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Abstract

Modern call centers deal with a wide variety of service requests from
customers. This is partly due to the increasingly divers range of products
that companies have, but also because of the many ways that a call center
can be contacted (telephone, email, IM, etc.). In the past, agents were
trained to deal with all possible types of calls that could arrive at the call
center. The large number of call types arriving at modern call centers makes
it practically impossible to fully train each agent. A typical agent only has
the skills to deal with a limited number of call types.

This has caused a need for methods that describe which call should
be serviced by which agent. These methods should also take several
service level constraints into account, e.g., prioritizing premium customers,
minimizing waiting times of customers and minimizing idle times of agents.
The term Skill-based routing (SBR) is commonly used for such methods.

Modern SBR software packages use heuristic methods that can be
configured by managers. In this paper, we will experiment with some of
these heuristics. We will also attempt to formulate and apply a mathemati-
cal framework that will allow us to improve a heuristic policy. It is our aim
to compare the mathematical approach to the heuristic methods, show the
improvement and investigate its usefulness in practice.

In this paper we will show that the mathematical approach has some
potential. For a small call center example, we describe how we came very
close to improving a heuristic policy, although time limitations stopped us
from actually achieving it. At the same time, we discuss some practical
aspects that will arise if the mathematical approach is ever applied in a real
world call center. Taking all these aspects into consideration, we conclude
the mathematical approach has potential, but is a long way from maturity.

vii



viii



Contents

Preface v

Abstract vii

1 Introduction 1

2 Heuristic skill-based routing 5
2.1 Call selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Agent selection . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Beyond heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Markov Decision Processes 11
3.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Definitions and notations . . . . . . . . . . . . . . . . . . . . 12
3.3 Policy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Value iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Policy iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Temporal Differences . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Approximate Dynamic Programming 27
4.1 Representative states . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Approximating the value function . . . . . . . . . . . . . . . . 28

4.2.1 Linear combination of basis functions . . . . . . . . . 28
4.2.2 Nonlinear combinations . . . . . . . . . . . . . . . . . 30
4.2.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . 30

4.3 ADP Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Approximate Policy Evaluation . . . . . . . . . . . . . 34
4.3.2 Approximate Value Iteration . . . . . . . . . . . . . . 36
4.3.3 Bellman error . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.4 TD(λ), GPI and value function approximation . . . . 38

4.4 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . 40

ix



CONTENTS

5 ADP in a call center 43
5.1 An example: M/M/c . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Uniformization . . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 The costs function . . . . . . . . . . . . . . . . . . . . 45
5.1.3 The real value function . . . . . . . . . . . . . . . . . 46
5.1.4 Approximating the value function . . . . . . . . . . . 46
5.1.5 Other stop criteria . . . . . . . . . . . . . . . . . . . . 47
5.1.6 Performance outside S̃ . . . . . . . . . . . . . . . . . . 48
5.1.7 Changing S̃ . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.8 Temporal Difference Learning . . . . . . . . . . . . . . 50

5.2 An example: M/M/2 with control . . . . . . . . . . . . . . . 52
5.3 An example: multi-skill call center . . . . . . . . . . . . . . . 54

5.3.1 Comparing heuristic policies . . . . . . . . . . . . . . . 55
5.3.2 Improving a heuristic policy . . . . . . . . . . . . . . . 56

6 Conclusions and recommendations 65

A Robot example 67

B M/M/c example 69

C TD(λ) for M/M/2 example 71

D Call center example 73

Bibliography 79

x



Chapter 1

Introduction

Classical call centers were large rooms where service representatives (called
’agents’) wearing telephone headsets would sit in front of computer screens.
Customers called these call centers with, e.g, questions about products or
complaints. Service was focused on keeping the agents busy, thereby trying
to keep waiting times as short as possible for customers. The calls that
were handled by the call center were usually of similar type, making agents’
work very repetitive.

The situation today is quite different. The variety of calls that arrive
at a call center is much wider. This is partly due to the growing number
of services offered by companies, but also because technological advances
have made it possible to contact a call center not just via the phone, but
also via fax, email, text-messages, forums and instant messaging. Managers
have realized that their call centers are not just there to handle complaints,
but are key to increasing customer satisfaction. The classical call center
has evolved into the modern Customer Contact Center. There have even
emerged companies that specialize in running a customer contact center,
allowing other companies to outsource their in house contact center.

The classical call center used a Automatic Call Distributor (ACD) to
assign a call to an agent, as soon as it became available. In the modern
customer contact center, an agent can not take just any call, because he/she
might not have the necessary skills. Therefore, a new system is needed
that can find out what skills are needed for a particular call and which
agents can handle this type of call. With this information, the system can
route the call to the correct agent. This is commonly known as Skill-based
Routing (SBR).

Modern SBR systems combine various sources of information to iden-
tify the type of call. Examples are: the telephone number that the customer
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CHAPTER 1. INTRODUCTION

calls from, the number which the customer has dialed, existing customer
records and an Interactive Voice Response menu. Based on this information,
the SBR system may, e.g., decide that the current call has priority over
other calls, because it is a premium customer. Or perhaps the call needs
to handled by a German speaking agent, an agent with IT skills, a sales
person or somebody with access to financial systems.

Some advantages of SBR are (from the product sheet of Nortel’s 1

Symposium software, Nortel (2003)):

• Call resolution improves, because calls are directed to the most appro-
priately skilled agent the first time.

• Overall call processing time is faster, hand-offs and wait time are min-
imized, cost per call is reduced, and the customer receives more knowl-
edgeable and efficient service.

• Shortening call durations increases the number of calls agents can han-
dle, which in turn enables the contact center to grow in call volume
without hiring more people and to reduce the number of calls aban-
doned by frustrated callers on hold.

• The ability to route and prioritize calls based on required skill set
reduces agent training time and saves on training costs.

• Recognizing agents as individuals with unique skills increases agent
morale and sense of personal investment, which is often reflected in
lower turnover and enhanced job satisfaction and service extended to
callers.

• The ability to understand and leverage the unique skills of agents
gives managers the tools to offer incentives to agents based on their
willingness to learn new skills and expand the scope of the calls they
are able to effectively handle.

The same product sheet also claims

• In real world implementations, skill-based routing has been shown to
increase agent productivity by more than 25 percent.

• One utility customer reported 98 percent first-call resolution and ex-
pedited agent training after implementing skill-based routing.

1On January 14, 2009, Nortel filed for Chapter 11 protection as a result of the financial
crisis. In June 2009 it announced that it would stop operations and sell off all of its
business units. Avaya bought Nortel’s Enterprise Solutions business unit in July 2009,
which includes the Symposium Call Center Server. Integration of both companies is still
underway.
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CHAPTER 1. INTRODUCTION

• A customer combined skill-based routing with specialized 800 numbers
to reduce hold times by 89 percent and wait times by 75 percent, while
at the same doubling the volume of calls handled by their agents.

• A major Las Vegas hotel and casino reported that abandoned calls
dropped from 20+ percent to 4 percent when skill-based routing was
introduced, due to reduced hold times and direct connection to the
agents best able to satisfy callers’ requirements.

• One customer was able to handle a 30 percent increase in call volume
with zero staff growth.

So the advantages of and need for SBR systems is apparent, but its devel-
opment is still in its infancy. In this paper we will start by looking at some
heuristic ideas that are in use in todays SBR systems (chapter 2). In chap-
ter 3 we introduce Markov Decision Processes as a mathematical framework.
Chapter 4 deals with some practical issues concerned with this framework
and shows how these can be addressed. Computer experiments with the dis-
cussed framework are in chapter 5. The paper finishes with a discussion of
the contents and results of this paper and some ideas for further research in
chapter 6.
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Chapter 2

Heuristic skill-based routing

Figure 2.1 below shows some examples of a small call center (from Garnet &
Mandelbaum (2000), where they are named ”I”, ”V”, ”N”, ”X”, ”W” and
”M” designs). The open rectangles on top are the queues for the specified
call types and the circles are groups of agents. So in, e.g., the ”M” design
there are 2 types of calls and 3 groups of agents. Group 1 can handle calls
of type 1, group 3 can handle calls of type 2 and group 2 can handle both
call types.

Figure 2.1: The five canonical designs.

The ”I” and ”V” designs are well known from queueing theory and are
discussed extensively in, e.g., Koole (2008) and Bhat (2008). They have no
need for skill-based routing. The other four designs all use some form of
skill-based routing, although the routing policy is not specified. In, e.g., the
”N” design, the routing policy could be chosen as:

• Let group 2 handle type 1 calls only if there are more than a certain
number of type 1 call waiting in the queue. This policy protects the
type 1 calls, perhaps because these customers pay more for their service
than type 2 customers.

5



CHAPTER 2. HEURISTIC SKILL-BASED ROUTING

• Let group 2 handle type 1 calls only if there are no type 2 calls waiting.
This would minimize idle-time among the group 2 agents.

• Let group 2 always handle type 1 calls, and switch to type 2 calls
if there are no more calls of type 1. So type 1 customers are given
absolute priority, at the expense of the type 2 customers.

There are of course other possible choices for the routing policy. Note that
these policies are perfectly understandable for a call center with only a
limited number of call types and groups, but they do not scale directly to
larger situations. That is why modern SBR systems use heuristic routing
policies that can be formulated in a more general way. They fall into two
categories: the Call Selection Policy and the Agent Selection Policy. The
call selection policy specifies which type of call an agent should take when
he becomes available and the agent selection policy determines which agent
group (if any) should handle an arriving call of a certain type. An agent
selection policy and a call selection policy together from ”the” routing policy.
In the next few sections, we will discuss some of these heuristic policies.

2.1 Call selection

Fixed Priority Routing (FP)
FP assigns a fixed priority to each call type. When an agent becomes
available, the call with the highest priority is chosen. Usually, the priorities
correspond to numbers 1, 2, 3, . . ., where 1 is the highest priority. FP is
sometimes also called Head-of-the-Line, or HOL. This policy is studied in
various situations in Kleinrock (1975) and Koole (2008).

Shortest Remaining Processing Time (SRPT)
As the name suggests, SRPT selects the call with the shortest service time.
According to Schrage & Miller (1966), this policy minimizes the average
waiting time. It does mean that calls with a long service time are punished
in favor of the shorter calls, and this situation is not always desirable. See
Bansal & Harchol-Balter (2001) for more details.

Longest Queue (LQ)
This policy selects the first call from the longest queue that can be served
by the agent that becomes available.

Time Function Scheduling (TFS)
TFS offers a more general framework for routing policies. Costs are associ-
ated with the amount of time that the first call in the queue of a certain call
type has been in the system. The call with the lowest costs is served next.
An example of this is the so-called Generalized cµ (or Gcµ) rule. Delay costs
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CHAPTER 2. HEURISTIC SKILL-BASED ROUTING

are quantified in terms of (convex, increasing) functions Ci(t), where Ci(t)
is the costs incurred by a type i call that spends t units of time in the system.

Let µij be the reciprocal of the average service time of call type i by
agent group j, with µij = 0 if agent group j does not have the skills to
serve a call of type i. The Gcµ rule then states that when an agent in group
j becomes available, the first call in the queue of type i∗ should be served,
where i∗ is calculated from

i∗ = argmax
i

C ′i(Wi(t))µij .

Here, Wi(t) is the waiting time of the first call of type i in the queue at time
t and C ′i is the derivative of Ci. See Gans, Koole & Mandelbaum (2003) for
more information on the Gcµ rule. Other applications of TFS can be found
in Koole & Pot (2006).

Credit rule (CR)
This rule was described in a previous BMI paper by Marengo (2004). The
idea of this rule is to select calls based on whether they are getting better
or worse service than if each call type would be served by its own private
queue. To do this, each call type k is assigned an amount of credit Uk(t)
using

Uk(t) =
Ck −Nk(t)
Ck − ak

. (2.1)

Here:

• Nk(t) is the number of type k calls that are in the system at time t.

• ak is the offered load of the queue corresponding to type k calls.

• Ck is the minimum number of agents with skill k (i.e., who can handle
calls of type k) that would be needed if each call type had its own pri-
vate queue. This can be calculated using the standard M/M/c model
(Erlang C). For this model, it is known that

P(Wq > t) = C(c, a)e−(cµ−λ)t,

with

C(c, a) =
∞∑
j=c

π(c) =
ac

(c− 1)!(c− a)
π(0)−1.

Here, λ is the parameter of the arrival (Poisson) arrival process, µ the
reciprocal of the expected service time, a = λ/µ (the offered load) and
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CHAPTER 2. HEURISTIC SKILL-BASED ROUTING

π(0)−1 =
c−1∑
j=0

aj

j!
+

ac

(c− 1)!(c− a)
.

