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1 INTRODUCTION

1.1 Introduction to BWI-thesis

During my work at ABN-AMRO as part-timer and as an internee, I got involved in
Credit-Portfolio Optimisation processes. During this exercise I got interested in this area
and was advised by my supervisor (Prof. Bert Kersten) to write a separate BWI-thesis on
the subject of Portfolio Optimisation. He also was kind to provide me an actual data set on
which he was working on at LogicaCMG. With this small note I want to thank Professor
B.Kersten for his great support and help during my internship at ABN AMRO BANK
N.V.

1.2 Optimisation of IT-product portfolio

In an economic crisis it is – as in other situations – crucial for success to have a balanced
and profitable product portfolio. Companies tend to neglect the balance in their portfolio,
as they are adrift in growth, competition, production and delivery. From the domain of IT-
portfolio management [I] and [II] (see Kersten, 2002, Kersten & Verhoef, 2002 and
2003) initiatives have been taken to apply quantitative techniques from portfolio methods
to the IT-domain. Also the use of these techniques to “common” product portfolios of
companies has been tested. Central starting point in all these experiments is Markowitz’s
modern portfolio theory. The assumptions underlying this theory, which might be an
obstacle for correct applications, are studied and solutions are found. The results are
promising but as the results in the slipstream: portfolio management techniques contribute
to transparency and decision making in the extensive IT-domain. An obvious example of
the need for such an approach in IT is the Clinger-Cohen Act, which has been accepted in
the Senate of the United States of America.

In this thesis Markowitz’s Modern Portfolio Theory is discussed. An implementation of
the optimisation process on IT-product Portfolio based on Markowitz’s mean variance
theory will be shown. Furthermore implementation of the theory on the credit portfolio is
discussed.
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2 MARKOWITZ’S MODERN PORTFOLIO THEORY

2.1 Introduction

The modern portfolio theory is constructed initially by Harry Markowitz and described in
his book [III]. It is based on sophisticated investment decision approach that permits an
investor to classify, estimate, and control both the kind and amount of expected risk and
return. One of the essential parts of the modern portfolio theory is the quantification of the
risk/return ratio.

The fundamental goal of Modern Portfolio theory is to optimally allocate investments
between different assets.

2.2 Mean variance theory

Modern Portfolio Theory is associated with mean variance return/risk analysis. A mean
variance model minimises the portfolio risk for a given level of expected return. The
volatility of an investment/asset is measured by the standard deviation of its return.
Markowitz identifies the standard deviation of the portfolio return as the portfolio risk.

The mean-variance model has some underlying assumptions. First of all, the model is
based on a single period model of investment. This means that the investor allocates its
wealth among different assets in the beginning and harvests the returns at the end. Three
measures are necessary for using the mean-variance model. The standard deviation of the
return of each asset i (denoted by iσ ), the expected return over a given time of period per
asset and the correlation between each pair of assets are required. The variance or the
standard deviation of an assets return over a given time of period is a standalone risk, also
called the undiversified risk. The general idea is to minimise the portfolio’s standard
deviation of returns for a given level of expected portfolio return, considering the
correlation of each pair of individual asset. The portfolio risk, standard deviation of
portfolio returns, is denoted by σ p , and is derived by

X i  represents the position of asset i in the portfolio.
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n
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Modern portfolio theory assumes that for a specified expected portfolio return, a rational
investor would choose the portfolio with the smallest possible risk and visa versa. A
portfolio is said to be efficient if there is no portfolio having the same standard deviation
with a greater expected return and there is no portfolio having the same return with a
lesser standard deviation. The efficient frontier is the collection of all these efficient
portfolios. An example of the efficient frontier is displayed beneath.

The graph above is an example of an efficient frontier with the following four different
Portfolio positions:

w Current portfolio: This is the point where the current portfolio is situated. The
mean return and volatility is well below the efficient frontier.

w Max return: This point on the efficient frontier is the portfolio with the same
volatility as the current portfolio. By optimal changing of positions in the portfolio
an efficient portfolio with the same volatility and maximal return is given by this
point on the efficient frontier.

w Min Risk: This point on the efficient frontier  is the portfolio with the same mean
return, but with the minimal volatility

w Max return/risk ratio (Sharpe): This ratio is a measurement for portfolio
performance calculated as the mean return divided by the volatility of those
returns. The higher the ratio the better the performance ratio.

Efficient frontier
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Figure i: An example of the efficient frontier, with three optimisation directions
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Each portfolio on the efficient frontier offers the minimum possible risk for a given level
of return. The general idea is to move the current portfolio in the direction of the efficient
frontier. It's clear that for any given amount of return, you would like to choose a portfolio
that gives you the least amount of risk. You want a portfolio that lies on the efficient
frontier.

