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Abstract

In this paper, I study the connectivity in MANETs. First a one-dimensional
model is studied, where two points are placed on the ends of a straight line.
Then extra nodes are added randomly. Then I derive an expression for the
probability that the two endnodes are connected to each other, depending
on the number of added nodes and the range of the signal of all nodes. This
range is assumed to be the same for all nodes. The expression found is a
simple recursive expression.

The second model studied is a two-dimensional model, where nodes are
added randomly on the plane. The technique used in the first model turns
out not to work, so I use another technique. For the model on the infinite
plane I show that there is a critical radius for the range of the signal of the
nodes; only if the radius is larger than this critical value, there is a possibility
of an infinitely large group of connected nodes. For the model in a finite
square, I give the requirements for a certain fraction of the nodes inside the
square to be connected. Also I give the rate of growth of the radius of the
signal necessary to have full connectivity of all the nodes inside the square
as the size of the square goes ot infinity.

I end the paper with a discussion of the results, and some suggestions
for further research.
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Preface

The BMI paper is one of the last parts of the BMI course. The idea is to
let a student research a problem or question, and present the results. This
paper presents the results of my research into the connectivity of MANETs.

Because a project like this is never done alone, there are a few people I
would like to thank here:

• Lisette and Elizabeth for reading an early version of this paper and
giving helpful comments

• My friens and family for their support during the writing of this paper
(and the rest of my studies)

• Sandjai Bhulai for all his help and enthusiasm while supervising this
paper

Finally, I hope the reader wil enjoy reading this paper and maybe find
something useful in it.
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Chapter 1

Introduction

A communication network consists of nodes, which are connected to each
other in some way. Some well-known examples of networks are the Local
Area Network and the Wide Area Network, and of course the World Wide
Web. All these networks need an infrastructure of some sort, so that com-
munication within the network is possible.

Mobile AD-hoc NETworks (MANETs) are wireless networks that differ
from these more traditional kinds of networks in that the nodes can commu-
nicate directly with each other without the need for any fixed infrastructure.
Possible nodes are, for example, laptops or mobile phones, or a combina-
tions of different kinds of devices that can be used for communication. The
nodes connect directly to each other and they can move randomly, which
means that the network does not have a fixed topology. The nodes must be
close enough to each other, because their signals can only be received in a
circle around the node with a certain radius. The topology of the network
may change rapidly and unpredictably as nodes move, new nodes appear
and other nodes disappear, in other words, if someone takes his laptop to
another place, turns it on or shuts it down.

The fact that MANETs do not need any fixed infrastructure makes them
useful in situations where no such infrastructure is available. Thus, they
can be used to communicate in emergency operations after an earthquake
has destroyed the infrastructure, or during military expeditions where it
is not safe to use the infrastructure of the enemy. Another possible use
of a MANET is a network in a conference or meeting, if setting up an
infrastructure for just a short time is too costly. It can also be used by police
and ambulance services to communicate in the case of a major accident or
a terrorist attack.

And what is more, the same techniques as used for MANETs can also
be used for completely different situations. Imagine, for example, a number
of farms spread out in a certain area. When on one of the farms there is
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2 CHAPTER 1. INTRODUCTION

an outbreak of a contagious desease, then we would of course be interested
in the probability that neighbouring farms will also catch the disease. Here
the farms may be viewed as nodes, like the communication devices in a
MANET. The range of the signal will then be replace by the area in which
the disease could spread if another animal came close enough to a sick one.

However useful it may be, the flexibility of MANETs does also raise
problems that need to be solved. For example, it is difficult to keep up the
security level, the routing in the network has to be done in a different way
from traditional networks, and it is difficult to predict whether or not all
nodes can actually be connected to each other.

In this paper I will study the connectivity of MANETs. As a starting
point, a one-dimensional model is discussed. This model is interesting in
itself, but hopefully it can also serve as a starting point for the next step,
a two-dimensional model. I will try to determine the probability that every
node can communicate with every other node in the network. This proba-
bility will, of course, depend on the number of nodes, the distance between
these nodes, and the radius of the circle in which their signal can be received.
This probability is interesting; in cases where a fully connected network is
needed, there needs to be a sufficient number of nodes and a sufficiently
wide-ranged signal to make sure that the network has the required proba-
bility of connection. In order to do this, an estimate of this probability for
a given situation is needed, and of how any changes made will affect the
probability. First I will study the one-dimensional case, and then the two-
dimensional case. Relevant theory will be discussed where needed. I will
try to derive expressions for the probability of connection in each of these
two models, depending on the range of the signal and the number of nodes.
These expressions can then be used to make estimates of the probability in
a real-life situation. So the central question in this paper will be: what is
the probability that two nodes can communicate with each other?



