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Abstract

In this research paper we looked at the mood of individuals suffering from de-
pression. We applied time series analysis techniques such as decomposition and clus-
tering to gain insight into the historical data and measurements obtained from the
participant’s smartphone during this period. This data was used to construct mod-
els using machine learning algorithms to predict mood. Of the applied algorithms
the Support Vector Machine algorithm performed best, correctly predicting 68.88%.
The constructed models were analyzed to assess which variables were important: we
found that in addition to the expected variables describing the historical mood the
important variables are diverse and dependent on the individual.
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1 Introduction

1.1 Goal and Research Question

The goal of this research paper is to predict mood of participants suffering from depression
based on their historical mood and logged smartphone data. Besides just fitting models
to predict mood, the important variables in these models will be analyzed per individual
to answer the question of what variables have an effect on mood. This will be achieved by
making use of time series analysis as well as data mining techniques. This will be done on
the basis of the following research question. Can historical mood and logged smartphone
sensor data be used to construct a model that predicts the future mood and which factors
are important in this prediction?

To answer this question three subquestions are considered. Which techniques can be
used to analyze and compare time series? Which algorithm performs best in predicting
mood? Which variables are important in influencing mood?

1.2 Background

For GGZ Nederland (Geestelijke Gezondheidszorg - Mental Healthcare Netherlands) one
of the fundamental principals is to keep mental healthcare affordable and accessible. One
of the resources that is made use of is called e-Health, an emerging field that employs
information and communication technology for support and improvements in healthcare
[Sorbi and Riper, 2009]. As described by Sorbi and Riper [2009], E-mental health has
several benefits. The main benefit is achieved by the increase of reach and accessibility of
advisable preventions. The application of technology to analyze and predict is (as of yet)
not widely used in e-mental Health.

There are numerous benefits that can be derived from predicting mood and finding
out which factors play a role. Finding out which variables influence mood offer many
possibilities, one of the possible benefits is acting on a future trend in mood.

The data used in this research paper describes participants suffering from depression,
this background was kept in mind during the research process. However, the applications
of this research are not only applicable to people suffering from depression, examples of
this include mood sharing and mood-enhanced applications [LiKamWa et al., 2013], an
example of this is the MoodScope application.
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1.3 Outline

The outline of this research paper is as follows. We begin with discussing related research
in Section 2, followed by a description of the data in Section 3. The applied techniques
are described in Section 4, in which we cover techniques regarding time series analysis in
Subsection 4.1 and machine learning algorithms in Subsection 4.2. Next we describe the
method in Section 5. At last, Section 6 describes the results and interpretation of these
results. We conclude with the conclusion in Section 7, followed by the discussion and future
work in Section 8.
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2 Related Research

In this chapter we will give an overview of the research already been done in the field of
e-mental health regarding mood prediction and analysis. This chapter does not provide an
extensive list but merely a short overview. In particular a study by LiKamWa et al. [2013]:
“MoodScope: building a mood sensor from smartphone usage patterns” will be discussed,
due to the original goal of the composed dataset of replicating the results of this study as
well as the strong similarity to this research paper.

One way depression has been looked at is as a dynamic system. A dynamic system is a
system that can be used to describe nonlinear behaviours over time using internal feedback
loops and time delays. System dynamics offer opportunities in public health care [Homer
and Hirsch, 2006]. The methodology is “well suited to address the dynamic complexity that
characterizes many public health issues”. Demic and Cheng [2014] have proposed such a
dynamical systems model for the progression of major depressive disorder. In this study the
computation modeling has been used to improve the understanding of major depressive
disorder; the model is abstract and combines several major factors (mechanisms) that
influence the dynamics of major depressive disorder.

Another approach that has been studied is the length of depression episodes [Tomitaka
and Furukawa, 2014]. It is observed that there has not been much research on developing
mathematical models describe (the durations of) depressive episodes, even though math-
ematical models should be especially of interest since the duration of these episodes vary
widely. The study has sought to fit a mathematical model to the duration of depressive
episodes and has shown the duration is best modeled by a log-normal model or a power
law model.

The influence of particular variables on mood has been widely studied. Literature sug-
gests there is a positive correlation between mood and daily activities [Clark and Watson,
1988] and social interactions [Joseph P Forgas, 1984]. At current times most of the popu-
lation is in possession of a smartphone, these smartphones contain rich information about
the user, including information about social interactions and activities. This information
can be leveraged to predict mood, as has been attempted by LiKamWa et al. [2013]. In
this study an application has been build that predicts mood based on smartphone data
like browser history, application usage and location history. The task of predicting mood
produces remarkable results: with out of bag sampling and using two months personal of
data to construct a model in 93% of the cases the squared error was below 0.25. Mood
in this study was measured in two dimensions: pleasure and activeness, both measured
on a scale from 1 to 5. Some concerns regarding the validation of these results should be
addressed: the validation process makes use of leave-one-out sampling and thus data “from
the future” is possibly used to construct models.
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3 Data

3.1 Background

The data used in this research paper is from the VU Unobtrusive Ecological Momentary
Assessment Pilot Study Data. This data consists of measurements obtained through two
applications installed on the smartphone of participants. The data can be split into two
components: mood as assessed by the participants and logged smartphone sensor data.

The data was put together by Joost Asselbergs, Jeroen Ruwaard and Heleen Riper.
The primary goal for the originally composed dataset was for replication of the study by
LiKamWa et al. [2013]: “MoodScope: building a mood sensor from smartphone usage
patterns”.

3.2 Description

The measurement were obtained over a period of about six weeks in which data was col-
lected by 33 users of which 27 contributed enough data for meaningful analysis. The
data consists of a 76 variables and 1249 observations. The data was obtained through
two applications installed on the participant’s smartphone: the eMate Ecological Momen-
tary Assessment (EMA) application and the IYOuVu application. The eMate application
prompts the user to rate their mood five times per day and the IYOuVu application is a
sensor logger. The duration for which the participants logged data is not the same for all
participants, also some values are missing. In Figure 1 the logged mood per participants
is displayed.

