
The Shortest Route

Developing an online bicycle route planner for the Netherlands

Wouter Pepping

BMI Paper
VU University Amsterdam

April 2009

Supervisor: Peter Kampstra
Second reader: Sandjai Bhulai

B M

I

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

2 / 40

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

3 / 40

Preface

This paper was written as an assignment for my Master in Business Mathematics &
Informatics. The goal of the assignment is to write a paper on a research subject
combining the business, mathematics and computer science aspects of the Master.

During my search for a suitable subject, Peter Kampstra mentioned that while there was a
large amount of route planning software available, the Netherlands is still lacking an
online bicycle route planner. Sure, some stand alone route planners have the option to
plan bicycle routes and some provinces offer their own bicycle route planner, but an
online planner covering all of the country is still not available.

Having encountered this issue myself in the past (I ended up taking the bus), my interest
was awakened. Would it be possible to implement a bicycle route planner for the
Netherlands with acceptable response times within the timeframe of a month? I took on
the challenge and this paper presents the results of the research that I did, the choices that
I made for the implementation and the resulting product.

I would like to thank Peter for proposing the subject and for all his useful suggestions as
my supervisor. Furthermore, thanks to Sandjai Bhulai for agreeing to be the second
reader, despite his busy schedule. And last but not least my thanks go out to Annemieke
van Goor for not resting until I finally got started on the project.

Wouter Pepping,

March 2009.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

4 / 40

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

5 / 40

Summary

In the past few years, route planners have rapidly become a part of every day life. All
route planners depend on a routing algorithm to calculate the shortest or fastest route
from a starting point to a destination. However, there is not one best algorithm that is
used everywhere. Each route planner uses its own algorithm, based on a number of
considerations: calculation time, preprocessing time, memory usage, complexity and
whether the solution is optimal or suboptimal.

The most well-known routing algorithm is Dijkstra’s algorithm. However, in terms of
speed and memory usage, Dijkstra cannot compete with more recent methods. A* and
bidirectional search try to improve Dijkstra’s performance by only changing the routing
algorithm, which results in small speedups. Geometric pruning, ALT algorithms and the
multi-level approach use preprocessing to analyze the data. While adding preprocessing
time and increasing complexity, these methods can greatly reduce calculation times, even
up to a factor 1,000. Moreover, most methods can be combined to achieve even greater
speedups. This means calculation times can be decreased to a few milliseconds. With
calculation times this small, this will no longer form a bottleneck, but overhead like
transmitting the data over a network or displaying the route will. For this reason, recent
research indicates it is no longer interesting to accept suboptimal solutions in order to
decrease calculation times.

During the course of the project, a study on existing route planners was performed. This
study confirmed that there still is no Dutch route planner that offers decent support for
planning bicycle routes and covers the entire Netherlands. The Dutch route planners that
do offer the option to plan bicycle routes do not have bicycle paths in their data, resulting
in inaccurate results.

Using the gained knowledge about routing algorithms, an online bicycle route planner
was implemented for the Netherlands. In order to achieve acceptable processing times,
the A* algorithm is used in combination with a specific data structure known as a
Fibonacci heap. Using this method, even the longest routes can be calculated within
acceptable time, while short routes take only a few milliseconds.

The speedup of A* over Dijkstra is impressive for shorter routes, but almost negligible
for routes that cross the entire country. The most probably cause for this effect is that the
borders of the dataset prevent unnecessary expansion of Dijkstra’s search space for the
latter.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

6 / 40

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

7 / 40

Contents

1 Introduction ... 9

2 Literature ... 10
2.1 Shortest path problem ... 10
2.2 LP model ... 11
2.3 Dijkstra .. 12
2.4 A* .. 14
2.5 Bidirectional search .. 17
2.6 Geometric pruning using bounding-boxes .. 18
2.7 ALT algorithms ... 18
2.8 Multi-level approach ... 19
2.9 Suboptimal algorithms .. 20
2.10 Priority queue .. 20
2.11 Comparison ... 24

3 Implementation ... 24
3.1 Programming language ... 28
3.2 Algorithm .. 28
3.3 Data source .. 29
3.4 Other issues ... 30
3.5 Results ... 31

4 Conclusion & future work .. 34
4.1 Conclusion .. 36
4.2 Future work ... 36

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

8 / 40

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

9 / 40

1 Introduction

In the past few years, route planners have rapidly become part of every day life.
Navigation devices appear in a growing number of cars and people that do not have them
find their routes online. Many types of route planners exist, online or stand-alone,
offering routes for cars, bicycles or pedestrians. However, a Dutch route planner that
offers decent support for planning bicycle routes and covers the entire Netherlands is not
yet available. The Dutch route planners that do offer the option to plan bicycle routes do
not have bicycle paths in their data, resulting in inaccurate results. The aim of this project
is to develop a Dutch bicycle route planner for the Netherlands.

Using a route planner is simple enough for everyone to understand. The technology
behind it though, is not quite as simple. Finding a shortest route from one point to another
can be solved by solving a shortest path problem. The shortest path problem means
finding a shortest path from one node to another in a graph. Because maps can easily be
translated to graphs, this problem applies to finding a shortest route on a map. However,
when problems grow larger, algorithms for solving a shortest path problem can take a
large amount of time and computer memory to come up with a solution.

One method to solve this type of problem is using Linear Programming (LP), but there
are faster methods. A well-known algorithm for solving this type of problem is known as
Dijkstra’s algorithm. While the algorithm is faster than LP models, Dijkstra’s original
implementation still takes O(n2) time for a graph with n nodes. Fortunately, there are a
number of ways to speed things up, but it will be clear that the fastest route to a solution
is not as easy to find as the fastest route to a destination.

In Chapter 2 of this paper, the existing literature on the subject of shortest path problems
is discussed. Several algorithms are presented, a data structure designed specifically to
speed up this kind of algorithms is explained and a comparison of the performance of the
algorithms is given.

In Chapter 3 a number of other route planners are discussed. These route planners will be
compared based on algorithm, data source, user interface, language and whether or not
they support bicycle routes.

Chapter 4 describes how a bicycle route planner for the Netherlands was implemented. It
describes where the data that was used was obtained, what choices were made for the
programming language, the algorithm and data structure and several other issues. The
chapter ends with some statistics on the performance.

Chapter 5 concludes this paper. It presents a conclusion and a number of suggestions for
future work.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

10 / 40

A B E

D

C
F

5 5

4

3 3

8

7

5

6

2 Literature

Many articles have been written on the topic of solving shortest path problems. Many
different algorithms exist, some optimal, some sub-optimal, one even faster than the
other. This chapter will summarize what has been written on the subject, facilitating the
choice of an algorithm in the next chapter.

This chapter is organized as follows. Section 2.1 describes the shortest path problem.
First a graphical representation will be given, then a formal description is presented. In
Section 2.2 an LP formulation of the problem is given. This LP model will solve any
shortest path problem with nonnegative edge weights, but calculation time increases
rapidly when problems grow large. Section 2.3 continues with Dijkstra’s algorithm,
which reaches a solution much faster than solving the LP formulation.

Still, Dijkstra is far from optimal in calculation time. Sections 2.4 to 2.8 all describe
adaptations of Dijkstra’s algorithm, meant to decrease either the calculation time, or the
memory usage. Section 2.9 briefly mentions suboptimal algorithms. Finally, Section 2.10
discusses data structures used for implementations of the algorithms and Section 2.11
offers a comparison.

