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Abstract

Goal: The aim of this research is to investigate and give an overview of several
approaches that can deal with the problem that arises when the independence of
errors assumption of the linear regression model (LM) is violated.

Approach: Two approaches, generalized least squares (GLS) and linear mixed
effect models (LME), are examined to get an understanding of the basic theory and
how they manipulate data to handle dependency of errors. In a practical part the
approaches are tested on real and simulated data to see how they perform.

Practice: The GLS is tested by simulating data. Therefore a multiple LM with cor-
related errors is simulated. After the simulation, the ordinary least squares (OLS)
and GLS approach are applied and their results are compared. For the LME model
a real life dataset containing longitudinal data is used. By comparing models in-
cluding and excluding random-effects to capture the dependency of errors, their
performance is tested.

Results & conclusion: The GLS showed a big improvement in estimating the
unknown β̂-coefficients of the regression equation compared to the OLS. The GLS
obtained a regression equation whereby all β̂-coefficients were estimated really close
to the real values and proved to have a significant influence. For the OLS, two of
these coefficients were not estimated close to the real values and showed no signif-
icance. Thus, the GLS proved that it was not influenced by the dependent errors.
For the LME, incorporating random-effects for repeated measurements from the
same person over time, showed a significant difference than not incorporating the
dependent errors.

Recommendation: For a future research, the simulated dataset could be extended
by adding more explanatory variables. The LME performing the best, can be com-
pared with a LM model including the same fixed-effects to see what difference it
makes to include random-effects.
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Introduction

In the statistics a well-known and used statistical model is the linear regression
model (LM). The LM is used to examine and predict data by modeling the rela-
tionship between the dependent, also called response, variable and the independent,
also called explanatory, variables. The aim of the LM is to find the best statistical
relationship between these variables in order to predict the response variable or to
examine the relationship between the variables.

Before applying the LM, there are several assumptions the data observations need
to satisfy to allow the user to use the LM. One important assumption is the inde-
pendence assumption which is satisfied when the observations are taken on subjects
that are not related in any sense. In that case the errors of the data can be assumed
to be independent. In case this assumption is violated, the errors exist to be depen-
dent and the quality of statistical inference may not follow from the classical theory.

There are several approaches available that can be used to resolve the dependency
of errors. Each of these approaches has different ways of handling dependency of
errors. Therefore the main question for this research is:

How can one deal with dependency of errors?

To answer the main question an overview will be given of the theoretical back-
ground of two available approaches that are able to handle dependency of errors.
To see the impact of these approaches, one will create a practical study. In the
practical study the performance of the approaches will be investigated on real and
simulated data.

The first part of this research paper will present an overview of the theoretical
background of the examined models and approaches. Chapter 1 gives a broad ex-
planation of the LM with corresponding model assumptions and how to measure
the goodness of fit of the model. In Chapter 2 the theoretical background of the
alternative GLS approach can be found followed by the LME in Chapter 3. The
second part of this paper contains examples of a practical study. In Chapter 4 the
performance of the GLS is investigated on simulated data. Chapter 5 presents an in-
vestigation of the LME on real life data. Finally, Chapter 6 will provide a conclusion
and recommendation.
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Chapter 1

Linear Regression Model

1.1 Introduction

In statistics a well-known and used statistical model is the linear regression model
(LM). This model is used to model statistical relationship between the independent,
also called explanatory, variables and one dependent, also called response, variable.
The response expresses the observations of the data. Because observations, are in
most cases of stochastic nature rather than deterministic nature, the LM is aimed to
try to find the best possible statistical relationship between the observations. In the
model the values of the explanatory variables are known and are used to describe the
response variable as good as possible. The explanatory variables have the ability
to control, change and manipulate the response variable. Thus they control the
environment in which one makes measurements. Therefore the response variable is
also called the dependent variable because it depends on the explanatory variables.

A real life example to apply a LM could be a case where one examines how study
time affects the grade of students. Therefore the amount of study time the student
spent, is modeled as the explanatory variable whereby the grades of the student are
modeled as the response variable. As one can imagine, the more time the students
spent studying, the higher their grades will become. In this way the explanatory
variable controls, changes and manipulates the response variable. With this data
the LM could produce a best-fitting line, also called regression line, through the
data observations. The regression line describes how many hours a student should
spent studying to obtain a certain grade. With this line one can predict what the
grade of a new student will be when spending a certain amount of studying time.
In this example the best intercept and slope of the regression line can be found with
a simple LM by using the ordinary least squares, which will be explained later on
in this chapter. A simple LM is a model containing only one explanatory variable.
When the LM incorporates multiple explanatory variables, the model is called a
multiple LM.

As one can see, the LM can come in handy when it comes to searching for
relationships between variables and making predictions. But before one can make
use of the model, the data needs to fit several model assumptions. If one or more
of these assumptions is/are not satisfied, the quality of statistical inference may not
follow from the classical theory. In the upcoming sections an overview of the LM is
given.
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1.2 The Linear Regression Model

The LM assumes a linear relationship between the response variable yj and the
p-multivector of explanatory variables xi. To describe the relation between these
variables, the best-fitting line or (hyper)plane needs to be found. The best-fitting
line or (hyper)plane is also called the regression line or regression equation. With the
ordinary least squares method, the regression equation can be found. This method
computes the intercept and slope of the regression equation. Before explaining this
method let us first take a look at the LM. The model is of the following form:

yj = β1xj1 + · · ·+ βpxjp + εj

= xTj β + εj with j = 1, · · · , n

where:

xTj = (xj1, · · · , xjp) is a 1 × p vector of explanatory variables for the jth
observation.

Note: Explanatory variable xT1 is a vector only containing the values 1 thus
β1x

T
1 = β1 a vector of length n only containing the β1 value.

yj is the response variable for the jth observations

β is a p× 1 vector of unknown parameters

εj is the unobserved error which represents the difference between the ob-
served response variable yj and the predicted value ŷi which is obtained by
the systematic part xTj β

In matrix notation the model is written as follows:

y = Xβ + ε (1.2.1)

Where in terms of the n data points:

X is the n × p matrix, also called the design matrix. With jth row equal to
the p-multivector of explanatory variables xTj .

y is the n× 1 vector y = (y1, · · · , yn)T

β is the p× 1 vector β = (β1, · · · , βp)T

ε is the n× 1 vector ε = (ε1, · · · , εn)T

In case p = 2 the equation (1.2.1) describes a line through the data observations
which expresses the relation between the explanatory variable and response variable.
Then, β1 is interpreted as the intercept, and β2 as the slope of the line. In other
cases the equation describes a plane (p = 3) or a hyperplane (p > 3).

Example Assume the model: y = β1x1 + β2x2 = β1 + β2x2.
In this LM the intercept is given by β1 and the slope is given by β2.

Because the β-coefficients are usually unknown, these coefficients need be estimated.
A method that can estimate β̂-coefficients is the least squares method.

Page 3
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1.2.1 Least squares method

To describe the linear relationship between the response and explanatory variables,
one can fit a regression equation whereby the unknown β̂-coefficients can be found
with the least squares method. This method estimates the β̂-coefficients so one can
predict the the response variable ŷi. The model describing the regression equation
is of the following matrix form:

ŷ = Xβ̂ (1.2.2)

where:

X is the design matrix containing the explanatory variables. Each column of
the matrix corresponds to an explanatory variable.

ŷ is a vector containing the predicted response values

β̂ are the estimated β-coefficients

The least squares method which can find the β̂-coefficients is the ordinary least
squares.

Ordinary Least Squares The ordinary least squares (OLS) can be applied under
the condition that the p× p matrix X is of full rank, and hence XTX is invertible.
Only then, the least squares estimator of β̂ is in matrix notation:

β̂ =
(
XTX

)−1
XTy (1.2.3)

The aim of the OLS is to minimize the sum of squares of the errors by fitting a line
through all the observations with model (1.2.2). Therefore the errors are calculated.
The errors represent the difference between the observed response values yi and the
predicted response values ŷi. The model with the smallest difference between the
observed and predicted response values, contains the smallest value of the sum of
the squared errors. The β̂-coefficient obtaining the the smallest value of the sum
of the squared errors, will create the regression equation through the observations.
These β̂-coefficients obtaining the least squares of the errors are thus found with
(1.2.3).