Chapter 2

The one-dimensional model

This model is the simplest one of the two models discussed in this paper.
It supposes that all nodes are located on a straight line. Therefore it is not
very realistic, but it does provide a good starting point for more complicated
models such as the two-dimensional model that will be discussed in the next
chapter. The structure of the solution to this problem turns out to be very
nice and simple.

First, I will give a description of the problem and state the assumptions
I make. Then I will pose the question that needs to be answered, and derive
a solution.

2.1 Model description

Two nodes are at a distance d from each other, and they both have a signal
that can be received within a circle with radius r around the nodes. I
assume that this radius is the same for all the nodes. The model looks as in
Figure 2.1.

Figure 2.1: 1-dimensional model

In this case, the two nodes cannot make a connection to each other, since
their ranges do not have any overlap. Figure 2.2 shows an example where
there is a connection.

3



4 CHAPTER 2. THE ONE-DIMENSIONAL MODEL

Figure 2.2: 1-dimensional model with connection

This is the starting point for the model; there are two nodes at a certain
distance d from each other, and they each have a signal which reaches a
circle with radius r around the node. As I said above, I assume that the
nodes have the same signal range, i.e., the radius is the same for each node.
Also I assume d to be equal to 1, but this does not pose a real restriction: if
this is not the case, just divide the r by d and set d to 1. The exact figures
do not matter, only the ratio of r to d is important. This is an important
observation, and it will be used in the solution later on. The assumption
that the radius is the same for all nodes is important here. The results for
this model cannot be easily generalised to a case with variable radii.

The question that we address in this paper is: are the two end nodes
connected to each other or not? It is easily seen that they are connected if
r is larger than 1

2 , so this is not the interesting case. If r is smaller, there is
no connection. But what happens if an extra node is added? Or two nodes,
or three? These are the important questions.

Extra nodes are added, at a random place on the straight line that runs
between the first two nodes. I conceive the line as an interval between 0
and 1, and then pick a random number according to a standard uniform
distribution and add a node in that place on the line. The number of these
extra nodes is called n, and their places are selected independently according
to the same probability distribution. The extra nodes are all assumed to
have the same radius r as the original nodes.
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2.2 Analysis of the problem

As I said, if n = 0 it is known when there is a connection: the nodes are
connected if and only if r is larger than 1

2 . But if a node is added, it is not
so easy. If r is smaller than or equal to 1

4 there still can be no connection.
The value 1

4 is the minimal radius needed to cover the distance between the
two endnodes with one added node, if this node is placed at its ‘ideal’ place
as seen in Figure 2.3. But if the radius is somewhere between 1

4 and 1
2 , it

will depend on the place of the node. And this place is chosen randomly.

Figure 2.3: With one added node, the mimimum length of r needed for
connection is 1

4 .

This leads to a problem. The probability that the two original nodes
are connected, will depend on the radius of the signal of the nodes, and on
the number of nodes added. In this section, I will derive a formula for this
probability. It is denoted by Pn(r). That probability means the probability
that the two end-nodes, at a distance 1 from each other, are connected to
each other, assuming that a fixed number of n nodes are added along the
line between the end-nodes and seen as a function of the radius r.

The idea used to addres the problem is this: if we take the utmost left
of the added nodes, this is the minimum of the n independent stochastic
variables with the Uniform(0, 1) distribution. The minimum of n standard
uniform stochastic variables has a density function f(x) = n(1 − x)n−1. If
that node is more than 2r away from the left end-node, there is no connection
between them, and the two end-nodes are connected with probability 0. If
that node is within distance 2r of the left end-node, there is a connection
between these two nodes.

Now, if we take this minimum as the next left end-node, we can view the
remaining problem as the same problem as before, but now with n−1 added
nodes and distance 1−x between the two end-nodes. We can scale this new
problem, to have again a case with distance 1 between the end-nodes. To do
this we have to divide the distance 1−x and the radius r each by 1−x. The
new problem then has again distance 1, but radius r

1−x , and n − 1 added
nodes. Thus we get a recursive expression for Pn(r):
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Pn(r) =
∫ 2r

0
n(1− x)n−1

Pn−1

(
r

1− x

)
dx.

