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Abstract

A big problem for any major social media website today is how to handle toxic con-
tent such as hate speech, threats, racism, and online sexual harassment. Communities
like Facebook, Reddit, and Quora rely on moderators and users to report offensive
content, but there is a need for scalable solutions. This research investigates differ-
ent state-of-the-art Machine Learning techniques for NLP and gives an experimental
comparison of these methods to predict and flag toxic online content. To evaluate the
performance, these algorithms are applied on the Quora questions dataset. Two differ-
ent types of Recurrent Neural Networks (RNN), a Long Short-Term Memory Network
(LSTM) and a Gated Recurrent Unit (GRU), are used and compared against a Lo-
gistic Regression baseline model. The results showed that the LSTM gives the best
performance with a F1 score of 0.671. Both the LSTM and GRU outperformed the
baseline model. This paper concludes that deep learning models are well suited for
NLP tasks.

Keywords: NLP, Text Mining, Deep learning, Long Short-Term Memory, Gated
Recurrent Unit
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1 Introduction

Nowadays, we can not think of the absence of social media in our lives. According
to the Global Digital Report of Hootsuite (2019), there are 3.84 billion active social
media users. Communication has become much easier and with the use of social net-
works we can maintain relationships with people from all over the world. People can
express their opinions, ask questions about any topic and can share their experiences
easily by writing reviews. But there is also a downside. Due to the anonymity pro-
vided by social media, people are willing to say things they would not say in person.
This leads to the increase of online toxic behaviour like hate speech, threats, racism,
and online sexual harassment.

A big problem for any major social media website today is how to handle this toxic
and inappropriate content. Communities like Facebook, Reddit, and Quora are re-
lying on moderators and users to report offensive content. Due to the vast amount
of information that is processed daily by these social media sites and the growth of
online hateful speech (Guynn, 2019), there is a need for scalable and automated so-
lutions to tackle this problem.

This is where Natural Language Processing (NLP) comes in. NLP is the a sub-
field of computer science and artificial intelligence that deals with the interaction
between computers and humans using the natural language. Some common tasks in
NLP are text classification, string matching, machine translation, and speech recog-
nition. With the rise of the popularity of deep learning techniques which are yielding
promising results in the fields of image recognition and speech processing, it can also
be applied to natural language processing. Therefore, in this paper we will focus on
these deep learning methods.

This research investigates different state-of-the-art Machine Learning techniques for
NLP and gives an experimental comparison of these methods to predict and flag on-
line toxic content. To evaluate the performance we apply these algorithms on the
Quora questions dataset.

This paper begins with discussing related work in the field of natural language pro-
cessing and text classification in Section 2. Section 3 describes the problem that we
want to solve, the data we gather, exploratory data analysis and the data preprocess-
ing steps. In Section 3.2 we will investigate the data in depth and conduct a sentiment
analysis, and topic modeling. The models that we will use are extensively explained
in Section 4. Next, Section 5 describes the features that we will create and the config-
uration of our models is explained. Furthermore, we discuss the evaluation measure
in order to measure the best performing model. Section 6 will show the results and
compare the performance of the models. Finally, Section 7 gives a conclusion and
Section 8 a discussion on this research.
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2 Related work

NLP and Text Mining are trending topics in recent data science research. In the past,
the majority of methods used to study NLP problems were time consuming. With the
increase of computing power, deep learning techniques can be trained more efficiently
which tends to outclass traditional machine learning models like logistic regression,
decision trees , or SVM. In this section, we will discuss relevant research that has been
conducted on using both traditional supervised models and supervised deep learning
models.

An overview of classical methods can be found in the research of Malmasi and Zampieri
(2017) and Davidson et al. (2017). They examine methods to detect hate speech in
social media using an annotated tweet dataset divided into three categories: hate
speech, offensive speech, and none. Malmasi and Zampieri (2017) applied standard
lexical features such as character n-gram, word n-grams, and word skip-grams to train
a Support Vector Machine (SVM). The best result was obtained by a character 4-
gram model achieving 78% accuracy. Davidson et al. (2017) used logistic regression,
naive Bayes, decision trees, random forests , and SVMs models to classify the tweets.