2.1 Shortest path problem

The problem of finding a route on a map can be represented in a simple form by using a
graph, as in Figure 1. Here, the nodes (A to F) represent junctions and the edges represent
streets between the junctions. Each edge has a weight that can represent the distance, or
the estimated time it would take to travel this distance, whichever is more appropriate.

To find the shortest path from, e.g., A to F, one
would need to find the collection of edges that
connect A to F through any other nodes, for
which the sum of the weights is as low as
possible. Throughout this paper, the length of
the shortest path from some node s to some
node t will be referred to as the distance from s
to t. Next, a formal description of the shortest
path problem is provided.

Consider a directed graph G = (V, E), where V is a finite set of nodes and E the set of
edges between those nodes. The number of nodes V is denoted by n and the number of
edges E is denoted by m. Each edge e has a weight w(e). A path is defined by a
sequence of nodes (v1 , , vk) for which (vi , vi+1) E for 1 i < k. A node that is
connected to some node v by some edge is referred to as a neighbor of v. A node that
precedes some other node on a path is referred to as its parent on that path. Similarly, the
successor of a node on some path is referred to as its child on that path.

Figure 1: A graph with weighted edges.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

11 / 40

Given a source node s V and a target node t V, the shortest path is defined as the path
(s , , t) that minimizes the sum of the weights of all edges on the path. The length of
the shortest path from s to node v is defined as g(v) and is also referred to as the distance
from s to v.

2.2 LP model

One way to solve a shortest path problem is using the linear programming model
described in [1]. In order to formulate this model, the following variables need to be
defined.

otherwise0

path optimal in the used is edge if1 e
xe

ii u entering edges ofset the:

ii u leaving edges ofset the:

An LP model can now be defined as shown below.

n

Ee
e ewx)(Minimize

Where

Eex

xx

xx

V\{s,t}i:vxx

e

δe
e

δe
e

δe
e

δe
e

i
δe

e
δe

e

tt

ss

ii

0

1

1

0

The first constraint describes the demand that every node that is not s or t should be left
as many times as it is entered. The second constraint describes that s should be left one
time more than it is entered. The third constraint describes that node t be left one time
less than it is entered. The fourth constraint describes that the decision variables should
be larger than or equal to 0. The model itself ensures all decision variables take either the
value 0 or the value 1, because any other values will lead to a non-optimal solution.

Route planners need to solve shortest path problems of substantial size. For this case, LP
is not the most suitable method to find a solution. No matter how good the model, no

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

12 / 40

matter how efficient the code, calculation times will grow too large if a problem specific
approach is not used. The following sections describe a number of algorithms that offer a
more efficient way to solve shortest path problems.

2.3 Dijkstra

In [2], Dijkstra describes an algorithm that solves a shortest path problem with
nonnegative edge weights much more efficiently than LP. This algorithm is now known
as Dijkstra’s algorithm and has been documented thoroughly. For each node v, two
properties are stored. The first is the length of the shortest path from s to v found so far,
the second the node preceding v on that path. The algorithm will construct better paths in
an iterative way, improving the solution in each step. Once finished, it will have found
the shortest path from source node s to all other nodes in a graph.

2.3.1 The algorithm

In order to explain the algorithm, the following definitions are needed:
 A := the set of nodes v for which a shortest path from s to v has been found (also

known as the closed set).
 X := the set of nodes v for which a path from s to v has been found of which it is

uncertain if it is the shortest (also knows as the open set).
 ĝ(v) := length of the shortest path from s to v found so far (this can be seen as an

estimate or upper bound for the shortest path from s to v).
 ĝ(s) := 0

Initialize the algorithm with:

 A =
 X = {s}

Repeat the following steps until X equals the empty set.

1. Take node v from X for which)(ˆmin)(ˆ ugvg
Xu

 , remove v from X and add it to A.

2. For each u for which (v, u) E (each neighbor of v)
 If u is in A, do nothing.
 If u is in X

 If ĝ(v) + w(v,u) < ĝ(u), then set ĝ(u) = ĝ(v) + w(v,u) and parent(u) = v.
 If u is not in A and not in X, add u to X and set ĝ(u) = ĝ(v) + w(v,u) and parent(u)

= v.

When the algorithm ends, all nodes that can be reached from s will be in A (including t)
and the solution has been found. To save some calculation time, the algorithm can be
stopped once t is moved to A, because at that point the shortest path to t has been found.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

13 / 40

2.3.2 Proof of optimality

This section will show why Dijkstra always finds an optimal path. See the collection A as
an expanding border around the source node s, where every node inside the border is
closer to s than any node outside the border. A keeps expanding, until it contains the
target node. This principle is illustrated in Figure 2.

Define vk as the node that is added to A in step k. Using induction it is shown that vk is the
node for which the length of the shortest path g(vk) is the shortest of all nodes not in A.
This is trivial for step 1, because s is added with g(s)=0.

Say that this holds up to some step k, then after this step any node not in A will have a
larger distance from s than any node in A. Necessarily, all neighbors of all nodes in A,
will be in X. As a consequence, any node not in A and not in X will have a longer distance
from s than at least one node in X, because you will have to travel through a node in X to
get there. This means the node vk+1 that needs to be added to A in step k+1 will be in X
and will therefore be found by the algorithm.

Because this holds for k = 1, this proves it holds for any k 1, or any step in the
algorithm. Because the shortest path to vk is shorter than to any node outside of A, this
path does not contain any nodes outside of A and therefore the shortest path found so far
is the actual shortest path, or ĝ(vk) = g(vk), making it valid to add it to A. A formal prove
for Dijkstra is provided next.

When a node is added to A, the shortest path is found and the algorithm does not touch
the node again. To prove that the path Dijkstra finds to each node is indeed the shortest
path, we need to prove for each iteration k, there exists no path to vk shorter than ĝ(vk), or
ĝ(vk) = g(vk). For this proof Lemma 1 provided in [3] is used.

A after iteration 1.

A after iteration 2.

A after iteration 3.

A after iteration 4.

A B E

D

C
F

5 5

4

3 3

8

7

5

3

Figure 2: Expansion of A in Dijkstra’s algorithm.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

14 / 40

Lemma 1

For any optimal path P from s to some node u A, there exists a node v X on P
with ĝ(v) = g(vk).

Proof
If s X, this is trivially true, since ĝ(s) = g(s) = 0. Otherwise, let v* be the node that
was last added to A. Note that this cannot be the same node as v, because v A. Let v
be the successor of v* on P. By definition of ĝ, ĝ(v) ĝ(v*) + w(v*, v). Because v*
A, ĝ(v*) = g(v*) and because P is an optimal path, g(v) = g(v*) + w(v*, v).
Combining these results leads to ĝ(v) g(v), but in general ĝ(v) g(v). From this it
follows that ĝ(v) = g(v).

Lemma 1 shows that for each iteration there is a node vk X where ĝ(vk) = g(vk), as long
as there is a node u A. When this node u does not exist, X equals the empty set and the
algorithm is terminated. This proves that for every node that is added to A the shortest
path has been found, so for every node v A, Dijkstra’s algorithm has found the shortest
path from s to v.