So if we have a service level specified as P(Wq > t) < α, then we should
take for Ck the smallest c such that

C(c, a)e−(cµ−λ)t < α.

From queueing theory (see, e.g., Koole (2008)) we know that if the load
ρk = ak/Ck < 1, the Erlang C system is stable. Since we choose Ck large
enough for this, we have Ck > ak and thus the denominator in equation
(2.1) is always positive.

So if the numerator in equation (2.1) is positive, then Nk(t) < Ck and thus
there are still agents available to handle a type k call. Similarly, if Uk(t) < 0,
then there is a shortage of type k agents. This leads to the following call
selection rule: if an agent becomes available, select the call (from the set of
calls for which he has the necessary skills) with the highest amount of credit.

Note that, since this call selection rule calculates Ck from the M/M/c
queue, it assumes a homogeneous Poisson arrival process and exponential
service times. If either one of these assumptions do not hold in a call center,
one should (if possible) reformulate this heuristic before applying it.

There is a similar rule for agent selection. We discuss this in the
next section, where it is called Value rule.

2.2 Agent selection

Least Busy (LB)
This policy selects the agent group which is the least busy, i.e., the agent
group for which the number of occupied agents divided by the total number
of agents in that group is the smallest.

Hierarchical routing (HR)
Hierarchical Routing assigns priorities to agent groups, per call type. This
is usually defined using a matrix, where each call type is a column and each
agent group is a row. For example,

π =

 1 2 3
2 1 3
2 0 1

 .
8
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So agents from group 2 handle type 2 calls with priority 1, type 1 calls
with priority 2 and type 3 calls with priority 3. Similarly, call type 2 is
handled by agents from group 2 (priority 1) or group 1 (priority 2), but
not by group 3 (denoted by the priority 0). See Koole & Pot (2006) for a
description of the method.

Overflow routing (OR)
OR is an extension of HR, with the additional assumption that there exists
an ordering of the priorities of the groups such that πrj > πsj for r > s. For
example,

π =

 1 1 0
0 2 1
2 3 2

 .
Note that the values in the columns are increasing, showing the ordering of
the priorities. Again, see Koole & Pot (2006) for more details.

Value rule (VR)
This rule (also from Marengo (2004)) approaches the agent selection prob-
lem similar to how the Credit Rule deals with the call selection problem.
We start with some definitions:

• As before, Ck is the minimum number of agents with skill k that would
be needed if each call type had its own private queue.

• Bi(t) is the number of agents in group i that is available at time t.

• Aik = 1 if agents from group i have skill k (and can thus answer calls
of type k). Aik = 0 otherwise.

• There are n call types and M groups.

Using these definitions, we see that
M∑
i=1

AikBi(t) is the total number of agents

with skill k available at time t. Now define Qk(t) as

Qk(t) =
Ck

M∑
i=1

AikBi(t)
.

So a high Qk(t) value means that there are few agents with skill k available.
Each agent group i is now assigned a value Pi(t) via

Pi(t) =
n∑
k=1

AikQk(t).

9
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So a high Pi value means that agents from group i are busy. The agent
selection rule now becomes: if a call of type k arrives, select an agent from
group i that has the lowest Pi value. If there are no agents available with
skill k, then the call is put in the appropriate queue.

Here also, it is worth emphasizing that Ck is calculated using an Er-
lang C model. So it assumes that customers arrive according to a
homogeneous Poisson process and that the servers have exponential service
times.

2.3 Beyond heuristics

Besides heuristics, it is also possible to formulate a mathematical model for
a call center and (in theory) to obtain a policy from that. In the next section
we will discuss Markov Decision Processes as a mathematical framework for
call centers.

10



Chapter 3

Markov Decision Processes

3.1 An example

We will explain the theory of Markov Decision Processes (MDP) using an
example from Russel & Norvig (2002), although we change it slightly to
suit our wishes. Consider a robot that lives in the following 3× 4 world

×

The robot can move freely in this world and enter each of the squares (which
are called ’states’), except for the state with the × in it. For convenience
each of the states is referred to using its ’coördinates’, i.e. the top left corner
is (1, 1) and the bottom right corner is (3, 4). The goal of the robot is to
reach the state (1, 4) and to avoid (2, 4). If the robot enters (1, 4) it will
receive a reward of 1, but if it enters (2, 4) it will ’pay’ 1. Most real world
problems deal with costs, so we use the same terminology here. Hence, the
reward of 1 is replaced by a costs of −1. With this, the world looks a bit
like

−1
× +1

The robot can move in either of the 4 directions of the wind: N,E, S and
W (we will call these ’actions’). If the given direction happens to mean
that a wall or the forbidden state (2, 2) is hit, then the robot will return to
its original position. Finally, each move will costs 0.02 (for, e.g., usage of
power or fuel).

11



CHAPTER 3. MARKOV DECISION PROCESSES

If this would be the entire model, then reaching (1, 4) and avoiding
(2, 4) is easy. Suppose that the robot starts in (3, 1), then it can end up
in (1, 4) by doing 2 moves N and 3 moves E, after which it will pay of
−1 + 5 · 0.02 = −0.9 (so it will actually receive 0.9). Similar solutions hold
for the other states.

Unfortunately, in reality if the robot moves N in (3, 3) its wheels
might spin somewhat and cause the robot to end up in (3, 4) instead of
(2, 3). To model this, let the robot go toward its intended position with
probability 0.8, and let it veer to the left or right with probability 0.1.
Figure 3.1 illustrates this for the case that the action is E.

u
6

p = 0.1

- p = 0.8

?
p = 0.1

Figure 3.1: Probabilistic movement of the robot when the action is E.

By adding these deviations to the model, a probabilistic element is intro-
duced into the formerly deterministic model. As a consequence it is no longer
guaranteed that the robot will reach (1, 4). It would be interesting to know
which action should be taken in which state, in order to get the best outcome.
And how do we measure the ’goodness’ of an outcome? These questions will
be addressed in the next few sections. But before we answer them, we will
need some notation and background information on MDPs.

3.2 Definitions and notations

Discrete vs. continuous time
The model described in the previous section is an example of a discrete
time MDP. The robot does not move continuously, but only at specific
moments in time. In this paper we limit our attention to discrete time
MDPs, because that is all that is needed to model the call-center problem
of chapter 5. But continuous time MDPs are often used in practice, see the
references in section 3.8.

Decision epoch
Each point in time where the system moves from one state into another is

12
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called a decision epoch. Time will be denoted by t.

States
A state s ∈ S describes the dynamics of the system at the current decision
epoch. For our robot, the state would be its location in the 3 × 4 world.
The set of all states S may be either finite or infinite.

Actions
When the system reaches a certain state s, a decision has to be made as
to which action to choose. A particular action is denoted by a and the set
of all actions that can be chosen in state s by As. Note that in general As
depends on the current state s. Our robot model has As = {N,E, S,W}
which is independent of s. But if it would, for example, be forbidden for the
robot to hit the outer walls, then this dependence would also be present.

Transition Probabilities
When choosing an action a ∈ As the system transitions from state s ∈ S to
some state j ∈ S. Because of the probabilistic nature of the problems at
hand, it is uncertain which state j this is. We do assume that we know (or
can find) the probability of transitioning from state s to j when action a is
taken: p(j|s, a). As usual these probabilities satisfy∑

j∈S
p(j|s, a) = 1.

As an example, suppose that our robot is in state s = (1, 1) and that we
choose action a = E. There are now 3 possibilities for the next state: it can
be

• (2, 1) with p(j = (2, 1)|s = (1, 1), a = E) = 0.1,

• (1, 1) with p(j = (1, 1)|s = (1, 1), a = E) = 0.1 (it bounces of the
northern wall),

• (1, 2) with p(j = (1, 2)|s = (1, 1), a = E) = 0.8.

Note that these probabilities do indeed sum to 1.

Costs
As a result of choosing the action a and thus moving from state s to state
j, some costs are paid. We denote these costs by c(s, a, j). Later on, we will
see what the costs look like for our robot example.

13
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Policies
A policy describes which action to take in which state. We use the notation
π for the policy, so that π(s) gives the action to be taken in state s. We
will see an example of a policy in the next section, where we continue with
the robot example.

Comparing policies
If we want to compare policies, then we need some kind of quality measure
of a policy. There are three popular choices for this measure. The first one is
called the total expected costs criterion, which basically sums all costs that
are accrued along the way:

∞∑
t=0

Ec(st, π(st)). (3.1)

Here, s0 is the state that the system starts in. The expectation can be
calculated using the transition probabilities

Ec(st, a) =
∑
j∈S

p(j|st, a) · c(st, a, j).

Note that the sum in equation (3.1) is an infinite sum, so there might be
problems with convergence. This criterion is mostly used in problems that
have a clear terminal state, such as our robot example. If the terminal state
is reached with probability 1 and no more costs are accrued afterward, then
there are no issues with convergence of the infinite sum.

A second option is to use the discounted total expected costs crite-
rion, which solves the convergence problem by discounting all costs to the
current time. If we denote the discount factor by γ (0 < γ < 1), then the
discounted total expected costs criterion leads to

∞∑
t=0

γtEc(st, π(st)).

Note that if the expectation is bounded, then so is the infinite sum. This
criterion is often taken in financial situations, where the time value of money
is important. The third choice is the average expected costs criterion. It
calculates a time average of the expected costs using

lim
T→∞

1
T

T∑
t=0

Ec(st, π(st)).

Which criterion to choose, depends on the situation that the MDP is applied
to. For our robot example, the total expected costs criterion is probably the
most natural one to choose. But in this paper, we want to model a call
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center, and for this situation the average expected costs criterion is a more
appropriate choice. So we will use that criterion throughout this paper.

3.3 Policy evaluation

In the previous section, we chose to use the average expected costs criterion
to measure the quality of a policy π. Define these costs as gπ, then

gπ := lim
T→∞

1
T

T∑
t=0

Ec(st, π(st)).

In practice gπ is found from the so-called Poisson equations (see chapter 7
of Bertsekas & Tsitsiklis (1996))

gπ + V π(s) =
∑
j∈S

p(j|s, π(s)) [c(s, π(s), j) + V π(j)] ∀s ∈ S. (3.2)

The V π(s) is called the relative value function and can be interpreted as the
asymptotic difference in total costs that results from starting the process in
state s instead of some reference state. We take s = 0 as the reference state
and set V π(0) = 0.

The Poisson equations are usually solved by iteratively updating V π
n (·)

from known values of V π
n−1(·):

V π
n (s) =

∑
j∈S

p(j|s, π(s))
[
c(s, π(s), j) + V π

n−1(j)
]

∀s ∈ S.

These new values are then made relative to the reference state using

V π
n (s)← V π

n (s)− V π
n (0) ∀s ∈ S.

The average expected costs gπ are now approximated by filling in the refer-
ence state and the current values V π

n (s) in the Poisson equations (3.2)

gπn = −V π
n (0) +

∑
j∈S

p(j|0, π(0)) [c(0, π(0), j) + V π
n (j)]

=
∑
j∈S

p(j|0, π(0)) [c(0, π(0), j) + V π
n (j)] .

(3.3)

This method is known as Policy Evaluation:
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Algorithm 1: Policy Evaluation

1. Set n = 0 and V π
0 (s) = 0 ∀s ∈ S

2. n←− n+ 1

3. V π
n (s) =

∑
j∈S

p(j|s, π(s))
[
c(s, π(s), j) + V π

n−1(j)
]

∀s ∈ S

4. V π
n (s)← V π

n (s)− V π
n (0) ∀s ∈ S

5. gπn =
∑
j∈S

p(j|0, π(0))
[
c(0, π(0), j) + V π

n−1(j)
]

6. Stop if gπn has converged, otherwise go to step 2

Convergence of this method is guaranteed, provided that the model and
policy are such that there exists a state that is reached with probability
one, for all starting states. Furthermore, the resulting value function and
average expected costs are then independent of the starting state s0. See
chapter 7 of Bertsekas & Tsitsiklis (1996).

Note that the update of V π
n (s) in step 3 is calculated from the previ-

ous estimates V π
n−1(j). Even though for some of the V π(j) we already have

a better estimate V π
n (j), we do not use this information. This is known as

synchronous updating. If we do use this information, then the update rule
becomes

V π(s) =
∑
j∈S

p(j|s, π(s)) [c(s, π(s), j) + V π(j)]

which is known as asynchronous updating. One of the advantages of
asynchronous updates is that only one storage vector is needed for V π(s),
which can be quite useful for large problems. Another advantage is that a
parallel implementation is possible, where each parallel component updates
some of the states.