Now that the P0(r) is known, we can compute the P1(r). We know that

P0(r) =

{
1 if r ≥ 1

2 ,
0 if r < 1

2 ,

so P1(r) will change where r = 1
2 . This means that the integral will have to

be split at the point where r
1−x = 1

2 , that is where x = 1− 2r. Then we get

P1(r) =


∫ 1−2r
0 0 dx, if r < 1

4 ,∫ 2r
1−2rP0

(
r

1−x

)
dx =

∫ 2r
1−2r 1 dx = 4r − 1, if 1

4 ≤ r <
1
2 ,

1, if r ≥ 1
2 .

Now that we know P1(r), we can proceed to P2(r). For P2(r) we will
have breakpoints at 1

2 , 1
4 and 1

6 . It is easily seen that P2(r) = 0 if r < 1
6 ,

and of course P2(r) = 1 if r ≥ 1
2 . The intervals that remain are 1

6 ≤ r < 1
4

and 1
4 ≤ r <

1
2 . So we have to compute

P2(r) =
∫ 2r

0
2(1− x)P1

(
r

1− x

)
dx,

for 1
6 ≤ r <

1
4 and 1

4 ≤ r <
1
2 .

Above we have seen that P1(r) has breakpoints at 1
4 and 1

2 . This means
that the integral in the expression for P2(r) will have to be split where
r

1−x = 1
4 and where r

1−x = 1
2 , that is where x = 1−4r and where x = 1−2r.

If 1
6 ≤ r < 1

4 , then r
1−x ∈ [ 1/6

1−0 ,
1/4
1/2) = [16 ,

1
2), so we only need the

breakpoint at r
1−x = 1

4 . Then

P2(r) =
∫ 1−4r

0
2(1− x)P1

(
r

1− x

)
dx+

∫ 2r

1−4r
2(1− x)P1

(
r

1− x

)
dx =

=
∫ 1−r4

0
2(1− x)0dx+

∫ 2r

1−4r
2(1− x)(4

r

10x
− 1)dx =

= 36r2 − 12r + 1.

Again, if 1
4 ≤ r < 1

2 , then r
1−x ∈ [ 1/4

1−0 ,
1/2
0 ) = [14 ,∞). That means that

we now only need to split at r
1−x = 1

2 . So

P2(r) =
∫ 1−2r

0
2(1− x)P1

(
r

1− x

)
dx+

∫ 2r

1−2r
2(1− x)P1

(
r

1− x

)
dx =

=
∫ 1−2r

0
x(1− x)(4

r

1− x
− 1)dx+

∫ 2r

1−2r
2(1− x)1dx =

= 12r − 12r2 − 2.
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All this taken together means that

P2(r) =


1, if r ≥ 1

2 ,
12r − 12r2 − 2, if 1

4 ≤ r <
1
2 ,

36r2 − 12r + 1, if 1
6 ≤ r <

1
4 ,

0, if r < 1
6 .

Now that I have shown the idea, I will go on with the general case Pn(r)
for any n ∈ N. We have already seen that the number of separate intervals
increases with n. For n = 0 there were two intervals for r, [0, 1

2) and [12 ,∞).
For n = 1 there are three intervals and for n = 2 four. For n = i the number
of intervals will be i+ 2.

The reason for this is that if n = i, there will be all the breakpoints there
are for n = i − 1 because of the recursive expression, plus one extra. This
new breakpoint will be at r = 1

2+2i , because 2 + 2i is the minimum length
of the radius needed to fill the distance between the two endnodes if all the
addes nodes are placed at the ‘ideal’ place. An example for n = 3 is given
in Figure 2.4.

Figure 2.4: With three added nodes, the mimimum length of r needed for
connection is 1

8 .

Thus we know that for n = i the breakpoints between intervals will be
at r = 1

2 ,
1
4 ,

1
6 , . . . ,

1
2i+2 .

More intervals mean more calculation, because more integrals have to
be computed. The first and last are always simple:
Pn(r) = 0 if r < 1

2i+2 and Pn(r) = 1 if r ≥ 1
2 for all n ∈ N.

So only for the second up to the (n+ 1)th interval an expression needs to be
found. For the ith interval we need to compute

Pn(r) =
∫ 2r

0
n(1− x)n−1

Pn−1

(
r

1− x

)
dx with r ∈

[
1
2i
,

1
2i− 2

)
.