Figure 1: Mood per participant per day, red indicates missing

The data as obtained is already quite preprocessed. This preprocessing was done mainly
following LiKamWa et al. [2013], who make use of normalized features. Other preprocessing
has also already been applied. An example of this is the mood variable: the participant
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was prompted to enter mood multiple times per day, in the dataset only the “flattened”
variable per day is present.

The participants mood is expressed in three ways of which two are kept track of (almost)
each day. First, the users mood is expressed unidimensional as “mood” on a scale from
1-10, second, mood is expressed following the Circumplex mood model. The Circumplex
model employs two dimensions, the valence and arousal dimension, to describe mood. The
values in both of these dimensions range from -2 to 2. Besides the measures logged by
the participants the results of CESD depression questionnaires held during the study are
available.

The variables obtained through the IYOuVu application include the number of im-
ages taken (image.n), the average screen duration per screen-on moment (screen.duration)
and the screen-on frequency (screen.n) and were all standardized within the participant.
Another variable obtained through the IYOuVu application is the average percentage of
accelerometer data point that are classified as “high” (accelerometer.high). The appCat
.n and appCat .duration are features representing the number of uses and duration for ap-
plication categories. These variables are normalized per day between all categories of their
respective class. The categories include: android, books, browser, business, education,
entertainment, game, life style, email, music, news, productivity, social, tools, transporta-
tion, unknown and EMA/UEMA. The following features used by LiKamWa et al. [2013]
are also included: the normalized frequency of the number of SMS messages and calls made
to the top 5 contacts, the duration of calls made to the top 5 contacts and the number of
and duration of the most / longest used application. For each day the day, participant,
averaged mood, valence and arousal are available. Also one and two day lagged variables
of the logged mood variables are available, as well as an interpolated CESD depression
questionnaires score.

More about the processing of these variables, feature construction and missing values
and how these are dealt with can be found Section 5: Method.
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4 Theory of Applied Techniques

This chapter provides a background on the techniques used in this research paper. We
start by describing time series and techniques for time series analysis in the first subsection.
Then we describe the differing machine learning algorithms used to build models for the
prediction of mood in the second subsection.

4.1 Time Series Analysis

A stochastic time series denoted X is a sequence x0, x1, x2, ..., xn, of random variables which
represents a set of observations made sequentially in time [M.C.M. de Gunst, 2013]. The
subscript t indicates the time at which the variable xt was observed. If the xt could be
completely arbitrary, then it would be impossible to infer something about the distribution
of the observations (x0, x1, ..., xt), let alone of that of the future xt+1, xt+2, ..., therefore one
has to make some assumptions about the structure of the data. Often a time series consists
of repeated observations on the same object. In this case we are dealing with a multivariate
time series, the observation of more than one variable made sequentially in time. The time
series variables at time t can be denoted by x1t, x2t, ..., xnt. A multivariate time series then
is made up of these variables recorded over time over time.

4.1.1 Goals of time series analysis

Time series analysis can be used to accomplish a number of goals. Ratanamahatana et al.
[2010] describe the tasks considered by the time series data mining community.

Time series analysis can be used for summarization of data. Because of the nature
of time series, often more than a single number is needed to summarize essential features
of the times series, as opposed to a random sample from a distribution. As opposed to
making use of summary statistics, time series data is more often graphically represented.

Another goal is prediction of future values based on observed values. In time series
analysis the assumption is often made that the data consist of a systematic pattern (usually
a set of identifiable components) and random noise (error). Future values can be predicted
by separating the noise and identifying the systematic patterns.

Two other goals are indexing (query by content) and clustering. For some similarity
measure the goal of indexing is to find for a given time series the most similar time series
in a ‘database’, the goal of clustering is to find groupings in such a ‘database’ of time
series.

Other major tasks included by Ratanamahatana et al. [2010] are anomaly detection,
segmentation and classification. Anomaly detection is the goal of finding all sections of
a time series which contain “surprising, interesting or unexpected” occurrences, segmen-
tation is the partitioning of a time series in sections and classification is the assignment
of a time series to a class. The primary focus in this research paper is on the task of
prediction, other tasks such as summarization, clustering and indexing are also tackled.
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(a) Scale and Shift y-axis
(b) Shift x-axis and acceleration

Figure 2: (Dis)Similar Times Series

4.1.2 Similarity measures

In the previous subsection we defined tasks that may be considered when regarding time
series. In two of these tasks, indexing and clustering, a similarity measure is directly
mentioned. This similarity measure is also often (indirectly) used in other tasks, such
as prediction. Similarity measures quantify the degree to which multiple time series are
similar to each other. The notion of similarity is subjective; there is no fixed expression
that describes how similar two time series are, and thus different similarity measures exist.

One of the issues when dealing with time issues is deriving a similarity measure that
reflects similarities. In choosing a similarity measure there are several features that are
favorable. Time series can often be considered as multi-dimensional data and thus the
similarity measure should be able to deal with high-dimensional data. Besides, the calcu-
lation should be fast and efficient. It is also beneficial if the similarity measure is robust
to different data types and can be applied to a range of problems [Joan Serrà, 2014].

Euclidean Distance
One of the simplest similarity measures for times series is the Euclidean distance. The
Euclidean distance measure is straight forward, easy to interpret and easy to compute.
Given two time series X = x1, x2, ..., xn and Y = y1, y2, ..., yn with equal length n, the
Euclidean distance can be defined as follows:

dE(X, Y ) =

√√√√ n∑
i=1

(xi − yi)2

Even though two time series seem similar following some subjective notion of similarity,
the Euclidean distance measure does not always reflect this in its measure. An example of
this can be seen in Figure 2a. In this figure the sequences are not close to each other in
an Euclidean sense. The difference in the Euclidean measure comes from a difference in
fluctuation (scale) and a difference in starting values (shift).