Maximum Likelihood Another way of estimating the unknown coefficients β is
by making use of the maximum likelihood estimate (MLE). In case of dealing with
a normal LM 1.2.3, which will be explained later on, where the εj’s are mutually
independent and normally distributed, the MLE is identical to the OLS [1].

1.2.2 Goodness of fit

After having obtained a (multiple) LM that produces a regression line, it is of
importance to examine how well the regression line predicts the actual response
values. To examine the performance of a model, one can use different computations
to interpret the goodness of fit of a model.

Page 4
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R-squared A statistical measure that expresses the percentage of how good the
explanatory variables predict the response variable, is the r-squared (R2). The R2

works as follows, take the mean of the actual response values and compute the dis-
tance of the actual response values to the mean. Next, take the regression equation
with the estimated response values and compute the distance of the estimated re-
sponse values to the mean. Comparing these distances and subtracting this of 1,
expresses how well the regression equation predicts the actual response values. The
R2 is mathematically written as follows:

R2 = 1−
∑n

i=1 (ŷi − ȳi)2∑n
i=1 (yi − ȳi)

(1.2.4)

Example Assuming the student data explained in the introduction, a
regression line is fitted through all the observations and one obtains an
high R2 = 0.876. This thus means that 87.6% of the predicted response
values can be explained by the explanatory variable. Which means that
predicting the grade of the students can be explained for 87.6% with
explanatory variable, the studying time.

Standard error Another statistical measure to see how good a multiple LM per-
forms, is the standard error. The standard error is a measure that computes the
range where one can expect the errors to fall in. The smaller the standard errors,
the better one can rely on the estimated β̂-coefficients. The standard errors can be
computed with the C matrix which is a symmetric matrix with on the diagonal, the
variance of the estimated β̂-coefficients, also written as: diag(C11, · · · , Cii). This
matrix is computed as follows:

C = σ̂2(XTX)−1

with:

σ̂2 = yT (I−H)y(n− p− 1)−1

= yT (I−X(XTX)−1XT )y(n− p− 1)−1

where (n− p− 1) represents the degrees of freedom, n is the number of observations
and p are the number of variables participating in the model [2]. To compute the
standard error, one simply needs to take the square roots of the diagonal values of
the C matrix.

SEi =
√
Cii, i = 1, 2, · · · (1.2.5)

t- and p-values The t-values are obtained by dividing the β̂-coefficient with the
standard errors of (1.2.5) and the H0 hypothesis can be tested and is rejected if:

|Ti| =
|β̂i|
SEi

≥ t(n−p−1);1−α
2

i = 1, 2, · · ·

As stated in Bijma [2] the t(n−p−1);1−α
2

is the (1 − α
2
)-quantile of the t-distribution

with n− p− 1 degrees of freedom. With the corresponding p-value one can test the
already mentioned null hypothesis:

H0 : β̂i = 0 vs. H1 : β̂i 6= 0 for i = 1, 2, · · ·
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This test tests if a β̂-coefficient has (no-)effect on the model. If a β̂-coefficient has
effect on the model β̂i 6= 0, this can be noticed by a low p-value < 0.05. If the
p-value < 0.05, the null hypothesis is rejected. This means that the β̂-coefficient
is meaningful to the model because changes in the values of the corresponding ex-
planatory variable are related with changes in the response variable [3].

1.2.3 Normal linear model

Model (1.2.1) is called a normal linear model if:

The errors εj are mutually independent and are from the normal distribution
with ε ∼ N (0, σ2I), where I is an n × n identity matrix. Then the response
variable yj is an independent normal random variable with mean [4]:
E [yj] = E[xTj β + εj] = xTj β and variances: Var [yj] = Var[xTj β + εj] = σ2.

For the examination of the relationship between the response and predictors in linear
regression, one is assuming a normal linear model with errors mutually independent
and from the normal distribution.

1.2.4 The assumptions

Before making use of the LM, the data needs to satisfy several assumption. From the
point of view of this research paper the most important assumptions are described
bellow. For the remaining assumptions it can be useful to look into [4, 5].

Linearity One needs to verify if there is linearity in the parameters. This means
that the there needs to be a linear relation between the response and explanatory
variables. Thus the y of the model needs to be the result of a linear combination of
the explanatory variables plus the error terms [6].

Example Assume a linear model: y = β1x1 + β2x2 + ε. As one can
see, there is a linear relationship between y and X and this model would
create a straight line.

If the parameters are not linear, the model could for example look like
this: y = β1x1 +xβ22 +ε. As one can see, the parameter β2 is expressed in
such a way that it is not a linear combination anymore. If data consist
of such a form, the result would be that the y of the model is obtained
by a non-linear combination of the explanatory variables and errors.

Note: Even when an explanatory variable is non-linear, for example a polynomial,
the model is still linear in its parameters. This is because one is assuming a linearity
in the unknown β̂-coefficients. This case can be seen in the practical part of this
research paper.

independence One of the most important assumption is the independence as-
sumption, whereby the errors need to be independent and identically. This assump-
tion is divided into three sub assumptions that needs to be satisfied before applying
the LM. Every sub-assumption will be provided with a real life example.

Page 6
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1. Expected value of the error term is equal to zero: This assumption
states that the expectation of the errors is equal to zero E [εi] = 0. Which means
that the error of a subject cannot be predicted from the knowledge of the error for
another subject [7].

Example In case the expected value of the error term is equal to zero:
Then one knows the time a particular student spent studying and their
corresponding grade (thus given one observation). Then this will say
nothing about the grade of another student spending the same amount
of time studying being bellow or above the mean for the studying time
of all students.

Note: From the point of view of this research paper, one will assume that this sub-
assumption is satisfied.

2. Homoscedasticity: This assumption states that the error terms of the model
need to have a constant variance Var [εi] = σ2 ∀i. Which means that the distribu-
tion of the errors stay constant along with the explanatory variable(s) [4]. This is
also called homoscedasticity.

In case the errors have a constant variance, the corresponding variance-covariance
matrix, also known as covariance matrix, for the errors would be a diagonal matrix
with on the diagonal constant variances. This is also written as: diag(σ2 · · ·σ2).
In case the errors appear to have non-constant variance this would correspond
to a covariance matrix with unequal variances on the diagonal, also written as:
diag(σ2

1 · · ·σ2
n).

If the errors do not have a constant variance along with the explanatory variables,
this is known as heteroscedasticity and the assumption is violated.

Example Homoscedasticity can be seen in a case where one wants to
predict the grocery spending of persons, based on their income. People
with low/high incomes are spending certain low/high amounts of money
on their groceries. In this case the variation in spendings are similar and
there is no violation of the assumption.
In case people with high income spend as little as people with a much
lower income, the variation for these persons will be higher and one will
observe non-constant variance of the errors. Thus one is then dealing
with heteroscedasticity.

One way of dealing with heteroscedasticity is by using the generalized least squares
(GLS). In section 2.2 a broad explanation of this approach is given. Another way of
dealing with non-constant variances is with the linear mixed effect models (LME),
which can be found in chapter 3.

3. No-correlation: Also known as the independence of errors. For this assump-
tion one assumes that there is no-correlation between errors, which means that the
errors are independent of each other.

If the errors show no-correlation, the corresponding covariance matrix is a matrix
with all the off-diagonal values being equal to zero E [εi, εj] = 0, ∀i 6= j. If the errors
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are correlated the matrix will be a covariance matrix with one or more off-diagonal
values being unequal to zero E [εi, εj] 6= 0,∀i 6= j [5].

Example On a school participating students where observed for an
experiment. For the experiment the students all took the same math-
ematics test. They were studying all by themselves and they were not
influenced by there fellow students. In this case there would be no-
correlation of errors. Thus when investigating these data observations,
the corresponding covariance matrix only contained off-diagonal values
equal zero. Therefore one concluded that there was no-correlation of
errors.
In a similar experiment on another school, some of the observed stu-
dents where working together for the same test and they helped each
other while preparing for the test. When examining these data observa-
tions, the corresponding covariance matrix contained off-diagonal values
unequal to zero for the students working together. Therefore one con-
cluded that the errors were correlated and the LM assumption was not
satisfied.

One way of dealing with correlated errors is by using the GLS. Another way of deal-
ing with correlated errors is with the LME. In the upcoming chapters a theoretical
overview will be given.

In the LM one assumes that expected value of the error term is equal to zero,
homoscedasticity and no-correlation of errors. Violating this assumption does not
mean that there is no model possible for the data, it only means that the linear
regression model is inappropriate.