If r ∈ [ 1
2i ,

1
2i−2), then r

1−x ∈ [ 1
2i ,

1
2i−4). This means that the only break-

point we need from Pn−1(r) is the one at 1
2i−2 . We get

Pn(r) =
∫ 1

2i−2

0
n(1−x)n−1

Pn−1

(
r

1− x

)
dx+

∫ 2r

1
2i−2

2(1−x)Pn−1

(
r

1− x

)
dx
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for r ∈
[

1
2i
,

1
2i− 2

)
, i = 2, 3, . . . , n+ 1.

We can conclude that though the number of intervals for which we have
to compute something increases with n, the complexity of the computations
does not increase.

2.3 Conclusions

For each value of n the Pn(r) can be computed using a simple recursive
expression:

P0(r) =

{
0, if r < 1

2 ,
1, if r ≥ 1

2 ,

and for n = 1, 2, . . .

Pn(r) =



0, if r < 1
2n+2 ,∫ 1

2i+2

0 n(1− x)n−1
Pn−1( r

1−x)dx+
+
∫ 2r

1
2i−2

n(1− x)n−1
Pn−1( r

1−x)dx, if r ∈ [ 1
2i ,

1
2i−2),

i = 2, 3, . . . , n+ 1,
1, if r ≥ 1

2 .

This is a recursive expression, which means that to compute Pn(r) one
first has to compute P0, . . . ,Pn−1. And what is more, the number of com-
putations needed per value of n increases with n, so the process will become
slower and slower for large values of n.

What we expect to see is that the Pn(r) will become almost equal to
one even for very small values of r when n becomes really large. Already
with n = 1 and n = 2, in Figure 2.5, we see that the probability that the
two end nodes are connected gets larger for the same values of r.

If n is infinite, the probability will be one from r = 0. This means that
the minimum radius needed to reach a required level of probability decreases
rapidly when the number of nodes increases.

One last remark I want to make is that this method does not only work
if the nodes are added according to a standard uniform distribution, but
also for any other continuous distribution on (0, 1). The only thing that will
have to change in the recursive expression for Pn(r) is the part where the
distribution of the minimum of n independent standard uniform variables
is used. Simply substitute the expression for the new distribution and the
expression will be correct again.
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Figure 2.5: Pn(r) for n = 0, n = 1 and n = 2.
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Chapter 3

The two-dimensional model

Now that the one-dimensional model has been solved it is time to move on to
a model that is a bit more realistic and useful: the two-dimensional model.
This model has some of the same assumptions as the one-dimensional model,
namely that there are two nodes that need to be connected, new nodes are
added randomly and independently, and that all nodes have the same radius.
The difference is that the new nodes will not be added along a straight line,
but in a plane.

It would be nice if the same idea as in the one-dimensional case could be
used in the two-dimensional case. However, this does not work. In the last
chapter the idea was to use a recursive expression by choosing the minimum
of all added nodes and then viewing the remaining problem in exactly the
same way. This works, because communication can only take place from left
to right along the line. But in the two-dimensional case, there will be more
than one path to use, and it is not clear which node to view as the “first”
node.

For this reason, I used a different technique. This is found in the forth-
coming book by Franceschetti and Meester. Most of the ideas and results
in this chapter are taken from this work.

In the first section, I will give a description of the model and state the
question I will try to answer. Then in the second section I will discuss
some theory needed to solve the problem. In section three I will analyse the
problem. Section four gives the conclusions.

3.1 Model description

In this model, the nodes will be added on a plane in R2. Consider a square
with sides of length

√
n. This value is chosen because of its convenience, as

will become clear later on. In this square nodes are added according to a
Poisson process with density λ. This means that nodes are added randomly
and independently from each other, and that the probability distribution of

11
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the number of points in a certain domain D, X(D), is given by

P(X(D) = k) = e−λ|D|
(λ|D|)k
k! .

A connection between two nodes x, y ∈ R2 will be made if the distance
||x − y|| between them is smaller than or equal to 2r. So the connection
function, the probability that two points are connected will be g(x−y) with
g(z)

g(z) =

{
1, if ||z|| ≤ 2r,
0, if ||z|| > 2r.

This model is called the Boolean model because of the zero-one nature of
the connection function.

3.2 The infinite plane

In this section the boolean model will be considered on the infinite plane.
One reason to do this is that on the infinite plane sharp transitions in the
behaviour of the model can be observed. These sharp transitions are known
as phase transitions. These occur when small changes in the parameters of
the model have huge effects on the overall behaviour.

Another important reason to first look at the infinite plane is that the
results derived here can be used in studying the model on a finite part of
the plane. This will be done in the next section.