Similarity transformation
Arguably a similarity measure should take into account the transformations of scaling and
shifting. This can be done by making use of so called similarity transformations which
will be briefly explained here, for a more extensive description see Goldin and Kanellakis
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[1995].
Again denote a time series sequence X of n real numbers by x1, ..., xn, the average of

this sequence by α(X) and the deviation by σ(X). A similarity transformation denoted
Ta,b with a, b ∈ R maps each element xi to a ∗xi + b. Then X is similar to Y if there exists
some (a, b) such that X = Ta,b(Y ). By only permitting a > 0 it is implied that a sequence
symmetric to X with respect to the x-axis is not considered similar.

Every sequence X has a normal form denoted ν(X) in which α(X) = 1 and σ(X) = 1.
This normal form van be obtained by applying the transformation of T1/σ,−α/σ(X). The
similarity distance between two sequences X and Y is the similarity of their normal forms.
For example using the Euclidean distance the similarity distance is equal to:

dS(X, Y ) = dE(ν(X), ν(Y ))

After applying the transformations of scaling and shifting with regard to the y-axis are
accounted for. Another way in which two time series seem similar following some subjec-
tive notion of similarity, which is not reflected in the measure that compares transformed
sequences is illustrated in Figure 2b. In this figure the sequence is “accelerated” and shifted
with regard to the x-axis.

Dynamic Time Warping
Arguably a similarity measure should take into account the acceleration and deceleration of
time series, as well as a shift in time (lagg). This can be done by making use of a technique
known as dynamic time warping (DTW). Dynamic time warping has been applied in many
areas such and has applications in video, audio, and graphics data. It allows for non-linear
“warping” of one signal to another, it allows two time series that are similar but out of
phase in the time dimension to align.

Given two time series X = x1, x2, ..., xn and Y = y1, y2, ..., ym (not necessarily of the
same length). These sequences can be aligned using DTW by constructing an matrix where
the each element of the matrix corresponds to the distance between two points of the two
time series. The best alignment between these time series can be found by finding a path
through the matrix that minimizes the sum of the distances, which can be obtained using
dynamic programming.

In Figure 3 the results of applying DTW to the example in Figure 2b are shown.
Furthermore certain constraints can be composed to limit the number of paths to explore,
such as continuity to prevent the alignment path from jumping in time and the warping
window which guarantees that the alignment does not get stuck and the alignment path
wanders to far from the diagonal. For a more descriptive overview of DTW and the
constraints see [Müller, 2007].

Other similarity measures
There exist a range of similarity measures and many different variations. An example
of different measures is the euclidean distance: also known as the L2-norm, which may
be generalised to the LP -norm. The L1-norm is better known as the Hamming distance,
a measure that is often used in information theory when comparing strings. An exam-
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(a) Point-by-point comparison

(b) Warping curve

Figure 3: Example Dynamic Time Warping

ple of different variations is dynamic time warping: by applying different constraints the
similarity measure is considered to be different.

An empirical evaluation of similarity measures was carried out by Joan Serrà [2014],
and concludes that: “One of the main conclusions of the study is that, even though the
newly proposed measures can be theoretically attractive, the efficacy of some common and
well-established measures is, in the vast majority of cases, very difficult to beat. Specifi-
cally, dynamic time warping (DTW; Berndt and Clifford, 1994) is found to be consistently
superior to the other studied measures (or, at worst, for a few datasets, equivalent). In
addition, the authors emphasize that the Euclidean distance remains a quite accurate,
robust, simple, and efficient way of measuring the similarity between two time series.”

4.1.3 Deconstruction of time series

Time series can be represented in multiple ways. The original time series can be kept as
is, or it may be deconstructed to another or more simple form. An example of such a
deconstruction is the derivation of a sequence of up, down, up, down, etc from an original
sequence. More complicated deconstructions include the decomposition of the original time
series by making use of fourier transforms. Fourier transforms are based on Fourier Series,
they represent periodic time series in the frequency domain as a sum of sine and cosine
components. Another example is to decompose a time series into a trend component, a
cyclical component a seasonal component and a random component.

The process of destructing time series can be helpful in multiple ways. It can offer
insight into what may contribute to the observed measurements, as well as offer a way to
compare the (deconstructed) time series. Models that consist of deconstructed components
can often also be used to predict future points by combining the components.

Another way to specify time series is by making using of an autoregressive integrated

11



moving average (ARIMA) model. An ARIMA model assumes the time series can be
deconstructed into an autoregressive, integrated, moving average and random component.
ARIMA models are generally denoted by ARIMA(p, d, q) where the parameters indicate
the order of the different components: p denotes the autoregressive model order, d denotes
the degree of differencing and q denotes the order of the moving-average model.

The simplest example of a sequence is white noise. White noise is a sequence of uncor-
related random variables with a mean of zero and a finite variance. White noise is often
used as a building block in constructing models for time series with dependent random
variables.

The moving average model, denoted MA(q), refers to a model that describes each
element of a sequence as a filter of finite duration applied to a white noise model/process.
The moving average model of order q can be denoted as: xt = β0zt + β1zt−1 + · · ·+ βqzt−q
where β0, β1, . . . , βq are constants and zt describes a white noise model.

The autoregressive model, denoted AR(p), refers to a model that describes each element
of a sequence as a filter of finite duration applied to its past values. The autoregressive
model of order p can be denoted as: xt = α1xt−1 + α2xt−2 + · · · + αqxt−p + zt where
α1, α2, . . . , αq are constants and zt describes a white noise model.