1.2.5 Gauss-Markov theorem

The Gauss-Markov theorem (G-M) says that if the errors in a linear regression
model are uncorrelated, have expectation zero and have equal variances, then the
best linear unbiased estimator (BLUE) of the coefficients can be found with the OLS
estimator. As stated in Sen and Srivastava [5] the G-M conditions for the errors in
a linear regression model are the following:

E [εi] = 0

Var [εi] = σ2 <∞
Cov [εi, εj] = 0, ∀i 6= j

In matrix notation these conditions are:

E [ε] = 0,

E
[
εεT
]

= σ2I

As one can see, these conditions are the same as the independence assumption in
subsection 1.2.4.

Thus for example, if the error term is a function of the explanatory variables,
which means that the expectation of the error term is not zero anymore E [εi] 6= 0,
the OLS estimator is biased and therefore is not BLUE anymore.

Page 8
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Note: For the G-M conditions, the errors do not need to be normal and identi-
cally distributed.

1.3 Summary

Given data consisting of explanatory variables and a response variable. Whereby
the relationship between these variables is linear and the errors are independent, the
LM (1.2.1) is a very often used statistical model to predict and estimate the response
values. This model fits a regression line through the actual observations. The regres-
sion line is a line which best describes the relation between the explanatory variables
and response variable. To obtain the line, one needs to estimate the unknown β̂-
coefficients, representing the intercept and slope(s) of the line. If one has data,
satisfying the normal linear model and the corresponding model assumptions, one
can use the ordinary least squares method (1.2.3) to estimate the β̂-coefficients and
model the regression line. To see how good the model predicts the actual response
values, one can use the R2, standard errors or p-values to interpret the performance
of the model.

As already mentioned, one can use the normal linear model if the data satisfies
several assumptions. The most important assumption is the independence assump-
tion. The independence assumption states that the error terms are independent and
identically distributed. The mean of the errors is equal to zero E [εi, εj] = 0, ∀i 6= j,
the variance is equal to a constant Var [εj] = σ2 which is also known as homoscedas-
ticity and the covariance is equal to zero E [εi, εj] = 0 for ∀i 6= j, also known as
no-correlation of errors.

The independence of errors means that the errors are uncorrelated. Looking at
the variance and covariance of these errors, one obtains a corresponding variance-
covariance matrix whereby the diagonal of the matrix corresponds to the variance
Var [εj] = σ2 and the non-diagonal values correspond to the covariance of the errors
E [εi, εj] = 0 for ∀i 6= j.

If the data does not satisfies the independence assumption this does not mean
that there is no model possible for the data containing correlated errors, it only
means that the normal linear model is inappropriate. Therefore other methods and
approaches, which can handle correlated errors, need to step in.

Page 9



Chapter 2

Correlated Errors

2.1 Introduction

In the previous chapter one has seen that the normal linear model assumes a model
of form y = Xβ + ε with homoscedasticity of errors, thus a constant variance
Var [εj] = σ2I. This means that the errors are having the same distance from the
regression line across all the values of the explanatory variables so they are having
the same distribution. In this chapter one will assume that the homoscedasticity of
errors does not hold and that the errors are instead heteroscedasticity. This means
that the errors are having non-constant variances. One will assume that the variance
of the errors will then be of the following form:

E
[
εεT
]

= σ2Ω = Σ (2.1.1)

The corresponding matrix for this model will be a variance-covariance matrix, from
now on noted as covariance matrix, of the form: Σ = σ2Ω. The diagonal of the
covariance matrix Σ does not have to consist of a constant σ2 but can also take other
values: diag(σ2

1 · · ·σ2
n). If however, the entries on the diagonal of Σ are constant

and σ2, then one can write Σ = σ2Ω. The off-diagonal values of this matrix do not
always have to be equal to zero everywhere. Which means that one can also have
correlation of errors. Thus both sub-assumptions of the LM, homoscedasticity and
no-correlation of errors, can be violated and captured in this matrix.

If one is dealing with heteroscedasticity the ordinary least squares (OLS) is not
appropriate anymore. This is because the OLS tries to minimize the squares of errors
and when the homoscedasticity of errors is present, the OLS gives equal weights to
the observations finding the best β̂-coefficients. But when heteroscedasticity of errors
is present the OLS will give improper weights to the observation because the errors
are biased which will result in the OLS not being the best linear unbiased estimator
(BLUE) anymore. Thus, it will then not find the best β̂-coefficients. In the upcoming
sections the alternative approach, GLS, of dealing with heteroscedasticity and also
correlated errors will be given and explained.

10
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2.2 Generalized Least Squares

In the linear regression model:

y = Xβ + ε (2.2.1)

The β-coefficient is a vector with unknown regression parameters. Under the Gauss-
Markov conditions of section 1.2.5, the BLUE of the β-coefficients can be found with
the OLS.

Now let us assume that the first G-M condition, the expected value of the error
term is equal to zero E [εi] = 0, holds and that the second condition is not given by
E
[
εεT
]

= σ2I but is given by (2.1.1) with a known symmetric, positive definite
correlation matrix Ω of order n [5]. This is under the assumption that the errors
are normally distributed with a mean of zero and non-constant variance. Then the
covariance matrix is:Σ = σ2Ω [8]. With errors satisfying: ε ∼ N (0,Σ).

Then the G-M condition E
[
εεT
]

= σ2I is not satisfied and the OLS is not BLUE
anymore.

Under these new assumptions, one will show that the best way to estimate the
β-coefficients is with the GLS estimator which can be seen as a transformation of
the linear regression model whereby the coefficients are obtained with a transformed
version of the OLS. Which looks as follows:

βGLS =
(
XTΣ−1X

)−1
XTΣ−1y (2.2.2)

Here Σ is a positive definite covariance matrix containing (non-)constant variances
on the diagonal and one or more covariances not being equal to zero on the off-
diagonals.

Since Σ is positive definite, one can find a matrix such that Σ can be written as:

Σ = ΞTΞ

where ΞTΞ is non-negative because it is a sum of squares and it is positive definite
for all matrices Ξ. [5].

To obtain a model that satisfies the second G-M condition, homoscedasticity and
no-correlation of errors, one can transform the linear regression model (2.2.1) by
pre-multiplying both sides off the equation with Ξ−1:

Ξ−1y = Ξ−1Xβ + Ξ−1ε

Knowing all of the above and that the variance will be equal to (2.1.1), the mean
and covariance of the errors will become:

E
[
Ξ−1ε

]
= 0

Cov
[
Ξ−1ε

]
= Ξ−1Cov [ε] (ΞT )−1

= Ξ−1Var [ε] (ΞT )−1

= σ2Ξ−1Σ(ΞT )−1

= σ2Ξ−1(ΞΞT )(ΞT )−1

= σ2I
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Now it becomes clear that transforming the data by multiplying both sides of the
linear regression model with Ξ−1, a model is obtained that satisfies the G-M con-
ditions. Accordingly, one can then conclude that the OLS estimator is the BLUE
estimator again for the β-coefficients of the transformed model. Thus:

βGLS =
(
XT (ΞT )−1Ξ−1X

)−1
XT (ΞT )−1Ξ−1y

=
(
XTΣ−1X

)−1
XTΣ−1y

(2.2.3)

2.3 Estimated Generalized Least Squares

In most natural cases the covariance matrix Σ is not known, therefore this matrix
has to be estimated. To do so, take the model:

yt = Xβ + εt (2.3.1)

Where X is an n× p matrix with t = 1, · · ·N and with E [ε] = 0, Cov [ε] = Σ.
Now let’s apply the following:

N−1
∑N

t=1 yt = ȳ

N−1
∑N

t εt = ε̄

By taking the mean of all the observations of the response variable yt and error
terms εt, this gives the following transformation to the model (2.3.1):

yt = Xβ + εt

N−1

N∑
t=1

yt = Xβ +N−1

N∑
t

εt

ȳ = Xβ + ε̄

Then the unbiased estimator of Σ will be given by the following equation:

Σ̂ = (N − 1)−1

N∑
t=1

(yt − ȳ) (yt − ȳ)T

Knowing that Σ̂ is an estimate of Σ, the estimated generalized least squares (EGLS)
of β is then given by:

βEGLS =
(
XT Σ̂−1X

)−1

XT Σ̂−1ȳ (2.3.2)

In Sen and Srivistava [5] there is a broad explanation about the estimation of Σ̂.
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2.4 Summary

Sometimes it happens that the Gauss-Markov condition where one assumes ho-
moscedasticity and no-correlation of errors, does not hold. Then there is het-
eroscedasticity and/or correlation of errors. Which means that variance of errors
vary along the explanatory variable(s) and/or the errors show dependency between
observations. If one or both violations occur, the ordinary least squares estimator
is not the best linear unbiased estimator for the β-coefficients.