Badjatiya et al. (2017) use multiple deep neural networks for hate speech detec-
tion. A benchmark dataset of 16k tweets was analyzed and labeled as sexist, racist
or neither. They compare baseline methods such as character n-grams, TF-IDF, and
Bag Of Words with neural networks such as CNN and LSTM. The results show that
such deep learning methods outperform state-of-the-art char/word n-gram methods
by 18 points on the F-measure. The best accuracy was obtained when combining
deep neural networks with gradient boosted decision trees.

Joulin et al. (2016) explores a simple and efficient baseline for text classification
that is often able to keep up with deep learning methods in terms of accuracy, and
is significantly faster for training and evaluation. Their classifier is called fastText
and supports training continuous bag of words (CBOW) or skip-gram models using
negative sampling, softmax, or hierarchical softmax loss functions. FastText is eval-
uated on the tasks of sentiment analysis and on a tag prediction dataset. The result
shows that FastText is able to compete with deep learning models such as LSTMs
and CNNs while being much faster to train.

Park and Fung (2017) detected racist and sexist language through a two-step ap-
proach of combining two classifiers - one to classify abusive language and another to
classify a specific type of sexist and racist comments given that the language is abusive.
Then this is compared with a one-step approach of doing one multi-class classifica-
tion. They used three CNN-based models: CharCNN, WordCNN, and HybridCNN,
on 20k Twitter comments. The best performance was achieved with HybridCNN and
the worst with CharCNN. They found that when two logistic regressions were com-
bined, they performed similar to one-step HybridCNN, and performed better than
the one-step logistic regression.

In the work of Zhou et al. (2015), both the strengths of CNN and LSTM are combined.
They propose a novel and unified model called C-LSTM for sentence representation
and text classification. C-LSTM utilizes the CNN to extract a sequence of higher-level
phrase representations. These sequences are are fed into a long short-term memory
recurrent neural network (LSTM) to obtain the sentence representation. The archi-
tecture is evaluated on a sentiment classification task on movie reviews and a question
classification task on the TREC question dataset. The results show that the C-LSTM
outperforms both CNN and LSTM and can achieve excellent performance on these
tasks.
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Researchers from Google AI Language introduced in 2018 a new state-of-the-art lan-
guage representation model called BERT, which stands for Bidirectional Encoder
Representations from Transformers (Devlin et al., 2018). This model is designed to
pretrain deep bidirectional representations from unlabeled text by jointly condition-
ing on both left and right context on all layers. This technique can be used for a wide
range of tasks, such as question answering, language inference, and text classifica-
tion, without configuring specific architecture modifications. To evaluate their model
performance, they tested BERT on the General Language Understanding Evaluation
(GLUE) benchmark , the SQuAD v1.1, and the SQuAD v2.0. GLUE is a collec-
tion of diverse natural language understanding tasks which include multiple datasets.
SQuAD stands for Stanford Question Answering dataset and is a collection of 100k
crowdsourced question/answer pairs. The results showed that BERT was outper-
forming other state-of-the-art models. The GLUE score was pushed to 80.5% (7.7%
absolute improvement) and SQuAD v1.1 got a F1 score of 93.2 (1.5 point absolute
improvement).

A team of the Facebook AI Research introduced a new architecture (VDCNN) for
text processing which operates directly at the character level and uses only small
convolutions and pooling operations (Conneau et al., 2016). They show that that
the performance of this model increases with the depth: using up to 29 convolutional
layers, they report improvements over the state-of-the-art models on several public
text classification tasks. The model is evaluated on eight large-scale datasets which
cover several classification tasks such as sentiment analysis and topic classification.
The number of classes of the datasets varies between the 2 and 14. The model is com-
pared against other architectures of CNNs. The VDCNN outperformed other CNNs
on all datasets except of the two smallest datasets.