As said in the last section, the starting point is a Poisson point process
X on the plane with density λ. Two points are connected according to the
connection function, that is, they are connected if and only if the distance
between them is smaller than or equal to 2r. It is always assumed that there
is a point at the origin.

A group of nodes that are connected to each other is called a connected
component. The number of nodes in the connected component at the origin
is denoted by |C|. This number can be one if the node at the origin is not
connected to any other point, that is, if there is no point at all in a circle
with radius 2r from the origin. The percolation function is the probabil-
ity that the connected component at the origin is infinitely large, that is,
θ(λ) = Pλ(|C| =∞). Of course θ(λ) increases when λ increases.

I have already said that the boolean model is a special case of the random
connection model. The phase transition theorem for the random connection
model is the following theorem.

Theorem 3.2.1 There exists a 0 < λc <∞ such that θ(λ) = 0 for λ < λc,
and θ(λ) > 0 for λ > λc.
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This theorem is proven by Franceschetti and Meester. The average num-
ber of connections of a node in a boolean model is called the node degree,
and it is given by ξ = 4πr2λ. The phase transition theorem for the boolean
model can now be given in three formulations, which are all equivalent.

Theorem 3.2.2 (i) In a boolean random network of radius r, there exists
a critical density 0 < λc < ∞ such that θ(λ) = 0 for λ < λc, and θ(λ) > 0
for λ > λc.
(ii) In a boolean random network of density λ, there exists a critical radius
0 < rc <∞ such that θ(r) = 0 for r < rc, and θ(r) > 0 for r > rc.
(iii) In a boolean random network, there exists a critical node degree 0 <
ξc <∞ such that θ(ξ) = 0 for ξ < ξc, and θ(ξ) > 0 for ξ > ξc.

Exact values for ξc, λc and rc are not known. They can be approximated
by computer simulation. This gives ξc ≈ 4.512.

The proof of this theorem is based on Theorem 3.2.1. In the random
connection model, the connection function g(z) is a function from R

2 into
[0, 1] that only depends on the distance between nodes. Every two nodes x
and y are connected with probability g(x− y).

The connection function in the boolean model is indeed a special case
of this g(x− y), so that it is already enough to know that Theorem 3.2.1 is
valid in our model.

Now the critical value of the density λc, in a boolean random network,
will of course depend on the value of r. This is said more formally in the
following proposition.

Proposition 3.2.1 In a boolean random network it is the case that

λc(r) =
λc(1)
r2

.

Proof of Proposition 3.2.1. Consider a boolean random network with
radius 1 and take a realisation G of this network. If you scale all distances
in this realisation with r, you get a scaled realisation Gs. This Gs is a re-
alisation of a boolean random network with radius 1

r and density λ(1)
r2

. The
connections in both realisations are the same, which means that if there is an
infinite connected component at the origin in G, there also is one in Gs, and
if there is not any in G, then also not in Gs. Then we have that the critical
value λc of the density in Gs is λc(Gs) = λc(1)

r2
, and the proposition is proven.

By Theorem 3.2.1 we know that for a given connection function, i.e., for
a given value of r, there exists a critical value λc of the density where a
phase transition occurs. Now if we use the same scaling method as in the
proof of Proposition 3.2.1, we can turn this around and say that for a given
density λ there exists a critical value rc of the radius.
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Say we have a realisation G1 of a boolean random network with radius
r1 and at the critical value λc1 of the density. Now if this model is scaled
with a factor x, we get a realisation G2 of a boolean random network with
radius r2 = r1

x and density λ2 = λ1
x2 . Now, with Proposition 3.2.1, the critical

density of G2 is λc2 = λc1
x2 . This is true for every x > 0, so every value of

r has a correspondig critical density and vice versa. The node degree is
another way of saying this.

Theorem 3.2.2 tells us that the larger the radius, the lower a density is
needed to have a positive probability for an infinite connected component.
And reversely, the larger the density, the smaller the critical value of the
radius. This is of course completely as expected. What has not yet been
considered is how quickly the critical value of r decreases as λ increases and
vice versa.

The first observation to be made is that when the density is high, finite
clusters of points tend to consist of single isolated points. If λ → ∞ those
isolated points are the last finite clusters that remain until there are no
finite clusters left. This is not only the case in the boolean model, but in
any random connection model, as the following theorem shows.

Theorem 3.2.3 In a random connection model at high density, points tend
to be either isolated, or part of an infinite connected component. More pre-
cisely

lim
n→∞

log[1− θ(λ)]
λ
∫
R2 g(x)dx

= 1.