The following mean variance model [IV] is an example of a quadratic programming
problem, which determines the efficient portfolio for a given level of expected portfolio
return µ p . 
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Where µ i  is defined as the expected return of asset i, and µ p is the expected/desired
return on the portfolio. The efficient frontier can be calculated by solving this problem for
a number of portfolio returns.

Some additional restrictions could be applied to his model. An investor could constrain
some asset’s size with an upper- and lower bound. These constraints could be found
necessary by the investor. Market specific information could make an investor to decide to
limit some asset’s size.
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3 IT-PRODUCT PORTFOLIO

3.1 Introduction

In line with the Modern Portfolio Theory the mean variance model can be used to
optimise an IT product Portfolio.

The goal is to minimise the risk on IT-product portfolio and increase the portfolio
expected return.

3.2 IT-product Portfolio

Prof. Bert Kersten supplied the Portfolio, who is both working at the Free University as in
LogicaCMG. Within LogicaCMG several business units operate with their own profit/loss
responsibility. Amongst them is a business unit, which offers products and services in the
domain of payroll and salary systems. The company is profitable in a high competitive
market. In this market often opportunities arise which might yield to good results.
Because of the many opportunities and the current portfolio of eighteen IT-products, the
management chooses to use a portfolio approach. In preparing for this the expected return
and volatility of each of these products is determined.1 Due to confidentiality, the names
of the products are replaced by P1, … P18. The following tables give the monthly returns of
each of product iP

Month P1 P2 P3 P4 P5 P6 P7 P8 P9

June 607,713 58,171 -6,861 -389 15,817 -72,520 21,604 33,714 13,255

July 710,581 69,573 -19,517 1,981 7,138 -63,656 5,986 61,343 10,292

August 435,793 62,288 -55,090 2,172 13,901 27,233 7,695 32,036 11,017

September 679,975 54,513 -30,337 481 11,480 -88,458 3,814 42,665 10,944

October 648,977 70,463 -10,772 2,144 10,019 -48,416 5,036 82,719 -14,832

November 732,679 64,867 4,553 2,081 9,294 73,063 4,785 34,817 13,634

December 1,143,622 80,822 -36,590 2,797 6,568 12,320 5,218 60,328 9,014

January 1,464,130 105,256 -24,251 575 7,412 -97,742 3,759 112,673 16,107

February 788,003 521,164 -27,537 2,215 12,807 -131,872 5,529 45,581 -513

March 702,673 56,760 -40,464 1,565 8,063 -36,699 4,537 43,906 -7,443

April 622,925 89,826 23,718 1,655 8,385 -127,196 4,780 52,787 -12,229

May 681,775 41,189 -69,999 2,991 12,308 -117,495 3,802 61,696 -9,294

June 675,692 58,566 -42,964 3,296 14,775 -172,369 6,614 59,636 -31,341

July 721,799 79,681 -45,885 2,980 10,122 -137,974 8,423 53,788 -13,641

August 628,581 52,164 -6,718 2,468 9,720 -122,108 22,567 75,008 -17,612

September 548,692 52,796 -21,851 2,611 8,958 -227,136 9,089 91,758 2,354

Mean return 737,101 94,881 -25,660 1,976 10,423 -83,189 7,702 59,028 -1,268

                                                       
1 Note that one of the assumptions underlining MPT might be an obstacle: tradability of products. However, the

sense-of-urgency is that high that outsourcing and selling of products in the portfolio in a real option.
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Month P10 P11 P12 P13 P14 P15 P16. P17 P18