Researchers from the Shandong University and the National University of Singa-
pore, have proposed another new model for text classification (Du et al., 2018). Deep
learning methods have achieved promising performance in the text classification task
but ignore the fine-grained (matching signals between words and classes) classifica-
tion clues since the classification mainly rely on text-level representations. To tackle
this problem Du et al. (2018) introduced the interaction mechanism that incorporates
word-level matching signals into the text classification task. The model is called Ex-
plicit interAction Model (EXAM). To evaluate EXAM, six text classification datasets
corresponding to sentiment analysis, news classification, question answering, and on-
tology extraction were used. To demonstrate the effectiveness of EXAM, they com-
pared it with several state-of-the-art baselines. The baselines have three variations:
models based on feature engineering, char-based deep models, and word-based deep
models. The results showed that EXAM outperformed the other models based on
precision, recall, and F1 score.
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3 Data

The dataset used for this research is provided by Quora through their ”Insincere
Questions Classification” challenge on Kaggle 1. Quora is a platform to gain and
share knowledge where you can ask any question and get answers from different people
with unique insights. At the same time, it is important to handle toxic content by
removing insincere questions. According to Quora’s policy, insincere questions are
defined as ones that meet any of the following criteria:

• Has a non-neutral tone: such as an exaggeration to emphasize a comment
about a particular group of people

• Is disparaging or inflammatory: such as an attempt to seek confirmation
of a stereotype or present a discriminatory remark, a comment based on an
outlandish premise about a group of people, or the disparaging of a natural, not
fixable, or immeasurable characteristic

• Is not grounded in reality: such as a reference to false information or absurd
assumptions

• Uses sexual content for shock value: such as references to pedophilia,
incest, or bestiality

The dataset consists of 1,306,122 rows and 3 columns. A snapshot of the data can be
found in Figure 1. The three features are:

• qid - unique question identifier

• question text - Quora question text

• target - questions labeled “insincere” have a value of 1, otherwise 0

Figure 1: Dataset snapshot

From the 1.306.122 observations 1.225.312 are classified as 0 and 80.810 as 1. In other
words, only 6% of the questions is labeled as insincere which makes this dataset highly
imbalanced.

3.1 Data preprocessing

Since we are working with text data, different preprocessing steps need to be taken
before we can feed it to the algorithm. These steps include:

• Tokenization: This is the process of breaking up a sequence of strings into
pieces such as words, n-grams, keywords, phrases, symbols, and other elements
called tokens

• Removing white space, punctuation, numbers, and symbols

• Transform the words to lower case words

• Removing stopwords: Words such as ”is”, ”am”, ”are”, ”this”, or ”a” are
considered as noise in the text and should be removed

1https://www.kaggle.com/c/quora-insincere-questions-classification
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• Stemming: This is the process of linguistic normalization, which reduces words
to their word root or cuts off the derivational affixes. For example: ”jumps”,
”jumped”, and ”jumping” become ”jump”

3.2 Data analysis

In this section, further data analysis is conducted to explore the questions. First, we
look at the most occurring bigrams. Then, we perform a sentiment analysis on the
text. Lastly, we model the different topics of the questions.

After committing the preprocessing steps steps, we can look at n-grams. This are
sequences of n items from a given sample of the text. In Figure 2 we can see the most
occurring bigrams for both target variables.

Figure 2: Top occurring bigrams for both targets: 0 (left) and 1 (right)

From Figure 2, we can observe that there are numerous bigrams popular in both
target groups. In order to get an idea of which words occur more often among the
target class, the frequencies are compared in Figure 3. Words near the red line such as
“people”, “India”, “country”, “guy”, and “talk” are used with about equal frequencies
in both sentences.
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Figure 3: Frequency of the words among target class

3.2.1 Sentiment analysis

Sentiment analysis is the process of identifying and extracting subjective information
from text or speech. It is a way to evaluate written or spoken language to determine if
an expression is positive, negative, or neutral. With the help of the AFINN (Nielsen,
2011) lexicon we can extract the sentiment of the words. The AFINN lexicon is a
list of English terms that is manually rated for positive/negative sentiment with an
integer between -5 (negative) and +5 (positive). In Figure 4, the distribution of the
sentiments is shown among the target classes. The dashed line indicates the mean of
the frequency. As we can expect, in the insincere questions the sentiment tends to
be more negative. To give an indication of the most positive and negative questions
among the target classes, we can display them graphically in Figure 5.