This theorem means that when λ goes to infinity, 1 − θ(λ) behaves as
exp(−λ

∫
R2 g(x)dx), which is the probability that a point is isolated. So

the rate at which θ(λ) tends to one is the same as the rate at which the
probability that a point is isolated goes to zero. A complete proof of this
theorem is not given by Franceschetti and Meester.

Since the boolean model is a special case of the random connection
model, Theorem 3.2.3 is also valid in our case. But it is possible to re-
fine the statement a bit.

In order to have a connected component of size k it is necessary and suf-
ficient that these k points form a connected component and are surrounded
by a certain area of empty space containing no points at all. The area of
empty space needed will be smaller if the k points are closer together. This
means that though Pλ(|C| = k) is small when the density is high, it is larger
when the k points are very close together and the approximately circular
area around them (with radius r) contains no points.

Now, on the condition of a point being at the origin, let Sα be the event
that a disc with radius α contains k additional points (apart from the one
at the origin) and an annulus outside of the disc with width 2r is empty.
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This is a sufficient condition for a finite component of k + 1 points at the
origin. We get

Pλ(Sα) =
(λπα2)k

k!
exp

(
−λπα2

)
exp

(
−λ[π(α+ 2r)2 − πα2]

)
=

=
(λπα2)k

k!
exp

(
−λπ(α+ 2r)2

)
.

If Sα occurs, there is a finite cluster of k + 1 points at the origin, so

Pλ(|C| = k + 1) ≥ Pλ(Sα) for all α, k, λ. (3.1)

This can be refined a bit more to get a better estimate for Pλ(|C| = k+ 1).
First maximize over α to get

Pλ(|C| = k + 1) ≥ max
α
Pλ(Sα) for all k, λ. (3.2)

Now let λ go to infinity and rewrite a bit, then

lim
λ→∞

Pλ(|C| = k + 1)
maxαPλ(Sα)

≥ 1 for all k. (3.3)

In this equation, the maximum of Pλ(Sα) is reached at the point where

α =
k

2πrλ
+O(

1
λ2

),

where O( 1
λ2 ) denotes some function of λ of which the growth is smaller than

that of ( 1
λ2 ) as λ increases. If this expression for α is substituted in (3.3) we

get with (3.1)

lim
λ→∞

Pλ(|C| = k + 1)
exp [−λπ(2r2)− k log λ

k −O(1)]
≥ 1 for all k. (3.4)

This inequality provides a good approximation of Pλ(|C| = k + 1) for all
values of k. This can be seen as follows. First, the value of α for which
Pλ(Sα) is maximal goes to zero as λ→∞. This means that the annulus in
the condition for a finite cluster of k+ 1 points becomes a circle with radius
2r. The disc on the inside of the annulus, with radius α, contains all k + 1
points, so when α goes to zero the points will be very close to each other.

From the necessary condition for an isolated component of size k, as
stated above, it is clear that the empty area that is required becomes a
perfect circle with radius 2r. So the two conditions, the necessary and the
sufficient condition, come to mean the same and this means that the in-
equality provides a good approximation.

It is now possible to make Theorem 3.2.3 of the random connection model
a bit more precise for the case of the boolean model. From (3.4) it is clear
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that for larger values of k the probability of finite components goes to zero
at a higher rate. So the last finite components to disappear as the density
increases are those of size one, or the isolated points. This gives the new
theorem.

Theorem 3.2.4

lim
λ→∞

1− θ(λ)
exp (−λπ(2r)2)

= 1.

Now in the case of a boolean model on the infinite plane we know that
there is, for any given value of r, a critical density λc, which is the minimum
density required for at least a positive probability of an infinite connected
component. Also we know something about the behaviour of the model at
high density.

However, now it is time to study the same model on a finite part of the
plane. This is what we are interested in, since real-life situations will always
be finite.

3.3 Connectivity in a finite square

In this section the boolean model is considered on a finite square Bn of size√
n ×
√
n. The starting point is a boolean model with density λ = 1 and

radius r > 0 on the whole plane. The restriction Gn(r) of this network
is formed by all the nodes that are inside the

√
n ×
√
n square and any

connections between these nodes.
Just as in the last section, we always have the condition that there is

a point at the origin, and again θ(r) denotes the probability of an infinite
connected component being at the origin. The number of nodes inside Bn is
called N(Bn). Because λ = 1, E(N(Bn)) = n. The number of nodes inside
Bn that are part of an infinite connected component on the whole plane is
denoted by N∞(Bn).