2.4 A*

When traveling to a certain destination, there is usually no point taking a road in the
opposite direction. An algorithm would do well to give priority to roads that travel in the
direction of the destination. That is where Dijkstra falls short. Dijkstra searches the search
space in any direction, as indicated by the fact that the algorithm finds the shortest path
from s to any other node. Clearly, the algorithm does not search in the direction of the
target node.

Hart, Nilsson and Raphael [3] introduce the A* algorithm, that adds a heuristic to
Dijkstra, making it more goal oriented. Instead of evaluating a node v using an estimate
for the shortest path to this node ĝ(v), Hart et al. introduce the following evaluation
function.

)()()(vhvgvf .

The evaluation function f(v) represents the length of the shortest path from the source
node s to the target node t when traveling through node v. The g(v) part is the distance
from s to v and the h(v) part is the distance from v to t. They also introduce an estimate
for the evaluation function:

)(ˆ)(ˆ)(ˆ vhvgvf .

The estimated distance from s to v, ĝ(v), is determined in the same way as in Dijkstra’s
algorithm, the shortest path from s to v found so far. The estimated distance from v to t,
ĥ(v), is determined by using a heuristic. This heuristic can be any function and is often

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

15 / 40

problem specific; there is no best heuristic. For route planning problems, a heuristic that
is often used is the Euclidean distance from v to t.

The only alteration that A* makes in the algorithm shown in the previous section is that

)(ˆmin)(ˆ ugvg
Xu

 is replaced by)(ˆmin)(ˆ ufvf
Xu

 in step 1.

Next, Hart et al. prove that the A* algorithm finds an optimal solution if

)()(ˆ vhvh for all v.

This is the same as saying the heuristic ĥ(v) should always underestimate the true
distance h(v), or ĥ(v) should give a lower bound on h(v). This is known as an admissible
heuristic.

2.4.1 Proof of optimality

The proof for A* is slightly more complicated than the proof Dijkstra. Russel and Norwig
[4] try to give a feeling for the algorithm by describing the collection A as a contour
around all nodes having f(v)<c for some constant c, much like Dijkstra does for g(v).
With every iteration the value of c is increased and the contour is expanded.

Of course this does not provide a complete proof. Therefore the formal proof from [3] is
given below. First the following corollary to Lemma 1 from the previous section is
needed.

 Corollary to lemma 1

Suppose a heuristic h(v) is admissible and A* has not terminated. Then for any
optimal path P from s to t, there exists a node v X with)()(ˆ sfvf .

Proof
By Lemma 1 there exists a node v X on P with ĝ(v) = g(vk). Then:

)ˆ of definition(by)(
)admissible is ˆ (because)()(

1) lemma(by)(ˆ)(
)ˆ of definition(by)(ˆ)(ˆ)(ˆ

fvf
hvhvg

vhvg
fvhvgvf

Suppose A* terminates after finding a non-optimal route to t. Then

)()(ˆ)(ˆ sftgtf . According to the corollary, just before termination, there was
a note v on an optimal path with)()()(ˆ tfsfvf . At this point the algorithm
would have selected v at step 1 instead of t and the algorithm could not have
terminated. This proves that A* cannot terminate after finding a non-optimal route
to t.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

16 / 40

2.4.2 Optimally efficient

It should be noted that A* is optimally efficient for any given heuristic function. This
means no other optimal algorithm using the same knowledge is guaranteed to expand
fewer nodes than A*. A short explanation for this is given in [4]: “any algorithm that does
not expand all nodes in the contours between the root and the goal contour runs the risk
of missing the optimal solution”. A formal proof is given in [3].

This observation does not mean there are no ways to get to a solution faster. As shown in
the next sections, by improving the heuristic, or by performing some form of
preprocessing, the calculation time can be decreased significantly.

2.4.3 Memory usage

One downside of both Dijkstra and A* is that when the search space grows large,
memory usage increases rapidly for both methods. A search space may contain millions
of nodes and for each node that is visited by the algorithm one integer ĝ(v) and one
pointer to the preceding node need to be stored in memory. Because of these memory
requirements, methods were developed that can compete with A* in terms of
performance, but use less memory. These algorithms are IDA*, MA* and SMA*.

IDA*

IDA* stands for Iterative Deepening A*. The method is based on Depth First Iterative
Deepening. In each iteration, IDA* sets a threshold for the evaluation function)(ˆ vf . It
then searches one path until the evaluation function for this path exceeds the threshold.
When the threshold is exceeded, the path is backtracked until a node is found with
neighbors that have not been searched yet and the algorithm continues with a path from
this neighbor. An iteration ends when all possible paths up to the threshold have been
searched.

Once an iteration has finished, IDA* sets the threshold for the next iteration to the
minimum of all values found that exceeded the current threshold. This process continues
until the target node has been found.

Although it would seem that IDA* performs a lot of extra calculations by expanding
nodes multiple times, the actual overhead this causes is rather small. The reason behind
this is that the outer layer of the expanded nodes, expanded in the last iteration, contains
by far the most nodes. The fact that other layers are expanded multiple times does not
make much difference. IDA* returns an optimal solution under the same constraints as
A*. A more detailed description of IDA* can be found in [11].

SMA*

The weakness of IDA* is that it effectively throws information away after each iteration.
A method that tries to retain as much information as possible is known as Memory
Bounded A*, or MA* [12]. Russel [13] introduces SMA* that improves MA* by letting
even less information get lost and making the algorithm slightly easier to implement.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

17 / 40

SMA* works roughly the same as A*, with the difference that it has a limit on the
number of nodes that are allowed to be stored in memory. Once this limit has been
reached, it will prune a leaf node only when space is needed for a better one. When a
node has to be pruned, it will remove the shallowest node with the highest value of

)(ˆ vf .

In order to prevent unnecessary information loss, information from the successors is
stored in preceding nodes. Once all successors of a node v have been expanded, the value
of)(ˆ vf is replaced by the lowest value of all successors. This information is then
updated for all predecessors of v.

Theorem 4 in [13] says that except for its ability to generate single successors, SMA*
behaves identically to A* when the number of nodes generated by A* does not exceed the
limit. SMA* returns an optimal path when enough memory is available to store the
shallowest optimal solution.

2.5 Bidirectional search

Bidirectional search applies an arbitrary search algorithm both forward from the source
node s and backwards from the target node t. This reduces the area that is searched and
therefore the number of nodes that are searched, as illustrated in Figure 3.

Figure 3: The area of the one ellipse on the left is larger that the sum of the two small ones on the right.

For Dijkstra, applying bidirectional search is rather straightforward. The algorithm is
initiated from both nodes and one iteration for both source and destination is executed at
a time. Once the algorithm in one direction adds a node to A that is already in A for the
other direction, the shortest path has been found.

For A* however, the method is not as simple. Because A* minimizes the evaluation
function)(ˆ vf , instead of the distance from the source node, there is no guarantee the
minimum path has been found when the two closed sets meet. Kaindl and Kainz mention
in [17] that previous research on bidirectional heuristic search indicates that the overhead
of the method outweighs the benefit. Their own approach achieves some promising
results, decreasing the running time by 30% in the most positive scenarios. However, this
result is minimal in comparison to other optimizations that are presented in this paper. In
general, the combination of A* with bidirectional search does not lead to impressive
results.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

18 / 40

2.6 Geometric pruning using bounding-boxes

Every road is only useful to get to a number of different places. For any other place, it is
faster to take another road. If this information is known when planning a route, roads that
are not in the shortest path to the destination can easily be ignored. Unfortunately, storing
all this information takes up an enormous amount of memory.