Figure 4: Distribution of the sentiment score

7



Figure 5: Most positive and negative questions

3.2.2 Topic modeling

Topic modeling is a text mining tool for the discovery of semantic structures in a text
body. Often, we want to divide documents in groups or topics so that we can under-
stand them separately. Topic modeling is a method for unsupervised classification of
documents, similar to clustering on numerical data.

Latent Dirichlet Allocation (LDA) is one of the most common algorithms for topic
modeling. This is a generative probabilistic model of a corpus. The basic idea is that
documents are represented as random mixtures over latent topics, where each topic
is characterized by a distribution over words (Blei et al., 2003). The algorithm tries
to find the mixture of words that is associated with each topic, while determining
the mixture of topics that describes each document (Silge and Robinson, 2017). The
most relevant terms for each topic found in the data are: ”people”, ”India”, ”time”,
and ”life”.
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4 Models

This section describes the different types of neural networks that we are going to use.
First, the Artificial Neural Network (ANN) will be be explained and thereafter we will
expand this to more complicated networks like the Recurrent Neural Network (RNN),
Long Short-Term Memory Networks (LSTM), and Gated Recurrent Units (GRU).

4.1 Artificial Neural Networks

Artificial neural networks are systems inspired by the neural networks in a biological
brain. Neural networks consists of input, hidden, and output layers, which contains
nodes that transform the input into useful output. Each node in the layer is connected
to the node in the next layer. In Figure 6, a simple example of an ANN is shown.

Figure 6: ANN Figure 7: A perceptron

In order to understand ANNs we need to understand what a perceptron is. A percep-
tron is a single layer neural network and is used as a linear or binary classifier (Figure
7). All the inputs xi, i = 1, .., n are multiplied with their weights wi, i = 1, .., n and a
bias bi, i = 1, .., n is added. The bias value allows us to shift the activation function to
fit the data better. Next, the sum of the weighted inputs and bias are passed through
an activation function. This activation function is used to determine the output of the
perceptron. A popular activation function is the sigmoid function. Other common
activation functions are shown in Figure 8.

Figure 8: Activation functions

In order to train a neural network and make predictions, we need to adjust the
weights in such a way that the predicted value of the network is the closest to the
actual value. Therefore, we need to state a loss function to quantify how far off the
prediction is from the actual values. The goal of training the neural network is to
minimize this loss. This can be done with stochastic gradient descent (SGD) using
backpropagation as a gradient computing technique. Stochastic gradient descent is
an optimization method that tells us how to change the weights and biases in order
to minimize the loss function. The update equation of SGD is shown in Formula 1.

wi = wi − η
∂L

∂wi
(1)

In this formula, η is the learning rate that controls how much the weights are adjusted
with respect to the loss gradient. For more information on SGD and backpropagation,
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please refer to the book of Kriesel (2007).

4.2 Recurrent Neural Networks

A recurrent neural network (RNN) is a subclass of the ANNs and are popular in many
NLP tasks. In traditional feed forward neural networks we assume that all inputs an
outputs are independent of each other. But if we want to predict the next word of
a sentence, the previous words are required and need to be remembered. RNNs are
capable of predicting such sequential input accurately because of the presence of the
feedback loops in the network. In Figure 9, an unrolled recurrent network is shown.
It can be seen as multiple copies of the same network where xt represents the inputs
at time t, the A’s represent a chunk of the network, and ht represents the output at
time t. This network allows the previous outputs to be used as inputs while having
hidden states. In this way, the network keeps remembering the context while training
(Olah, 2015).