The corresponding covariance matrix σ2Ω = Σ can take the following forms:

• Diagonal values diag(σ2
1, · · ·σ2

n) for heteroscedasticity.

• Off-diagonal values unequal to zero Cov [εi, εj] 6= 0,∀i 6= j for correlated errors

To resolve the violation of the G-M condition(s), one can transform the linear re-
gression model to a model whereby the G-M conditions do hold. This can be done
by pre-multiplying both sides of the linear regression model (2.2.1) with Ξ−1 (a
symmetric matrix).

Applying this, results in and estimator that can estimate the β̂-coefficients which
is also known as the GLS estimator (2.2.3). The GLS estimator can be seen as
applying an OLS estimator to a linear transformation of the data.

Because in most natural cases the covariance matrix Σ is not known, this matrix
can be estimated with Σ̂ being an estimator of Σ. Then the β̂-coefficients can be
estimated with the estimated generalized least squares (2.3.2).
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Chapter 3

Linear Mixed Effect Models

3.1 Introduction

As seen in the previous chapter, the (estimated) generalized least squares approach
can be applied to resolve the problem that arises when errors have heteroscedas-
ticity (non-constant variance) and/or have correlation (dependence) of errors. The
(estimated) GLS handles this problem by transforming the data.

Another way of handling heteroscedasticity and/or correlation of errors is with
the linear mixed effect models (LME). The LME model offers another way out. These
models incorporate random-effects in the linear regression model. By incorporating
random-effects, the model deals with responses coming from the same subject by
adding random-effects for each subject or by adding random-effects on data taken
in time. Applying this model can help with the dependency of errors. Example
cases whereby a LME model can resolve the heteroscedasticity and/or correlation
of errors are the following:

• Taking the example case in Chapter 1 about predicting the grade of a student
(subject) by hand of their studying time. It could be the case that some stu-
dents are studying together which will influence their grade. Students working
together can be observed in the covariance matrix Σ of the errors. Then Σ
will indicate correlations in the off-diagonal for students working together,
which implies that the errors are correlated. The LME model can resolve this
problem by incorporating random-effects for subjects. These effects take into
account the heteroscedasticity of errors by creating different regression lines
for every subject.

• Taking the example case about predicting the amount of grocery spending of a
person (subject) based on their income, can be hypothetically speaking, data
with non-constant variance. Because people with low income would have a
small variance in errors while people with high income can have a different
variance. It could also be the case that the data is as well correlated. This
happens when these people, measured nearby each other, are influenced by
their neighbours when shopping groceries in the same store. By incorporating
random-effects the model uses this effect to create different regression lines
which takes into account the variance per person thus the heteroscedasticity
and/or correlation of errors.

14
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In the upcoming sections an explanation will be given about the LME and how
they incorporate random-effects which helps by resolving heteroscedasticity and/or
correlation of errors.

3.2 Linear Mixed Effect Models

To recap Chapter 1, the normal linear model is of the following form:

yj = β1xj1 + · · ·+ βpxjp + εj

εj ∼ N
(
0, σ2

)
In matrix notation the model is written as follows:

y = Xβ + ε

ε ∼ N
(
0, σ2I

)
While the normal linear regression model has only one random-effect, namely εj,
the linear mixed effect model is able to include additional random-effect terms [9]
and is of the following form:

yij = β1x1ij + · · ·+ βpxpij + bi1z1ij + · · ·+ biqzqij + εij (3.2.1)

With:

bik ∼ N
(
0, ψ2

k

)
, Cov [bk, bkT ] = ψkkT

εij ∼ N
(
0, σ2λijj

)
, Cov [εij, εijT ] = σ2λijjT

Where, as cited in Fox [9]:

yij is the response variable for the jth of ni observations in the ith of M groups
or clusters.

β1, · · · , βp are the fixed effects coefficients which are unknown parameters.

x1ij, · · · , xpij are the fixed design variables for observation j in group i.

bi1, · · · , biq are the random effect coefficients for group i which are multivariate
normally distributed.

zij, · · · , zqij are the random effect design variables.

ψ2
k are variances. ψkkT are the covariances among the random effects. These

are assumed to be constant across groups.

εij is the error for observation j in group i. The errors for group i are mul-
tivariate normal distributed where σ2λijjT represents the covariance between
errors in group i
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In matrix notation the model is written as follows:

yi = Xiβ + Zibi + εi (3.2.2)

With:

bi ∼ Nq (0,Ψ)

εi ∼ Nni

(
0, σ2Λi

)
Where bi and εi are independent and in terms of n data points and given in Fox [9]:

yi is the ni × 1 response vector for observations in the ith group.

Xi is the ni × p design matrix for the fixed effect for observations in group i.

β is the p× 1 parameter vector of fixed-effect coefficients.

Zi is the ni × q design matrix dor random effects for observations in group i.

bi is the q × 1 vector of random-effect coefficients for group i.

εi is the ni × 1 vector of errors for the observations in group i.

Ψ is the q × q covariance matrix for the random effects.

σ2Λi is the ni × ni covariance matrix for the errors in group i.

Since the model is Gaussian, the maximum likelihood is used for the estimation of
the parameters. For testing the goodness of fit of the parameters, the likelihood and
likelihood ratio tests are used in testing [1, 9].

3.2.1 Random-effects

In the LME the fixed-effects are mixed with the random-effects. The fixed-effects
are the parameters of the statistical model which are expected to have a predictable
influence on the data [6]. The random-effects are unobserved random variables which
are an unpredictable factor, having a random influence on the data [1, 10]. Because
random-effects are dependent variables and create correlation between observations,
one obtains [11]:

Cov [yi] = Cov [Xiβi + Zibi + εi]

= Cov [Xiβi] + Cov [Zibi] + Cov [εi]

= ZiCov [bi] Z
T
i + σ2Λi

= σ2ZiΨZT
i + σ2Λi

= σ2(ZiΨZT
i + Λi)

While for the standard fixed-effect model we have independence between the obser-
vations:

Cov [yi] = Cov [Xiβi + εi]

= Cov [Xiβi] + Cov [εi]

= σ2Λi
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3.2.2 Different designs

The LME model can be used in different situations and can handle different kind of
data structures. The following most important structures of data as point of view
for this research paper, are described bellow. With for each different type of data
structure an example case.

Blocked design In experiments blocks are variables that are not of interest in an
experiment, but can have an effect on the measurements.

Example In an experiment the effect of anti-depressants helping by the
treatment of depression, is measured. The used anti-depressants in the
experiment are delivered by three different fabrics. Thus we test three
different anti-depressants. In a block design one could include a random-
effect for each of the three anti-depressants. The randomness could then
express the different blends of the anti-depressants per fabric. This is not
of interest for the experiment but could have an effect on the medication.

Repeated measurements If measurements are repeatedly taken on an individ-
ual, one is dealing with repeated measurements.

Example For an examination off the weekly growth of babies, babies are
measured once a week to keep up with their weekly growth. Sometimes
it happens that a baby is accidentally measured twice. Because these
repeated measurements are included in the dataset we speak of repeated
measurements, whereby this response is coming for the same subject.

Longitudinal design The data is called longitudinal data when repeated mea-
surements, coming from the same subject are taken over time.

Example For the prediction of grocery spending of households, the
incomes are keeping record of for a couple of years. Therefore one sees
in the dataset that the income of the households are coming from the
same subject (household) over time. Thus one is dealing longitudinal
data with repeated measurements coming from the same subject over
time.

3.3 Measuring goodness of fit

Incorporating the random- and fixed-effects gives a lot of possibilities specifying a
model. There is no standard guideline which fixed- and random-effects one should
or should not include in the model. Therefore it is of importance to explore the data
carefully to see which variables could be of interest. Next, it is a question of trying;
adding and removing fixed- and random-effects to see if this improves the model. In
R there is a function called anova() which tests nested models.