Another model for time series is obtained by combining AR and MA models. A autore-
gressive/moving average process denoted ARMA(p, q) refers to a model can be denoted
as: xt = α1xt−1 + α1xt−2 + · · · + αqxt−p + zt . The ARIMA model allows the extension
towards a non-stationary stationary model through describing the differenced data by an
ARMA model, to obtain the model for the non-stationary model the the differenced model
has to be summed or ‘integrated’. The ARIMA model can be further expanded upon.
Two examples of this are (1) by allowing for seasonal influences and (2) by describing
multidimensional time series (vectors, also known as VARIMA) instead of unidimensional
time series.

4.2 Machine Learning Algorithms

In this section we describe the background and workings of different machine learning algo-
rithms. Machine learning algorithms are algorithms that learn from data by constructing
models that make predictions. The algorithms described here are fit for so-called supervised
regression learning. Supervised means that the algorithm learns from training examples
of which the correct output is known. It infers a function that can be used on new exam-
ples. Regression means that the predictions made (the output of the inferred function) are
continuous.

4.2.1 Support Vector Machines

Support vector machines is a class of algorithms that build a model that represents the
training data as points in space, mapped in such a way that examples that are not alike
are divided as much as possible. A support vector machine constructs a so called “maxed-
margin hyperplane” in a high-dimensional space which has the largest distance to the
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nearest training data point. One of the gimmicks of support vector machines is that the
similarity is not computed by mapping every point into high-dimensional space and then
determining the distance, but instead by making use of so called “kernels”. These kernels
are used to implicitly determine the distance between two points, and are computational
much cheaper.

Of course it is almost never possible to completely separate all data: there can simply
be a “grey zone” in which there are classes that are not alike overlap. If this is the case
the optimization problem that searches for the maxed-margin hyperplane can be adapted
by including a cost that penalizes misclassification of training data. By introducing this
cost, the optimization problem becomes a trade off between the maximizing the distance
between classes and splitting the data as good as possible.

Originally, support vector machines are used to separate two classes. However, support
vector machines algorithms can be extended to work for regression problems. Just as with
classification the same goal of finding a maximal-margin hyperplane holds. This is done in
what is called ε-SV regression by defining a margin of tolerance, denoted ε, which defines
how large the error should be before it is taken into consideration. Only the points that
deviate more than ε are seen as misclassification and thus penalized in the optimization
problem.

4.2.2 Regression Tree

Another algorithm that can be used for regression are regression trees. Instead of defining
a global model for all data, the regression tree algorithm sub-divides the training examples
into smaller partitions by building a tree using recursive partitioning. Tree building starts
at the root node, which includes all data, then beginning with this node, the algorithm
chooses the variable that most effectively splits the set of samples into subsets. The “most
effective” splitting variable is determined by the split function. In the case of regression
trees the split function that is most often used is based on analysis of variance (ANOVA)
models that are often applied in statistics to analyze the differences among group means.
The split function minimizes the sum of squares between groups.

The process of building a tree goes on for as long as it is impossible to split the data any
further. This point is reached when the number of observations in each of the child node is
below a certain predetermined threshold, all observations within a node have the identical
distribution making splitting impossible or by reaching a predetermined maximum depth.
The final output of the model is the sample mean of the dependent variable of the final
node that is reached when traveling down through the tree.

4.2.3 Random Forest

Random forests are an ensemble learning method, which entails that it combines multiple
models. The random forest algorithm constructs multiple regression trees and gives as
output the mean prediction of the individual trees. It is often noted that regression trees
tend to overfit the training set. One of the benefits of random forests is that they correct
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for this.
The random forest algorithm constructs trees in the forest in a way which differs in

two ways from the standard regression tree approach. The first difference is that, instead
of using all training data, a sample with replacement is randomly selected which is used
to fit an individual tree model. This process is also known as tree bagging. The second
difference is that, when deciding on a split in each node, a random subset of the features is
used. This is also sometimes referred to as feature bagging. Where regression trees often
have a low bias and high variance, this indicates that there is generally a lot of variability
when predicting a new datapoint. The two adjustments in random forests allow for a trade
off: a slight increase in bias against a reduction in variance.
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5 Method

In this chapter we describe the experimental setup. We begin by discussing the steps taken
to prepare the data: the process of extraction extra features from the already preprocessed
dataset and the imputation of missing values. Then we expand on the machine learning
algorithms: we discuss the choice for algorithms, as well as the parameters used. We
also mention which software implementation of the different algorithms we used. Lastly
we discuss the setup and measurement by discussing how the results are obtained and
measured.

5.1 Data Preprocessing

5.1.1 Feature extraction

In data mining features, also known as variables or attributes, are very important. Features
are what make machine learning algorithms work, having the right features can improve
performance predictions. Obtaining features that are informative and discriminative is
an important step. Often this is accomplished by transforming raw data which is very
voluminous into features that better represent the underlying problem. This job was
largely already carried out: the data as obtained has already been processed and consists
of a number of normalized features.

By transforming and combining old variables new features were constructed. The first
added feature was the average of mood up to that point. The rationale behind adding this
variable is that the naive method of using the mean already is able to make predictions
reasonably well, and this feature adds this ‘baseline’. Another feature that was added is
the weekday, which was accomplished by transforming the already available time (day)
feature. Three more features were added that are supposed to capture a summary statistic
of diversity in behaviour of the individual: the number of features greater than zero of the
normalized features for the number of calls, SMS messages to top contacts and number of
application launches.

5.1.2 Missing value imputation

Datasets contain missing values due to various reasons, such as manual data entry proce-
dures, equipment errors and incorrect measurements. These missing values must be dealt
with since some of the algorithms applied do not work when the dataset contains missing
values. There are a number of ways this can be done; observations with missing values can
either be removed or the missing values can be imputed. As already mentioned in the data
description, the number of observations is quite limited. Therefore, the decision was made
to only remove the observations of which the variable mood was missing, and impute the
other values.