Figure 9: An unrolled recurrent neural network (Olah, 2015)

Even though, RNNs are capable of remembering short term dependencies, they have
difficulties of learning long-term dependencies. For example, when a model is trying
to predict the next word in the following text: ”The clouds are in the ...”. It can
easily been seen that the last word should be ”sky”. But when the model is trying to
predict the last word in the sentence: ”I grew up in the Netherlands... I speak fluent
Dutch”. The model needs the context of the word ”Dutch” from further back. This
means that when the gap between the relevant information and the word that needs
to predicted grows, RNNs becomes unable to learn and connect this information. This
is called the vanishing gradient problem for RNNs and is graphically shown in Figure
10.

Figure 10: The vanishing gradient problem for RNNs. (Graves, 2008)

We can observe from Figure 10 that the shading of the nodes in the unfolded net-
work indicates their sensitivity to the inputs at time one (the darker the shade, the
greater the sensitivity). The sensitivity decays over time, as new inputs overwrite
the activations of the hidden layer and the network ‘forgets’ the first inputs (Graves,
2008).
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4.3 Long Short-Term Memory

Long Short Term Memory networks (LSTMs) are a special subclass of RNNs and
were introduced by Hochreiter and Schmidhuber (1997). These networks are capable
of processing sequential data and learning long-term dependencies. The basic unit of
an LSTM network is the memory block. This memory block contains one or more
memory cells and three adaptive multiplicative gating units shared by all cells in the
block (Gers et al., 2003). The three gates are the forget, input, and output gate. In
Figure 11, a LSTM cell is shown.

Figure 11: LSTM cells. (Olah, 2015)

Forget gate

The forget gate decides what information should be forgotten or memorized. Infor-
mation from the previous hidden state and information from the current input is
passed through the sigmoid function. The output of the sigmoid function is bounded
between 0 and 1. The closer to 0 means to forget, the closer to 1 means to memorize.
In figure 11, we see that the forget gate gets the input of the current time step t, xt,
and the output from the previous time step, ht−1. The weighted sum of these inputs
is taken, a bias bf is added, and the resulting value is passed into a sigmoid activation
function (Graves, 2013). This results in Formula 2:

ft = σ(Wfxt + Ufht−1 + bf ) (2)

Input gate

The input gate regulates the information that flows into the cell. It gets the same
input as the forget gate and decides what new information is going to be stored in the
cell state. Again, the weighted sum of the inputs is taken, a bias is added and passed
into a sigmoid function. Next, a tanh layer creates a vector of new candidate values
C̃t, that could be added to the state (Olah, 2015). Both functions are combined to
create an update of the state and are shown in Formula 3.

it = σ(Wixt + Ufht−1 + bi)

C̃t = tanh(Wcxt + Utht−1 + bC)
(3)

The old cell state Ct−1 is updated to the new cell state Ct. This is done by multipli-
cation of the old state ft and adding it ∗ C̃t to obtain the following formula:

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)
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Output gate

The output gate decides the amount of information inside the cells that is exposed to
the external network. First, the information is passed through a sigmoid layer. Then,
it goes through a tanh layer and is multiplied by the output of the input gate. The
equations are shown in Formula 6.

ot = σ(Woxt + Uoht−1 + bo)

ht = ot ∗ tanh(Ct)
(5)

4.4 Gated Recurrent Units

Gated Recurrent Units (GRU) is a variation of the LSTM model and was introduced
by Cho et al. (2014). A GRU has a similar architecture as the LSTM, but has fewer
parameters as it lacks an output gate. The GRU has two gates, a reset gate r and
an update gate z. The reset gate determines how to combine the new input with
the previous memory and the update gate defines how much of the previous memory
needs to be memorized (Britz, 2015). In Figure 12, a GRU is graphically shown. The
equation for the GRU are as follows:

z = σ(xtU
z + st−1W

z)

r = σ(xtU
r + st−1W

r)

h = tanh(xtU
h + (st−1 ∗ r)Wh)

st = (1 − z) ∗ h+ z ∗ st−1

(6)