We can apply policy evaluation to our robot example. Suppose that
we have the following policy

π(s) =
→ → →
↓ × →
→ → ↑ ↑

So if we are in, e.g., (3, 4), then the policy tells us to go N . Note that this is
not a very good policy, since moving N from (3, 4) brings the robot to the
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square with 1 costs. For each state s there are costs of c(s, π(s), j) = 0.02
and the transition probabilities p(j|s, π(s)) are as described in section 3.2.
We model two more properties of the two end states (1, 4) and (2, 4):

• When one of the end states is reached, the system will always remain
in that end state (both states are called absorbing). For, e.g., the end
state (1, 4) this is denoted by p(j = (1, 4)|s = (1, 4)) = 1.

• When one of the end states is first reached, a one-off cost of either 1
or −1 is payed. All further transitions occur with no costs.

Appendix A shows Matlab code that uses (synchronous) policy evaluation
to calculate gπ. The resulting value function is

V π(s) =
−0.5381 −0.7494 −0.7744 −1
0.9530 × 0.8300 1
0.9280 0.8998 0.8748 1.0083

The resulting average expected costs are gπ = 0. This makes sense since,
in the long run, the robot will end up in one of the two end states. The
first time it gets there, costs are paid. However, once the system is there, it
remains there with no further costs. Hence, gπ = 0.

3.4 Value iteration

In the previous section we assumed that a policy was given and we saw
a method to approximate the average expected costs. Usually we are more
interested in what the best policy would be. One way to find such an optimal
policy is to simply try all possible policies, i.e.,

π∗ := argmin
π

gπ.

In our robot example, this means that we have to evaluate at most
|A||S| = 411 = 4194304 policies. So even in a low-dimensional problem, the
number of policies to evaluate is huge (exponentially large).

We tackle this problem using an iterative technique similar to the
one used in the previous section to solve the Poisson equations (3.2). This
time, we start with the Bellman equations

g∗ + V ∗(s) = min
a∈As

∑
j∈S

p(j|s, a) [c(s, a, j) + V ∗(j)]

 ∀s ∈ S (3.4)
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where g∗ is defined by

g∗ := min
π
gπ.

The Bellman equations (3.4) resemble the Poisson equations (3.2) used in
policy evaluation, but the main difference is that the Bellman equations are
no longer linear (because of the non-linear min operator). Fortunately, the
iterative approach still works, resulting in V ∗n (s) from which the g∗n can be
calculated. Once the g∗n have converged, an optimal policy π∗ can be found
using

π∗(s) = argmin
a∈As

∑
j∈S

p(j|s, a) [c(s, a, j) + V ∗(j)]

 ∀s ∈ S. (3.5)

This is known as Value Iteration:

Algorithm 2: Value Iteration

1. Set n = 0 and V ∗0 (s) = 0 ∀s ∈ S

2. n←− n+ 1

3. V ∗n (s) = min
a∈As

{∑
j∈S

p(j|s, a)
[
c(s, a, j) + V ∗n−1(j)

]}
∀s ∈ S

4. g∗n =
∑
j∈S

p(j|0, π(0))
[
c(0, π(0), j) + V ∗n−1(j)

]
5. Stop if g∗n has converged, otherwise go to step 2

6. Calculate an optimal policy from equation (3.5)

As with Policy Evaluation, updates can be done either synchronous or
asynchronous. A proof of Value Iteration can be found in chapter 7 of
Bertsekas & Tsitsiklis (1996).

Appendix A contains Matlab code of Value Iteration applied to the
robot example. The resulting value function is

V ∗(s) =
−0.8994 −0.9276 −0.9526 −1
−0.8744 × −0.7731 1
−0.8463 −0.8213 −0.7937 −0.5929
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with the optimal policy

π∗(s) =
→ → →
↑ × ←
↑ ← ← ↓

and average expected costs g∗ = 0. Note that, with time average expected
costs of 0, the robot has no incentive to move toward one of the end states
quickly. Therefore, it takes the safest route possible, in order to avoid the
state with cost 1. So in the (3, 4) state, the robot will move south, since
that is the only way that it can be sure to avoid (2, 4) state. Similarly, the
policy tells the robot to move west in the (2, 3) state.

In Ng (2008), Value Iteration is applied to this example, but now
with the total discounted expected costs criterion. To illustrate the impact
of the criterion, we show below the resulting value function and optimal
policy when using the total discounted expected costs criterion (with
discount factor γ = 0.99):

V ∗(s) =
−0.86 −0.90 −0.93 −1
−0.82 × −0.69 1
−0.78 −0.75 −0.71 −0.49

with optimal policy

π∗(s) =
→ → →
↑ × ↑
↑ ← ← ←

With the total discounted expected costs criterion, costs made in the first
few steps have a relatively big impact on the total expected costs. Hence,
in this case, the optimal policy takes a bit more risk in the states (2, 3) and
(3, 4), trying to avoid costs in the beginning.

3.5 Policy iteration

Value Iteration approximates the optimal value function and then uses this
to find an optimal policy. Policy iteration focuses more on the policy and
uses the value function as a means to improve policies. The algorithm starts
with a random policy and calculates its value using Policy Evaluation. This
is called the Policy evaluation step. The value function resulting from the
policy evaluation step can then be used to obtain an improved policy, using
an approach similar to equation (3.5). This is the Policy Improvement step.
The complete algorithm is:
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Algorithm 3: Policy Iteration

1. Set n = 0 and choose an arbitrary policy π0

2. n←− n+ 1

3. Policy evaluation step:
Calculate V π

n−1(·) using Policy Evaluation

4. Policy improvement step:
Obtain a new policy πn from

πn(s) = argmin
a∈As

{∑
j∈S

p(j|s, a)
[
c(s, a, j) + V π

n−1(j)
]}

∀s ∈ S

5. Stop if πn = πn−1, otherwise go to step 2

This algorithm converges to an optimal policy, see chapter 7 of Bertsekas &
Tsitsiklis (1996). Policy Iteration usually converges in just a few iterations,
but each iteration involves a computationally expensive Policy Evaluation
step.

If we apply Policy Iteration to the robot example (see appendix A
for the source code), we get the same policy and value function as with
Value Iteration:

π∗(s) =
→ → →
↑ × ←
↑ ← ← ↓

with the optimal value function

V ∗(s) =
−0.8994 −0.9276 −0.9526 −1
−0.8744 × −0.7731 1
−0.8463 −0.8213 −0.7937 −0.5929

and average expected costs g∗ = 0.

We used the Policy Evaluation method from section 3.3 in the algo-
rithm above, but there are other methods to evaluate a policy. We will see
one of them in the next section. This leads to a more general version of
Policy Iteration, called Generalized Policy Iteration:
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Algorithm 4: Generalized Policy Iteration

1. Set n = 0 and choose an arbitrary policy π0

2. n←− n+ 1

3. Policy evaluation step:
Calculate V π

n−1(·) by evaluating π using ’some’ algorithm

4. Policy improvement step:
Obtain a new policy πn from

πn(s) = argmin
a∈As

{∑
j∈S

p(j|s, a)
[
c(s, a, j) + V π

n−1(j)
]}

∀s ∈ S

5. Stop if πn = πn−1, otherwise go to step 2

3.6 Temporal Differences

The methods of the previous sections all calculate an estimate of V(s) by
looking at the expected result of a particular action. This is illustrated in
Figure 3.2 (adapted from slides belonging to Sutton & Barto (1998), where
they discuss TD methods in the context of rewards instead of costs (hence
the rt+1)). Temporal Difference (TD) methods take a different approach
than the iterative methods discussed before. The idea is to simulate a
number of sample paths, and investigate V(s) along each sample path. At
each transition in a sample path, an error term is calculated. This error is
then propagated back to the previous states in the sample path. Figure 3.3
(also from Sutton & Barto (1998)) shows an example of one such sample
path.

Figure 3.2: Approach of the methods from the previous sections.
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Figure 3.3: The approach of Temporal Difference methods.

We will show how this idea can be used to evaluate a given policy π.
The algorithm is known in literature as TD(λ), and is listed below. The
parameter λ is a constant, with λ ∈ [0, 1).

Algorithm 5: Policy Evaluation with TD(λ)

1. Initialize all the V(s) arbitrarily

2. Generate a number of sample paths. Each
sample path should start at randomly selected state and
stop as soon as the reference state s = 0 is reached

3. Repeat for each sample path ω

(a) Let ω = (s1, s1, . . . , sT )

(b) e(s) := 0 ∀s ∈ S
(c) For j = 1 . . . T − 1 do

i. dj ←− c(sj , π(sj), sj+1) + V(sj+1)− V(sj)
ii. e(sj)←− e(sj) + 1
iii. For all s ∈ {s1, . . . , sj}

V(s)←− V(s) + αdje(s)
e(s)←− λe(s)

So the algorithm starts by initializing V(s) and generating some sample
paths using the given policy π. Then we calculate the temporal differences
dj , which represent the error between c(sj , π(sj), sj+1) + V(sj+1) and V(sj).
In the remaining lines, this error is redistributed over previous states that
were visited on the current sample path. For this, the eligibility trace e(s)
is used. This trace indicates what fraction of the current error dj should be
assigned to which state. At each transition from sj to sj+1, the state sj is
added to the eligibility trace via e(sj)←− e(sj) + 1. Line 3(c)iii shows how
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dj is redistributed along the visited states in the sample path and how the
eligibility trace is decayed by a factor λ. The parameter α is a step size and
indicates how fast the dj should be propagated. Here, we take α to be a
constant, but in general it is also allowed to depend on j.

So with the parameter λ, we control how far the error dj is redis-
tributed among the previous states in the sample path. For λ = 0, the
error dj is assigned completely to sj . As λ gets larger, more states become
’eligible’ for a part of the error.

The TD(λ) algorithm for evaluating a policy can be plugged into
Generalized Policy Iteration (Algorithm 4) to obtain a method for gen-
erating an optimal policy. There are also algorithms that avoid the use
of Generalized Policy Iteration. Instead, they extend the idea behind
TD(λ) and incorporate a method to find optimal policies while doing the
simulations. See the references in section 3.8.

We will experiment with TD(λ) a lot in this paper, so we omit its
application to the robot example here.

3.7 Terminology

Markov Decision Process is a term that is mostly used in the area of
Operations Research. But the same subjects also arise in other fields, such
as Control Theory (engineering and economics) and Reinforcement Learning
(computer science). Hence the literature contains multiple names for the
same techniques. For example, the Bellman equations are also known as
the Hamiltonian equations, the Jacobian equations, the Hamilton-Jacobian
equations or the Hamilton-Jacobian-Bellman equations. Another example is
Value Iteration. In the field of Numerical Analysis the synchronous variant
is known as Jacobi iteration, whilst the asynchronous version is know as
Gauss-Seidel iteration. See, e.g., Burden & Faires (1997).

We will use the names from MDP, as this is the area that this paper
is in. But the reader should be aware of the existence of various names, to
avoid confusion and also to be able to read literature from the other fields.
A nice overview is given in section 1.5 of Powell (2007).

3.8 Further reading

Other MDP algorithms
There are some variations on Policy Iteration. One of these is Multistage
Lookahead Policy Iteration, which uses the m-step transition probabilities
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and corresponding costs when calculating a new policy πn+1. Using this
lookahead may improve convergence, but as the lookahead gets larger the
computational effort increases rapidly. See Bertsekas & Tsitsiklis (1996)
for more information. Another variation is called Modified Policy Iteration,
which tries to overcome the heavy computations involved in the Policy
Evaluation step. It replaces this step by a limited number of Value Iteration
steps, which obtains an estimate of the value function more quickly
(but less accurate) than Policy Evaluation. See again Bertsekas & Tsitsik-
lis (1996) or Powell (2007) (where it is called Hybrid Value/Policy Iteration).

TD(λ) and variations
The TD(λ) algorithm that we described in section 3.6 is based on the
Backward view of TD(λ), from Sutton & Barto (1998). They also introduce
the Forward view of TD(λ) and show that both methods are equivalent,
although the backward view is more easily implemented. The same book
also discusses TD(λ)-based methods that can be used to get an optimal
policy, without the aid of Generalized Policy Iteration. These methods
estimate ’state-action pair values’ Q(s, a) instead of ’state values’ V(s).
Examples are Sarsa(λ), Q-learning and R-learning. See Sutton & Barto
(1998) for details, but be aware that their discussion focuses on MDPs with
the discounted total expected costs criterion and that have a terminal state.