Wagner and Willhalm [9] introduce a method
called geometric pruning. The idea behind the
geometric pruning method is to store a set of
nodes S(e) for each edge e during a
preprocessing phase, containing all nodes that
can be reached by a shortest path starting with e.
Storing these sets for every edge would need
O(nm) space. As mentioned, this is not feasible
for large search spaces, so Wagner et al. store a
geometric shape for each edge e that contains at
least S(e). In Figure 4 edge (C, D) is the first edge in a shortest path from C to D, E and F.
Therefore, S(C, D) contains at least these three nodes.

These shapes contain a set of nodes C(e) called a container. A container is called
consistent if S(e) C(e). If the container C(e) is consistent for all edges, then Dijkstra’s
algorithm with pruning will find the shortest path from s to t. The method makes a small
change in Dijkstra’s algorithm. When a node is added to A in step 1 of the algorithm, only
the nodes u for which t C(v,u) will be considered.

The proposed method needs a considerable amount of preprocessing, but can
substantially decrease the number of visited nodes for a search. One of the most effective,
yet simple geometric shapes is the so called bounding box, meaning the smallest square
box containing all nodes in S(e). Using bounding boxes, the number of nodes visited is
decreased by 90 to 95 percent on road networks compared to Dijkstra, decreasing the
running time by approximately a factor 10.

Although Wagner et al. only test this method with Dijkstra’s algorithm, they mention in
their conclusion their method can be easily combined with other methods. One of the
methods mentioned is A*.

2.7 ALT algorithms

Goldberg and Harrelson [5] describe a method for improving performance of shortest
path queries they call ALT algorithms, since they are based on A*, Landmarks and the
Triangle inequality for shortest path distances (not Euclidean distances). The goal of the
method is to find a better lower bound for the distance h(v) used by the A* algorithm.
Better lower bounds result in fewer nodes being searched.

A B E

D

C
F

5 5

4

3 3

8

7

5

7

Figure 4: A bounding box for edge (C,D)

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

19 / 40

An ALT algorithm selects a number of landmarks during preprocessing. For every node
the distance to and from these landmarks is computed. Consider a landmark L and let
d(u,v) be the distance from any node u to any node v. Then by the triangle inequality,
d(u,L) – d(v,L) d(u,v). Similarly, d(L,v) – d(L,u) d(v,u).

Since d(w,L) and d(L,w) were computed during preprocessing, this fact can then be used
to compute a lower bound for the distance between two nodes. To achieve the tightest
lower bound, the maximum over all landmarks is used. Once the lower bound is found,
this can be used as the heuristic for ĥ(v) in the A* algorithm.

Finding good landmarks is critical for the overall performance of ALT algorithms.
Goldberg et al. describe three ways of selecting landmarks. If k is the number of
landmarks that need to be selected, the simplest method described is selecting k nodes at
random. However, there are better methods.

The second method described is called farthest landmark selection. It is initiated by
picking one random node and picking the node farthest away from it as the first
landmark. Then, for each new landmark that is to be selected, find the node that is
farthest away from the current set of landmarks.

For road maps, having a landmark lying behind the destination tends to give good
bounds. In this case, the method called planar landmark selection is a good choice. Find a
node v near the center of the graph and divide the graph into k pie-slice sectors with v as
their center, so that each slice contains approximately the same number of nodes. Then
for each sector select the node farthest from c as a landmark. To avoid having two
landmarks close to each other, if a landmark in sector A was chosen close to the border of
the next sector B, skip the nodes in B that are close to the border with A.

For the number of landmarks that should be selected, Goldberg et al. suggest a moderate
amount, e.g. 16, as the improvement when choosing more landmarks is relatively small
compared to the extra calculation time. Finally, when calculating a shortest path from s to
t, they suggest taking a small subset of landmarks (e.g. 4) that give the highest lower
bounds on the distance from s to t.

Results show an improved efficiency of a factor 10 to 20 compared to Dijkstra when
using ALT algorithms.

2.8 Multi-level approach

When traveling from one city to another, the largest part of the shortest path will be fixed,
no matter what the exact starting point and destination of the journey is. It is obvious
some paths are part of a large number of different shortest paths. The multi-level
approach tries to take advantage of this fact.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

20 / 40

Sanders and Schultes [6], [7] introduce a variant of this method they call highway
hierarchies. Their method creates multiple levels for the original graph during
preprocessing, where each higher level is an abstraction of a lower one. The original
graph is the lowest level. When generating a new level, some nodes and edges may be
removed and some edges may be added.

The multi-level approach tries to find so-called highways in the graph and add these to a
new level. First a neighborhood around each node is determined. Highways consist of
edges that are on a shortest path from some source node s to some target node t and have
their beginning and end outside of both the neighborhoods of s and t and edges that either
leave the neighborhood around s or enter the neighborhood around t, but not both.

Finally some steps are taken to clean up the newly created level. Paths consisting only of
nodes with 2 neighbors are removed completely and replaced by a single edge connecting
the start and end node of the path. Furthermore, all isolated nodes are removed.

Once a new level is created, the steps can be repeated to generate another level. When the
desired number of levels has been created, all nodes in each level are linked to the
corresponding ones in the level below to form the final graph. This step ensures that the
shortest path is found; the algorithm can always take a step down to a more detailed level.

The queries on the final graph are performed by a slightly modified version of the A*
algorithm and were shown to be between 500 and 2,000 times faster than Dijkstra’s
algorithm on real road networks.

2.9 Suboptimal algorithms

Some authors, for instance Botea, Müller, and Schaeffer in [10], have introduced
suboptimal algorithms that lower calculation times significantly, while giving results
within a small margin of the optimal solution. Although this could be interesting, Sanders
and Schultes describe in [8] that shortest path algorithms have improved so much in
terms of speed in the past years, they are actually becoming too fast.

With the latest methods, query times of only a few milliseconds can be achieved, causing
overhead like displaying routes or transmitting them over a network to become the
bottleneck. Considering this argument, it is no longer interesting to accept suboptimal
solutions to decrease query times.

2.10 Priority queue

The data structure behind Dijkstra’s algorithm, or variations of it, can have a significant
effect on the performance. Because Dijkstra and A* will need to find the node in X with
the lowest value for ĝ or ĥ respectively, implementations of Dijkstra, A* or one of their
variations generally use a priority queue, or heap. This type of queue will always have the

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

21 / 40

value with the highest priority (or in this case the lowest value for ĝ or ĥ) available
without needing to search the whole collection, thereby decreasing processing time.

Dijkstra’s algorithm runs in O(m) time plus the time required to perform the heap
operations. Where Dijkstra’s original implementation, using an array, needed O(n2),
implementations using a Fibonacci heap [14] are able to decrease this to O(m + n log n).
Under certain restrictions double buckets [15], or multi-level buckets [16] can achieve
even greater speed-ups.

A priority queue consists of a set of items, each with its own real-valued key. This type of
queue should support at least the following operations:

 Insert(h, x) - Insert item x, with predefined key, into heap h.
 Delete min(h) - Find the item with the minimum key in heap h,

delete it from the heap and return it.
 Decrease key(h, x, d) - Subtract d from the key of item x in h and replace

its key with this value.