The main differences between the GRU and LSTM are:

• A GRU has two gates, an LSTM has three gates

• GRUs do not possess and internal memory (ct) that is different from the exposed
hidden state. They don’t have the output gate that is present in LSTMs

• The input and forget gates are coupled by an update gate z and the reset gate
r is applied directly to the previous hidden state. Thus, the responsibility of
the reset gate in a LSTM is split up into both r and z

Figure 12: GRU (Cho et al., 2014)
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5 Experiment

The goal of this experiment is to predict the insincere questions as accurately as
possible. For this prediction, the LSTM and GRU are used. To do a righteous
evaluation, the dataset is split into a train, validation-, and test set of 65% , 15%,
and 20% respectively. The validation set is used during training to check the model
performance. When the model is trained, we can make predictions on the unseen test
data to evaluate a final performance. If the performance of the validation set and the
test set are close to each other, we know that the model is not overfitting. Table 1
describes the distribution of observations between the train- and validation set.

Table 1: Distribution of observations between train- and validation set

train validation test total
% 65 15 20 100
observations 888,163 156,735 261,224 1,306,122

5.1 Feature engineering

Besides the data preprocessing steps described in Section 3, extra count features are
added. These features are common in Text Mining classification tasks and count the
number of: sentences, words, capital letters, and punctuation in the text. Next to
this, the length of the text is also added.

5.2 Configuration

Within Deep Learning, there are a vast amount of choices to make for building a
Neural Network. Different architectures, hyperparameters, and optimization methods
can be chosen. In this section, the configurations of the GRU and LSTM are explained.

Word embeddings

In both models, an Embedding layer is added to the input layer. The Embedding layer
is used to create numerical vectors for incoming words, since Neural Networks require
numerical input. A general approach for converting words to numerical vectors is to
one-hot encode the text. This will lead to substantial data sparsity and computations
will be inefficient since most values will be zero. To prevent this, a dense distributed
representation for each word is used. Each word is represented by a real-valued vector,
often tens or hundreds of dimensions. This is contrasted to the thousands or millions
of dimensions required for sparse word representations, such as a one-hot encoding.
This representation is called a word embedding. The weights for the Embedding layer
can either be initialized with random values, or more commonly, they are initialized
with pre-trained word embeddings such as: Word2Vec, Glove or Wiki-news. In this
experiment we use the Wiki-news word embedding. For more information about word
embeddings please refer to (Mandelbaum and Shalev, 2016).

Loss function

A loss function, or a cost function is, a method to quantify how far off the prediction
is from the actual values. The goal of training a model is to minimize this loss. The
most common loss functions in machine learning are the Mean Squared Error (MSE),
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the binary
cross entropy.

In this research, the binary cross entropy is used. This is one of the most common loss
function for binary classification. The categorical cross entropy loss measures the dis-
similarity between the true label distribution yi and the predicted label distribution
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ŷi, and is defined as cross entropy (Koidl, 2013).

Lcross−entropy(yi, ŷi) = −
∑
i

yilog(ŷi) (7)

5.2.1 GRU

Architecture

The GRU has the following architecture:

• Input layer: The shape of the input layer is the length of the question text that
we set equal to 80. This means that there are 80 neurons in the input layer

• Embedding layer

• GRU layer: with 80 neurons

• Dense layer: this is a fully connected layer with 128 neurons and a ReLu acti-
vation function

• Drop out layer: this is a regularization method that randomly drops neurons to
prevent overfitting. The drop out rate is set to 0.25

• Dense layer: 64 neurons and a ReLu activation function

• Drop out layer with rate 0.25

• Output layer of 1 neuron with a sigmoid function

Hyperparameters

This model is trained with 25 epochs and a batch size of 4096. The optimization
method for this model is Adam. Adam is an optimization algorithm that can used in-
stead of the classical stochastic gradient descent procedure to update network weights
iteratively based in training data. It is a popular optimization method for deep learn-
ing. Next to this, we use early stopping that will stop training the model when the
performance is not improving anymore. This prevents overfitting. The loss function
that we use is the binary cross entropy which is explained in Subsection 5.3.