In Figure 4 the combinations of variables with missing values are displayed. It shows
that there are a total of 1249 observations, of which 1224 are observations where the mood
variable is available. 1099 observations are without any missing values. 54 observations
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have missing values that include the normalized histograms, these comprise of systemati-
cally missing values: for each participant the first two days of these variables are missing.
For other combinations there is no clear pattern or reason for why these values are missing.

There are multiple options to fill in the missing values, such as the median, mean or
a fixed value. Another option is impute the value based on another attribute for that
observation. We chose to impute the missing values with the mean of the variable per
participant, using all observations of that individual. This seemed the most natural choice.
Since part of the missing data are from the first days the possibility of using only the history
of that participant was not available. Besides it only concerns a limited number of missing
attributes; it would be a waste to completely remove these measurements.

Figure 4: Combinations of missing values

5.2 Algorithms

5.2.1 Choice and parameters

Different machine learning algorithms can be used to make numerical predictions. The
decision for which algorithms to implemented was made on the basis some preferred prop-
erties. Algorithms we considered preferably are widely known/supported algorithms, are
not too difficult to implement, can deal with a large number of normalized features, can
be used for supervised regression, do not require much parameter tuning and do not take
an excessive amount of time to train models.

The machine learning algorithms that we found that fit this description are the ones
previously discussed in the theory section: Regression tree, random forest and support
vector machine. Besides these three algorithms the linear model with forward variable
selection was implemented to compare the results with the results obtained by LiKamWa
et al. [2013]. The parameters used for the algorithms were the following: For the SVM
algorithm epsilon regression was applied using a radial kernel, with the cost of constraint
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violation set to .5, epsilon to .1 and the sigma was determined by the built-in hyperpa-
rameter estimation heuristic function signet[Karatzoglou et al., 2004]. For the regression
tree model the minimum number of observations that must exist in a node in order for
a split to be attempted was set to 5, the cost complexity parameter was set to 0.5 and
the minimum number of observations in any terminal leaf was set to 3. For the random
forest the number of variables randomly sampled as candidates at each split was set to the
number of columns divided by 3, the number of trees to grow to 500. Fitting 1170 models
without parameter tuning takes a considerable amount of time, thus no further parameter
tuning on a per model basis was done, as this would further increase the computation
times.

For the time series analysis part the dynamic time warping algorithm was applied with
the following parameters. The “Sakoe-Chiba” band was used with a maximum window
size of 6. Since the DTW algorithm can not deal with missing values the missing values
were imputed using the average of the variable before and after the missing value. This
imputed sequence was normalised after which the algorithm was applied. The hierarchical
clustering applied was done using the maximum or complete-linkage clustering method.
The ARIMA models were fit based on the ACF and PACF, as well as by making use of
the fitting function present the Forecast package in R using the AICc (Akaike information
criterion with a correction for finite sample sizes).

5.2.2 Software

All models were constructed making use of R [R Core Team, 2014]. The implementations
of the used algorithms are the following: the leaps package [Lumley, 2009] for linear mod-
els with forward selection, the rpart package [Therneau et al., 2015] for regression trees,
the randomForest package [Liaw and Wiener, 2002] for random forest, for support vector
machines the kernlab package[Karatzoglou et al., 2004] was used. For determining the
variable importance and model training the caret package [from Jed Wing et al., 2015] was
used. The time series analysis was done using the standard functionalities available in R.
For fitting an ARIMA model the Forecast package[Hyndman and Khandakar, 2008] was
used. For dynamic time warping the dtw package [Giorgino, 2009] was used, supported
by [Tormene et al., 2008] to allow for open begin/end comparisons, the clustering of time
series was done making use of the TSClust package [Montero and Vilar, 2014].

5.3 Setup and measurements

5.3.1 Performance Measures

To measure the overall performance of an algorithm the measurement that is used is the
following. The algorithm is used from the third day and thus uses at least two other
observations. This is to ensure there is some data to construct a model. Then, a prediction
is made using this model. If in the process of fitting a model or predicting a value an error
occurs (for example if no support vectors can be found) the naive method of predicting
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using the mean up until that point was used. The prediction is rounded to 1 decimal,
and then compared to the actual mood; if the actual mood differs with 0.5 or less (is in
the interval [actual mood − 0.5, actual mood + 0.5]) the prediction is considered correct,
if it differs with more than 0.5 the prediction is considered incorrect. The goal is to
maximize the percentage of correctly predicted moods. This matches the measure as used
by LiKamWa et al. [2013]. Also the squared error was computed using the same setup of
predicting from the third day of data.

The values used to make a prediction of mood that day include the measurements
obtained over that day (like as the number of pictures taken). This however means that the
prediction is not really ‘predicting’ mood of future days. This was the intended objective.

5.3.2 Variable importance

As mentioned before it would be very interesting to known which variables influence mood.
For some algorithms the contribution of different variables can be estimated from con-
structed models. This is the case for algorithms such as the linear model, regression tree
and random forest. Other algorithms however operate more in a “black-box” type manner
and the constructed models are harder or even impossible to interpret. An example of this
is support vector machines.

In the case of linear models there are multiple (related) ways to determine the variable
importance, also depending on the way the model is constructed. The t-statistic for each
model parameter can be used. This is a parameter that is often used in combination the
the Akaike Information Criterion (AIC) in the stepwise construction of models. In these
stepwise constructed linear models the selected variables offer a direct view on the variables
containing predictive power.

The variable importance for regression trees can be derived from the variables used
in each split. For random forest the same is hold, however, there is another way the
contribution of each variable can be found. This is accomplished using data obtained in
the sampling of the construction of the random forest; the prediction accuracy of a single
tree on the out-of-bag portion of the data can be averaged over the trees to obtain a
measure for importance.

