same Jaccard distance, these movies will be ordered on IMDb rating, where
the movie with the highest IMDb rating will be recommended first. The resulting list is

23

the list of the recommendations for the user, and exists of all the movies there are avail-
able in the dataset. In order to provide good recommendations, only the first few movies
of the list will be recommended.

7.6 Hybrid Filtering

The hybrid model is an ensemble method, which means that it is a combination of mul-
tiple models. The hybrid model that is built in this research, is a combination of a col-
laborative filtering model and the content-based model. In particular, the best collabo-
rative filtering model is chosen in Section 8 (Experiment). After this, the corresponding
collaborative filtering model is used as part of the hybrid filtering model.

The methodology behind the hybrid filtering technique is to use all data optimally. Us-
ing collaborative filtering only, one does not consider any content related data such as
genres. The same goes for content-based only, where one does not consider any rela-
tions with other users.

To make actual recommendations, every model in the ensemble method should get a
weight, such that the position of a movie 𝑖 for user 𝑢 on the recommendation is

𝑝𝑢𝑖𝐻𝐹 = 𝑤𝐶𝐹 ∗ 𝑝𝑢𝑖𝐶𝐹 + 𝑤𝐶𝐵 ∗ 𝑝𝑢𝑖𝐶𝐵 .

If movies have the same 𝑝𝑢𝑖𝐻𝐹 , the movies are ordered on IMDb rating (highest first).

Let us illustrate this technique with an example. In Table 6. Example of Hybrid Fil-
tering, where the top 8 recommended movies for a, the top 8 movies for a user are
calculated according to a collaborative filtering model (in this case: UBCF) and the
content-based model. Furthermore, assume 𝑤𝐶𝐹 = 0.4 and 𝑤𝐶𝐵 = 0.6. The positions
according to the hybrid filtering model are presented in the right table.

𝑝𝐶𝐹 Movie title 𝑝𝐶𝐵 Movie title 𝑝𝐻𝐹 Movie title Calculation
1 Terminator 1 Justice League 1 Justice League 0.4 ∗ 3 + 0.6 ∗ 1 = 1.8
2 The Apartment 2 The Prisoner 2 Terminator 0.4 ∗ 1 + 0.6 ∗ 4 = 2.8
3 Justice League 3 Spartan 3 Spartan 0.4 ∗ 4 + 0.6 ∗ 3 = 3.4
4 Spartan 4 Terminator 4 The Prisoner 0.4 ∗ 6 + 0.6 ∗ 2 = 3.6
5 Deadwood 5 Back to the Future 5 The Apartment 0.4 ∗ 2 + 0.6 ∗ 7 = 5.0
6 The Prisoner 6 Gladiator 6 Back to the Future 0.4 ∗ 8 + 0.6 ∗ 5 = 6.2
7 Gladiator 7 The Apartment 7 Gladiator 0.4 ∗ 7 + 0.6 ∗ 6 = 6.4
8 Back to the Future 8 Deadwood 8 Deadwood 0.4 ∗ 5 + 0.6 ∗ 8 = 6.8

24

Table 6. Example of Hybrid Filtering, where the top 8 recommended movies for a UBCF model
(left) and a content-based model (middle) are presented. The final recommendation list of the
hybrid model is presented in the right table.

25

8 Experiment

Now that all models are explained, one is ready to set-up the experiment, train and test
the models, and evaluate the results in the end. In this section, the experiment will be
explained, such as the data splitting and the validation. Thereafter, each model will be
evaluated based on two evaluation metrics: the confusion matrix with corresponding
graphs and the normalized cumulative discounted gain (NDCG).

8.1 Experiment configurations

In the experiment, all models as explained in Section 7 (Models) are implemented. First,
the data was split in a training and test set in such a way that 80% of the users are in
the training set, and the other 20% of the users are in the test set. However, to make
sure the cold-start problem is avoided, the 5 most recent movies of each user in the test
set are separated and used to make a user profile for the users in the test set. Note that
for the content-based filtering technique, these 5 movies are used to set up a predispo-
sition of each user towards each genre, while for the collaborative filtering models these
5 movies are used to find similar users/movies (UBCF/IBCF respectively) or to deter-
mine basic vectors 𝑞𝑖 and 𝑝𝑢 (SVD).