June -4,948 -22,845 -250,511 -26,460 -14,882 46,478 42,794 -68,274 -1,230

July 15,512 -28,632 -234,581 -35,780 -15,505 -15,328 71,246 -180,321 -26,404

August 3,954 -54,380 -223,717 -44,905 -21,983 38,002 24,939 -100,343 -3,274

September 3,798 -20,013 -185,654 -45,552 -15,305 -15,313 22,360 -142,448 101,822

October 4,050 -9,590 -222,239 -34,614 -19,313 24,733 48,562 -83,501 99,160

November 2,403 -8,338 -243,626 -44,895 -14,650 18,715 52,755 -80,559 79,891

December 2,163 -11,123 -172,501 -18,532 -54,727 -2,207 53,724 -31,769 -2,992

January 941 -11,742 -174,585 -24,395 -2,438 11,801 62,565 -79,668 41,194

February 1,757 -10,565 -178,679 -33,278 0 -17,780 27,125 -136,524 78,232

March 1,647 -23,299 -174,697 -40,319 0 -2,232 3,725 -115,973 38,705

April 769 -15,735 -410,180 -54,270 0 -14,552 22,852 -166,904 115,148

May 511 -16,655 -221,442 -51,349 0 14,213 28,113 -111,285 -285

June 537 -2,682 -150,413 -8,492 0 -10,705 27,955 -99,626 -14,191

July 21 -10,182 -185,309 -9,928 0 -13,684 13,444 -122,341 -19,196

August 503 -6,052 -147,301 127 0 -6,506 13,875 -96,620 37,369

September 1,807 2,891 -94,017 7,688 0 -28,011 48,463 -83,028 19,887

Mean return 2,214 -15,559 -204,341 -29,060 -9,925 1,727 35,281 -106,199 33,990

Table i: return per month of IT-products

The mean return for every product per month has been calculated. This mean return is also
known as the expected monthly return per product. The sum of these expected returns
represents the expected monthly portfolio return. From the data the expected return,
volatility and correlation is calculated. The figures are displayed below.

Month Volatility Expected Return
per month

P1 235,088 737,101

P2 111,161 94,881

P3 22,699 -25,660

P4 978 1,976

P5 2,728 10,423

P6 74,376 -83,189

P7 5,655 7,702

P8 21,621 59,028

P9 13,737 -1,268

P10 3,992 2,214

P11 12,710 -15,559

P12 66,346 -204,341

P13 18,127 -29,060

P14 14,124 -9,925

P15 20,910 1,727

P16. 18,743 35,281

P17 36,534 -106,199

P18 45,930 33,990

total 349,680 509,123

Table ii: Volatility and mean return per month for every IT-product

The volatility is expressed in the standard deviation of the return.
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The correlation between each pair of products are calculated and displayed in the table
below.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16. P17 P18