Continuous Time MDP
As discussed at the beginning of section 3.2 we limit our attention to Dis-
crete Time MDPs. But there are some interesting applications of continuous
time MDPs. In Bacon (2008) they are used for the control of traffic lights
and in Martin (2003) for describing the dynamics of riding a bicycle. The
classic Pendulum Problem can also be modeled using Continuous Time
MDPs, see Lagoudakis & Parr (2003).

Partially Observable MDP
In the robot example, we assumed that the robot always knows in which
state it is. So the environment is completely observable. If this is not
the case, then the robot does not know what action π(s) to take. This
complicates the situation considerably. POMDPs are explained in Russel
& Norvig (2002) in the context of the robot example. There is also a web
page on POMDPs (see Cassandra (2003)) which contains papers, tutorials,
problems from literature and sample code.

Constrained MDP
It is not always sufficient to minimize expected costs (or maximize expected
reward), as we do in MDP. For instance in telecommunications, it is
desirable to maximize throughput whilst keeping delays to a minimum.
This leads to some additional constraints. And for, e.g., a delivery agent,
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we need to maximize rewards obtained from making the deliveries, but also
take into account some limitations for the total time spent en route. More
on Constrained MDPs can be found in, e.g., Altman (1999).

3.9 Bibliographic notes

The iterative approach described in the previous sections is the central idea
behind Dynamic Programming. This technique is often used in practice to
solve a wide range of optimization problems. The term ’dynamic’ refers
to the decisions to be taken over time and the term ’programming’ is a
synonym for optimization. However, nowadays computers are often used
to implement dynamic programming algorithms, so ’programming’ is often
thought of as ’computer programming’.

The foundations of the field of dynamic programming were laid by
Richard Bellman in his text Bellman (1957). However, the paper by Shapley
(1953) on stochastic games includes Value Iteration as a special case. In
the 1960s, the basics for other computational methods (such as Policy
Iteration) were developed in papers like Howard (1960), Manne (1960) and
Blackwell (1962). The seventies continued with research on finite MDPs,
resulting in books such as Derman (1970), Mine & Osaki (1970) and Ross
(1970). Since then, thousands of papers have been published on MDPs and
each year new books emerge.

A recent overall treatment of the field of MDP is given in Puterman
(1994). The first two chapters of Bertsekas & Tsitsiklis (1996) also form a
good introduction. Much of this chapter has been based on Powell (2007),
which is very readable and also contains theory to be used in the following
chapters. For students at the VU University Amsterdam, there is a course
on MDP. The lectures notes are online (see Koole (2006)). There is also
another BMI paper which explains the basics of MDP (as part of a text
about the ideal racing line), see Beltman (2008).

Currently, MDPs are used to model and control large, complex, non-
linear systems. Many of these applications use the variations of MDPs that
were discussed in the previous section (CTMDPs, POMDPs, constrained
MDPs). Solving these models is difficult and usually requires some sort of
approximation method. These approximation methods are the subject of
much recent research. We will discuss this in the next section.
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Chapter 4

Approximate Dynamic
Programming

In theory, we are now able to model a call center as an MDP, apply a dynamic
programming algorithm (i.e., value iteration) and find a skill-based routing
policy. But there are some practical limitations that arise when trying to do
so:

1. Step 3 of Value Iteration tries, for each state s, all actions a in order
to find the action that minimizes the expression between the braces.
In practice, the state space S can be so large that looping over all
states would take too much time on most modern computers. The
problem is even worse, since the minimization has to be done in each
iteration. This is what is commonly known in literature as The curse
of dimensionality.

2. Step 3 of Value Iteration implies that there is some sort of array on
the computer that can hold all of the V(s). This is often impossible,
because of the size of the state space.

We will discuss possible solutions to these issues and will also see some
dynamic programming techniques that use these solutions. Because dynamic
programming now no longer gives exact solutions, this field is referred to as
Approximate Dynamic Programming (ADP).

4.1 Representative states

As mentioned, looping over all states in, e.g., Value Iteration is compu-
tationally not feasible. In practice, Value Iteration is not done over all
states, but only over a representative subset. This representative set of
states is denoted by S̃. Choosing the states that make up S̃ is usually
done with some sort of prior knowledge about the practical system that
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is being modeled. For instance, in section 5.1 we will experiment with the
M/M/c queue, where the state space consists of the number of persons in
the system. From queueing theory, it is known that the system will be in
the smaller states most of the time (see, e.g., Koole (2008)). Hence, if we
take S̃ = {0, 1, . . . , 20}, then we concentrate value iteration on the smaller
states. Of course, the approximation of the value function might be of very
bad quality outside S̃. This needs to be kept in mind when interpreting or
using the resulting value function.

Another approach is to determine the set of representative states via
some form of random sampling. This sampling could be completely random,
but then the resulting states need not be representative. Usually, the
sampling is done with the transition probabilities. This could be done
online (while Value Iteration is running) or offline (using, e.g., a simulation
before running Value Iteration).

Sometimes, asynchronous Value Iteration can provide a solution. If
the state space can be divided up into smaller parts and value iteration is
feasible on each part, then Value Iteration can be performed asynchronously
and in a distributed setting. This idea may also benefit from the increasing
amounts of computing power that becomes available via providers such as
Amazon and Google.

4.2 Approximating the value function

Storing the value function on a computer is not always possible, due to the
fact that the size of the state space (|S|) is too large. A solution to this
problem is to approximate the value function V(s) by a fixed structure that
is characterized by a parameter vector r, with |r| � |S|. Then only the
parameter vector r needs to be stored. Such an approximation is usually
denoted by Ṽ (s; r). The choice of the approximating structure can be based
on, e.g., ease of computation or some prior knowledge of the real value
function. We will discuss some possible choices below.

4.2.1 Linear combination of basis functions

This is a fairly general idea that approximates V(s) by

Ṽ (s; r) =
k∑
i=1

riφi(s),

where φi(s) are the so-called basis functions. Or, as they are often called in
the Artificial Intelligence community, features. Choosing the basis functions
is somewhat of an art form and usually requires both experience and
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substantial knowledge of the problem that is being modeled. An example
of this can be found in Restrepo, Henderson & Topaloglu (2008), where
the deployment of ambulances is considered. The basis functions there are
created by, e.g., modeling missed calls and unreachable calls.

It is also possible to choose basis functions from a general class of
functions. Examples of such classes are:

Polynomials
Suppose s is not a vector, e.g, s ∈ N , then φi(s) = si−1 is often chosen.
Hence, Ṽ (s; r) is a polynomial of degree k − 1. This choice is motivated
by the fact that a function can be approximated by its k-th degree Taylor
polynomial. The method can be easily extended to the situations with a
higher-dimensional state space.

Piecewise constant functions
Here, the φi(s) are taken to be constant on a part of the state space,
and 0 elsewhere. Besides the choice of the ri, the partitioning of the state
space needs to be decided upon. This technique is also known as State
Aggregation, and was one of the first ideas to be applied to value function
approximation.

Piecewise linear functions
In this case, the φi(s) are linear on the state space, but are allowed to
change slope depending on the part of the state space.

Piecewise polynomials
The previous two choices for the basis functions are an example of piecewise
polynomials (of degree 0 and 1, respectively). It is also possible to use
polynomials of a higher degree. An example are the so-called Splines. With
this technique, n-degree polynomials are constructed on each ’interval’.
These polynomials are created in such a way that the first (n−1) derivatives
of the functions meeting in a ’split point of the interval’ are equal. Hence,
splines provide a smooth approximation to the value function. Note that,
in general, this is not really necessary when using piecewise polynomials
to approximate the value function. We are only interested in the value
function at the split points, and have no need for the value function on the
inside of the interval. So the approximation to the value function may just
as well be discontinuous.

Sine functions
This choice is based on Fourier theory, which states that every function can
be written as an infinite sum of sine functions.
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Functions with small support
In general, it is advisable to take functions that are non-zero on only a
small part of the state space (i.e., have small support). It ensures that
when a component of the parameter vector r changes, it only effects the
value function on a small part of the state space. This makes such a choice
computationally efficient. Examples of functions with small support are
B-splines (actually, all piecewise polynomials) and Radial Basis Functions.
Polynomials and sine functions are typical examples of functions that do
not have a small support.

4.2.2 Nonlinear combinations

It is also possible to look for an approximating structure to the value function
that is not linear in its parameters. For example,

Ṽ (s; r) = u · e−v·s + w,

with r = (u, v, w). In general, Ṽ (s; r) can consist of various nonlinear func-
tions, such as trigonometric functions, max/min operators, logarithms and
Gaussian type functions.

4.2.3 Neural Networks

A neural network is a technique that is inspired by the workings of the
human brain. The elementary processing units of the brain are called
neurons. Each neuron is connected to many other neurons and together
they form a complex network. A tiny piece of this network can be seen in
Figure 4.1, which is a drawing by Cajal (1904). The drawing shows some
triangular shapes A, B, C, D, E (the cell-bodies of the neurons) and a
lot of wires interconnecting the neurons. In reality, a region of one cubic
millimeter contains over 104 cell bodies and kilometers of wire.
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Figure 4.1: Drawing of a part of the human cortex.

Figure 4.2: Schema of a neuron.

Figure 4.2 shows the schema of a neuron. A neuron consists of three parts:
the dendrites, the soma (also called cell-body) and the axon. Roughly
speaking, the dendrites are the input devices that deliver information from
other neurons to the soma, using an electrochemical process. The soma is
the ’central processing unit’ which performs some processing step and then
produces output. This output is then taken over by the axon and passed on
to dendrites of other neurons.
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Figure 4.3: An artificial neuron.

An artificial neuron is shown in Figure 4.3. It has the same architecture as
a real neuron: inputs, the neuron itself and some outputs. The processing
is done using a function f , which takes the weighted sum of inputs and
produces some outputs. The output of the node can be this weighted sum,
i.e. f(x) = x. But there are other choices possible, e.g., step function, sign
function and sigmoid function. See Figure 4.4.

Figure 4.4: Some choices for the activation function.

When these neurons are combined, we get what is called a Neural Network.
The neurons are organized in layers. The input neurons form the input layer,
the output nodes the output layer. In between the input and output layer,
multiple hidden layers can be created. An example of a neural network with
one hidden layer can be seen in Figure 4.5

32



CHAPTER 4. APPROXIMATE DYNAMIC PROGRAMMING

Figure 4.5: An example of a neural network.

Neural networks have been used for many purposes in the past, one of
them being function approximation (see the references in section 4.4). In
order for the network to approximate a given function, the weights need
to be chosen such that the approximation is good. In practice, the weights
are not chosen but learned by a training procedure. The idea is to give
the neural network inputs for which we know the corresponding outputs
(a training set). After the input has been processed by the network, the
generated output can be compared to the desired output. The result of this
comparison can then be used to update the weights in the network. This
training procedure is summarized as follows:

Algorithm 6: Neural Network Training

1. Choose a network architecture and initialize all weights randomly

2. Take an input/output pair (I,O) from the training set

3. Enter I into the network, resulting in output Õ

4. Compare O and Õ and update the weights in the network using
a technique called Backpropagation

5. If there are examples left in the training set, go to 2.
Otherwise, stop

The key to this algorithm is Backpropagation. We will not explain the details
of this technique here, but it can be found in many textbooks on neural
networks, e.g., Rojas (1996).
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4.3 ADP Algorithms

4.3.1 Approximate Policy Evaluation

This algorithm is basically the same as regular Policy Evaluation, except for
the use of the representative set of states S̃ and the updating of r instead
of V(s)

Algorithm 7: Approximate Policy Evaluation

1. Set n = 0 and initialize r0 randomly

2. n←− n+ 1

3. ∀s ∈ S̃:

V̂ (s; rn−1) =

{∑
j∈S

p(j|s, π(s))
[
c(s, π(s), j) + Ṽ (j; rn−1)

]}

4. Update rn−1 to rn using the approximating structure Ṽ (s; rn−1)
and its new estimates V̂ (s; rn−1)

5. g∗n =
∑
j∈S

p(j|0, π(0))
[
c(0, π(0), j) + Ṽ (j; rn)

]
6. Stop if g∗n has converged, otherwise go to step 2

7. Calculate a policy similar to equation (3.5)

The key to this algorithm is the update of rn−1 to rn in step 4. The way
that this is done depends on the approximating structure Ṽ (s; rn). We will
look at this in more detail for the various approximating structures that
were introduced in the previous section.