Next, the best performing collaborative filtering model is used together with the con-
tent-based to create the hybrid model. In order to achieve the best results, the weights
of this hybrid model must be tuned. In this experiment, a grid has been created, and for
each combination the hybrid model is trained. To be more specific: a grid in the range
of 0 to 1 with steps of 0.1 has been created twice (for the CF and CB model) such that
the sum of the weights is 1. For example, if the weight of the collaborative filtering
model is 0.3, the weight of the content-based model is 0.7. All possible combinations
of the grid are trained.

8.2 Evaluation

The first evaluation method used in this experiment is the confusion matrix. A confu-
sion matrix is a matrix that shows the performance of a model. Each row in this matrix
shows the predicted class (movie recommended or not), while each column shows the
observed class (movie watched or not). Note that each user has its own confusion matrix
for a pre-determined number of recommendations.
Next, one can easily derive the table of confusion of this matrix, which contains the
number of false positives, false negatives, true positives, and true negatives per user.
Finally, visualizations such as the ROC-curve and the precision/recall curve can be cre-
ated for a different number of recommendations.

In Table 7, one can find the averaged table of confusion, which contains the precision,
recall (or true positive rate (TPR)), and false-positive rate (FPR) per user for a pre-
determined number of recommendations of each model.

26

Random Recommendations Item-based Collaborative Filtering

 Precision Recall FPR Precision Recall FPR
10 0.015 0.081 0.100 10 0.084 0.142 0.098
20 0.015 0.160 0.200 20 0.070 0.208 0.199
30 0.015 0.244 0.300 30 0.078 0.356 0.296
40 0.015 0.322 0.400 40 0.073 0.429 0.397
50 0.015 0.394 0.500 50 0.075 0.573 0.495
60 0.014 0.462 0.600 60 0.078 0.721 0.593
70 0.015 0.540 0.700 70 0.074 0.792 0.694
80 0.014 0.615 0.800 80 0.071 0.859 0.796
90 0.014 0.688 0.900 90 0.069 0.922 0.898
100 0.014 0.763 1.000 100 0.067 0.986 1.000

User-based Collaborative Filtering SVD-based Collaborative Filtering

 Precision Recall FPR Precision Recall FPR
10 0.253 0.238 0.085 10 0.295 0.261 0.081
20 0.219 0.354 0.177 20 0.249 0.380 0.172
30 0.208 0.547 0.270 30 0.230 0.569 0.265
40 0.188 0.625 0.370 40 0.205 0.643 0.364
50 0.172 0.695 0.471 50 0.187 0.705 0.467
60 0.158 0.752 0.575 60 0.172 0.760 0.571
70 0.151 0.890 0.678 70 0.163 0.901 0.674
80 0.140 0.931 0.784 80 0.152 0.940 0.781
90 0.131 0.967 0.892 90 0.141 0.972 0.890
100 0.124 1.000 1.000 100 0.132 1.000 1.000

Content-based Filtering
 Precision Recall FPR
10 0.081 0.321 0.094
20 0.045 0.353 0.196
30 0.035 0.408 0.297
40 0.032 0.478 0.398
50 0.030 0.550 0.498
60 0.029 0.632 0.599
70 0.028 0.721 0.699
80 0.028 0.812 0.799
90 0.027 0.902 0.900
100 0.027 0.983 1.000

Table 7. Confusion table results of the experiment considered for each model for a
pre-determined number of recommendations.

From these results, one is able to draw a ROC-curve and a precision-recall curve, see
Fig. 8. A ROC-curve (receiver operating characteristic curve) represents the recall

27

against the false positive rate (FPR). A precision-recall curve represents the precision
against the recall.

Fig. 8. ROC-curve (left) and precision-recall curve (right) for each model.

The second evaluation method is based on the Normalized Discounted Cumulative
Gain (NDCG). This is a measure often used to rank lists, because it measures the
quality of the list by using a graded relevance scale of the items in the list. The influ-
ence of the items become less when the position in the list decreases. The NDCG is
calculated as the discounted cumulative gain, divided by the ideal discounted cumula-
tive gain. In formula:

𝑁𝐷𝐶𝐺 =
𝐷𝐶𝐺

𝐼𝐷𝐶𝐺
.