For “black-box” type algorithms variable importance may be inferred. This can be
achieved by removing one variable at the time, constructing a new model and comparing
the results of this model to the results of the model that included this variable. However,
because of random choices in the construction of these models, as well as dependence of
variables and minor differences in performance, the picture this method provides in not
always as clear.
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6 Results and Interpretation

In this section we describe the results. We start with the results obtained from applying
time series analysis techniques. Next we describe the performance of the applied methods
to predict mood, including the results of the important variables in predicting mood.

6.1 Time Series Analysis Results

Different time series analysis techniques were applied to the data. The applied techniques
are discussed in the theory of applied techniques section and include ARIMA and similarity
analysis in combination with techniques such as clustering. These techniques were applied
on all available data instead of subsets of the data, as was the case for the predictive
algorithms. Time series analysis mainly served as a way to gain insight into the data.

6.1.1 ARIMA Results

We started time series analysis by deconstructing the univariate mood series of participants
by representing them by ARIMA models. Per individual the autocorrelation function and
partial autocorrelation functions were used to determine the order of the AR and MA pro-
cesses. The autocorrelation function (ACF) is used to determine the order of the moving
average process and can be seen as the cross-correlation of the time series with itself: it is
the similarity between observations as a function of the time lag between. The partial au-
tocorrelation function (PACF) is used to determine the order of the autoregressive process
and gives the partial correlation of a time series with its own lagged values controlling for
precedent laggs. We will look at this process for two participants; in Figure 5 the series as
well as the ACF and PACF of the first and the fifth participant are plotted.

Figure 5: Participant 1 and 5 - Series with fitted spline, ACF and PACF

Figure 5 shows for participant 1 a significant value for the first ACF and a decreasing
PACF, which is an indication of an MA process. For participant 5 the first lagg of the
PACF shows a clear spike at the first lag, and the ACF is significant but decreasing for
the first three laggs , which is an indication of an AR process. An ARIMA model was fit
to both these residuals, for participant 1 this resulted in an ARIMA(0, 1, 1) model with a
moving average parameter of -.6392, for participant 5 this resulted in an ARIMA(1, 1, 0)
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model with an autoregressive parameter of -0.3392. The residuals (difference between the
real value and the predicted value, recall that the predicted unidimensional mood ranges
from 1-10) corresponding to these models can be found in Figure 6. As can be seen the
residuals are quite considerable and in addition these concern individuals with quite clear
cut-offs in the ACF/PACF; for other individuals the patterns of the ACF and PACF were
most often not significant.

Figure 6: Residuals of the fitted ARIMA models

These models were constructed making use of all knowledge and thus offer only an
indication as to whether these time series can be captured using these models. The results
indicate that mood can not be represented as only as consisting of an autoregressive,
moving average and integrated part.

6.1.2 Similarity analysis Results

Similarity analysis was applied to the data by making use of dynamic time warping to
determine the similarity of time series, for this only the univariate mood was used; subse-
quent results obtained with using multivariate series did not yield any clear insights and
thus these results were omitted here.

As described in the method section dynamic time warping was used to determine the
similarity between sequences. Using DTW the similarity among all series was evaluated,
which resulted in a matrix with associated similarities. To this matrix hierarchical cluster-
ing was applied, the resulting dendogram can be found in Figure 7a. This clustering does
not provide much insight. It may be concluded that the mood series of participant 7 is
quite unlike the other participant. Furthermore the dendogram provides insight into how
the participants are clustered and provides a quick view into how a participant compares
to others participants. An example of two similar time series and the resulting dtw path
is illustrated in Figure 7b, where the series of participant 16 and 24 are plotted.
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(a) Dendogram of Clustered time series

(b) Similarity DTW participants 16 and 24

Figure 7: Time Series Similarity Results
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6.2 Model Results

In Table 1 the results of the applied techniques to make predictions can be found. For
the percentage correctly predicted the predictions are rounded before comparing them to
the actual mood, this rounding is done since the mood and the measure in 0.5 in inclusive
and this levels the playing field for methods that make predictions in different ways. Since
here the MSE error measure is not binary the prediction is for this measure not rounded
beforehand.

Technique
% Correctly predicted Mean Squared Error

No added features Added features No added features Added features

Mean (Naive) 64.359% 64.359% 0.441 0.441
ARIMA 63.675% 63.675% 0.475 0.475
Linear Model 60.017% 60.513% 0.890 0.903
Regression Tree 64.274% 64.615% 0.502 0.484
SVM 68.034% 68.880% 0.413 0.409
Random Forest 67.179% 68.120% 0.412 0.402

Table 1: Performance techniques

The naive predictor of the model that uses the mean can be seen as a baseline: without
fitting any model already 64% is correctly predicted. The results in the second row of the
table are from the extension to an ARIMA model. The ARIMA model predicts the mood
on the basis of the previous moods with the assumption it consists of an autoregressive,
integrated, moving average and random component. The percentage of only 63.68% show
that the assumption that the mood is made up of the aforementioned components for every
participant is incorrect.

The linear model that makes use of forward selection performs worse than the naive
method (in contrast to the results obtained by LiKamWa et al. [2013]). The regression tree
algorithm performs better than the naive predictors. The algorithm that performs best for
this instance is the support vector model, which correctly predicts mood in almost 69% of
the instances.

Interestingly, the features that were extracted result in an increase in performance
in terms of the percentage correctly predicted for all techniques that make use of these
features. The added features boost the performance of the regression tree the least with
an increase of around .4% and increasing and the random forest the most with an increase
close to 1%.

Considering the mean squared error of the models the results are quite similar to the
results of the percentage correctly predicted. The ARIMA model performs a bit worse
than the naive method, the performance of the linear model is considerably worse and
both the SVM and random forest algorithms still perform notably better. The regression
tree performance differs when considering the MSE: it performs worse than the naive
method, also when making use of the extra features.
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Figure 8: Performance over time

In Figure 8 the cumulative performance of the algorithms for the first 40 days is dis-
played. Only the first 40 days are shown since up until this day data was available for
most participants. As can be seen a quite clear upward trend in performance for the all
models but the regression tree that make use of the features: this is an indication that
with more training data the algorithms can construct models that make better predictions.
The regressions tree performs quite well in the beginning but stalls from around day 10.
A possible explanation for this is that the algorithm is overfitting.