Linear combination of basis functions
When Ṽ (s; r) is a linear combination of basis functions, then rn is often
calculated from

rn = argmin
r

∑
s∈S̃

ws

(
Ṽ (s; r)− V̂ (s; rn−1)

)2
. (4.1)

This is a weighted least squares problem, which has been well studied in the
past. It can be rewritten as

rn =
[
ATWA

]−1
ATW · V̂ (·; rn−1).
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Here, the matrix A is given by

A =


φ1(s1) φ2(s1) . . . φk(s1)
φ1(s2) φ2(s2) . . . φk(s2)

...
...

. . .
...

φ1(sR) φ2(sR) . . . φk(sR)


with

S̃ = {s1, s2, . . . , sR} .

The weight matrix W is

W =


w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 0 . . . wR

 .

This method is guaranteed to result in the r that achieves the minimum.

Nonlinear combinations
When Ṽ (s; r) is a function that is nonlinear in the parameters r, then the
minimization in equation (4.1) can still be used, although it is considerably
more difficult. But nonlinear optimization has been studied extensively and
there are several methods available that can do the minimization, although
it is not guaranteed that they end up with a global minimum. It is typically
a local minimum, but it at least provides some minimization. Examples
of the available methods are Bisection, Newton’s Method, Quasi-Newton
Methods, Gradient Descent Techniques (also known as Steepest Descent
Techniques) and Nonlinear Conjugate Gradients. See Burden & Faires
(1997).

Choice of the weights
In practice, not all parts of the state space are equally important. The
weights ws in equation (4.1) are used to make sure that the resulting rn
provides a nice fit on an important part of the state space. For example, in
Roubos & Bhulai (2009) ADP is applied to the M/M/c queue. The state is
defined as the number of customers in the system. From queueing theory, it
is known that the system is more likely to be in the smaller states. Hence,
the weights are taken as ws = ρs, where 0 < ρ < 1 is the load of the system.

Neural networks
When Ṽ (s; r) is a neural network, the parameters r are the weights on
the various connections between the layers. Updating these weights is
done in a training step, where the V̂ (·; rn−1) serve as training set. The
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resulting error in the right hand side of equation (4.1) is then spread over
the various weights using backpropagation, which is essentially Gradient
Descent applied to the neural network architecture (see Sutton & Barto
(1998)). A detailed description of the backpropagation algorithm can be
found in Rojas (1996).

4.3.2 Approximate Value Iteration

There is also a ADP variant of Value Iteration and (Generalized) Policy
Iteration. They are extended in a similar way as we did for Approximate
Policy Evaluation in the previous section.

Algorithm 8: Approximate Value Iteration

1. Set n = 0 and initialize r0 randomly

2. n←− n+ 1

3. ∀s ∈ S̃:

V̂ (s; rn−1) = min
a∈As

{∑
j∈S

p(j|s, a)
[
c(s, a, j) + Ṽ (j; rn−1)

]}

4. Update rn−1 to rn using the approximating structure Ṽ (s; rn−1)
and its new estimates V̂ (s; rn−1)

5. g∗n =
∑
j∈S

p(j|0, π(0))
[
c(0, π(0), j) + Ṽ (j; rn)

]
6. Stop if g∗n has converged, otherwise go to step 2

7. Calculate a policy similar to equation (3.5)
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Algorithm 9: Approximate (Generalized) Policy Iteration

1. Set n = 0, initialize r0 randomly and choose arbitrary policy π0

2. n←− n+ 1

3. Policy evaluation step:
Evaluate policy πn−1 on S̃, which gives V̂ (s; rn−1)

4. Update rn−1 to rn using the approximating structure Ṽ (s; rn−1)
and its new estimates V̂ (s; rn−1)

5. Policy improvement step:
Obtain a new policy πn from

πn(s) = argmin
a∈As

{∑
j∈S

p(j|s, a)
[
c(s, a, j) + Ṽ (s; rn)

]}
∀s ∈ S̃

6. Stop if πn = πn−1, otherwise go to step 2

7. Calculate g∗n from

g∗n =
∑
j∈S

p(j|0, π(0))
[
c(0, π(0), j) + Ṽ (j; rn)

]
8. Obtain a policy similar to equation (3.5)

4.3.3 Bellman error

It is also possible to tune the parameter vector r in Ṽ (s; r) directly from the
Bellman equations. To do this, we define the Bellman error as

D(s; r) = −g−Ṽ (s; r)+min
a∈As

∑
j∈S

p(j|s, a)
[
c(s, a, j) + Ṽ (j; r)

] , s ∈ S̃.

(4.2)
We are then interesting in finding r∗ such that

r∗ = min
r

∑
s∈S̃

[
wsD

2(s; r)
]
,

where ws are weights. Unfortunately, the g is unknown so we can not apply
the above directly. This method could be combined with a short simulation
run to estimate g, but then a ’reasonable’ policy is needed to be able to run
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the simulation. Another option is to start with a ’reasonable’ policy and r
and estimate g from

g̃ =
∑
j∈S

p(j|0, π(0))
[
c(0, π(0), j) + Ṽ (s; r)

]
. (4.3)

But finding a ’reasonable’ policy and r is not very easy. Therefore, in
practice, the simulation run is usually chosen as the desired method for
estimating g.

So applying the Bellman error method is not very straightforward,
because of the choice of g. But once g has been chosen, the minimization
can be dealt with using the nonlinear optimization techniques discussed in
section 4.3.1, e.g., gradient descent. For completeness, the entire algorithm:

Algorithm 10: Bellman Error Method

1. Choose a reasonable policy π

2. Approximate g̃ using, e.g., a short simulation run

3. Find an approximation to r∗ from

r∗ = min
r

∑
s∈S̃

[
wsD

2(s; r)
]
,

which results in an approximation Ṽ (s; r∗) of the value function

A variation on this theme is to use a minimization that is not of the least
squares type. For instance, one could use

r∗ = min
r

∑
s∈S̃

|wsD(s; r)| .

In the literature, algorithm 10 is usually used.

4.3.4 TD(λ), GPI and value function approximation

In section 3.6 we mentioned that the TD(λ) algorithm can be used in the
Generalized Policy Iteration scheme (algorithm 4) to find an optimal policy.
After doing so, this results in a estimate of the value function in all states
that were visited on the various sample paths. These estimates can then be
used to create an approximation of the value function, which, in turn, can
be used for decision making in a real life system. In theory, this should work,
but there are some practical considerations:
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• Number of sample paths in TD(λ)
The accuracy of the approximation of the value function in a particular
state is determined by the amount of times that it is updated during all
the sample paths. So using more sample paths gives higher accuracy,
but also increased computation times.

• Starting point of the sample paths
Each sample path should start at a random state and continue until
it reaches the reference state. A sample path that is started ’far away’
from the reference state will probably be longer than a sample path
started ’closer’ to the reference state. So the starting point has a direct
influence on computation times and size of arrays. It also roughly
determines which states will be visited often and thus affects accuracy
of the TD(λ) method and thus also convergence of GPI.

• Choice of λ in TD(λ)
A value for λ that is too small will not propagate errors far enough,
and if it is too large the errors will propagate too far.

• Choice of α in TD(λ)
The parameter α determines how quickly errors are propagated along
the sample path. It can be a constant but ideally, this parameter should
be large for inaccurate states and small for accurate states. That is why
it is often related to the amount of times that a state is updated.

• Convergence of GPI
GPI improves policies based on the value function that results from
TD(λ). This works fine for states that were accurately approximated
by TD(λ), but can not reasonably be expected to work in inaccurate
states. So perhaps GPI should be stopped when two consecutive poli-
cies are equal in states that were visited ’often’. An alternative is to
compute the average costs g∗n and stop GPI when these values start
increasing.

• Which approximating structure to use
Do we take a neural network? It is known to be a universal approxi-
mator, so that makes it an attractive choice. But training it is quite
slow. Or do we use some form of polynomial, hoping that the value
function is of this form?

• When to fit the approximating structure
If an approximating structure Ṽ (·; r) is used, we need to determine
when to fit it. Do we fit it after one sample path? Or after all sample
paths? Or during a sample path? Or do we update a fit as soon as we
decide that a state is accurate (i.e., when it has been updated a certain
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number of times)? And do we use Ṽ (·; r) in the TD(λ) algorithm, for
instance to initialize the value function?

These choices are usually made based on experimental results and some
domain knowledge. We will experiment with these issues in our examples in
chapter 5.

4.4 Bibliographic notes

Research in ADP dates to the 1950s when ”the curse of dimensionality”
was first recognized in the operations research community (Bellman &
Dreyfus (1959)). This ”curse of dimensionality” was considered to be such
a big problem, that the operations research community essentially left
MDP for dead. But people from the field of artificial intelligence recognized
the potential of MDPs for machine learning purposes and picked up the
research on ADP. One of the earliest uses of ADP they came up with
was training a computer to play a game of checkers (Samuel (1959)). The
research that grew out of the artificial intelligence community is nicely
summarized in the review by Kaelbling, Littman & Moore (1996) and the
introductory textbook Sutton & Barto (1998).

As technical developments lead to increasingly powerful computers,
people from the field of engineering control and the field of operations
research picked up ADP again, realizing that the ”curse of dimensionality”
might be lifted. Extensive literature now exists within the engineering
control community, see, e.g., White & Sofge (1992). At first they seemed
to be unaware of the efforts that had already been put into ADP by the
artificial intelligence community. This changed around the mid nineties,
with, e.g., the publication of Bertsekas & Tsitsiklis (1996). They wrote from
a control perspective, although the influences from operations research and
artificial intelligence are apparent. More recently, papers were published
that brought together the engineering control, artificial intelligence and
operations research communities. See, e.g., the papers by Si, Barto, Powell
& Wunsch (2004) and Tsitsiklis & Roy (1996).

Nowadays, ADP is applied to a wide variety of complex systems.
These systems usually have large state spaces and severe nonlinearities.
Some examples of such systems are (from Roy (2001)):

• Call Admission and Routing,

• Strategic Asset Allocation,

• Supply-Chain Management,

40



CHAPTER 4. APPROXIMATE DYNAMIC PROGRAMMING

• Emissions Reduction,

• Semiconductor Wafer Fabrication.

Currently, much research is being done on how to approximate the value
function. Chapters 7 and 11 of Powell (2007) discuss some methods, such as
regression models, neural networks and (piecewise) linear approximations.
In Deisenroth, Peters & Rasmussen (2008), Gaussian Processes are used as
an approximating structure. Konidaris & Osentoski (2008) uses the Fourier
Basis. Another recent idea is to iteratively update the basis functions (and
not just the coëfficiënts), in order to better approximate the value functions.
See, e.g., Mahadevan (2005).
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Chapter 5

ADP in a call center

In this chapter we return to the situation of a call center and use it to
experiment with techniques from this paper. We will look at three different
call centers: we start with the classicM/M/c queueing model, using it mostly
to do some relatively easy experiments. Then we modify this example slightly
to a special case of M/M/2 and show how an optimal policy can be obtained.
The last example deals with a more general example of a call center.

5.1 An example: M/M/c

In this section, we will apply Approximate Policy Evaluation to the classic
M/M/c queueing model. This model has only one possible policy:

• Agent selection: arriving calls are either served by an agent (if one
is available), or put in the queue.

• Call selection: when an agent becomes available, it serves the first
customer in the queue (if one is available).

The M/M/c model is not very realistic for a call center, since, e.g., it
can handle only one type of call. But it can serve as an excellent model
to illustrate the workings of the techniques from this paper, in particular
because there exists a closed-form expression for the value function.

In order to be able to do policy evaluation, we need to specify the
transition probabilities. But the M/M/c queueing model is a continuous
model, so this needs to be converted to a discrete time model. Also, we
need to choose a costs function. Both issues are discussed below.

5.1.1 Uniformization

Uniformization is a technique developed by Jensen (1953) to convert
continuous time Markov chains into discrete time Markov chains. It is
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explained in various textbooks, e.g., Tijms (2003) and Puterman (1994).
The explanation here is based on Koole (2006).

In continuous time Markov chains, the system leaves states at a rate
that can vary per state. The idea behind uniformization is to add dummy
self-transitions to each state. These are created in such a way that the
transition rate out of a state becomes equal for all states. Hence, the
expected amount of time that the system spends in a state is constant.
With this property, the system can be viewed as a discrete event system.

Mathematically, this is formalized as follows. Suppose that x ∈ S,
y ∈ S and define the rate of transition from state x to state y in the
continuous time Markov chain as λ(x, y). Now choose a γ such that∑

y

λ(x, y) ≤ γ.

We construct the new process with transition rates λ′(x, y) by setting

λ′(x, y) = λ(x, y) ∀x 6= y.