2.10.1 Fibonacci heaps

A Fibonacci heap is designed to not only minimize the time needed for the delete min
operation, but more importantly, the decrease key operation. Because the latter is
generally performed multiple times in each iteration, this approach benefits the running
times for Dijkstra and A*. How this goal is achieved will be explained in this section.

A Fibonacci heap consists of a number of trees, of which the roots are stored in a doubly
linked circular list. The node m with the minimum key will always be in this list of roots
and a pointer to this minimum node is kept. The children of each node are stored in a
doubly linked circular list as well. There are no constraints on the number of trees or
number of children, other than the constraints that are implicit in the definition of the
heap operations. The number of children of a node is referred to as its rank. An example
of a Fibonacci heap is shown in : . The arrow represents the pointer to the minimum.

Insert(h, x)

The operation insert(h, x) on a Fibonacci
heap is performed by creating a new
tree, consisting of one node with value x,
and adding this node to the list of roots
of h. If the key of x is lower than the
current minimum key in h, the pointer is
updated accordingly. All operations take
O(1) time. In : , the root with value 16
and without children could be the result
of an insert operation of key 16.

Figure 5: An example of a Fibonacci heap.

5 2 16

6 8 4 4

8 7 9

13 16 10

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

22 / 40

Delete min(h)

Delete min is the most time-consuming operation. The deletion is initiated by removing
the minimum node m from h. Then the list of children of m is added to the list of roots of
h without m and a linking step is performed.

The linking step finds two trees whose roots have the same rank and links them, until
there are no two trees with roots of the same rank left. Linking two trees is performed by
making the tree with the root with the larger key a child of the other and removing its tree
from the list of roots. The entire operation on the Fibonacci heap of Figure 5 is illustrated
in Figure 6.

Figure 6: Effect of a delete min operation on the Fibonacci heap of Figure 5.

To perform the linking step, an array is used that is indexed by rank, from one up to the
maximum possible rank. An attempt is made to insert each root into the appropriate
position. Whenever a root needs to be inserted into a position that is already taken, these
roots necessarily have the same rank and are linked. For the root of the resulting tree an
attempt is made again to insert it into the array.

5 16

6 8

4 4

8

7

16 10

9

13

5

16 6 8

4

7 9

13 16 10

5

16 6 8

4

4

8 7 9

13 16 10

5 16

6 8

4

4

8

7 9

13 16 10

A) After deletion B) After First linking step.

C) After second linking step. D) After final linking step and updating minimum.

4

8

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

23 / 40

A property of a Fibonacci heap is that a node of rank k has at least Fk+2 φk descendants,
including itself, where Fk is the k-th Fibonacci number and φ = (1 + 5) / 2 is the golden
ratio. Therefore, any root will have a maximum possible rank of logφ n, where n is the
total number of nodes in the heap.

When the linking is finished, the minimum is updated to point to the new minimum in the
root list. The delete min operation takes O(log n), where n is the number of items in the
heap.

Decrease key(h, x, d)

For the decrease key operation, it is assumed that the position of x in h is known. First, d
is subtracted from the key of x. Next, the node k containing x is cut from its parent and
added to the list of roots. This action forms a new tree with k as its root. If k already was a
root, decrease key is performed by simply subtracting d from the key of k.

If the new key of x is smaller than the key of m, the pointer is updated to reflect this. A
decrease key operation takes O(1) time. After each decrease operation, cascading cuts
may have to be performed, as described in the next section.

Cascading cuts

Finally, there is one implementation detail necessary to obtain the desired time bounds.
After any operation that causes child nodes to loose their children, when a child node has
lost two of its children, it is cut from its parent and added to the list of roots. Decrease
key is such an operation. Another one is a delete operation, should this be implemented.

This operation is called a cascading cut. A single operation can result in a large number
of cascading cuts. To keep track of cascading cuts, when a child is cut from a parent that
is not a root, its parent is marked. When a child is cut from a parent that has already been
marked, the parent is cut from its parent as well and it is unmarked. If a node is moved to
the list of roots for any other reason and is later added as a child by the linking step, it is
unmarked as well.

As an example, take the Fibonacci heap from Figure 5 and assume nodes 6 and 9 are
marked as having lost a child. Figure 7 shows the heap after a decrease key operation has
been performed on node 13, decreasing the key to 1 and causing two cascading cuts.

Figure 7: The Fibonacci heap of Figure 5 after a decrease key operation on node 13.

5 2 16 6

8 4 4

8

7

9 1

16 10

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

24 / 40

2.11 Comparison

Table 1 shows a comparison of the algorithms that were discussed in this chapter.
Speedups are compared to the unidirectional Dijkstra algorithm, unless indicated
otherwise.

Algorithm Preprocessing Memory usage Speedup Optimal

LP None Negligible Slower than
Dijkstra

yes

A* None Less memory usage
because less nodes
are searched

Around 2 times
as fast, up to 10
times faster is
favorable
scenarios

yes

IDA* None Very little, only one
path is stored in
memory

Around a factor 2
slower than A*

yes

SMA* None Up to a set
maximum amount

Slightly slower
than A* when the
memory limit is
reached

yes

Bidirectional
search

None Less memory
usage, because less
nodes are searched

Around 2 times
faster

yes

Geometric
pruning

An all pairs
shortest path
computation

Stores a
geometrical shape
for each edge

10-20 times
faster

yes

ALT algorithms Around 16 global
shortest path
queries

High memory
usage, stores a
distance to all
landmarks for each
node

Around 10 times
faster

yes

Multi-level
approach

A local shortest
path search
around each node
in the lower level
is needed to form
each new level

For each new level,
a new, but smaller
graph needs to be
stored

Up to 2000 times
faster in the most
favorable
scenario

yes

Table 1: Comparison of shortest path algorithms.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

25 / 40

3 Other routing services

There are two main types of existing routing applications: offline, or onboard planners
and online or web planners. Numerous applications of both types exist, this chapter will
only name a few very popular ones and several that are in some way related to this
project.

3.1 TomTom

TomTom is a large international company that offers stand alone navigation devices.
Their devices are among the most popular ones, mainly because of the intuitive user
interface, the speed with which it calculates routes and the accuracy of their data. The
devices can calculate routes by car, by bike or on foot. Unfortunately, their routing
algorithm and data source are not open to the public.

Recently TomTom has released an online version of their route planner as well, however,
this version misses many of the features the stand alone device offers. Among other
things, it lacks an option to plan routes by bike or on foot. Both the online version and the
stand alone version are available in Dutch.

3.2 Google Maps

Google has recently started their own online map and routing service, named Google
Maps. It is a very fast, free service. It is obvious that Google has performed some kind of
preprocessing or caching to make their routing service this fast, but details or their
routing algorithm stay within the company. Google Maps is available in Dutch, but only
offers routes by car and on foot.

3.3 Via Michelin

Via Michelin is an online routing service based on the maps from the well-known
publisher of road maps, Michelin. It is another impressively fast service. The service is
free and seems to have only one purpose, as marking for Michelin. Again, some kind of
preprocessing or caching would be necessary to achieve these calculation times, but this
information is confidential. Via Michelin is available in Dutch and does offer an option to
plan bicycle routes. However, the database lacks information on bicycle paths, so the
results are often inaccurate.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

26 / 40

3.4 Routenet.nl

Routenet.nl is a popular Dutch online routing service. The service is not quite as fast as
the previous two, but the calculation times within the Netherlands are still very
acceptable. It is a commercial service that is freely accessible and makes money from
advertisements. Therefore, like TomTom and Google, their routing algorithm and data
are not open to the public. Routenet.nl has recently added the option to plan bicycle
routes, however, like Via Michelin, it lacks information on bicycle paths.