Nested models are models whereby a smaller model contains the same variables
as a bigger model (also known as full-model). The difference is that the full-model
contains additional variables than the smaller model. With the function anova() in
R, one can test if models show a significant difference.
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Function anova() This function tests the null hypothesis that the full-model
with extra effects, adds an explanatory value over the smaller-model. With the cor-
responding p-values one can test this null hypothesis. If the model has a significant
influence the p-value will be smaller than 0.05. Then H0 will be rejected and H1 will
be accepted. This means that the extra fixed- and/or random-effects in the larger
model are related with changes in the response variable.

3.4 Summary

When the independence assumption of homoscedasticity and/or correlation of errors
is violated, the quality of statistical inference may not follow from the classical
theory. An alternative approach that deals with non-independence of errors is the
linear mixed effect model. This model deals with non-independence of errors by
incorporating random-effects besides the fixed-effects.

In this chapter one has seen that the LME can handle different kinds of data
structure like the blocked design, repeated measurements and longitudinal design
by incorporating random-effects besides the fixed-effects. Random-effects are unob-
served random variables which are an unpredictable factor having a random influence
on the data. By incorporating this, a random intercept and potential random slopes
can be added to the model. These random intercept and slopes have the ability to
aid the fixed-effect by capturing an unpredictable influence on data. This allows the
model to model errors containing heteroscedasticity and/or are correlated.

Because there is a wide variety of choices when it comes to including fixed-
and random-effects to the LME. It is recommended to try including and excluding
different fixed- and random-effects. To see if these changes improve the model, one
can make use of the function anova() in R. This function tests if the full-model adds
a clarifying value over the smaller-model. If the models has a significant influence,
the p-value is smaller than 0.05. This means that certain effects in the full-model
have a significant influence on the response variable.
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Chapter 4

Correlated Errors

4.1 Introduction

In Chapter 2 of this research paper a theoretical overview of the generalized least
squares approach is given. As theoretically shown, this approach is applied for the
estimation of the unknown β̂-coefficients when the independence assumption of the
(multiple) linear regression model is violated. To see the effect of this approach, we
simulated data in R(studio). The generated data contains a correlated covariance
matrix with violation of the assumptions homoscedasticity and correlation of errors.
We will use both the ordinary least squares and GLS to compute the β̂-coefficients
and compare these results.

4.2 Roadmap

For the regression equation the explanatory variables will be determined as well
as fixed β-coefficients and the corresponding response variable y of our function
will be computed. After computing these values we will simulate errors from the
multivariate normal distribution with heteroscedasticity and correlation of errors
ε ∼ N (0,Σ) and add these to our function. Next, we will calculate the final re-
sponse value y and ’forget’ the β-coefficients and errors. We will then compute the
’unknown’ β̂-coefficients with the following two approaches:

1. Ordinary least squares (ols) (1.2.3)

2. Generalized least squares (gls) with a known, simulated, Σ matrix (2.2.2)

By simulating the data, applying and comparing both approaches, an insightful
view can be given about the effect of both approaches. By hand of the accuracy
and concerning information we can see what the effect is when the independence
assumption of the model is violated and what the power of the GLS approach is
with reference to the OLS.

Polynomial For the research the following regression equation is created:

y = β1 + β2xlinear + β3xquadratic
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This equation contains a linear trend xlinear and a polynomial xpolynomial explanatory
variable. A polynomial regression is considered to be a special case of multiple LM,
because the mean of the response variable y is linear in the unknown β̂-coefficients.

Note: A polynomial regression was used because this function obtained the most
interesting results compared to a simple LM.

4.3 Simulating data

To create a multiple LM of the form: y = Xβ+ε with correlated errors ε ∼ N (0,Σ),
where Σ = σ2Ω, we can simulate data on the following way.

To start with, we fix the following three β-coefficients values:

β1 = −10, β2 = 2, β2 = 5

Next, one creates three explanatory variables x of the following form:

x1 = (1, 1, 1, · · · , 1), x2 = (0, 1, 2, · · · , n), x3 = (0, 1, 22, · · · , n2)

This is simulated for n = 50 observations. The model looks as follows:

f = β1x1 + β2x2 + β3x3

f(x) = −10

1
...
1

+ 2

0
...
n

+ 5

 0
...
n2


Where β1x1 corresponds to the intercept of the regression equation and β2x2 + β3x3
corresponds to the slope of the regression equation. To obtain this function f(x),
the code bellow can be used.

> fx <- b1*x1 + b2*x2 + b3*x3

Next, the covariance matrix Σ is simulated under the assumption that Σ is a
known symmetric, positive definite matrix. Therefore we create a symmetric matrix
with random values, drawn from the uniform distribution U(−5, 5). This matrix
is then multiplied with its transpose form [5]. The result is a positive definite
matrix wherefore we can simulate data from the multivariate normal distribution
N (µ, σ2Ω) = N (0,Σ) to obtain the errors for our model:

> A <- matrix(runif(n*n,-5,5),n,n)

> Sigma <- t(A)%*%A

> mu <- rep(0,n)

> errors <- mvrnorm(1, mu, Sigma)

Having obtained the errors drawn from the multivariate normal distribution, it is
time to compute our response variable y.

> y <- fx + residuals

Now we have obtained all the variables needed for the multiple linear regression
model:

y = Xβ + ε

Note: the the entire code to simulate this data can be found in Appendix A.1.
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4.4 Fitting the data

In the following steps we assume that we only know the response variable y and
explanatory variables x2 and x3. Thus forget the rest. With this information we
are able to predict the response variable y by estimating the unknown β̂-coefficients
with the OLS and GLS.

4.4.1 Ordinary least squares

First we will use the OLS approach to estimate the unknown β̂-coefficients. This can
be done with the lm() function in R. The lm() function in R models a (multiple)
LM and estimates the unknown coefficients with the OLS approach. To apply a
multiple LM on our data, the following code can be used:

> fit.1 <- lm(y ~ x2 + x3, data=data)

After applying the model, we are able to obtain a summary of the fit of the model.

> summary(fit .1)

Call:

lm(formula = y ~ x2 + x3, data = data)

Residuals:

Min 1Q Median 3Q Max

-36.988 -14.102 0.645 14.309 39.433

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.6214 7.9357 0.078 0.938

x2 -3.6650 3.6701 -0.999 0.323

x3 5.5580 0.3549 15.660 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05

. 0.1 1

Residual standard error: 19.46 on 47 degrees of freedom

Multiple R-squared: 0.9861 , Adjusted R-squared: 0.9855

F-statistic: 1666 on 2 and 47 DF, p-value: < 2.2e-16

Let us start examining the summary of our fitted model and explain the most
important results with regard to the research.

Formula The first line shows the model formula which we wished to model. In
this case y modeled as a function of x2 and x3.

Coefficients In the lines of the Coefficients, the Estimate column denotes the
estimated β̂-coefficients computed with the OLS.
As we can see the regression equation is given with an intercept of: β̂1 = 0.621 and
for the first variable a slope of: β̂2 = −3.665 and for the second variable a slope of:
β̂3 = 5.558. Our obtained regression hyperplane would thus become:

ŷ = 0.621 +−3.665x2 + 5.558x3

In the same lines the standard error, t-value and p-value can be found.

standard error The standard error (SE) is a measure that tells you how much
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the β̂-coefficient can vary from the estimation. This means that a low SE leads to
more precision in the model. As we can see the SE for β̂3 = 0.355, which looks like
a good estimation because the estimated value is 5.558. The SE of β̂1 = 7.936, is
almost 13 times as high as its estimated value of 0.6214. This indicates that the
estimate of the β̂3-coefficient has a big variance. The SE for β̂2 = 3.670 which is
also really high compared to its estimated value of −3.665. Therefore it could be
the case that these coefficients are not meaningful to include in the model.

t- and p-values With the standard errors, the corresponding t- and p-values can
be found as we have seen in section 1.2.2. The p-value tests the following null
hypothesis:

H0 : β̂i = 0 vs. H1 : β̂i 6= 0 for i = 1, 2, 3

When a β̂-coefficient has effect on the model β̂i 6= 0 and the null hypothesis should
be rejected. The null hypothesis is rejected when the p-value is smaller than 0.05.
This means that this coefficient is meaningful to our model because changes in the
corresponding explanatory variable values are related with changes in the response
variable.