The dummy transition rates from x to itself are now taken such that that
all rates out of x sum to γ:

λ′(x, x) = γ −
∑
x6=y

λ(x.y) ∀x ∈ S.

This new process has expected transition time 1/γ. The original transition
rates are usually scale by γ, so that the λ′(x, y) can be interpreted as the
transition probabilities and a transition occurs each time step.

We will explain this technique for the M/M/c queue. Here, arrivals
occur according to a Poisson process and the service time distribution is
exponential. We will denote the parameter of the arrival process by λ and
the parameter of the exponential service time distribution by µ. The model
is schematically depicted in Figure 5.1.

Figure 5.1: Schema of the M/M/c birth-death process.

The first step of uniformization is to scale the transition rates by γ. From
the schema it is clear that γ = λ+ cµ. Hence,
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λ← λ

γ
, µ← µ

γ
.

When that is done, the dummy self-transitions are added:

λ′(x, x) = 1− λ−min(c, x)µ x ∈ S = N0.

In discrete time Markov chains it is more natural to talk about transition
probabilities instead of transition rates. With the usual notation of p(y|x)
for the probability of a transition from state x to state y, the transition
probabilities become

p(x− 1|x) = min(c, x)µ x > 1
p(x+ 1|x) = λ x ≥ 0
p(x|x) = 1− λ−min(c, x)µ x ≥ 0

The update rule for Policy Evaluation becomes

V̂ (n; s) = c(s) + λṼ (s+ 1; rn−1)

+ min(s, c)µṼ ([s− 1]+; rn−1)

+(1− λ−min(s, c)µ)Ṽ (s; rn−1).

5.1.2 The costs function

Until now we have always dealt with the situation where costs were associ-
ated with transitions from one state to another. In the case of call centers,
it is more natural to consider costs that depend on the amount of time that
was spent in a certain state. For instance, with the M/M/c queue, holding
costs may be associated with the amount of time a customer spends in the
queue. Suppose that these holding costs are h per time unit, then the costs
function

c(s) = hs

reflects the costs of being in state s. Note the difference with the previous
notation of the costs function: c(s, π(s), j).

If we set h = 1, then the costs function c(s) = s leads to a special interpre-
tation of the expected average costs g. Costs correspond to queue lengths,
so g is the average queue length (usually denote by ELq in queueing theory).
So minimizing the costs leads to a minimal average queue length, which is
an important key performance indicator for a call center. This illustrates a
crucial role of the costs function: it provides a way to control the process and
steer solutions away from undesirable states. Therefore, the costs function
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should be chosen with care, otherwise ADP techniques might come up with
very unpractical results.

5.1.3 The real value function

For the M/M/c queue there exists an analytic expression for the value func-
tion. Following Bhulai & Koole (2003), we use the number of customers in
the system as state space, so S = N0 (although there are other possibilities,
see the section about state disaggregation in Roubos & Bhulai (2009)). The
costs function is

c(s) = s.

For 0 ≤ s ≤ c the value function is then given by

V (s) =
g

λ

s∑
i=1

F (i)− 1
λ

s∑
i=1

(i− 1)F (i− 1), (5.1)

where F (i) is defined as

F (i) =
i−1∑
k=0

(x− 1)!
(x− k + 1)!

(µ
λ

)k
and the average expected costs g can be calculated from

g =
[

1
ρ
F (c) +

1
1− ρ

]−1

·
[
cF (c) +

cρ

1− ρ
+

ρ

(1− ρ)2

]
(5.2)

For s ≥ c+ 1, V(s) is given by

V (s) = −(s−c)ρ
1−ρ

g
λ + V(c)+(

(s−c)(s−c+1)ρ
2(1−ρ) + (s−c)(ρ+c(1−ρ))ρ

(1−ρ)2

)
1
λ

(5.3)

5.1.4 Approximating the value function

We will start by confirming some of the results that were obtained in Roubos
& Bhulai (2009). There, a second degree polynomial is used as an approx-
imating structure for the value function. The set of representative states is
taken to be S̃ = {0, 1, . . . , 20}. We use the same setup, but will try various
approximating structures:

• Second degree polynomial. This is implemented in Matlab using a
weighted version of the polyfit function. See Canós (2003). The weights
are chosen as described in section 4.3.1, i.e., ws = ρs.
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• Neural network with 1 hidden layer. We used Netlab, a neural net-
work package by Nabney & Bishop (2003).

• Third degree (cubic) splines. Matlab has some built-in functions for
dealing with piecewise polynomials. We used interp1 to create the
splines and ppval to evaluate the results.

These structures were discussed in section 4.3.1. The results can be seen
in Table 5.1 and the corresponding source code is in appendix B (after
(un)commenting the correct lines).

λ µ c g g(V 1) gpol gnn gspl
4 2 8 2.00 2.00 1.9836 2.0353 1.9828
10 8 5 1.25 1.28 1.2444 1.2950 1.2472
8 2 16 4.00 4.01 3.9260 3.8492 3.9268
5 1 10 5.04 5.08 4.9328 4.9899 4.9628
3 2 3 1.74 1.70 1.6582 1.7506 1.7179
10 4 5 2.63 2.68 2.5369 2.4614 2.6039
15 5 4 4.53 4.37 4.2247 4.2846 4.2796
3 2 2 3.43 3.33 3.2068 3.4862 3.2130
9 3 4 4.53 4.36 4.2247 4.3106 4.2796

Table 5.1: Results for M/M/c queue.

The first three columns show the parameters λ, µ and c of the M/M/c
model. The fourth column contains g, obtained by Roubos & Bhulai (2009)
from equation (5.2). Column five (g(V 1)) lists the results that they found
when using a second degree polynomial. The last three columns contain the
approximations of g that resulted from the source code in appendix B. As
can be seen, all structures find reasonable estimates of the correct g. The
neural network and cubic spline outperform the polynomial, but it should
be mentioned that training the neural network is a time consuming process.
Fitting a spline or a polynomial is much faster.

5.1.5 Other stop criteria

In the previous section we stopped the simulations when two consecutive
estimates of the average expected costs differed by less than 0.1%. Mathe-
matically, this becomes: ∣∣∣∣gn − gn−1

gn−1

∣∣∣∣ < 0.001. (5.4)

In practice, this is not the best stop criterion to use. It might just be a
coincidence that two consecutive approximations of g are close together.
There are some other possibilities to choose from:
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• In equation (5.4), the value 0.001 can be set to something smaller, e.g.,
0.00001.

• Stop when equation (5.4) has occurred, say, k times consecutively.

• Stop when the maximum and minimum of the last k estimates are
’close’ together.

These choices provide a bit more confidence that Value Iteration is stopped
upon actual convergence. But since, in general, we do not have the exact
value function, non of the stop criteria above guarantee that convergence
has occurred. They are heuristic choices.

We experimented with these options on the three approximating structures
in Table 5.1 and were able to improve most of the entries in the last three
columns. For instance, the neural network for the parameters λ = 10, µ = 4
and c = 5 results in gnn = 2.4614. If we change the stopcriterion and
demand equation (5.4) to occur 10 times, then this results in gnn = 2.6289,
which is a somewhat better approximation of the required 2.63.

5.1.6 Performance outside S̃

We chose the set of representative states as S̃ = {0, 1, . . . , 20}, based on the
considerations in section 4.1. Since we fit the approximating structure of the
value function to these states, we can not reasonably expect performance to
be very good outside S̃. But it is still interesting to see what happens there.
We investigate this with the M/M/c queue with parameters λ = 4, µ = 2
and c = 8. As can be seen from Table 5.1, all three methods give quite
accurate results for g. Figure 5.2 shows a plot of the three approximating
structures, each trained on S̃ = {0, 1, . . . , 20}, but plotted on [0, 40].

48



CHAPTER 5. ADP IN A CALL CENTER

0 5 10 15 20 25 30 35 40
0

500

1000

1500

s

polynomial

 

 
Real value function
Approximation

0 5 10 15 20 25 30 35 40
0

500

1000

1500

s

neuralnetwork

 

 
Real value function
Approximation

0 5 10 15 20 25 30 35 40
0

500

1000

1500

s

spline

 

 
Real value function
Approximation

Figure 5.2: The three approximating structures on [0, 40].

The polynomial produces a value function that looks like a straight line.
This is to be expected, since the real value function is essentially a straight
line for the first few states. And because of the weights, these states are the
ones that the polynomial is fitted to. Both the neural network and the spline
approximate the value function well on S̃, but fail outside the representative
set of states. So, as expected, performance outside S̃ is not very good. Hence,
Figure 5.2 emphasizes again the importance of choosing the states that are
in S̃. They should be truly representative for S, because if the value function
is needed at a point outside S̃, then the approximating structure can not be
trusted.

5.1.7 Changing S̃

Above, we used a single interval [0, 20] to fit the approximations. It would
be interesting to see what happens if we try to fit the value function on
various disjunct parts of the state space. In the M/M/c example, we could
try to fit the value function on the intervals [0, 10] ∪ [20, 30] ∪ [40, 50] and
see how the approximations behave in between the intervals. It seems
reasonable to expect that the approximating structure should be able to
capture the true value function on the states in between the intervals.
Figure 5.3 shows the results.
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Figure 5.3: The three structures trained on [0, 10] ∪ [20, 30] ∪ [40, 50].

Unfortunately, non of the structures is able to learn the correct value func-
tion from the disjunct intervals. Performance on [0, 10] seems to be reason-
able, but after that, the situation deteriorates quickly, even on intervals that
were part of the fitting process. We experimented a bit more with this idea,
because the results seemed somewhat surprising and disappointing to us.
But after trying various other parameters, intervals and structures, we can
only conclude that training on disjunct intervals has no beneficial effects on
the approximations. The only consequent behavior we noticed was that the
approximations were usually good on the first few states. This is probably
because we took s = 0 as the reference state and set V(s) = 0. We can not
give a reasonable explanation for the bad performance on the larger states
in S̃.

5.1.8 Temporal Difference Learning

We also implemented the TD(λ) algorithm for the M/M/c example. First,
we investigate the influence of the constant α. Figure 5.4 shows the simula-
tion results for various values of α. They were generated with 1000 sample
paths and parameter λ = 0 for TD(λ). The M/M/c parameters are as in
the previous section, i.e., λ = 4, µ = 2 and c = 8.
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Result of TD(0) with α=0.5
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Real value function
Result of TD(0) with α=0.3
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Result of TD(0) with α=0.1

Figure 5.4: TD(0) for α = 1, 0.5, 0.3 and 0.1.

So α has a smoothing effect, but as α gets smaller the temporal differences dj
are not propagated anymore, leading to a decrease in accuracy. For now, we
fix the value of α to 0.5 and continue with an investigation of the parameter
λ of TD(λ). Figure 5.5 shows the results.
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Real value function
Result of TD(λ) with λ=0.1
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Real value function
Result of TD(λ) with λ=0.5
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Real value function
Result of TD(λ) with λ=0.7
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Real value function
Result of TD(λ) with λ=0.8
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Figure 5.5: TD(λ) for λ = 0, 0.1, 0.5, 0.7, 0.8 and 0.9.

As you can see in the figure, propagating the dj further down the sample
path has a considerable positive effect on the simulation results. Although for
values of λ ≥ 0.8, the estimates for smaller states become more inaccurate.
But in general, TD learning does a nice job.

5.2 An example: M/M/2 with control

In the M/M/c example there is only one policy, so looking for an optimal
policy with Generalized Policy Iteration is not very useful. To include
control into the example, we modify the example somewhat. We assume
that there are only 2 servers available, a fast server which serves with rate
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µ1 and a slow server that serves with rate µ2. Of course, µ1 > µ2. At each
decision epoch (which can be an arrival or a service completion), a decision
needs to be made about which server to use. In Koole (1995) it is shown
that the optimal policy is of threshold type, i.e., the slow server is only used
if there are a certain number of customers in the system after the decision
epoch.

We follow the approach of Koole (1995) and define a state as a pair
(x, i), where x is the number of customers in the queue and at the first
server, and i ∈ {0, 1} the number of customers at the second server. The
costs function that we used is c(x, i) = x+ i.

The TD(λ) algorithm can now be applied together with the General-
ized Policy Iteration scheme. We used a step size α = 0.001 with 50000
sample paths (randomly initialized somewhere between the states (0, 0) and
(40, 1)) and λ = 0.9 as parameters for the TD(λ) method. The Generalized
Policy Iteration scheme was stopped when two consecutive policies were
the same in the states (x, i) with x ≤ 20. These choices were made based
on experiments, practical considerations and simulation time limitations.
See also the discussion in section 4.3.4.