Interesting is the spike at the beginning where only minimal training data is available.
We do not have a confident explanation for this, however it should be noted that perfor-
mance over time is not constant and since there are not many points contributing to the
cumulative performance this is likely an outlier that is more notable.

In Figure 9 the performance of some of the algorithms is compared to the naive method
per participant. Everything above 0 indicates that the algorithm performs better than the
naive method. As already seen in Figure 8 the linear models performs worse than the mean.
For only 7 of the total of 27 participants it performs the same or better. The support vector
machine performs the same or better for 20 of the participants, the Random forest 19 of
the participants. For some participants (1, 5, 8, 14, 16 and 33) the models all outperform
the naive method considerably, for other participants this is hardly the case (27-32) and
for participant 2 and 24 the opposite holds: the algorithms perform worse than the naive
method of the mean. Another interesting case is participant 26, for this participant the
linear model that performs overall worse performs better than other techniques.

6.2.1 Variable importance

For the cases in which the performance of the model were better than the naive method
of prediction using the mean (participants 1, 5, 8, 14, 16 and 33) the variable importance
was investigated. To determine the variable importance for the models constructed by the
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Figure 9: Performance per participant compared to mean

random forest and linear model algorithms only the model is used that uses the that uses
all but the last day of data from a participant. For the SVM algorithm the performance
over all days were determined as well as this performance with leaving one of the variables
out.

The variable importance obtained by iterating over the variables and leaving one out
to measure the difference of performance of variables in the SVM algorithm produce very
unclear results. Since only a limited number of days are available per individual a difference
in performance does not show very clearly. Besides, the results show that removing some
variables increased the performance of the model (which indicates a possible gain to be
made in feature selection), however, when removing two of these variables in many cases
the performance dropped under the original level. This shows that the results are quite
volatile and hence we do not take them fully into consideration.

The results of variable importance obtained for the random forest and linear model
algorithms can be seen in Table 2. For the linear model the importance is based on the
absolute t-statistic, for the random forest the measure is based on the difference in MSE
obtained from the out-of-bag sampling. Both are scaled in such a way that the most
important variable is awarded an importance of 100%.

Notable is that there is not a single prominent variable important in the models of
all individuals; different variables are important for different individuals. Some variables
are however often important; these are the variables average, the lagged mood variables,
time and average. Interesting is that the time variable is often important; this can be
interpreted that there is either a trend in mood over time or that the time can be subdivided
into a parts where there is a difference in mood. This might also explain partly why the
performance for the predictive algorithms in these cases is better than the naive method.
Another interesting observation is the similarity of important variables per participant
across methods.

24



Participant 1 Participant 5
Linear Model Random Forest Linear Model Random Forest

average - 100.00 average - 100 mood.l1 - 100.00 mood.l1 - 100
time - 84.54 stime - 67.06 valence.l1 - 95.34 average - 82.04
stime - 84.54 valence.l1 - 73.36 sms.c2c - 89.89 valence.l1 - 71.54

valence.l1 - 80.40 time - 65.49 screen.n - 87.50 mood.l2 - 66.65
education.n - 64.73 app.a4c - 49.49 time - 79.09 screen.n - 60.97

app.a4c - 63.88 app.a5c - 42.23 stime - 79.09 news.n - 49.68
call.c2d - 62.62 vu.n - 40.15 app.a1d - 72.86 call.c1c - 43.1

Participant 8 Participant 14
Linear Model Random Forest Linear Model Random Forest

tools.sum - 100 tools.sum - 100 time - 100 time - 100
tools.n - 98.12 tools.n - 85.48 stime - 100 average - 88.94
time - 87.73 arousal.l1 - 72.21 average - 88.91 stime - 88.67
stime - 87.73 callnumber - 59.39 valence.l1 - 71.17 app.a3c - 73.04

arousal.l1 - 86.77 app.a5c - 52.96 app.a4c - 69.1 mood.l1 - 58.36
app.a4c - 81.75 call.c1c - 29.23 mail.n - 68.35 mail.n - 54.19

arousal.l2 - 67.97 app.a5d - 26.15 android.sum - 65.55 sms.c4c - 50.87

Participant 16 Participant 33
Linear Model Random Forest Linear Model Random Forest

stime - 100 mood.l2 - 100 accelerometer - 100 average - 100
time - 100 stime - 92.24 android.sum - 96.07 android.n - 87.75

mood.l1 - 62.71 time - 86.27 app.a2d - 84.95 time - 77.2
call.c2d - 56.22 valence.l2 - 70.4 android.n - 84.26 android.sum - 72.98
call.c3c - 55.89 average - 68.19 app.a5c - 81.84 accelerometer - 70.48
sms.c4c - 54.40 entert.sum - 52.62 screen.duration - 77.89 stime - 65.06
mood.l2 - 51.20 call.c3c - 45.21 app.a3c - 75.20 app.a5c - 63.45

Table 2: Variable importance
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For the first participant average is an important variable in predicting mood: it is
both the most important variable for the linear model as for the random forest. This
is very interesting in the fitting of an ARIMA model the best fit was found to be an
integrated moving average process. A similar observation can be made for participant 5;
the best ARIMA fit found consisted of autoregressive process which is in line with the
importance of the lagged mood variable. For participant 8 the tools application category
was found to be very important; a variable that one might expect not to play a big part
in mood. For participant 14 we observe that variables that are often important for other
participants are the most important variables; the lagged mood and time variables, the
same holds for participant 16. For participant 14 an interesting important variable is the
mail category variable. For participant 16 also the call and sms variables are important,
which indicates a possible relationship between social activity and mood. For participant
33 the high accelerometer variable is important in both models; this might be interpreted
as an indication that for this participant a correlation exists between his/her activity level
and mood.
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7 Conclusion

In this chapter we give a conclusion on the basis of the earlier posed subquestions.