3.5 YourNavigation.org

YourNavigation.org is a demonstration website for the YOURS project. The goal of the
project is to use OpenStreetMap (OSM) data to make a routing website utilizing as much
other (opensource) applications as possible. It uses an opensource routing engine called
Gosmore. The service is not very fast on longer routes and their website mentions that
Gosmore is not designed for generating routes longer than 200km. The routeplanner
offers an option to plan bicycle routes and the does have bicycle paths in their data
source, but it is only available in English.

3.6 OpenRouteService.org

OpenRouteService.org is another online service that uses OSM data. It is a project of the
Geography department of the University of Bonn in Germany. Like YourNavigation.org,
it is a non-commercial service that is free and has no advertising on their website. Apart
from the source code, almost every bit of information on the implementation is available
on the website. The service uses A* and is not as fast on longer routes the commercial
applications. OpenRouteService.org is only available in English, but can plan bicycle
routes. It uses the same data source as YourNavigation.org, so it includes bicycle paths.

3.7 Comparison

Table 2 shows a comparison of the six routing applications that were discussed in this
section. Unfortunately for the best performing applications the routing algorithms were
confidential. The two that did reveal their routing algorithm both used A*. It is obvious
that non-commercial routing services tend to stick with less complex algorithms, to limit
the time that needs to be invested. Commercial applications have a lot depending on the
performance of their service and can afford to invest more time and money in order to
increase performance.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

27 / 40

Name Algorithm Data

source

Selecting start

and destination

Language Supports

bicycle

routes

TomTom confidential Own data Addresses English Stand
alone only

Google Maps confidential Own data Both addresses
and select on a
map

English No

Via Michelin confidential Michelin
maps

Both addresses
and select on a
map

Dutch Yes, but
no bicycle
paths.

Routenet.nl confidential Own data Addresses Dutch Yes, but
no bicycle
paths.

YourNavigation A* OSM Both addresses
and select on a
map

English Yes

OpenRouteService A* OSM Both addresses
and select on a
map

English Yes

Table 2: Comparison of existing routing services.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

28 / 40

4 Implementation

As a result of the study performed in Chapter 3, it can be concluded that there still is no
Dutch route planner that offers decent support for planning bicycle routes and covers the
entire Netherlands. Therefore, as part of this project, a bicycle route planner for the
Netherlands will be implemented.

For the implementation, a number of decisions need to be made. First of all the decision
needs to be made what programming language to use. Second, a suitable algorithm needs
to be chosen. Based on the choice of algorithm, a suitable data structure may be needed to
optimize the time for data storage and retrieval. Finally, this data needs to come from
somewhere. A data source with data on all roads in the Netherlands is a requirement for
the success of the project.

This chapter is organized as follows. Sections 4.1 to 4.4 describe these decisions and
other details of the implementation. Section 4.5 shows the resulting application and some
numbers on performance. Section 4.6 presents a validation of the routes the application
finds.

4.1 Programming language

For the choice of programming language, the project implies a number of constraints.
Because the application will likely need a substantial amount of processing time to
calculate a route, the code should be compiled to benefit the speed of the calculations.
Furthermore, to facilitate structured design, maintainability and extensibility of the
application, an object-oriented language should be preferred over a non object-oriented
language.

Taking these constraints into account, several options still remain. The choice was made
to use ASP.NET, specifically C#, based on the availability and previous experience.

4.2 Algorithm

In Chapter 2 several algorithms were described for calculating the shortest route from one
point to another. For the implementation, one algorithm, or a combination of several,
needs to be chosen. The first constraint on this choice is the speed. The algorithm must
find a solution within an acceptable timeframe.

Studies have shown that users start to believe an error has occurred when delays rise
above 10 seconds and quality of service is rated as low for higher delays [18]. An online
service should therefore aim for a response time below 10 seconds. The algorithm should
at least be able to find a solution for any route within 10 seconds, preferably less, since
transmitting results and displaying routes may increase the response time.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

29 / 40

The second constraint for the choice of algorithm is complexity. Since there is only a
limited amount of time available for the project, algorithms that are too complex may not
be feasible.

The decision was made to use the A* algorithm with the Euclidean distance as heuristic,
based on two arguments. First of all A* is one of the least complex algorithms, being
only slightly more complex than Dijkstra. Second, methods such as geometrical pruning,
ALT and multi-level approach can be combined with A* with only small adjustments to
the algorithm. The major change for these methods is in the preprocessing phase. As a
result, the application can be easily extended to support any of these methods at a later
time.

The decision to use A* makes the choice for a data structure rather obvious. Because
Fibonacci heaps have been created specifically for Dijkstra and A*, this should be a good
choice.

4.3 Data source

As mentioned before, a data source that can supply accurate data on the complete road
network in the Netherlands is a requirement for the success of the project.
openstreetmap.org offers such a data source.

OpenStreetMap (OSM) is an openly available online world map. Anyone can contribute
GPS data, which is used to form a dataset describing all the roads in the world. The data
is by far not complete, but fortunately Automotive Navigation Data (AND) has donated a
street network of the entire Netherlands. As a result the data is fairly complete for the
Netherlands and a suitable source for the route planner.

The entire street network for the Netherlands (and other countries) can be downloaded as
an XML file. This file contains node tags containing latitude and longitude and way tags
containing the nodes it covers and several tags to indicate the type of road.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

30 / 40

A road will be designated as allowing bicycles if at least one of the following tag/value
combinations is included.

Tag Value

highway secondary
tertiary
unclassified
residential
livingstreet
service
track
cycleway

cycleway - any -
cycle

true
yes
1

Table 3: Roads designated as allowing bicycles.

4.4 Other issues

When implementing a route planner, there are a number of issues to take into account.
First of all there are several coordinate systems that can be used to specify a location on
earth. Each system has its benefits and a decision needs to be made on which system to
use. Also selecting a starting point and destination is not as trivial as it seems. Finally, a
way to display the calculated route must be found. This section will describe these issues
and the way they were handled.

4.4.1 Coordinates

The standard method to specify a location on earth is by specifying a longitude and
latitude pair. Latitude is the angle between a point on the Earth's surface and the
equatorial plane. Longitude is the angle east or west of a reference line that was chosen
near Greenwich. The benefit of this sytem is that any location on earth can be pinpointed
exactly. The downside however, is that calculating distances between two locations gets
significantly more complicated. As a result, calculation times grow when distances need
to be calculated often.

Fortunately, these coordinates can be approximated by coordinates in a plane[19], [20].
The exact width of one longitudinal degree on latitude φ can be calculated by

rM)cos(
180

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

31 / 40

where Mr is the earth's average radius, which equals 6,367,449m. The width of one
latitudinal degree can be approximated by

rM
180

By calculating longitude and latitude for each node in meters during startup, distances
can be calculated in very little time.