P1 1.00 0.15 -0.03 -0.17 -0.49 0.11 -0.30 0.52 0.32 -0.03 0.26 0.17 0.09 -0.23 -0.05 0.44 0.33 -0.01

P2 0.15 1.00 0.03 0.04 0.15 -0.15 -0.14 -0.11 0.04 -0.02 0.11 0.05 -0.07 0.16 -0.24 -0.06 -0.21 0.27

P3 -0.03 0.03 1.00 -0.38 -0.27 0.05 0.26 0.06 0.09 -0.02 0.28 -0.50 -0.04 0.04 -0.05 0.25 -0.11 0.59

P4 -0.17 0.04 -0.38 1.00 -0.11 -0.18 -0.22 0.11 -0.59 0.17 0.29 0.28 0.31 0.03 -0.38 -0.15 0.03 -0.32

P5 -0.49 0.15 -0.27 -0.11 1.00 -0.15 0.35 -0.46 -0.17 -0.44 -0.23 0.02 -0.05 0.20 0.42 -0.33 0.05 -0.16

P6 0.11 -0.15 0.05 -0.18 -0.15 1.00 -0.16 -0.45 0.50 0.21 -0.52 -0.27 -0.52 -0.65 0.59 0.21 0.27 0.08

P7 -0.30 -0.14 0.26 -0.22 0.35 -0.16 1.00 -0.07 -0.08 -0.39 0.04 0.13 0.49 0.09 0.25 -0.16 0.25 -0.26

P8 0.52 -0.11 0.06 0.11 -0.46 -0.45 -0.07 1.00 -0.12 0.07 0.51 0.37 0.48 0.18 -0.25 0.40 0.21 0.00

P9 0.32 0.04 0.09 -0.59 -0.17 0.50 -0.08 -0.12 1.00 0.21 -0.40 -0.05 -0.27 -0.46 0.31 0.55 0.16 0.01

P10 -0.03 -0.02 -0.02 0.17 -0.44 0.21 -0.39 0.07 0.21 1.00 -0.30 -0.03 -0.21 -0.22 -0.29 0.44 -0.51 -0.09

P11 0.26 0.11 0.28 0.29 -0.23 -0.52 0.04 0.51 -0.40 -0.30 1.00 0.34 0.57 0.26 -0.49 0.10 0.25 0.20

P12 0.17 0.05 -0.50 0.28 0.02 -0.27 0.13 0.37 -0.05 -0.03 0.34 1.00 0.71 0.03 -0.26 0.00 0.42 -0.38

P13 0.09 -0.07 -0.04 0.31 -0.05 -0.52 0.49 0.48 -0.27 -0.21 0.57 0.71 1.00 0.10 -0.34 0.05 0.41 -0.42

P14 -0.23 0.16 0.04 0.03 0.20 -0.65 0.09 0.18 -0.46 -0.22 0.26 0.03 0.10 1.00 -0.30 -0.43 -0.48 0.13

P15 -0.05 -0.24 -0.05 -0.38 0.42 0.59 0.25 -0.25 0.31 -0.29 -0.49 -0.26 -0.34 -0.30 1.00 0.16 0.46 -0.09

P16. 0.44 -0.06 0.25 -0.15 -0.33 0.21 -0.16 0.40 0.55 0.44 0.10 0.00 0.05 -0.43 0.16 1.00 0.24 -0.13

P17 0.33 -0.21 -0.11 0.03 0.05 0.27 0.25 0.21 0.16 -0.51 0.25 0.42 0.41 -0.48 0.46 0.24 1.00 -0.20

P18 -0.01 0.27 0.59 -0.32 -0.16 0.08 -0.26 0.00 0.01 -0.09 0.20 -0.38 -0.42 0.13 -0.09 -0.13 -0.20 1.00

Table iii: return-correlation between each pair of products

3.3 Optimisation

First we calculate the efficient frontier by calculating the efficient set for every desired
return pµ . In this picture the current position is displayed to give a general view of the
distance to the efficient frontier. Then we calculate the positions of each investment for
the following three directions of optimisation.

1. Minimise the risk, for a given level of return
2. Maximise the return for a given level of risk
3. Minimise the risk and maximise the return by maximising the risk/return-ratio.

The calculations were performed in Excel that provides a solver for non-linear quadratic
problems.

The results are summarised in the following tables and graph.

Portfolio Original Min Risk, same return Max Return, same risk Max risk/return-ratio
Return 509,123 509,123 1,334,007 122,902
Volatility 349,680 86,524 349,680 9,886

Table iv: overview current situation versus the different optimisation directions
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The following table shows the results after optimisation. The results of the three different
optimisation directions are calculated and are shown in de next table.

Original Portfolio Min Risk Max Return, same risk Max return/risk-ratio

iX Expected Return  iX Expected Return
iX Expected Return

iX  Expected Return

P1 1.00 737,101  0.33 245,579 1.26 931,713 0.05 33,805
P2 1.00 94,881 - 0 0.21 20,253 - 0
P3 1.00 -25,660 - 0  - 0 - 0
P4 1.00 1,976 - 0 - 0 9.75 19,267
P5 1.00 10,423 15.82 164,899 11.68 121,764 4.49 46,795
P6 1.00 -83,189 - 0 - 0 - 0
P7 1.00 7,702 - 0 - 0 1.30 10,047
P8 1.00 59,028 1.43 84,626 3.82 225,754 0.06 3,645
P9 1.00 -1,268 - 0 - 0 0.27 -337
P10 1.00 2,214  - 0 - 0 1.87 4,133
P11 1.00 -15,559  - 0 - 0 - 0
P12 1.00 -204,341  - 0 - 0 - 0
P13 1.00 -29,060  - 0 - 0 - 0
P14 1.00 -9,925  - 0 - 0 0.04 -418
P15 1.00 1,727 - 0 - 0 - 0
P16. 1.00 35,281  - 0 - 0 - 0
P17 1.00 -106,199  - 0 - 0 - 0
P18 1.00 33,990 0.41 14,019 1.02 34,523 0.18 5,966

Total 18.00 509,123 18.00 509,123 18.00 1,334,007 18.00 122,902

Table v: comparison between current situation and different optimisation directions

Original portfolio
weights

Min Risk
portfolio weights

Direction
position i

Max return
portfolio weights i

Direction
position i

Max return/risk-ratio
portfolio weights

Direction
position i

 iX  iX iX iX
P1 1.00  0.33 ↓ 1.26 ↑ 0.05 ↓
P2 1.00 - ↓ 0.21 ↓ - ↓
P3 1.00 - ↓  - ↓ - ↓
P4 1.00 - ↑ - ↓ 9.75 ↑
P5 1.00 15.82 ↑ 11.68 ↑ 4.49 ↑
P6 1.00 - ↓ - ↓ - ↓
P7 1.00 - ↓ - ↓ 1.30 ↑
P8 1.00 1.43 ↑ 3.82 ↑ 0.06 ↓
P9 1.00 - ↓ - ↓ 0.27 ↓
P10 1.00  - ↓ - ↓ 1.87 ↑
P11 1.00  - ↓ - ↓ - ↓
P12 1.00  - ↓ - ↓ - ↓
P13 1.00  - ↓ - ↓ - ↓
P14 1.00  - ↓ - ↓ 0.04 ↓
P15 1.00 - ↓ - ↓ - ↓
P16. 1.00  - ↓ - ↓ - ↓
P17 1.00  - ↓ - ↓ - ↓
P18 1.00 0.41 ↓ 1.02 ↓↑ 0.18 ↓
Total 18.00 18.00 18.00 18.00