To take the model with λ = 1 does not make a real restriction, because
everything that is said in this section also holds for a model with a square
of size 1×1, density λ = n and all distances divided by

√
n. This is because

the model can be scaled and remains essentially the same, as was already
used in the last section.

The percolation function θ(r) is the probability that a point is part of
an infinite connected component in the boolean model on the whole plane.
The following proposition tells something more about θ(r).

Proposition 3.3.1 We have θ(r) = E(N∞(B1)).
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The proof of this proposition is given by Franceschetti and Meester. In the
rest of this section, first almost connectivity will be discussed. This is about
the requirements needed to have a connected component in the square of at
least a certain size. The second subsection will discuss the property of full
connectivity, where all of the nodes inside the square must be connected.

3.3.1 Almost connectivity

Almost connectivity means that at least a certain fraction of all the nodes
inside the square must be connected. Because the percolation function θ(r)
for the boolean model on the whole plane represents the probability that a
node is part of an infinite connected component, it is reasonable to expect
that the fraction of the nodes inside the square that is connected is about
the same as this θ(r). So, if r is at least above the critical value of the
radius, it is possible to make an estimate of the fraction of the nodes that
are connected.

For α ∈ (0, 1) the restriction Gn(r) of a boolean random network is α-
almost connected if it contains a connected component of at least αn nodes.
Because the expected number of nodes inside the square Bn is n, α is the
fraction of the nodes that is connected if n→∞.

The following theorem states that it is not only possible to say for a
certain value of r what fraction of the nodes will be connected, but also to
turn this around.

Theorem 3.3.1 Let
rα = inf

r
(θ(r) > α).

We have that for any α ∈ (0, 1), if r > rα then Gn(r) is α-almost connected
asymptotically almost surely, while for r < rα it is not.

The term “asymptotically almost surely” means that an event occurs
with probability tending to one as n→∞. This theorem and its full proof
are given by Franceschetti and Meester.

This theorem means that for any chosen value α of the fraction of nodes
to be connected, there exists some critical value rα of the radius, and only if
the radius is larger than this critical value the desired fraction of the nodes
will be connected if n → ∞. Note that though this critical value does not
depend on the size n of the square, because θ(r) does not depend on n, the
statement only holds for very large values of n. In the next subsection it
will become clear that the requirements for full connectivity of all the nodes
inside the square do depend on n.

3.3.2 Full connectivity

In the last section is was shown that for a larger fraction of the nodes to be
connected, a larger radius is needed. And it was also shown at what rate
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the radius has to grow as the required fraction increases. For all the nodes
to be connected the radius must be even larger than in the last section, and
it must also increase with the size of the square Bn. But how fast does the
radius have to grow?

The following theorem gives a first indication of the required ratio of the
radius to the length

√
n of the side of the square.

Theorem 3.3.2 Let πr2n = α log n. If α > 5
4π then Gn(r) is connected with

high probability, while for α < 1
8 it is not.

This theorem and the proof are given by Franceschetti and Meester. It
is done in two parts, one to show that the restriction of the boolean random
network is not connected if α < 1

8 and the other to show that it is fully
connected if α > 5

4π. The idea for the second part is that, after dividing the
square into subsquares, for larger values of α all the subsquares will have at
least one node inside it. And by choosing the right size for the subsquares,
it is shown that for α > 5

4π the nodes in adjacent subsquares always make
a connection to each other. These two things taken together mean that all
the nodes inside the square are connected to each other.

The other part can be shown by filling the square with annuli of inner
radius rn and outer radius 3rn, and saying that if there is a node inside the
inner radius but none between the radii, the node inside the inner radius is
isolated. Now if α is small enough, there fit enough of these annuli inside
the square to make the probability that there is an isolated point in at least
one of these annuli positive, and then the restriction will not be connected.

From Theorem 3.3.2 it is clear that in order to reach full connectivity
inside the square, the radius must grow at least as quickly as the logarithm
of the length of the side of the square,

√
n. It also gives some boundaries

for values of rn where there is a full connection at a given n, and for which
values there is not. But what if α is in between 1

8 and 5
4π?

The following theorem makes the necessary rate of growth of r more
precise. It also tells us also something about the intermediate values, if only
in the asymptotic case.

Theorem 3.3.3 Let π(2r)2 = logn+ αn. We have that Gn(r) is connected
with high probability if and only if αn →∞.