This does indeed result in a policy of threshold type. Table 5.2 shows some
of the thresholds that were obtained from the TD(λ) method, together
with those obtained from Value Iteration. As a reference, it also contains a
heuristic value for the threshold, based on the observation that server 1 is
µ1/µ2 times as fast as server 2. So if the system does not have a very high
load, the threshold should be somewhere near µ1/µ2. Note that in Table
5.2, λ is the parameter of the Poisson Process with which the arrivals occur.
The source code for this example can be found in appendix C
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λ µ1 µ2 Ttd Tvi Theur
12 24 2 7 7 12
8 10 2 4 3 5
5 8 2 4 3 4
5 8 1 6 5 8
4 20 4 5 5 5
4 16 2 8 7 8
4 10 2 4 4 5
3 7 2 4 3 3.5
2 10 1 10 9 10
2 8 2 4 4 4
2 6 2 3 3 3
1 2 1 2 2 2

Table 5.2: Threshold values obtained from TD(λ) (Ttd), Value Iteration (Tvi)
and a heuristic (Theur).

So we see that most of the obtained thresholds agree with each other. For
some entries, Ttd and Tvi differ slightly, which is probably because both
policies are optimal. In Bradtke & Duff (1994), a similar experiment is done.

5.3 An example: multi-skill call center

Now that we have some feeling for the techniques that were discussed in
this paper, it is time to move to a more general example of a call center.
Consider a call center with three types of calls and three groups of agents:
one group for type 1 calls, one group for type 3 calls and one group of
generalists that can handle all three call types. Schematically, it is depicted
in figure 5.6.

Figure 5.6: Call center example.
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Each of the groups contains two agents. The service rates are listed in table
5.3. We assume that specialists have a higher service rate than generalists.

2 0 0
0 0 2
1 1 1

Table 5.3: Services rates of agent group (in the rows) vs call type (in the
columns).

The arrival rate for each type is set to λ1 = λ2 = λ3 = 2
3 . Because some

of the heuristic policies discussed in chapter 2 assume a priority among the
arriving types, we give priority to type 3, then type 2 and least priority to
type 1 calls. We also reflect these priorities in the costs function: besides a
costs of 1 for simply being in the system (which we assume equal for each
call type), we add costs for the queue lengths of each call type. Call type 3
will have costs 3 for each customer in the corresponding queue, call type 2
has costs 2 for each customer in the queue and each customer in the queue
of type 1 costs 1.

5.3.1 Comparing heuristic policies

We are now in a position to simulate the policies that were discussed in
chapter 2. Table 5.4 shows the average costs of the various combinations
of policies. They were obtained from a simulation of 100000 iterations. For
reference, we also show the random policy. The source code is in appendix
D.

call selection
random FP LQ gcu CR

random 2.0533 2.0904 403.0384 2.0912 2.0936
HR 1.6934 1.6464 318.3202 1.6480 1.6477

agent- OR 1.6934 1.6464 318.3202 1.6480 1.6477
selection LB 1.6934 1.6464 318.3202 1.6480 1.6477

VR 1.6934 1.6464 318.3202 1.6480 1.6477

Table 5.4: Average costs for various policies.

The table shows that the type of agent selection policy is not very impor-
tant. This is caused by the costs function, which is focused on penalizing
large queue lengths and does not distinguish between agent groups. We
also see that most of the heuristic policies perform better than the random
policy, proving their value. The FP policy is expected to work well, because
we incorporated priorities into the example. The LQ policy performs badly,
showing once again that a greedy strategy is not always best. Gcu and CR
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give similar (and good) results. We should mention here that the C ′i in the
Gcu policy were chosen to reflect the priorities in the model, so it also had
some ’prior’ knowledge.

We can emphasize the difference in performance between the policies
better if we increase the arrival rates, because that causes larger queues and
thus higher costs. If we fix the agent selection policy to HR and increase
the arrival rates, then we get the average costs from table 5.5.

random FP LQ gcu CR

λi = 5
3 34.3259 110.8145 64505.3234 16.0478 110.8145

λi = 6
3 3627.7653 2822.6822 75945.5193 486.9604 5058.0765

λi = 7
3 7701.5039 6769.0164 84044.9723 4232.2200 9385.3620

Table 5.5: Average costs for various policies with higher arrival rate.

The results in table 5.5 clearly show the consequent good performance of the
gcu policy. For completeness, we should mention that all the results from
this section were obtained from one simulation run. If we would want to find
the best policy, then we should do multiple simulations for each policy and
compare the averages.

5.3.2 Improving a heuristic policy

We now attempt to use the MDP framework to improve one of the heuristic
policies. We chose the combination of HR and FP, mainly because they
are quite quick to use. The framework that we implemented in Matlab
allows for the policies to be changed with minor effort, so this choice is not
very important for now.

The state space that we need consists of vectors s = (s1, . . . , s9) such
that

• s1, s2 and s3 correspond to the number of customers of each type that
is currently being served by agents,

• s4, s5 and s6 correspond to the length of the queue of each call type,

• s7, s8, s9 correspond to the number of agents in each group that is
occupied.

Note that if we would choose to ignore the agent selection policy (maybe
because of the results of the previous section), then the last 3 items do not
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need to be in the state space. But we keep them in for now. Also note that
the magnitude of the elements s1, s2, s3, s7, s8 and s9 is limited by the size of
the agent groups. The elements s4, s5 and s6 are the ones that can grow large.

Applying Value Iteration or Policy Iteration+Policy Evaluation to
this problem is not possible, because we do not have the transition proba-
bilities. Also, the size of arrays needed for storing the value function and
policies is becoming a problem. If we limit the queue lengths to say L, then
we need arrays of size 2 · 2 · 2 · L · L · L · 2 · 2 · 2 = 26 · L3. And that is just
for this tiny call center. If we want to find a way for improving heuristic
policies in larger call centers, then we need to avoid using these arrays.

So our only option is to use TD(λ) combined with Generalized Pol-
icy Iteration (as an alternative to, e.g., Value Iteration) and create an
approximation of the value function to prevent a large array. The section
below discusses the results that we obtained.

Results

Before we could get started, we needed to address the TD(λ) related issues
that were listed in section 4.3.4. The list below discusses these issues and
some other optimalisations (for speed and storage) that we did.

• Number of sample paths in TD(λ)
We experimented with this quite a lot and it seemed that 100000
sample paths is about the minimum amount we needed. Also, with
our call center example, we could simulate these sample paths on our
computer in a little over 1.5 hours. This was reasonable to work with.

• Starting point of the sample paths
Simulations were started with 10 calls in the system, randomly dis-
tributed over the available agent groups and queues. This choice was
made with the desired amount of 100000 sample paths and simulation
time of 1 − 2 hours in mind. Starting with significantly more than
10 calls in the system leads to longer sample paths and thus longer
simulation times.

• Choice of λ in TD(λ)
We set the λ to 0.9, which is probably quite high. But we suspected
that with short and limited sample paths an aggressive strategy might
be necessary.

• Choice of α in TD(λ)
We took α = 0.1. We wanted to set this as low as possible. But setting
it any lower than this and the 100000 short sample paths did not give
enough information to fit a good approximating structure.
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• Convergence of GPI
We did not worry about convergence of GPI. Our aim is to improve
the heuristic policy, not to find the optimal policy, so we only do one
iteration.

• Which approximating structure do we use?
We started with a neural network, but discovered that it was quite dif-
ficult to train a good fit. We finally settled on a quadratic polynomial.
More on this later.

• When do we fit the approximating structure?
TD(λ) yields more accurate results as more sample paths are used.
We decided to do as many sample paths as possible (100000) before
fitting the approximation.

• Storage of the value function
When TD(λ) is running its 100000 sample paths (and thus before an
approximation of the value function exists), the value function needs to
be stored. An array is not possible, so we stored the function values in
a Hashtable (key/value pairs). The key is a string representation of the
state vector, the value the corresponding function value. We used Java
for the Hashtable implementation (java.util.Hashtable), because the
Matlab Container.Map does not allow strings as key. The conversion
of state vector to string was also done with a Java call, because the
Matlab versions were much slower.

• Storage of the policy
The use of an array in the policy improvement step of GPI (see step
4 of algorithm 4) is also not possible. But this problem is more easily
prevented, by calculating optimal actions on the fly from the value
function approximation. So we do not store the policy at all.

• Length of the eligibility trace
The temporal differences in TD(λ) are distributed along the eligibility
trace after each step on each sample path. This is a huge amount of
effort and takes lots of time, even though the updates of the value
function may be very small. To reduce the impact of this updating
process, we updated states only if the element in the eligibility trace
was greater than 0.01. This results in an eligibility trace of length 43.
An added bonus is that this also reduces the amount of Java calls to
the Hashtable.

With these choices made, we could start with the simulations. The steps
below summarize our approach of using a combination of TD(λ), Generalized
Policy Iteration and value function approximation:
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1. Start with the heuristic policy (HR and FP in our case).

2. Evaluate this policy with TD(λ).

3. Approximate the resulting values with some approximating structure.

4. Simulate this approximation to the value function (recall that we do
not save the improved policy explicitly).

5. See if the resulting average costs are similar to or perhaps even lower
than the 1.6464 from table 5.4.

Evaluating the heuristic policy with TD(λ) gave no problems and resulted
in some points distributed in 9 dimensional space. But that is when we ran
into trouble. We needed to fit an approximating structure through these
points that would result (when simulated) in average costs similar to the
1.6464 obtained by the heuristic policy itself. At first we used a Neural
Network, because the other options that we programmed for the M/M/c
example did not directly scale to higher dimension space. Creating a good
fit with a Neural Network turned out to be quite difficult. We tried training
it on all points that resulted from TD(λ), only on ’frequently’ visited states
and on only ’large’ points. Sometimes we got lucky and got a network that
performed reasonably well, the best one resulting in average costs of about
12. But most of the produced networks performed badly, often with average
costs higher than 40000. Inspection of these network revealed that there
were two aspects that we would like have, but were seldomly learned:

• The 0 state has no costs, so we would like to have our approximating
structure such that Ṽ (0; r) = 0.

• Generally speaking, larger states correspond to higher costs. This holds
especially for the elements s4, s5, s6 of the state vector. They corre-
spond to the queue lengths, which can be large and are punished in
the costs function. So if we would plot Ṽ (s; r) along, e.g., the dimen-
sion of s4 then we want to see an increasing function. Many of the
networks that we trained were actually decreasing along some or all
of these dimensions. So in a simulation run, the best action (which
corresponds to the lowest value) was often to queue a call, ending in
enormous average costs.

Because of these observations, we decided to try another approximating
structure. We chose to fit a second degree polynomial of the form

Ṽ (s; r) =
9∑
i=1

ais
2
i + bisi +

∑
j>i

cijsisj , r = (a, b, c).
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This structure already has the property Ṽ (0; r) = 0. Also, checking whether
Ṽ (s; r) is increasing along, e.g., s4 can be done by inspecting if a4 > 0.
Fitting this function was done by minimizing the error function

E(r) =
K∑
k=1

ws

[
Ṽ (sk; r)− V̂ (sk)

]2
(5.5)

where K is the number of points that resulted from TD(λ). The sk is
the kth point and V̂ (sk) its corresponding value (both obtained from the
Hashtable in our case). The ws are weights. At first, we used an unweighted
fit (ws = 1, ∀s). As with the neural networks, we tried fitting it on various
subsets of the points that resulted from TD(λ). The fits were slightly better
(average costs of 15000 were not uncommon), with the best getting average
costs of about 6. But still, the determination of which subset to choose was
made for this specific call center. We would like to have a more general
method of fitting.

We hoped that choosing the weights correctly would help. We tried
setting ws = #visits/max(visits), so that often visited states (which we
suspect to be accurate) get high weights and others a low weight. But this
did not improve things. Another idea was to force a good fit on the smaller
states by setting

ws = ρ
∑9

i=1 si , for some ρ < 1.

This did not help either. The fit still performed considerably worse than
the heuristic.

At this point, we decided to try to combine the best of both worlds.
In stead of fitting an approximating structure on all states, we only did so
on smaller states, which we suspected to be more accurate. For the larger
states we used the heuristic policy. The results of this were more positive
than the previous attempts. We used various definitions of ’small’ and
’large’ for the states, and each time the results were in the same order of
magnitude as the score achieved by the heuristic policy on its own. For
instance, using an unweighted polynomial fit of all data for the states s
with

∑9
i=1 si < 5 (and the heuristic policy for the other states), gives a

’combi’ policy with average costs 2.5721.