Table vi: change of each product position in the different optimisation portfolios



9

The whole optimisation and construction of the efficient frontier has been done in Excel.
This application has a solver that is useful for small-scaled programming problems. To
construct the efficient frontier a small macro has been written. The code can be found in
the appendix. The macro is built in such a way that for every level of return, the minimum
risk is determined by solving the optimisation problem. Plotting the results gives the
following efficient frontier:

3.4 Assumptions

By calculating the efficient frontier no additional restrictions on product positions has
been formulated. This means that for every product we assume the position is not
bounded. Under market conditions some products positions could not so easily be
expanded, due to market satiation or heavy competition.

The flexibility of reducing product positions is bound to contracts with customers.
Therefore reducing the portfolio or the ‘killing’ of certain products is not that easy. A
solution can be found in outsourcing or selling this part of the portfolio to another
company who will take over the contracts.

All these constraints however can be implemented in the calculation of the efficient
portfolio. The constrained efficient frontier will then move downwards compared with the
unconstrained efficient frontier.

Another question mark could be placed by the calculation of the volatility and the
correlation between products. The volatility is in fact the standard deviation of the return.
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Correct information on these returns is critical in terms of calculating the volatility. Also
the accuracy of the volatility is dependent on returns. Calculation of the volatility is more
accurate if the information on the returns is looked over a longer period (which results in
more return figures). The same goes for the calculation of correlation between each pair of
products.

3.5 Optimisation with constraints

An additional analyse has been performed on the portfolio. The Company was asked to
specify constraints for the products in the portfolio. They decided that no product should
exceed 2 times its current size.

The portfolio optimisation is adjusted to the following equation, where every position iX
is constrained with an upper bound.

Again the problem is solved for the three different optimisation directions. The results are
summarised in the following table.

Portfolio Original Min Risk, same return Max Return, same risk Max risk/return-ratio
Return 509,123                509,123                 1,102,088                484,244
Volatility 349,680                  97,904                    349,714                  92,881

Table vii: comparison current portfolio with different optimal portfolios

With the restrictions on the change of positions, the calculated optimal portfolios are still
out performing the original portfolio. For three times less risk, the same return can be
achieved, while for the same risk an increase return can be doubled.

The following tables show the positions of the products after solving the problem with the
three optimisation directions.
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Original Portfolio Min Risk Max Return Max return/risk-ratio

iX Expected Return  iX Expected Return
iX Expected Return

iX  Expected Return

P1 1.00 737,101        0.51 374,240 1.10 808,159 0.48 356,231
P2 1.00 94,881        0.42 40,136 0.82 77,891 0.41 38,595
P3 1.00 -25,660        0.36 -9,297 - - 0.37 -9,517
P4 1.00 1,976        2.00 3,953 2.00 3,953 2.00 3,953
P5 1.00 10,423        2.00 20,846 2.00 20,846 2.00 20,846
P6 1.00 -83,189           - - - - - -
P7 1.00 7,702        2.00 15,405 2.00 15,405 2.00 15,405
P8 1.00 59,028        0.89 52,472 1.61 95,162 0.86 50,552
P9 1.00 -1,268        1.16 -1,470 0.20 -259 1.20 -1,521
P10 1.00 2,214        2.00 4,428 2.00 4,428 2.00 4,428
P11 1.00 -15,559        0.91 -14,157 - - 0.94 -14,596
P12 1.00 -204,341           - - - - - -
P13 1.00 -29,060        0.82 -23,691 - - 0.87 -25,380
P14 1.00 -9,925        1.76 -17,429 1.80 -17,875 1.74 -17,273
P15 1.00 1,727        1.41 2,438 1.84 3,168 1.40 2,415
P16. 1.00 35,281        0.97 34,298 1.40 49,470 0.95 33,431
P17 1.00 -106,199           - - - - - -
P18 1.00 33,990        0.79 26,951 1.23 41,741 0.78 26,678

Total 18.00 509,123 18.00 509,123 18.00 1,102,090 18.00          484,244

Table viii: comparison between current situation and different optimisation directions