Therefore, DCG is computed such that important movies are awarded regarding their
position and relevance. In this experiment, the relevance of the movie is their real rat-
ing of the movies in the test set. If a movie is not watched at all, the rating 0 is given.
Besides, the DCG also penalizes relevant movies when they are relatively low on the
list. In formula, the DCG is given as

𝐷𝐶𝐺 =∑
2𝑟𝑒𝑙𝑖 − 1

log2(𝑖 + 1)
.

𝑝

𝑖=1

Second, the IDCG is computed the same way as the DCG. However, the only differ-
ence now is that the list is sorted by relevance. In other words, the IDCG is the DCG
calculated on the ideal ranked list.

Finally, the NDCG is calculated for each model. The results are presented in Table 8.

28

Random IBCF UBCF` SVD CB
0.357 0.488 0.523 0.524 0.446

Table 8. NDCG scores for each single model.

Next, the best collaborative filtering model is chosen and combined with the content-
based model in order to create the hybrid model. As can be derived from the ROC-
curve and the precision-recall curve in Fig. 8, the SVD model performs best. This can
be obtained because both curves of the SVD-based model has the highest area under
the curve. Besides, the NDCG of the SVD-based model is the largest of all models,
which means the recommendation list of the SVD-based model is closest to the ideal
recommendation list.

In order to evaluate the hybrid models (all combinations of weights), the same proce-
dure as above has been walked through. In Fig. 9, the ROC- and precision-recall curve
can be obtained for the hybrid models.

Fig. 9. ROC-curve (left) and precision-recall curve (right) for the hybrid models.

Finally, the NDCG is calculated the same way as the single models. The results are
presented in Table 9.

Weight SVD 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight CB 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
NDCG 0.481 0.483 0.488 0.496 0.505 0.516 0.514 0.513 0.512

Table 9. NDCG scores for each hybrid model.

29

9 Conclusions and discussion

Now that the experiment is completed and all results are presented, the conclusion can
be drawn. In this section, we will elaborate on the results and discuss them as well.
Finally, the improvements and further work will be discussed.

9.1 Conclusion

As already concluded in the previous section, the SVD-based model delivered the best
results of the single models. In addition, the best hybrid model is the model with the
following configuration of weights:

0.4 ∗ 𝐶𝐵 + 0.6 ∗ 𝑆𝑉𝐷.

The research question as stated in the introduction of this research, was:
Which recommender technique applied to Netflix movie data will perform best? And
will the extension of additional data improve this model?

In the end, we can conclude that, based on the ROC-curve, precision-recall curve and
NDCG, the SVD-based model performs best on the original Netflix data. Besides, the
hybrid model showed that the extension of additional genre data did not significantly
improve the model. Moreover, the hybrid model performed slightly worse on the same
data than the SVD-based model.

9.2 Discussion

The experiment executed in this research can be discussed on different aspects. First,
the relevance of this research. The current recommender system that Netflix uses, is
much more sophisticated than the models that were described in this research. Nowa-
days, Netflix does not depend on a recommender system with star ratings only, but is
using a combination of these techniques instead [14]:

- Personalized Video Ranker (PVR).
This technique can be compared to the content-based technique used in this
research. It searches movies with similar features (such as genres) based on
the latest watching behaviour of the corresponding user.

- Trending Now
This technique recommends trending movies, based on the user’s location, sex
or age.

- Video-video similarity
This technique can be compared to item-based collaborative filtering used in
this research. It calculates the similarity between movies. The difference is, it
uses watch data instead of ratings data. This technique is also called the Be-
cause You Watched-technique (BYW).

- Search

30

This technique is a recommender that predicts movies based on your search
queries.

In addition, the current recommender system of Netflix uses many other data sources
rather than customer ratings. These sources include [15]:

- Popularity data over various time ranges, group members by region or other
groups and compute popularity within that specific group.

- The number of plays of each song, including context data such as device type,
time and the duration of the play.