We also experimented with creating polynomial fits on some subsets
of the states. That gave even more encouraging results. For instance, we
created a polynomial fit on states that were visited during TD(λ) more
than 100 times. The ’combi’ policy that uses this fit on the states s with∑9

i=1 si < 5 resulted in average costs of 1.6454, slightly lower than the
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heuristic policy. To see if this was actually an improvement, we simulated
both the ’combi’ policy and the heuristic policy five times. The mean of the
average costs for the ’combi’ policy was 1.6938 and 1.6656 for the heuristic
policy. So the ’combi’ policy is not better. But, as mentioned before, this
type of fit was chosen specifically for this call center example, so it can not
be used directly for other examples.

So the ’combi’ policy never significantly outperformed the heuristic
policy, although it seems a interesting technique. Unfortunately we ran
out of time to continue the ’investigation’ any further. The sections below
contain some ideas for future work and remarks about practical aspects of
our approach.

Ideas for future work

So we did not manage to improve the heuristic policy, which leaves us
slightly disappointed. But it would be unfair to say that the combination of
TD(λ), GPI and value function approximation is insufficient for the task.
We were able to create an approximating structure that gave average costs
6, which is in the same order of magnitude as the 1.6464 that resulted from
the simulation of the policy. So the approximating structure does seems
to capture the value function quite well. If we could just get the structure
a bit more accurate, we could attempt to improve the heuristic policy
(albeit with some patience). Also, the results from applying a ’combi’ policy
seemed hopeful.

So we still have some faith in the method and hope to get it work-
ing some day. If in the mean time somebody would like to continue this
work, there are a few ideas and tips that might help:

• We experimented only slightly with the parameters of TD(λ) (λ and
α). Perhaps tweaking of these parameters will allow for a better fit.

• The only approximating structures that we tried were neural networks
and second degree polynomials. Perhaps there are other structures
available. For instance, the Netlab package (see Nabney & Bishop
(2003)) offers other variations of neural networks than just the multi-
layer feedforward network that we used.

• When experimenting with the approximating structure, it is conve-
nient if the method of fitting can be tested on multiple datasets (i.e.
multiple runs of the 100000 sample paths from TD(λ)). Matlab can
save variables to disc, so we would advise creating a few datasets and
storing them for later use.
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• A lot of time can probably be gained by not programming in Matlab.
The downside of this is that you can not use Matlab’s large toolbox,
which we used extensively for the approximating structures. But Mat-
lab integrates with Java quite well, so perhaps this combination can
be used better than we did.

• We did not pay very much attention to the choice of costs function.
Perhaps a better choice can be made.

• The call center example that we treated was quite small and had a very
low load. Perhaps the average costs obtained by the heuristic policy is
already close to optimal. This would explain why there are four policies
in table 5.5 that result in roughly the same average costs. Increasing
the arrival rates may offer more space for improving a heuristic policy,
but the downside is that simulations take much longer.

With these ideas, some time and perhaps a fresh pair of eyes, we feel confi-
dent that policy improvement is possible for this example.

Practical aspects

We would like to end this chapter with a few words on the prospects of the
approach we used in a practical situation.

Our example consisted of only three call types and three agent groups,
and already we struggled to get a sufficient amount of sample paths. Real
call centers have dozens of call types and agent groups and continue to
grow in size and diversity. With the current state of computer technology,
simulating a large amount of sample paths seems wishful thinking at best.

Also, the simulations that are done by TD(λ) assume that the ar-
rivals occur according to a homogeneous Poisson Process, which is rarely
the case in practice. There is some evidence that arrivals in a small time
slot (i.e. half an hour) are approximately homogeneous, so we would need a
large number of approximating structures.

Then there is the costs function. Within the framework that we used, this
is the only method we have of imposing constraints. We, for instance,
punished large queue lengths (and thus long waiting times) with it. But
there may be other constraints that we will not be able to incorporate into
the costs function.

Another important fact is that most heuristic policies are quite easy
to understand for managers. Our framework is as a black box to them, and
it is probably not easy to convince them to change policies.
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Taking all this into consideration, we feel that our approach is a long
way from maturity, although that should stop nobody from researching it.
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Chapter 6

Conclusions and
recommendations

In this paper, we looked at various policies that can be used for skill-based
routing. After an overview of some heuristic policies, we introduced Markov
Decision Processes as a mathematical framework for skill-based routing.
We saw how the classic algorithms Policy Evaluation, Value Iteration, and
(Generalized) Policy Iteration can be used to solve an MDP and applied
this to the robot example. We also showed the more recent method of
Temporal Differences and explained how this can be plugged into the
Generalized Policy Iteration scheme.

Then we moved on to some practical limitations of the algorithms
and showed how these limitations may be solved. That lead us to the field
of Approximate Dynamic Programming and the approximate versions of
Policy Evaluation, Value Iteration, and (Generalized) Policy Iteration. We
also discussed some of the issues connected with TD(λ) .

In the last chapter we applied the techniques from this paper to
three different call centers. The first two are the classroom examples of
M/M/c and a variation on M/M/2. Both are used mainly to illustrate
the techniques and develop some feeling for them. The third example is a
more realistic call center, although it is still quite small due to computation
time limits. We compared the heuristic policies from chapter 2 and then
attempted to improve on one of the heuristic policies. Unfortunately, we
did not succeed.

The main goal of this paper was to improve a heuristic policy, which
we did not manage to do. Although this was somewhat disappointing to us,
we do feel that our approach has some potential. It was mainly a lack of
time that stopped our progress. We have given a list with some ideas that
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may be of use to people who would like to continue our work. This might
help getting our approach to work on the example.

At the same time, we also discussed some practical aspects that will
arise if our approach is ever applied in a real world call center. Taking all
these aspects into consideration, we feel that our approach is a long way
from maturity, although that should stop nobody from researching it.

Besides continuing our work on improving a heuristic policy, there
are other interesting and related topics to explore. The mathematical
framework of Markov Decision Processes has applications in many areas
and not all of them face the curse of dimensionality. Section 3.8 contains
an overview with some of those topics and corresponding references.
Approximate Dynamic Programming is also a ’hot topic’, see the references
in section 4.4.
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Robot example

The source code for the results of the robot example can be downloaded from
the internet, see Onderwater (2010). The directory contains the following
files:

• robot.m Main file for this example. It can be used to obtain the results
from chapter 3.

• policyEvaluation.m Function that performs policy evaluation for a
given policy and returns the value function.

• valueIteration.m Function that performs value iteration and returns
the optimal policy and corresponding value function.

• policyIteration.m Function that performs policy iteration and returns
the optimal policy and the corresponding value function.

• getNewValue.m Returns the value corresponding to taking a specific
action in the square (row,col). Used by policyEvaluation.m, valueIter-
ation.m and policyIteration.m.

• getValueAfterMove.m Returns value of a move from the square
(oldRow, oldCol) to the square (newRow, newCol). Used by getNew-
Value.m.
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M/M/c example

The file mmc.m is the main file for the example in section 5.1. It can be
downloaded from the internet, see Onderwater (2010). In the beginning of
the file, it is possible to specify the M/M/c parameters, the set of repre-
sentative states and the approximating structure to be used. There are 4
possible approximating structures:

• spline Setting aType (and also the parameter in this case) to ’spline’
creates a spline as approximating structure. The parameter for this
structure can also be either of the interpolation methods supported by
the Matlab function interp1, but we only used ’spline’ in this paper.

• polynomial This corresponds to a weighted polynomial of degree 4.
The weights should be given as a parameter for this method.

• unweighted polynomial No parameters are needed for this structure.

• neuralnetwork The parameter for this method is the options array
used by Matlab, where, e.g., the number of training iterations can be
specified.

Uncommenting the correct lines in mmc.m will activate the desired ap-
proximating structure. The structures are created, updated and evaluated
in the files create structure.m, update structure.m and eval structure.m
respectively.

At the end of mmc.m a figure is created of the trained approxima-
tion and the real value function. The real value function is obtained from
get valuefunction mmc.m which implements the expressions from section
5.1.3.

Together, these files give the results from section 5.1. There is one
more file, called sim mmc.m. With this, the value for the average costs g of
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the M/M/c example can be simulated. The result should match the values
in the fourth column of table 5.1 (which in turn were calculated from 5.2).

The results for section 5.1.8 can be obtained with the file td learning mmc.m.
In the beginning of this file, the parameters for the M/M/c model and
TD(λ) are specified. Creation of a sample path is deferred to the file
create sample path mmc.m. sample paths are initialized somewhere in the
interval [0, 200] and simulated until state 0 is reached. The value of 200 can
be changed by setting initstate to a different value in td learning mmc.m.
At the end of this file, the resulting approximation of the value function is
compared to the real value function (again using get valuefunction mmc.m).
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TD(λ) for M/M/2 example

The file mm2.m (see the downloads at Onderwater (2010)) contains the code
that produces the results in section 5.2. It starts by specifying the M/M/2
parameters and then applies value iteration to the problem. This is done
via a call to valueIterationMM2.m and gives a value function and the three
policies. The same problem is then solved with the combination of General-
ized Policy Iteration and TD(λ) via a call to generalized policy iteration.m.
The policy evaluation step is done with TD(λ), see td learning.m. Creation
of a sample path is again done in a separate file called create sample path.m.
The final lines of mm2.m shows the threshold values of the policies found
via value iteration, GPI+TD(λ) and the heuristic.

The file grow.m is used in td learning.m to grow arrays (if necessary)
after a new sample path was created. And getW.m is an auxiliary function
for valueIterationMM2.m, see the references is section 5.2 for a description
of what W is. Finally, there is a file called policyEvaluation.m which can do
policy evaluation. It can be plugged into GPI as an alternative to TD(λ)
and used to compare results.
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Appendix D

Call center example

The main file for the results of section 5.3 is cc.m (see Onderwater (2010)).
The first part of it configures the call center model that we want to use. The
Matlab struct model contains the following fields:

• model.numberOfCallTypes The number of call types that the model
has.

• model.numberOfAgentGroups The number of agent groups that the
model has.

• model.lambda The total arrival rate of the Poisson Process.

• model.mu Matrix with service rates per group and call type (see the
matrix in table 5.3).

• model.agentGroups Vector with the number of agents per agent group.

• model.agentGroupNames Names of the agent groups. Only used for
debug purposes (initialized to [’1’ ’3’ ’123’] in our example).

• model.probs For splitting the arriving Poisson Process in one for each
call type.

• model.costs.inSystem Vector with costs for being in the system per call
type.

• model.costs.inQueue Vector with costs per customer in the queue of
each call type.

• model.td.alfa, model.td.lambda, model.td.nsamples, model.td.initstate
Parameters for TD(λ).

Agent and call selection policies are configured similarly. Each has a name
field. The HR, OR and FP have a field called priorities. Both VR and CR
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have alpha and t and gcu has Cprime. A ’combi’ policy is configured using
its name, threshold, policyHeur and policyApp fields. See the end of cc.m
for an example. After configuring these structs, we can simulate policies
(with simulatePolicy.m).

TD(λ) is implemented in tdLearning.m. It returns a Hashtable with
the value function, from which we then extract in and out vectors. After
this we initialize the weights. Then we configure the approximating struc-
ture, again with Matlab struct. The code is similar to what we used before
and should be clear from the file. Note that if fitting the approximating
structure would work, this procedure would be combined with the call to
tdLearning.m to get a GPI scheme.

As before, there are files createStructure.m, updateStructure.m and
evalStructure.m available to work with the approximations. For the Neural
Network, the Netlab package is again used. For the polynomial, we also
borrow some functionality from Netlab. We use the function scg.m (which
implements Scaled Conjugate Gradients, see the part on ’nonlinear com-
binations’ in section 4.3.1) to minimize the error function of equation 5.5.
The error function itself and its gradient are implemented in SSE.m and
SSEgrad.m respectively. There is also a small helper file SSEtest.m, which
generates some data and uses the Netlab function gradchek to check the
implementation of the function and its gradient.

For the simulation of a sample path, we use the file createSamplePathCC.m.
Just as simulatePolicy.m, it relies on createEventNode.m and create-
QueueNode.m to create elements to be used in the event list and queue
respectively. Actions to be taken are determined depending on the agent
selection policy and call selection policy. These were configured before, but
their actual implementation is in files getAgentGroupFromPolicy.m and
getCallTypeFromPolicy.m. There is one helper file called getCk.m, which
calculates the Ck used in VR and CR (see equation 2.1 and the explanation
below it).

Finally, there are two Java files: State.java and its compiled version
State.class. They contain a static method public static String
create(int[] values) which creates the string representation of the state
vector.
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