Original portfolio
weights

Min Risk
portfolio weights

Direction
position i

Max return
portfolio weights i

Direction
position i

Max return/risk-ratio
portfolio weights

Direction
position i

 iX  iX iX iX
P1 1.00        0.51 ↓ 1.10 ↓↑ 0.48 ↓
P2 1.00        0.42 ↓ 0.82 ↓ 0.41 ↓
P3 1.00        0.36 ↓ - ↓ 0.37 ↓
P4 1.00        2.00 ↑ 2.00 ↑ 2.00 ↑
P5 1.00        2.00 ↑ 2.00 ↑ 2.00 ↑
P6 1.00           - ↓ - ↓ - ↓
P7 1.00        2.00 ↑ 2.00 ↑ 2.00 ↑
P8 1.00        0.89 ↓ 1.61 ↑ 0.86 ↓
P9 1.00        1.16 ↓ 0.20 ↓ 1.20 ↑
P10 1.00        2.00 ↑ 2.00 ↑ 2.00 ↑
P11 1.00        0.91 ↓ - ↓ 0.94 ↓
P12 1.00           - ↓ - ↓ - ↓
P13 1.00        0.82 ↓ - ↓ 0.87 ↓
P14 1.00        1.76 ↑ 1.80 ↓ 1.74 ↓
P15 1.00        1.41 ↑ 1.84 ↑ 1.40 ↑
P16. 1.00        0.97 ↓ 1.40 ↑ 0.95 ↓
P17 1.00           - ↓ - ↓ - ↓
P18 1.00        0.79 ↓ 1.23 ↑ 0.78 ↓
Total 18.00 18.00 18.00 18.00

Table ix: change of each product position in the different optimisation portfolios
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The efficient frontier is constructed again, but this time the constraints are taken into
account.

Note that the effcient frontier is closer to the current portfolio. This is due to the fact the
portfolio is constrained. Nevertheless the portfolio is far from the efficient frontier.



13

3.6 Heterogeneous portfolio

The previous analyses were assuming that each product was equally weighted in the
portfolio. That’s fine if the products need the same amount or number of resources. In this
paragraph we will demonstrate how we can optimise a IT-product portfolio considering
that every product has a different weight.

LogicaCMG calculated the resources needed for each product. The following table
summarises the result.

Product costs Resulting
Weights

 iX
P1 7,503,120 26.45%
P2 1,596,064 5.63%
P3 1,195,111 4.21%
P4 94,859 0.33%
P5 133,546 0.47%
P6 4,585,611 16.17%
P7 10,574 0.04%
P8 1,387,211 4.89%
P9 276,407 0.97%
P10 92,675 0.33%
P11 148,427 0.52%
P12 2,530,931 8.92%
P13 318,581 1.12%
P14 673,474 2.37%
P15 1,418,486 5.00%
P16. 419,015 1.48%
P17 3,854,142 13.59%
P18 2,125,953 7.50%

Total 28,364,187 100.00%

The portfolio optimisation is adjusted to the following equation, where every position iX
is constrained with an upper bound. iX  is constrained to a shift of %100±

Again the problem is solved for the three different optimisation directions. The results are
summarised in the following table.
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Portfolio Original Min Risk, same return Max Return, same risk Max risk/return-ratio
Return 509.123 509.123 1.023.053 1.789.036
Volatility 349.664 252.076 349.665 528.320

Table x: comparison current portfolio with different optimal portfolios

With the restrictions on the change of positions, the calculated optimal portfolios are still
out performing the original portfolio.

The following tables show the positions of the products after solving the problem with the
three optimisation directions.

Original Portfolio Min Risk Max Return Max return/risk-ratio

iX Expected Return  iX Expected Return
iX Expected Return

iX  Expected Return

P1 0.26 737,101 0.15 426,978 0.29 814,309 0.52 1,452,873
P2 0.06 94,881 0.03 46,651 0.03 52,801 0.03 51,330
P3 0.04 -25,660 0.02 -9,925 0.02 -13,846 0.00 0
P4 0.00 1,976 0.01 3,953 0.01 3,953 0.01 3,953
P5 0.00 10,423 0.01 20,846 0.01 20,846 0.01 20,846
P6 0.16 -83,189 0.14 -72,781 0.17 -87,906 0.00 0
P7 0.00 7,702 0.00 15,405 0.00 15,405 0.00 15,405
P8 0.05 59,028 0.10 118,057 0.10 118,057 0.10 118,057
P9 0.01 -1,268 0.00 0 0.00 0 0.00 0
P10 0.00 2,214 0.01 4,428 0.01 4,428 0.01 4,428
P11 0.01 -15,559 0.00 0 0.00 0 0.00 0
P12 0.09 -204,341 0.00 0 0.00 0 0.00 0
P13 0.01 -29,060 0.00 0 0.00 0 0.00 0
P14 0.02 -9,925 0.05 -19,850 0.05 -19,850 0.05 -19,850
P15 0.05 1,727 0.10 3,453 0.10 3,453 0.10 3,453
P16. 0.01 35,281 0.03 70,562 0.03 70,562 0.03 70,562
P17 0.14 -106,199 0.21 -166,634 0.03 -27,138 0.00 0
P18 0.07 33,990 0.15 67,980 0.15 67,980 0.15 67,980