5.2.2 LSTM

Architecture

The LSTM has the following architecture:

• Input layer: 80 neurons

• Embedding layer

• LSTM layer

• Drop out layer with rate 0.25

• Dense layer: 128 neurons and a ReLu activation function

• Output layer: 1 neuron with a sigmoid function

Hyperparameters

This model is trained with 25 epochs and a batch size of 4096. The optimization
method is again Adam and the loss function is the binary cross entropy. Also early
stopping is used.
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5.3 Evaluation measures

In order to evaluate the models, different evaluation measures are discussed. The
most common evaluation methods for binary classification are based on the Confusion
Matrix. This matrix is shown in Figure 13. We can define the terms as follows:

• True Positives (TP): The model predicted positive and it is true.
E.g.: The model predicted the question is toxic which is the case.

• True Negatives (TN): The model predicted negative and it is true.
E.g.: The model predicted the question is not toxic which is the case

• False Positives (FP): The model predicted positive and it is false.
E.g.: The model predicted that the question is toxic but it was not

• False Negatives (FN): The model predicted negative and it is false.
E.g.: The model predicted that the question is not toxic but the question is
toxic

Figure 13: Confusion matrix

From this confusion matrix, some popular performance measures such as accuracy,
precision, recall, and f-measure can be derived.

The accuracy is defined as: how often is the classifier correct? This is a poor measure
for imbalanced data. Let’s say we try to predict the number of fraud cases from 100
observations where there is only 1 fraud case. If our model predicts that there is
no fraud at all, the model will have an accuracy of 99%. So even though the model
did not predict the fraud it will let you believe that the model performed well. It is
calculated by:

Accuracy =
TP

TP + FN + FP + TN
(8)

The precision is defined as: out of all the predicted positive classes, how much is
predicted correctly. This is a good measure when the costs of False Positive is high.
For example: If a email spam detector identifies a mail as spam while it is not (False
positive), the user can loose important mails. It is calculated by:

Precision =
TP

TP + FP
(9)

The recall is defined as: out of all the actual positive classes, how much is predicted
correctly. This is a good measure when the costs of False Negative is high: For
example: If a sick patient (Actual Positive) goes through the test and predicted
as not sick (Predicted Negative). The cost associated with False Negative will be
extremely high if the sickness is deadly. It is calculated by:

Recall =
TP

TP + FN
(10)
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The F-measure or F1 score is the harmonic mean of the precision and recall. The F1

Score is a better measure to use if we need to seek a balance between Precision and
Recall and there is an uneven class distribution.

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(11)

Since we want to have a balance between the precision and recall and we have highly
imbalanced dataset, we will use the F1 score as our performance metric. The objective
of the model is to maximize this score.

Threshold

Since the models are returning probabilities that a question is sincere or insincere,
we have to convert these probabilities to binary values. An easy way to do this is to
say that if the probability is higher than 0.5, the question is insincere. But since this
method does not maximize the F1 score, we have to make a function that looks for
the best threshold that does maximizes the F1 score. This function checks for each
threshold in a range from 0.01 to 0.99 what the best F1 score gives on the evaluation
set. We run this function for both the GRU and the LSTM to find the optimal
threshold.

5.4 Implementation

The models are implemented in R by using the Keras and Tensorflow packages. Keras
is a high-level API to build and train deep learning models on top of Tensorflow.
Tensorflow is a backend library for machine learning and is developed by Google.
Deep learning models train significantly faster on GPUs, but since the lack of a
powerful GPU, the models are trained on the CPU. The runtime of the LSTM is
approximately 12 hours and the runtime for the GRU is approximately 15 hours.