As we can see in the summary β̂3 is statistically significant with a
p-value = 2 ∗ 10−16 which is smaller than 0.05. But β̂1 and β̂2 are not significant
with p-values of respectively 0.938 and 0.323 which are both greater than 0.05.
Therefore the associated null hypothesis is not rejected. This implies that including
the corresponding explanatory variables x1 and x2 in the model, has no significant
influence on the response variable [3]. Therefore it could be removed out of the
model.

4.4.2 Generalized least squares

Because the data does not full-fill the independence of error assumption of the
multiple LM, we know that the GLS can be applied to deal with the dependence
of errors and obtain results whereby we can make trustworthy statistical inference.
The formula of section 2.2 will be used to compute the unknown β̂-coefficients with
a known covariance matrix Σ.

βGLS =
(
XTΣ−1X

)−1
XTΣ−1y

Implementing the formula for the βGLS in R results in the following code for the
model:

> b_gls <- solve(t(X)%*%solve(Sigma)%*%X)%*%(t(X)%*%solve(Sigma)%*%y)

Next, a function is written to extract the most important information of the GLS
from the point of view of this research and gives a summary of the fit of the GLS. This
function can be found in Appendix A.1 and can than be called with the following
code:

> summary.gls(X,y,n,b_gls)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -10.053061 0.115596110 -86.96712 1.400414e-53

x2 1.966976 0.061717408 31.87068 1.763008e-33

x3 5.004854 0.006351191 788.01826 1.659277e-98
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Estimate As we can see the regression equation which is obtained with the GLS,
has an intercept of: β̂1 = −10.053, for the first variable a slope of: β̂2 = 1.967 and
for the second variable a slope of: β̂3 = 5.005. Our obtained regression hyperplane
would be of the following form:

ŷ = −10.053 + 1.967x2 + 5.005x3

Standard error The SE of the β̂ coefficients are really small. For example the
SE of β̂1 = 0.116 which indicates a small variance compared to its estimated value
of −10.053. The low SE’s could indicate a precise model. Therefore, let us take a
look a the corresponding t- and p-values.

t- and p-values As we can see, all β̂-coefficients are statistically significant with
for all a p-value smaller than 0.05. Therefore, the associated null hypothesis are
rejected. This implies that including all the corresponding explanatory variables x1,
x2 and x3 in the model, has a significant influence on the response variable.
Note: The entire R-code for the function and the simulation of the GLS approach
can be found in Appendix A.1.

4.5 Results

After having obtained all the results we can see that the GLS approach obtained
much better estimates of the β̂-coefficients than the OLS approach. Summarizing
the estimate β̂-coefficients with the OLS and GLS with reference to their real values
and p-values gives the following results:

Coefficients Real values Ols Gls Ols: p-value Gls: p-value

β̂1 -10 0.621 -10.053 0.938 0.000

β̂2 2 -3.665 1.967 0.323 0.000

β̂3 5 5.558 5.004 0.000 0.000

Table 4.1: Summary β-coefficients computed with OLS and GLS

As we can see in Table 4.1, the GLS estimates the β̂-coefficients much better
than the OLS. With the GLS, all the β̂-coefficients are estimated really close to
the real parameter values and are all three statistically significant. This implies
that including all the corresponding explanatory variables does have a significant
influence on the response variable. The OLS only estimates the β̂3-coefficients close
to the real parameter value. But β̂1 and β̂3 are not even close to the real values and
show both to have no statistically significant influence on the response variable.
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Concluding, after having examined the difference of the OLS and GLS we ob-
tained the following results:

• When testing the null hypothesis of the β̂-coefficients, β̂1 and β̂2 showed no
significance when estimated with the OLS. Also, the estimated values were
not even close to the real values. E.g. The β̂1 = 0.621 while the real value is:
−10

• For the GLS all the β̂-coefficients were statistically significant and were esti-
mated really close to the real parameter values. E.g. The β̂1 = −10.053 which
lays close to the real value: −10.

• From the examination we can conclude that the GLS shows not to be influ-
enced by the heteroscedasticity and correlation of errors. Whereas the OLS
shows a big influence when estimating the β̂-coefficients under these circum-
stances.
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Chapter 5

Linear Mixed Effect Models

5.1 Introduction

In the following example we will use a longitudinal study which means that the used
dataset contains repeated measurements of the same subject taken over time. We
will use the linear mixed effect model to examine the dataset. To use the LME, the
package ’lme4’ in R will be used. The data can be found in the ’faraway’ package.
The following R-code can be used to find the model and data:

library(lme4)

library(faraway)

data(psid)

The ’psid’ data is a data frame containing 6 variables with each 1661 observations.
The measurements are taken from 1968 until 1990 and are taken from The Panel
Study of Income Dynamics (PSID). The data is a representative sample of U.S.
individuals. The study is conducted at the Survey Research Center, Institute for
Social Research, University of Michigan and is still continuing and described in [12].

5.2 Examining PSID data

Before applying the LME, let us first explore the data by using some descriptive
statistics.

Descriptive statistics are used to get a better insight of the data dealing with.
The user can produce (simple) summaries about the measurements and can create
(simple) figures to express the summary. Descriptive statistics is examining the
given data without making predictions. It is helpful for obtaining clarifying insights
of the data.

To summarize the data one can use the following code:

> summary(psid)

As can be found in the summary:

• The persons are aged from 25-39.

• The minimum years of education is 3 the highest years of education is 16.
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• There are 732 females and 929 males in the dataset.

• The annual income in dollars differs from 3-180,000.

• The people were keeping track off for 11 years from 1968 until 1990. Where
the median = 78 years and the mean = 78.61 years.

• Every person has a personal ID number and there are 85 heads of households.

Having summarized the data from the summary, let us take a look at some possible
relationships expressed in figures. For example it could be possible that sex has a
relation with the income of a person. Or that the degree of education results in a
higher income. Therefore we could make a boxplot and scatterplot to express the
data in figures and see if these variables are of interest.

boxplot(psid$income ~ psid$sex , ylab="Income", xlab ="Sex")

Figure 5.1: The figure on the left is a boxplot of income against sex, on the right a
scatterplot of income against education.

As can be seen in the boxplot, females are earning less than males because the
boxplot for females has a smaller range than that for males. Also, the mean of
income lays lower for females than for males. In the scatterplot we notice that a
higher education could have an influence on the income of a person. For example, a
person with 12 years of education seems to have a higher income that people with
11 years of education or lower.

Next, we assume that the income of the households changes over time. If we want
to predict the income of the households, it is of importance to examine which of the
given explanatory variables could help to predict the income of a person (subject).
Before specifying our LME, let us first recap the model as is described in section 3.2:

yi = Xiβ + Zibi + εi (5.2.1)
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With:

bi ∼ Nq (0,Ψ)

εi ∼ Nni

(
0, σ2Λi

)
Now as we know we are dealing with longitudinal data. Therefore it becomes clear
that there will be variance within each subject from year to year. For now, we will
consider that the error for the fixed-effects is uncorrelated and homogeneous. Then
the corresponding covariance matrix for the fixed-effects is: Λi = I, thus the identity
matrix. This implies that for the fixed-effects model we do not have correlations
between the observations.

Next, it is finally time to specify our LME model. Therefore we need to consider
which variables will be used in the model to predict the income of a person. In
Table 5.1 a description of the chosen variables for the model can be found.

Effect: Variable: Subscription:
Fixed Year The income of a subject changes over time.
Fixed Sex The income differs per sex.
Fixed Education The income differs over the level of education.
Fixed Age The income differs per age category.
Random Person
Random Year

Table 5.1: Choice of variables for the LME model

To provide a good interpretation of the results of the LME we will center the
year factor by creating the new factor ’cyear’ which is the year minus the median of
the year.

> psid$cyear <- psid$year -median(psid$year)

Also, we will take the logarithm of the income because taking the logarithm takes
care of the distribution of the income. This means that the distribution of income
will make sure that changes in small values will result in more separated values,
while changes in big incomes with, for example, the same amount of change will
result in a relative small separation.

Example (Income of a person)
The income of a person A with little income ($1,000 per month), in-
creases with an amount of $1,000 and the income of a person B with
a high income ($10, 000 per month), also increases with $1,000. When
examining the ’absolute change’ effect of the total income for both A and
B this will be equal, namely: $1, 000 − $1, 100 = $100 and $10, 000 −
$11, 000 = $100. If one looks at the ’relative change’ per person, one
will see that the amount of money hs a big influence on person A than
that of person B. Thus for A: $1,100−$1,000

$1,000
= 0.5 = 50% against that of B

$11,000−$10,000
$10,000

= 0.09 = 9%
By taking the logarithm of the income, this will make sure that we are
looking at the ’relative change’ instead of the ’absolute change’.
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Having specified the data transformations and the variables that can be used in the
LME, let us continue to the examples. In the upcoming subsections we will try two
different LME by including random-effects.