Total 1 509,123 1 509,123 1 1,023,053 1 1,789,036

Table xi: comparison between current situation and different optimisation directions
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Original portfolio
weights

Min Risk
portfolio weights

Change in
%

Max return
portfolio weights i

Change in
%

Max return/risk-ratio
portfolio weights

Change in
%

 iX  iX iX iX
P1 0.26 0.15 -42% 0.29 10% 0.52 97%
P2 0.06 0.03 -51% 0.03 -44% 0.03 -46%
P3 0.04 0.02 -61% 0.02 -46% 0.00 -100%
P4 0.00 0.01 100% 0.01 100% 0.01 100%
P5 0.00 0.01 100% 0.01 100% 0.01 100%
P6 0.16 0.14 -13% 0.17 6% 0.00 -100%
P7 0.00 0.00 100% 0.00 100% 0.00 100%
P8 0.05 0.10 100% 0.10 100% 0.10 100%
P9 0.01 0.00 -100% 0.00 -100% 0.00 -100%
P10 0.00 0.01 100% 0.01 100% 0.01 100%
P11 0.01 0.00 -100% 0.00 -100% 0.00 -100%
P12 0.09 0.00 -100% 0.00 -100% 0.00 -100%
P13 0.01 0.00 -100% 0.00 -100% 0.00 -100%
P14 0.02 0.05 100% 0.05 100% 0.05 100%
P15 0.05 0.10 100% 0.10 100% 0.10 100%
P16. 0.01 0.03 100% 0.03 100% 0.03 100%
P17 0.14 0.21 57% 0.03 -74% 0.00 -100%
P18 0.07 0.15 100% 0.15 100% 0.15 100%

Total 1 1 1 1

Table xii: change of each product position in the different optimisation portfolios
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Figure iii: efficient frontier of the heterogeneous portfolio
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3.7 Conclusion

With the mean variance theory constructed by Markowitz, the product portfolio can be
improved. The results show a considerable decrease in risk, while maintaining the same
return. Even with constraints applied on the portfolio and its products, the optimal
portfolios perform far better.

The mean variance theory has proven its worthiness for an IT-product portfolio. By
evaluating returns achieved in the past, portfolio selection is possible. A remark should be
made: Returns from the past do not guarantee the future. The model can not foresee any
event that could occur in the future. It only diversifies the portfolio by looking at the
results of the past.
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4 ANOTHER APPLICATION: LOAN PORTFOLIOS

4.1 Introduction

The mean variance analysis discussed in chapter 2 concentrates on decreasing the standard
deviation of an asset-return Portfolio, maintaining the same return. This chapter discusses
how we can apply this theory on a Loan Portfolio.

4.2 Loan Portfolio

The general idea of optimising a loan portfolio is to reduce its risk, while maintaining the
same level of return. Here again we can apply Markowitz’s Modern Portfolio Theory.

The mean variance model assumes a normal return/loss distribution, but the actual loss
distribution of a loan portfolio however is fat-tailed and heavily skewed. Our interest goes
to relevant risk measures that describe the risk in the tail. The reduction of the tail risk is
preferred. In the following paragraph we will discuss some risk-measures that can be used
for optimisation purposes.

4.3 Risk measurements

Expected Loss is the expected annual loss for a facility. It represents the amount that a
lender expects to lose for a given time of period (often over a one-year time horizon).

Expected Loss is counterparty specific and is not influenced by correlation with other
facilities/borrowers/relationships and does not benefit by diversification and does not
worsen by concentration.

Unexpected Loss, also called the volatility of losses, is commonly known as the standard
deviation of the loss distribution. The Unexpected Loss of a facility is then the standard
deviation of the facility loss. The portfolio Unexpected Loss is the standard deviation of
the portfolio loss distribution.

Financial institutions are interested in risk measures that identify the risk in the fat and
skewed tail of the loss-distribution. Value at Risk (VaR) was introduced as such a risk
measure to define risk for a given portfolio. VaR is a maximum possible portfolio loss for
a specified time horizon with a given confidence level β (i.e. β=95%).