16



6 Results

6.1 Performance

Before we test the model on the test set, it is important to see how the models perform
on the validation set. This will give an indication whether the hyperparameters need
to be tuned and if the model is overfitting on the training data. In Figure 14 and
Figure 15, we can see the loss of the models for both training- and validation set of the
GRU and LSTM. We can observe that for both models, the train loss and validation
loss does not vary substantially. This means that both models are not overfitting on
the train data.

Figure 14: Loss per epoch GRU

Figure 15: Loss per epoch LSTM
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6.2 Model comparison

In order to compare the deep learning models with a more traditional machine learning
model, we build a logistic regression model as our baseline. In Table 2, the results
of the models on the test set are shown. We found that the LSTM model performed
the best in terms of every metric except for the recall. it scores an accuracy of 0.958
a precision of 0.643, a recall of 0.701, and a F1 score of 0.671. Both the LSTM and
GRU outperform the baseline score of the logistic regression.

Table 2: Results

Model Accuracy Precision Recall F1 Score Threshold
GRU 0.956 0.627 0.713 0.667 0.33
LSTM 0.958 0.643 0.701 0.671 0.33
Logistic Regression 0.953 0.629 0.575 0.601 0.33

In Table 3, we compare the F1 Score of the validation set and the test. As we can see,
these scores are close to each other. This implies that the models give almost even
performances on the unseen data, which means that the models have a good fit.

Table 3: F1 score of validation and test set

Model F1 score validation F1 score test
GRU 0.663 0.667
LSTM 0.671 0.671
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7 Conclusion

The aim of this research was to detect online toxic content using different deep learn-
ing models. This paper explained two different types of RNNs that showed promising
results in related work in the field of NLP. To evaluate the performance of these deep
learning models, a GRU and a LSTM model were trained on the Quora questions
dataset. The data analysis gave us insights on the sentiment of the questions and the
most common topics that occurred.

The final results showed that both models are performing accurately and are out-
performing the baseline model. The LSTM showed the best performance with an F1

score of 0.671. We can conclude that both deep learning models are capable of flag-
ging an significant amount of toxic content in the questions dataset. Further research
could investigate different models and experimental setups.

8 Discussion

The models showed a decent performance, but there are a large number of improve-
ments possible. Due to the lack of time most of these improvements could not be
conducted. In this section, these improvements will be discussed and could be con-
tributing for future research.

Data preprocessing: An important step for reducing the amount of words in the
dataset is to take care of common mispellings, contractions, acronyms, and replace
words with a general term. This could be done by making a dictionary with all the
possible words that you can think of and map these words to the right spellings. For
example: ’colour’:’color’, ’isnt’:’is not’, ’instagram’:’social media’, ’wwii’: ’world war
2’.

Feature engineering: More features could be made and tested. In this experi-
ment, only the count and length features were used. Features such as the number of
bad words in the questions, TF-IDF, n-grams and the sentiment scores could also be
added.

Models: This paper conducted research on deep learning models and mainly on
the variations of the Recurrent Neural Network. As seen in Section 2, related work
showed promising results with Convolutional Neural Networks. Besides this, also en-
semble models would potentially improve the results when combining a CNN with a
LSTM or a GRU with a LSTM. Also, different word embeddings such as Glove or
Word2Vec could make a difference in performance. A new kind of model developed
by Google which is called BERT (Bidirectional Encoder Representations from Trans-
formers) obtains state-of-the-art results and could be used for further research.

Training: Training deep learning models on a computer without a (powerful) GPU
is extremely computational expensive and takes a significant long time to train. This
was one of the major drawbacks that this research faced. Due to this problem there
was no time to perform cross validation on the test data. Also, a grid search to search
for the optimal hyperparameters could not be done. The same holds for testing dif-
ferent model architectures. Furthermore, the performance could be improved by after
training the model on the train set, training the models on the train and validation
set (80%) and testing on the test set (20%).

Error analysis: By manually investigating the predictions, you can get insights
into what leads to certain errors. Checking this for both models would optimize the
performance.
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