The theorem and a proof, which is quite long and difficult, are given by
Penrose. Franceschetti and Meester give the theorem without a full proof
but with a short outline of the most important steps of the proof. These
steps I will also try to explain here.
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The first thing needed is to show that with high probability, isolated
nodes do not appear if and only if αn →∞. The sum of all the events that
a single point is isolated, which has a low probability, is approximated by a
Poisson distribution.

The second step is to show that no possibility of isolated nodes is equiva-
lent with having full connectivity of all nodes inside the box. Seen from one
way, this statement is very logical. Recall from Theorem 3.2.4 that isolated
nodes are the last finite components to disappear when approaching when
the density, or in this case the radius, tends to infinity. So when there are
no isolated nodes left, there will not be any other finite components left and
there is full connectivity. Unfortunately, this is not enough to prove the
truth of the statement; the theorem does not rule out the possibility that
there are very large groups of nodes connected to each other, that are not
connected to nodes inside the box, even if there are no single isolated nodes
in the box left.

It turns out that the behaviour of the restriction of the model inside
the square is exactly the same as that of the longest edge of the nearest
neighbour graph that has the nodes in the square as vertices. And finally
this longest edge converges asymtotically to the longest edge of the minimum
spanning tree of the nodes inside the square. Then it is possible to say that
the restriction Gn(r) is connected if and only if the longest edge in the
minimum spanning tree is smaller than 1

2rn.
All these parts together outline the proof of Theorem 3.3.3.

3.4 Conclusions

The results stated in the last two sections are all that is known about the
two-dimensional case. For partial or α-almost connectivity, we can give an
estimate of the critical radius rα. Then for very large values of n it is possible
to say that, if the radius is larger than the critical radius, a fraction α of all
the nodes inside the square will be part of an infinite connected component.
That is, a fraction α of the nodes inside the square will be connected to each
other.

About full connectivity, we can for some combinations of r and n say
whether there will be full connectivity or not, by Theorem 3.3.2. If the
combination gives a value of α for which this theorem does not say anything,
we have to resort to Theorem 3.3.3. But then we can only look at very large
values of n and scale r accordingly.

These are the only things that can be said about the connectivity in the
two-dimensional case. As I said above, it is not possible to say for any value
of n and r what the probability will be that there is a connection. This
would be what we ideally wanted to know, because this could then be used
to make an estimate of the number of nodes needed to have a certain (high)
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probability of connection for a given r in a real-life situation. What we can
do now is to make sure to arrange our nodes and radii so that the value of
α as in Theorem 3.3.2 is larger than 5

4π. Because all the results also hold in
the scaled version for any value of the density λ, the value of α can also be
influenced by changing the density.



Chapter 4

Discussion and suggestions

In the two last chapters we have seen that for the one-dimensional model we
can give the precise probability that two nodes are connected. This can be
done, with some computation, for any value of the radius and for any num-
ber of addes nodes. In the two-dimensional case, we have seen that making
these precise statements was impossible. We could say something about a
certain fraction of the nodes inside a square being connected, or about full
connection of all the nodes inside the square in the asymptotical case.

The first thing then that would be interesting for further research is
whether something can be said in the non-asymptotical case. Is it possible
to make an estimate or lower or upper bounds for the probability that two
nodes are connected given a certain radius and number of nodes? Or for the
expected fraction of the nodes in a certain area that is connected? These
are interesting questions, that have not been answered yet.

The other thing that I want to discuss here are the applications and
modifications of the theory discussed in this paper. The models as they
stand at the moment are certainly interesting, and a good starting point for
real-life situations. However, there are certain assumptions in the models
that will not be met in real situations. First, there is the assumption that
all the nodes have the same radius of their signal. But that will not be
the case in any situation. It would be nice to have a model that can do
the same things as these models, but with a variable radius. What about
a stochastic radius with some chosen probability distribution? Or choosing
randomly from three different values, one for laptops, one for palms and one
for cell phones? I am sure there are more variations that can be interesting
to study.

Also it would make the model a little bit more realistic if it would be
three-dimensional. In a real situation, not all nodes, or appliances, will be
at the same height. If the differences are small this may not make a huge

21
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difference, but imagine a network in the mountains. This will probably be a
hard thing to do, seeing how going from one to two dimensions complicated
the model a lot. The last thing that may be important or interesting is
disturbances and failure of the signal. If an appliance fails, this could be
seen as the same model with one node less. So by estimating the probability
that a certain number of nodes fails, this problem could be addressed. But
disturbances or static are not covered yet.
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