Note: In Appendix A.2 the entire R-code for the LME examination can be found.

5.2.1 Example 1

In this example, we will make a LME with the specified fixed-effects of Table 5.1.
We will also take into account a random intercept b1 for every person. The LME
model will than expect that there can be changes in the income per person which
means that a person is allowed to shift in income. The model will look as follows:

log(income) = β1 + β2yeari + β3sexj + β4agej + β5educationj

+ b1 + εij
(5.2.2)

In this model we estimate the parameters for the fixed-effects intercept and slope
just like in a linear regression model. But because we model an LME, the model
will also include an estimation for a random intercept for every subject (’person’).
Next, we can estimate and summarize this model (5.2.2) with the following codes:

> model .1 <- lmer(log(income) ~ cyear + sex + age + educ

+ (1| person), data = psid)

> summary(model .1)

The summary of this model gives the following information. Note, that from the
point of view of this research paper only the most important parts are discussed.

Formula: log(income) ~ cyear + sex + age + educ + (1 | person)

Data: psid

REML criterion at convergence: 3966.1

Scaled residuals:

Min 1Q Median 3Q Max

-9.4412 -0.2171 0.1226 0.4574 2.4111

Random effects:

Groups Name Variance Std.Dev.

person (Intercept) 0.2889 0.5375

Residual 0.5561 0.7457

Number of obs: 1661, groups: person , 85

Fixed effects:

Estimate Std. Error t value

(Intercept) 6.803007 0.558193 12.188

cyear 0.069685 0.002959 23.551

sexM 1.115594 0.122960 9.073

age 0.007971 0.013887 0.574

educ 0.105444 0.022060 4.780

Correlation of Fixed Effects:

(Intr) cyear sexM age

cyear 0.015

sexM -0.104 0.027

age -0.874 -0.012 -0.025

educ -0.598 -0.023 0.009 0.167
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In R the formula corresponding to model (5.2.2) is written in the first line.
The next important part is the Fixed effects part. Just like in the LM, the

Estimate column tells the user what the estimated β̂-coefficients are. Please note
that these coefficients are representing percentages because of taking the logarithm
of income. Different is the column Fixed effects which takes into account that the
income per person can vary. Now let us summarize the Fixed effects output of the
summary [1]:

• (intercept): The intercept for the fixed-effects is β̂1 = 6.803.

• cyear: The slope for cyear is β̂2 = 0.0697. This means that income increases
around 6.97% a year.

• SexM: The income of persons is determined as follows: income = eβ1eβ2sexj · · ·.
the variable sexj can take the value 1 or 0 which indicate respectively ’male’ or
’female’. The slope for males will be e1.116∗1 = 3.05 and for females e1.116∗0 = 1.
Thus the income for males are expected to be 3.05 times higher than for
females.

• Age: The slope for age is β̂4 = 0.00797. This means that for every added year
to a persons life, income increases with 0.80%.

• Educ: The slope for education is β̂5 = 0.1054. This means that for every extra
year of education, the income increases with 10.54%.

Now let us look at the Random effects. We see that for the random-effects the
standard deviation for the random intercept is 0.5375 with no correlation because
we only added one random-effect. The corresponding covariance matrix Ψ for the
random effect only contains one value, namely Ψ̂1 = 0.5375.

5.2.2 Example 2

In the first example we assumed a random intercept by taking into account that the
income per person can change. Next, we will try to estimate a hyperplane with a
random intercept and a random slope and see how that changes our model contain-
ing the same fixed-effects as in Table 5.1. The difference will lay in including the
random slope.

Thus we will now assume that, besides taking into account the variation per in-
come per person, we will also take into account the variation from year to year per
person. The model will then be of the following form:

log(income) = β1 + β2yeari + β3sexj + β4agej + β5educationj

+ b1 + b2yeari + εij
(5.2.3)

Having specified our model, we can now estimate and summarize model (5.2.3) with
the following R-codes:

> model.2 <- lmer(log(income) ~ cyear + sex + age + educ +

(cyear|person), data=psid)

> summary(model .2)
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The summary of this model gives a lot of information. Again, only the most impor-
tant parts form the point of view of the research paper are discussed.

Formula: log(income) ~ cyear + sex + age + educ + (cyear | person)

Data: psid

REML criterion at convergence: 3817.4

Scaled residuals:

Min 1Q Median 3Q Max

-10.2140 -0.1974 0.0751 0.4062 2.8440

Random effects:

Groups Name Variance Std.Dev. Corr

person (Intercept) 0.281234 0.53032

cyear 0.002494 0.04994 0.19

Residual 0.467687 0.68388

Number of obs: 1661, groups: person , 85

Fixed effects:

Estimate Std. Error t value

(Intercept) 6.669167 0.542660 12.290

cyear 0.071101 0.006191 11.485

sexM 1.191649 0.119665 9.958

age 0.010658 0.013506 0.789

educ 0.103722 0.021409 4.845

Correlation of Fixed Effects:

(Intr) cyear sexM age

cyear 0.027

sexM -0.105 0.024

age -0.874 -0.008 -0.025

educ -0.597 -0.011 0.010 0.167

The Estimate column of the Fixed effects part of the summary, tells the user
something about the effect on income per variable. The following part summarizes
the effect of each fixed-effect variable [1]:

• (intercept): The intercept of the hyperplane for the fixed-effects is β̂1 = 6.6691.

• cyear: The slope for cyear is β̂1 = 0.0711. This means that income increases
around 7.11% a year.

• SexM: The slope for males is e1.191∗1 = 2.72 and for females e1.191∗0 = 1. Thus
the income for males are expected to be 2.72 times higher than the income for
females.

• Age: The slope for age is β̂4 = 0.0107. This means that for every added year
to a persons life, income increases with 1.07%.

• Educ: The slope for education is β̂5 = 0.1037. This means that for every extra
year of education, the income increases with 10.37%

For the random-effects we see that the standard deviation for the intercept is 0.531
and the slope has a standard deviation of 0.049. Also these coefficients have a
correlation of 0.19.

The corresponding covariance matrix for the random-effects Ψ would become:
Ψ̂1 = 0.530, Ψ̂2 = 0.0499 and Ψ̂12 = 0.19 × 0.530 × 0.0499 = 0.005. In matrix
notation this will take the following form:
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Ψ =

(
Ψ̂2

1 Ψ̂12

Ψ̂12 Ψ̂2
2

)
=

(
0.5302 0.005
0.005 0.04992

)

5.2.3 Comparing models

Having fitted model (5.2.2) and (5.2.3) it is time to see how good these models
actually perform. Therefore we use the function anova() in R.

This function tests if the nested models are significant or not. Thus in our case
it would test if the random-effect for year is statistically significant or not.

H0 : b2 = 0 vs. H1 : b2 6= 0

We obtained the following result with the function anova():

> anova(model.2, model .1)

refitting model(s) with ML (instead of REML)

Data: psid

Models:

model .1: log(income) ~ cyear + sex + age + educ + (1 | person)

model .2: log(income) ~ cyear + sex + age + educ + (cyear | person)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

model .1 7 3951.5 3989.4 -1968.8 3937.5

model .2 9 3808.1 3856.8 -1895.0 3790.1 147.43 2 < 2.2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05

. 0.1 1

As we can see in the output, the full-model (’model.2’) shows a p-value = 2.2 ∗
10−16 which is smaller than 0.05. This shows us that including the random-effect
for year to year variation per person improves the performance model. Thus the
model assuming time dependence is better than the model not including this effect.
Conclusion, the income of people in the study are affected by the year to year
variance.