Which techniques can be used to analyze and compare time series?

A range of techniques for time series analysis are discussed in the theory of applied
techniques section. These techniques include the deconstruction of time series with models
such as ARIMA and similarity analysis with goals such as clustering and indexing. A
selection of these techniques were applied to the data.

First the unidimensional mood was represented making use of ARIMA models. Based
on the autocorrelation and partial autocorrelation functions only for some participants
there are hints of underlying AR and MA processes. Modelling the series for the partic-
ipants for which the ACF and PACF showed significant values resulted in models with
quite high residuals, indicating that the representation of the series of consisting only of
autoregressive, integrated and moving average processes is too simple.

The question of how similar mood series of participants is answered; how we might
view similarity is quantified by defining the normalized euclidean distance measure in
combination with the dynamic time warping technique. A similarity between higher scoring
‘similar’ series is visible (Figure 7b) and clustering provides some insights into the dataset
(Figure 7a), however, the more direct implications of these similarities are hard to put
one’s finger on.

Which algorithm performs best in predicting mood?

Different algorithms were used to predict mood. Before applying these algorithms some
data preprocessing steps were taken. Five extra features were constructed, these are the
weekday, average mood and summary variables for the normalized sms, call and application
features. Missing values were removed in the cases where the mood variable was missing,
other values were imputed using the mean per individual.

Machine learning algorithms were applied to construct models to make predictions. For
this the support vector machine, linear model making use of forward variable selection,
random forest and regression trees were used. Of these algorithms the SVM performed
best predicting 68.88% correctly shortly followed by the random forest with 68.12%. This
is an improvement over the 64.36% obtained by the naive method that uses the mean to
predict future values. The regression tree only performs marginally better than the naive
method, the linear model performs considerably worse.

When looking at the performance over time it shows that all algorithms do improve
as time progresses. This is encouraging: it is an indication that with more training data
the machine learning algorithms are able to make better predictions. When looking at
the performance over individuals it shows that there is a varying performance. Further
research is needed to improve the predictions for individuals, how this may be accomplished
is discussed further in the Discussion and Future Work section.

Which variables are important in influencing mood?
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To assess which variables are important in influencing mood we looked at the models
that were better in predicting the future mood than the naive predictor that uses the mean.
The variable importance was obtained using the out-of-bag sample for models constructed
by the random forest and the t-statistic for models constructed by the linear model. There
is not a single variable that is very important for all individuals; different variables play
a different role depending on the individuals. Some (maybe obvious) variables are often
important; these are the variables average, the lagged mood variables, time and average.
Otherwise important variables differ from individual to individual: for one participant
activeness and social activity seems to provide a good indication for mood (accelerometer
and call variables are important) for another participant a particular application category
(‘tool’ application category duration and frequency) was found to be important.

28



8 Discussion and Future Work

The aim of this study was to give insight into mood of depression patients and predict
future mood. Time serie analyses techniques such as deconstruction of time series and
similarity analysis resulted in interesting insights into the data, algorithms were applied
to predict mood and resulted for some algorithms in a better performance than the naive
predictor. The performance between algorithms was quite variable, indicating that different
machine learning algorithms should be further explored. In this case the SVM performed
best, however, the difference with the random forest algorithm was only marginal. The
obtained results are significantly lower than the results obtained by LiKamWa et al. [2013].
In comparison the improvement over the naive predictor is very limited, possible reasons
for this include the validation process: LiKamWa et al. [2013] use Leave-One-Out-Cross-
Validation and therefore use future data, on top of that they describe features such as
browser history and location which also come with predictive power. The performance of
the machine learning algorithms do increase as more data becomes available, which is a
positive sign for future research.

As already mentioned the data as obtained is already quite preprocessed; the data has
been “flattened” to averages per day. This has the effect that some valuable information
might be lost. With access to more ‘raw’ data more possibilities will be available. How
this data should be preprocessed before applying the algorithms is something we believe to
be important. Some of the feature engineering steps already taken give promising results,
this can be built upon to further. An example is location data which may provide a huge
boost in predictive power. However, this data has to be preprocessed in such a way that
the algorithm can leverage this information.

Further improvements may be obtained by considering the time aspect of the data
more. Presently the time aspect of the data is only considered with the lagged and average
variables. Also all data is regarded with the same weight, while one would probably want
to attach more value to more resent data. Leveraging knowledge of possible underlying
time-dependent processes such as autoregressive or moving average processes as well as
extracting predictive patterns from the data are interesting possible future challenges.

Some concerns regarding the validation of the performance of the model should be
addressed. The accuracy of the model is now measured regarded as a percentage of days
correctly predicted, where ‘correctly’ is somewhat arbitrarily defined as deviating less than
0.5. A better measure would be not make such a strong cut-off but to take into account
how close the actual prediction is. Also, this measure is taken over all available data and
no division of the data is made into a train and test set. This may lead to overfitting; not
on the level of an individual model but over all constructed models. Out of bag sampling
can not really be used here since data ‘from the future’ would be used. A possibility is
to define a standard time window of a certain number of days and using data from these
days to construct a model. This way some sampling can be done and it also ties in with
the time aspect of the data, however, this introduces the problem that a big part of the
data would not be used in constructing the models.

The predictions made were only in the unidimensional mood dimension for the current
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day. Future research may look at the prediction on both a larger horizon (1 or even more
days ahead) as well as predicting in two dimensions: valence and arousal. This might
be done using two independent models (essentially in the same way as mood is predicted
presently) or these might be dealt with in conjunction, looking for possible dependencies
among valence, arousal and mood.
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