4.4.2 Selecting a starting point and destination

In general, there are two methods of selecting a starting point and destination. Either have
users enter an address, or let them select a location on a map. Unfortunately, both
methods have their own issues.

The dataset from OSM does not specify a town for each way. This makes selecting an
address difficult, because road names can be shared between towns. The second option,
letting the user select a location on a map, creates the difficulty that the selected location
will usually not be exactly on a node.

In the end the second method was implemented. To overcome the problem mentioned,
the closest way to the selected location is determined by calculating the distance to all
nearby ways. The closest node on that way is selected.

4.4.3 Displaying the route

For displaying the route there are again two options. Either use text to describe the route,
or plot the route on a map. Since the map was already available for selecting the starting
point and destination, this was the method that was chosen for the implementation.

4.5 Results

During the course of the project, a bicycle route planner for the Netherlands was
implemented successfully. The application is called Cycle Route Planner. A class
diagram describing the design of the implementation can be found in Appendix A. As
mentioned, a Fibonacci heap is used to implement the open set. For the closed set, a
Dictionary object as present in the C# API was used.

Figure 8 shows the application after a route has been plotted. A starting point can be
selected by left clicking on the map and a destination point by right clicking on the map.
When a user clicks “plan route”, both points are slightly adjusted to match an existing
node and a route between both nodes is calculated and displayed on the map.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

32 / 40

Figure 8: The Cycle Route Planner application.

4.5.1 Performance measurements

Table 4 shows some performance statistics for the application both when running A* and
Dijkstra. Routes from the north-east corner to the south-west corner and from the north-
west to the south-east corner of the country have been included, making the higher
calculation times a worst case scenario. Most routes will be calculated in far less time.

The measurements were performed on a system with a Pentium Core 2 Duo E2160
processor running at 3Ghz and 4GB of RAM. All times were determined by calculating a
route 3 times and taking the average of the 3 calculation times. Initially, the
measurements were performed using 2GB of RAM, but the tests ran into memory
limitations. This indicates memory usage is still an issue.

The statistics show that the constraint of staying below 10 seconds has been met with
ease for the A* algorithm and only just for Dijkstra’s algorithm. A* is faster in all of the
tested cases.

The results also indicate that the relative speedup of A* compared to Dijkstra decreases
when distances get longer. Apparently, when calculating a longer route, the number of
nodes Dijkstra searches increases less rapidly than the number of nodes A* searches. It is
likely that the cause of this is that a limited dataset is being used.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

33 / 40

From To Distance (km) A* (s) Dijkstra (s) Speedup

Amsterdam CS Utrecht CS 44.18 0.13 1.36 10.5

Alkmaar Breda 155.49 2.53 3.71 1.5

Leeuwarden Rotterdam 211.39 2.15 5.28 2.5

Den Helder Tilburg 215.18 3.24 7.05 2.2

Groningen Tilburg 270.53 4.19 7.59 1.8

Alkmaar Maastricht 301.67 6.85 9.23 1.3

Den Helder Maastricht 342.51 7.4 9.04 1.2

Groningen Middelburg 364.41 7.55 8.46 1.1

Table 4: Performance measurements.

When Dijkstra calculates a route from one end of the country to another, the area that is
searched will not expand in all directions, simply because the borders of the dataset are
reached. Because A* would have searched less nodes in the wrong directions anyway, it
benefits less from this fact than Dijkstra does.

Taking this effect into account, it is probable that the lower speedup factor between A*
and Dijkstra is not related to the absolute length of a route, but the length and position
relative to the dataset.

4.6 Validation

In order to validate the results of the bicycle route planner, they were compared to the
results of two international online route planners that use the same data source and have
the option to plan bicycle routes. These route planners are OpenRouteService, available
at http://www.openrouteservice.org/, and Your Navigation, available at
http://www.yournagivation.org/. This section will show there are many differences
between the results of these two route planners and the Cycle Route Planner application
implemented during this project.

Figure 9 to Figure 11 show a route where there are no issues. All three route planners
give the same route, which really is the shortest cycle route between those points. This is
the ideal situation. Unfortunately, this is not always the case.

Figure 12 to Figure 14 show a route where OpenRouteService (ORS) gives a different
result than the other two. It is obvious that the route found by ORS is the shortest. In real
life the road chosen by ORS has a separate track for bicycles, so this is indeed the correct
route. Analyzing the data shows that the road in question has type primary highway. This
type is included in ORS and excluded in Your Navigation and the Cycle Route Planner
application. The next example will illustrate why this decision was made.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

34 / 40

Figure 9: Cycle Route Planner

Figure 10: OpenRouteService

Figure 11: Your Navigation

Figure 12: Cycle Route Planner

Figure 13: OpenRouteService

Figure 14: Your Navigation

Figure 15: Cycle Route Planner

Figure 16: OpenRouteService

Figure 17: Your Navigation

Figure 15 to Figure 17 show a route that is different on all three route planners. ORS
again chooses to take a primary highway and gives the shortest route. However, in this

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

35 / 40

case the road does not allow bicycles. As a result, the route given by ORS cannot be
taken by bike, although it should have planned a bicycle route.

The route that Your Navigation gives is still shorter than the one that the Cycle Route
Planner gives. Closer analysis reveals that this route includes a pedestrian path to get to
the destination. This means the Cycle Route Planner is the only planner that actually
gives an admissible route.

The last example, Figure 18 to Figure 20, again gives three different routes. This time
Your Navigation obviously gives the shortest route. What happens here is Your
Navigation takes a pedestrian path again and the other two avoid it. OpenRouteService
still manages to beat the Cycle Route Planner by taking a primary highway.

At first glance nothing new seems to happen here. However, surprisingly, Your
Navigation gives the correct route. Although the dataset marks the path it uses as a
pedestrian path, in real life it actually allows bicycles. The mistake is rather painful for
the other two planners, as the path is in the middle of a long cycle track. The Cycle Route
Planner and ORS both need to make very long detours to get to their destination, while
they should just have taken the easiest route.

Figure 18: Cycle Route Planner

Figure 19: OpenRouteService

Figure 20: Your Navigation

To summarize, the differences can be explained by two factors. First, ORS allows
primary highways for their bicycle routes. Second, Your Navigation allows pedestrian
paths for their bicycle routes. The Cycle Route Planner allows neither.

The pedestrian path from the last example is almost certainly a one off mistake in the
dataset. Therefore, pedestrian paths should not be allowed in cycle routes. Unfortunately
there is no correct decision for primary highways. Whether primary highways allow
bicycles or not varies between roads.

By deciding not to allow primary highways, the Cycle Route Planner may not give the
shortest route in some cases, but it will always give an admissible route. This means users
will never be surprised by a road they cannot take when following a route given by the
application and this should be a priority when developing a route planner.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

36 / 40

5 Conclusion & future work

5.1 Conclusion

The most well-known algorithm for solving a shortest path problem is Dijkstra’s
algorithm. However, when implementing an online service, where delays cannot be more
than a few seconds, Dijkstra does not always suffice in terms of speed. Chapter 2
presented several methods to speed it up.

A* and bidirectional search are two methods that only adjust the route calculation
algorithm and lead to small speedups. Geometric pruning, ALT algorithms and the multi-
level approach use preprocessing to analyze the data. Preprocessing may take up to
several hours during startup, but can decrease the query time by impressive amounts.