Economic Capital is a risk measure quantifying how much capital must be allocated to
cover possible losses in excess of the Expected Loss. The Economic Capital is acquired
from the VaR and is given by ELVaREC −= . The Economic Capital on facility level is
known as the Economic Capital Contribution. It specifies the amount a facility contributes
to the Portfolio Economic Capital. Economic Capital is calculated on portfolio level and
has the property that diversification and correlation effects are taken into account.

Expected Loss

Unexpected Loss

VaR

Economic Capital
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Another statistical measure is called Conditional Value at Risk (CVaR). This measure is
also known as the Mean Excess Loss, Mean Shortfall, or Tail VaR. By definition, CVaR
is the expected conditional on loses exceeding VaR. In this case it represents the expected
loss in excess of confidence level β, or the expected loss given the fact that the loss is
greater than VaR.

Optimisation by VaR and CVaR
Many publications are based on minimising VaR for a given level of return. But there are
also downsides using VaR as the measure to optimise.

In the case of a finite number of scenarios, VaR is not a recommended measure of risk.
VaR in this case is non-smooth, non-convex, and has a multi-extremum function, making
it difficult to control and optimise. VaR also has the property as lacking of sub-additivity
[V]. VaR also does not give any information about the excess loss (loss suffered in the
tail).

CVaR, on the other hand, is considered a more coherent [VI] measure of risk than VaR.
Unlike VaR it has the property of being sub-additive and convex.  Another advantage is
that CVaR can be optimised using linear programming techniques [VII].

Both VaR and CVaR could be implemented in the mean variance method. We would then
minimise the portfolio VaR or CVaR for a given level of portfolio return.

CVaR
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Portfolio Loss amount
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Figure iv: Portfolio Loss distribution
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4.4 Optimise Portfolio

The main objective is to optimise the portfolio. Several restrictions and objectives should
be taken into account. To optimise a portfolio one should analyse it first and improve it in
such a way that it obtains for instance the smallest level of risk for a given level of return.
So the mean-variance analyse could minimise the UL, VaR or CVaR for a given amount
of return, or maximise the return amount for a given level of risk. For this thesis we will
look at the standard deviation of the loss distribution, to maintain alignment with the mean
variance theory.

4.5 Optimising portfolio using mean-variance model

The basics of the mean-variance analyse is building an optimal loan portfolio using
statistical measures for expectation and variance of loss. We will concentrate on
minimising the risk on loss. In this case the standard deviation (square root of the
variance) of a credit loan’s loss is used to define the risk. We use the Mean Variance
model below, where the standard deviation is minimised for a given level of return.

Where

For small loan portfolios, this problem could be solved by using the Excel-solver.
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5 CONCLUSIONS

It is clear that the application of MPT to other domains than for which it was originally
developed, yields interesting results. It introduces a quantitative approach to new domains,
especially product portfolios and IT-portfolios. The application towards loan portfolios
has been tried earlier.

The MPT results on the LogicaCMG data are satisfying in terms of applicability. However
the importance of correct information in terms of returns is absolutely needed. It is highly
recommended having as much return figures as possible. More expected periodically
returns, would contribute to more accurate variance, volatility and correlation figures.
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6 APPENDIX

6.1 Code macro for plotting Efficient Frontier

Sub Frontier()
 ' Recorded by Serdar Ozdemir

   Range("W1:AA300").Select
   Selection.ClearContents
   Range("$W$1").Select
   current = Selection.Address

   For i = 1 To 300
      SolverSolve (True)
      Range("Desired_Return").Value = -5000 + i * 5000
      ActiveCell.Value = Range("Return").Value
      ActiveCell.Offset(0, 1).Value = Range("Target").Value
      ActiveCell.Offset(0, 3).Value = Range("Desired_Return").Value
      ActiveCell.Offset(1, 0).Activate
   Next
   Range(current).Select
   Application.ScreenUpdating = True
End Sub



22

7 REFERENCES

                                                       

I “IT Due Diligence” by H.M.P. Kersten

II “Quantitative IT-portfolio management” by C. Verhoef

III  “Portfolio Selection Efficient: Diversification of Investment” by Harry M. 
Markowitz

IV “Portfolio Optimisation” by M.Pirbhai, M. Guertler and M.S. Mendi, Optirisk 
white paper,2001.

V  “Conditional Value-at-Risk: Optimization Algorithms and Applications” by S. 
Uryasev, Financial Engineering News, no 14, 1-5, (February 2000)

VI "Coherent Measures of Risk" by P. Artzner, F. Delbean, J.-M.Eber, D. Heath, 
Mathematical Finance, no 9, 203-228, (1999).

VII “Optimisation of Conditional Value-at-Risk” by S. Uryasev and R.T. Rockafellar, 
Journal Risk, no. 2, 21-41, (2000)