- Queueing data. Netflix offers the opportunity for users to create a so-called
‘wish list’ or ‘watch later list’ where one can add TV-series or movies to watch
later on.

- Metadata, such as information about the movie or TV-series (actors, genres,
reviews).

- Social data. Netflix can access the social network of a user (with permission)
to retrieve titles that have been watched within the social network of the user.

- Search terms, so Netflix knows where a user is looking for. Recommendations
can be adjusted and adapted to these search terms.

- All kinds of external data, for example external item data features like critic
reviews, which affects the recommendations for sure.

Unfortunately, this data was not available, which makes this research very basic and
less relevant for Netflix itself.

9.3 Further work and improvements

This research could be improved on several aspects in the future. First, more additional
data could be added to the models, which allows more combinations of the hybrid
model that could lead to a more accurate recommender system. Besides, as explained
in the discussion above, this extension would eventually lead to a closer approximation
of the actual Netflix model.

Second, the model could be programmed better, which will speed up the runtime dra-
matically. The current models are programmed manually and take up to 50 hours to
train and test all models. If one improves this script in such way the runtime decreases,
one might achieve better results in the end because tweaking the model will become
easier.

Finally, more extended evaluation methods could be applied to the results, which will
provide more detailed insights into the results. An example is the root mean square error
(RMSE) that provides more insight into the incorrect predictions. Besides, this evalua-
tion method was also used in the original competition from Netflix that came together
with the dataset, which makes it possible to compare the achieved results with others.

31

10 References

[1]. Deloitte US, “Deloitte Digital Democracy Survey, 11th edition”, URL:
https://www2.deloitte.com/content/dam/Deloitte/us/Docu-

ments/technology-media-telecommunications/us-tmt-deloitte-dig-

ital-democracy-executive-summary.pdf

[2]. Deloitte US, “Deloitte Digital Democracy Survey, 9th edition”, URL:
https://www2.deloitte.com/content/dam/Deloitte/global/Docu-

ments/Technology-Media-Telecommunications/gx-tmt-deloitte-de-

mocracy-survey.pdf
[3]. Netflix Investor Relations, “Netflix Company Profile”, URL:

https://ir.netflix.com
[4]. Schwartz B. (2015), “The Paradox of Choice: Why More Is Less”. Harper

Perennial, New York, NY.
[5]. Sarwar et al. (2001), “Item-Based Collaborative Filtering Recommendation

Algorithms”.
[6]. Lops et al. (2014), “Content-based Recommender Systems: State of the Art

and Trends”.
[7]. Lika et al., “Facing the cold start problem in recommender systems” (2013)
[8]. Burke R. (2007) “Hybrid Web Recommender Systems”, In: Brusilovsky P.,

Kobsa A., Nejdl W. (eds) The Adaptive Web.
[9]. Burke, R. (2002), “Hybrid Recommender Systems: Survey and Experi-

ments”, User Modeling and User-Adapted Interaction.
[10]. Cohen et al. (2003), “A Comparison of String Distance Metrics for Name-

Matching Tasks”.
[11]. Sarwar et al. (2001), “Item-Based Collaborative Filtering Recommendation

Algorithms”.
[12]. Koren, Y. (2008), “Factorization Meets the Neighborhood: A Multifaceted

Collaborative Filtering Model,” Proc. 14th ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining, ACM Press, pp. 426-434.

[13]. Funk, S. (2006), “Netflix Update: Do Try This at Home”, URL:
http://sifter.org/simon/journal/20061211.html

[14]. Carlos A. Gomez-Uribe and Neil Hunt. (2015), “The Netflix recommender
system: Algorithms, business value, and innovation.”

[15]. Amatriain X. and Basilico J. (2012), Netflix Recommendations: Beyond the
5 stars (Part 2). URL: https://medium.com/netflix-techblog/net-
flix-recommendations-beyond-the-5-stars-part-2-d9b96aa399f5

https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/us-tmt-deloitte-digital-democracy-executive-summary.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/us-tmt-deloitte-digital-democracy-executive-summary.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/us-tmt-deloitte-digital-democracy-executive-summary.pdf
http://sifter.org/simon/journal/20061211.html
https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-2-d9b96aa399f5
https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-2-d9b96aa399f5