When using these methods, routes can be found thousands of times faster than when
using Dijkstra. If necessary, most of these methods can even be combined to achieve
even greater speedups. For online route planners, this means that the calculation time can
be decreased to a few milliseconds. With calculation times this small, these no longer
form a bottleneck, but overhead like transmitting the data over a network or displaying
the route will.

Using the knowledge from Chapter 2, a bicycle route planner for the Netherlands was
implemented. The route planner was written in C# and uses A* to calculate the routes,
based on data from openstreetmap.org, which offers a complete road network for the
Netherlands. In order to write the bicycle route planner application, a Fibonacci heap was
implemented in C#. The Fibonacci heap uses general data types and can therefore be
reused in alternate applications.

Performance statistics show that even the longest routes can be calculated within 8
seconds. Quality of service is only rated as low for response times over 10 seconds, so
every route can be calculated with an acceptable QoS. The speedup of A* over Dijkstra is
impressive for shorter routes, but almost negligible for routes that cross the entire
country. Because of inconsistencies in the dataset, the bicycle route planner does not
always give the shortest route. However, it will always give a route that can be taken by
bike. This makes it stand out from the two route planners it was compared with during
validation, where this was not always the case.

5.2 Future work

A relatively easy improvement for the bicycle route planner application would be adding
another method for input and output. Another method for the location input would be to
enter an address as text. This would have to be translated to longitude and latitude by
means of reverse geocoding before it can be mapped to a node. Another method for the

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

37 / 40

output would be to offer a written description that indicates where to go left or right and
what the streets should be taken.

At the moment, the bicycle route planner supports only Dijkstra’s algorithm and A*,
using a Fibonacci heap for the open set. Implementing additional algorithms and/or data
structures would result in two separate benefits. First, some of the algorithms discussed in
the paper have been shown to decrease processing times substantially. Secondly,
implementing several algorithms and data structures offers the opportunity to compare
their performance.

When several methods are implemented, it should be relatively easy to combine them.
This could lead to even greater speedups. Moreover, comparison of combinations of
algorithms offers another subject of research. Finding the highest performing
combination of algorithms and data structures in order to reach minimal processing times
should offer an interesting challenge.

Finally, it was observed that the speedup of A* compared to Dijkstra grows smaller when
the calculated routes grow larger. As mentioned, this effect is likely the result of the
length and position of the route relative to the dataset. It would be interesting to confirm
this effect for other datasets and see if similar effects can be found when comparing other
methods.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

38 / 40

References

1. M. J. de Smith, M. F. Goodchild, and P. A. Longley, “Geospatial Analysis: A
comprehensive guide to principles, techniques, and software tools”, 2nd ed. London:
Troubador, 2007.

2. E. Dijkstra, “A note on two problems in connexion with graphs,” in Numerische
Mathematik, vol. 1. 1959, pp. 269–271.

3. P. E. Hart, N. J. Nilsson and B. Raphael, “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” in IEEE Transactions on Systems Science and
Cybernetics SSC4, vol. 2. 1968, pp. 100–107.

4. S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Englewood
Cliffs, NJ: Prentice Hall, 2003, pp. 55–121.

5. A. V. Goldberg and C. Harrelson, “Computing the shortest path: A search meets
graph theory,” in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, 2005, pp. 156-165.

6. P. Sanders and D. Schultes, “Highway hierarchies hasten exact shortest path queries,”
in Proceedings of the 17th European Symposium on Algorithms, 2005, pp. 568–579.

7. P. Sanders and D. Schultes, “Engineering highway hierarchies,” in Proceedings of
the 14th European Symposium on Algorithms, 2006, pp. 804–816.

8. P. Sanders and D. Schultes, “Engineering Fast Route Planning Algorithms,” in 6th
Workshop on Experimental Algorithms, 2007, pp. 23-36.

9. D. Wagner, T. Willhalm, “Geometric Speed-Up Techniques for Finding Shortest
Paths in Large Sparse Graphs,” in Proceedings of the 11th European Symposium on
Algorithms, 2003, pp. 776-787.

10. A. Botea, M. Müller, and J. Schaeffer. Near Optimal Hierarchical Path-finding. In
Journal of Game Development, vol. 1, issue 1, 2004.

11. R. E. Korf, “Depth-first iterative-deepening: an optimal admissible tree search,” in
Artificial Intelligence, vol. 27, 1985, pp. 97-109.

12. P. P. Chakrabarti, S. Ghose, A. Acharya, and S. C. de Sarkar, “Heuristic search in
restricted memory (research note),” in Artificial Intelligence, vol. 41, 1989, pp. 197-222.

13. S. Russell, “Efficient memory-bounded search methods,” in Proceedings of the 10th
European Conference on Artificial intelligence, 1992, pp. 1-5.

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

39 / 40

14. M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved
network optimization algorithms” in 25th Annual Symposium on Foundations of
Computer Science, 1984, pp. 596-615.

15. B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest Paths Algorithms: Theory
and Experimental Evaluation. In Proc. 5th ACM-SIAM Symposium on Discrete
Algorithms, pages 516--525, 1994.

16. A. V. Goldberg and C. Silverstein. Implementations of Dijkstra's Algorithm Based on
Multi-Level Buckets. In Lecture Notes in Economics and Mathematical Systems 450
(Refereed Proceedings), pages 292--327. Springer Verlag, 1997.

17. H. Kaindl and G. Kainz, “Bidirectional heuristic search reconsidered,” in Journal of
Artificial Intelligence Research, vol. 7, 1997, pp. 283-317.

18. A. Bouch, A. Kuchinsky and N. Bhatti. “Quality is in the Eye of the Beholder:
Meeting Users' Requirements for Internet Quality of Service,” in Proceedings of
CHI2000 Conference on Human Factors in Computing Systems, 2000, pp. 297-304.

19. Wikipedia, “Geographic coordinate system,” April 2009. [Online]. Available:
http://en.wikipedia.org/wiki/Geographic_coordinate_system. [Accessed: Apr. 15, 2009].

20. Wikipedia, “Latitude,” April 2009. [Online]. Available:
http://en.wikipedia.org/wiki/Latitude. [Accessed: Apr. 15, 2009].

21. OpenStreetMap, “YOURS”, April 2009 [Online]. Available:
http://wiki.openstreetmap.org/index.php/YOURS. [Accessed: Apr. 28, 2009].

The Shortest Route: Developing a bicycle route planner for the Netherlands April 2009

40 / 40

A Class diagram

	Introduction
	Literature
	Shortest path problem
	LP model
	Dijkstra
	The algorithm
	Proof of optimality

	A*
	Proof of optimality
	Optimally efficient
	Memory usage
	IDA*
	SMA*

	Bidirectional search
	Geometric pruning using bounding-boxes
	ALT algorithms
	Multi-level approach
	Suboptimal algorithms
	Priority queue
	Fibonacci heaps
	Insert(h, x)
	Delete min(h)
	Decrease key(h, x, d)
	Cascading cuts

	Comparison

	Other routing services
	TomTom
	Google Maps
	Via Michelin
	Routenet.nl
	YourNavigation.org
	OpenRouteService.org
	Comparison

	Implementation
	Programming language
	Algorithm
	Data source
	Other issues
	Coordinates
	Selecting a starting point and destination
	Displaying the route

	Results
	Performance measurements

	Validation

	Conclusion & future work
	Conclusion
	Future work