5.3 Results

Having tried two different models to test the effect of the LME model, we have seen
that it does make sense to include random-effects. As seen above, adding an extra
random-effect that includes year to year variation and variance per person, does
have a significant effect on the model. Therefore it seems like adding random-effects
makes the LME model predict the income of persons better. But as mentioned in
Faraway [1], using random-effects can also make the model tricky. Because in our
case, adding random-effects that includes year to year variation and variance per
person, also creates more complicated models, complicated algebraic calculations
and makes it more difficult to understand and work with [1]. Thus modeling the
dependency of errors, results in better predictions but can be tricky and must be
handled carefully.
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Chapter 6

Conclusion & Recommendation

6.1 Introduction

For this research the aim was to examine how to deal with dependency of errors,
a problem that arises when the independence assumption of the linear regression
model is violated. Therefore we deepened into the literature of the linear regression
model and investigated alternative approaches that are able to produce a regression
line by dealing with dependency of errors. From the point of view of this research
paper, the violation of the following sub-assumptions are examined:

• The errors of the observations have non-constant variance, also known as
heteroscedasticity. Then the corresponding covariance matrix will have non-
constant variances on the diagonal, thus: diag(σ2

1 · · ·σ2
n).

• The observations are dependent of each other, which results in correlated er-
rors. In the corresponding covariance matrix this is observed by having one
or more off-diagonal values unequal to zero.

When one or both of these sub-assumptions is/are violated, then the generalized
least squares offers a solution by transforming the LM. The linear mixed effect model
handles the dependency of errors by including random-effects. To investigate how
these approaches performed practically, we simulated data and examined a dataset
from the ’faraway’ package in R. In the upcoming sections a conclusion about the
investigation is given, followed by a recommendation for further research.
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6.2 Conclusion

During the research we have tried to find an answer on the main question:

How can one deal with dependency of errors?

To answer the main question we gave an overview of the LM to understand the
basics and assumptions of the model. Next, there was an examination of the theory
of the GLS and LME, two alternative approaches that can handle the violation of
the independence assumption. To investigate the performance of these approaches
practically, we made use of real and simulated data.

For the GLS we simulated a multiple LM with self-determined explanatory vari-
ables, β-coefficients and errors. The errors where simulated from the multivariate
normal distribution with a covariance matrix Σ containing heteroscedasticity and
correlation of errors. After the simulation we applied the OLS and GLS to inves-
tigate how good they estimated the three β̂-coefficients. The GLS obtained good
estimates for all three β̂-coefficients. According to their p-values, all the coefficients
were statistically significant. This implies that including all the corresponding ex-
planatory variables in the multiple LM model, has a significant influence on the
response variable. For the OLS only β̂3 = 0.000 was smaller than 0.05 thus only
β̂3 was statically significant. This implies that only the corresponding x3 should be
included in the model because this is the only variable having a significant influence
on the response variable. Thus we can conclude that the model, obtained with the
GLS, performs better than the model obtained with the OLS.

The performance of the LME was tested on a longitudinal study. The data
observations contained repeated measurements of the same subject over time. First,
we fitted a small model with fixed-effects and added a random-effect. This random-
effect took the changes for the response value per subject into account by adding
a random intercept per person. Next, we fitted a full-model containing the same
fixed-effects and random intercept as in the smaller model, but also a random slope
which took the time variation per subject into account. Finally, we tested if the full-
model showed a significant difference with the function anova() in R. The results
showed that the full-model had a significant influence. This implies that the extra
random-effect is related with changes in the response variable. Concluding, the full-
model performed better when it took the time variance per subject into account.
But please note that including random-effects can be tricky and need to be handled
carefully.

We saw, that it is still possible to produce regression equations and make predic-
tions, while having dependency of errors. By applying an GLS approach, the data
is transformed by multiplying the LM model with a symmetric matrix. The results
of this approach showed big differences in estimating the β̂-coefficient of the LM
than the OLS. The GLS was applied on data containing errors with a non-constant
variance and correlation. The LME was applied on data containing errors that con-
tained repeated measurements coming from the same subject. The LME showed
that taking into account the time variance per subject, which causes dependency of
errors, improved the performance of the model.
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6.3 Recommendation

The results from the practical part of the research gave useful insights about the
performance of alternative approaches that handle heteroscedasticity and/or corre-
lation of errors. The results of the approaches showed improvements and differences
when applying them on data, violating the independence assumption. However,
to extend the investigation and obtain more insights about the performance of the
approaches, the following points are recommended for further research:

• For the simulation of data more explanatory variables can be added. One of
these variables can be absolutely random to create a more realistic environ-
ment.

• Also, the GLS could be applied on real data with non-constant variance and
correlated errors to investigate the performance. Apply the OLS and compare
the results of both approaches.

• For the LME more random-effects can be added to the model to investigate if
the model can be improved.

• Also, modeling an LM and an LME containing the same fixed-effects (but
for the LME with added random-effects), could be applied and compared by
looking at the estimated β̂-coefficients. See what changes this creates in the
performance of the models.

• Use another dataset, for example, with repeated measurements only. Then
use a similar approach by making a smaller and bigger model and compare
these models with the function anova() to see how random-effects influence
the prediction of the response variable.

• Investigate the performance of other alternative approaches that can be ap-
plied when the homoscedasticity and/or no-correlation of errors assumption is
violated.
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Appendix A

R-codes

A.1 Generalized least squares

Function:
1. Computing the summary with the GLS:

summary.gls <- function(X,y,n,b_gls) {

Sigma_inv = solve(Sigma)

X_Sigma = Sigma_inv%*%X

y_Sigma = Sigma_inv%*%y

H <- X_Sigma%*%solve(t(X_Sigma)%*%X_Sigma)%*%t(X_Sigma)

SS_e <- t(y_Sigma)%*%(diag(n)-H)%*%y_Sigma

MS_e <- SS_e/(n -(2+1))

sigma .2 <- as.numeric(MS_e)

C <- sigma.2*solve(t(X)%*%Sigma_inv%*%X)

se_b1 <- sqrt(C[1 ,1])

se_b2 <- sqrt(C[2 ,2])

se_b3 <- sqrt(C[3 ,3])

std.errors <- c(se_b1 ,se_b2 ,se_b3)

gls_t.stat1 <- b_gls[1,1]/se_b1

gls_t.stat2 <- b_gls[2,1]/se_b2

gls_t.stat3 <- b_gls[3,1]/se_b3

gls_t.values <- c(gls_t.stat1 , gls_t.stat2 , gls_t.stat3)

gls_p.value1 <- 2* pt(-abs(gls_t.stat1),df=n-3) # wrong df previously in all 3 pvals

gls_p.value2 <- 2* pt(-abs(gls_t.stat2),df=n-3)

gls_p.value3 <- 2* pt(-abs(gls_t.stat3),df=n-3)

gls_p.values <- c(gls_p.value1 , gls_p.value2 , gls_p.value3)

matrix.a <- cbind(c(b_gls),c(std.errors),c(gls_t.values),c(gls_p.values ))

rownames(matrix.a) <- c("(Intercept)","x2","x3")

colnames(matrix.a) <- c("Estimate", "Std. Error", "t value", "Pr(>|t|)")

return(matrix.a)

}

Packages:

library(MASS)

Simulation of the data:

set.seed (524234)

n = 50

x1 <- rep(1,n)

x2 <- seq(0,10, length=n)

x3 <- x2^2

X <- matrix(c(x1 , x2 , x3), nrow=n)

b1 = -10

b2 = 2
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b3 = 5

fx <- b1*x1 + b2*x2 + b3*x3

#Computing positive semi -definite covariance matrix

A <- matrix(runif(n*n,-5,5),n,n)

Sigma <- t(A)%*%A

mu <- rep(0,n)

errors <- mvrnorm(1, mu, Sigma)

#COMPUTING Y

y <- fx + errors

data <- data.frame(y=y, x=X)

#LINEAR MODEL FIT

fit.1 <- lm(y ~ x2 + x3 , data=data)

summary(fit .1)

#FIT GLS WITH KNOWN OMEGA

b_gls <- solve(t(X)%*%solve(Sigma)%*%X)%*%(t(X)%*%solve(Sigma)%*%y)

summary.gls(X,y,n,b_gls)
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A.2 Linear mixed effect models

Packages:

library(lme4)

library(faraway)

Examining data:

data(psid)

summary(psid)

education <- psid$educ

income <- psid$income

par(mfrow=c(1,2))

boxplot(psid$income ~ psid$sex , ylab="Income", xlab ="Sex")

plot(education , income)

Making & comparing models:

psid$cyear <- psid$year -median(psid$year)

model.1 <- lmer(log(income) ~ cyear + sex + age + educ + (1| person), data=psid)

summary(model .1)

model.2 <- lmer(log(income) ~ cyear + sex + age + educ + (cyear|person), data=psid)

summary(model .2)

anova(model.2, model .1)
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