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Summary

Reject inference is the process of estimating the risk of default for loan
applicants that are rejected under the current acceptance policy. The reject
inference problem is considered as a missing data problem. When the data
are missing completely at random, then there is no reject inference problem
at all. If the data are missing at random, then the selection mechanism is
ignorable. But when the data are missing not at random, then the selection
mechanism is nonignorable.

When the selection mechanism is ignorable, then logistic regression, dis-
criminant analysis or the mixture model are suggested. In case of a nonig-
norable selection mechanism, Heckman’s model is suggested.

In logistic regression, it is not necessary to make assumptions about
the distribution of the application characteristics. Also, only the accepted
applications are required. But this means that logistic regression is not able
to handle the rejected applications efficiently.

Another alternative is discriminant analysis which depends on the class
conditional distribution of the characteristics. But this means that the re-
sults are biased when the model is not based on the complete set of appli-
cations. The mixture model can avoid this bias by including the rejected
applications in the model. Unfortunately, it is possible that the EM algo-
rithm returns bad estimates of the parameters.

Heckman’s model corrects the bivariate model by taking the omitted
variables into account. But empirical studies indicate that the parameter
estimators are not reliable, which may lead to unreliable estimates.

It is diffcult to compare the different approaches to reject inference, since
the true creditworthiness of the rejected applications is unknown. But sim-
ulation studies may be helpful in evaluating the reject inference techniques.
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Chapter 1

Introduction

In credit scoring, the creditworthiness of the loan applicant is assessed by
means of a scoring model. The credit scoring model is based on the charac-
teristics of the loan applicant and it estimates the credit risk by predicting
the repayment behaviour of the applicant.

This chapter will first describe the loan process. Afterwards, it will be
shown how a biased sample can lead to incorrect results, which is why reject
inference will be introduced. Finally, the objective and the outline of this
paper will be described.

1.1 Loan process

When the client applies for a loan, then the application can be accepted or
rejected by the creditor. The accepted applicant will receive a loan. After
a certain period of time, the loan performance of the accepted application
can be labelled as good or bad. The loan process is also shown in figure 1.1.

The selection mechanism determines whether the application is accepted
or rejected and the outcome mechanism determines the loan performance of
the accepted application. The main objective in credit scoring is to model
the outcome mechanism.

Note that the default risk of the rejected applications is unknown since
the loan performance of the application can not be observed when rejected.

1.2 Sample bias

The probability that an accepted application will be a bad loan can be
estimated with the given data, but the estimated probability that a rejected
application is in fact a good loan might be biased. Therefore, when a new
acceptance rule is based on the data on accepted applications only then this
may lead to incorrect results. This will be illustrated with an example.
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Figure 1.1: Loan process

Suppose that a creditor accepts applications randomly. When the scoring
model is based on the randomly accepted applications, the results indicate
that the probability that new customers will have a bad loan performance
is high. Based on this result, the creditor decides to adjust their acceptance
policy by creating extra restrictions for new customers.

In the new situation, the new customers will be granted a loan when they
have an extremely low default risk. This results in a set of accepted appli-
cations that does not represent the total set of applications. When another
scoring model is built on the accepted applications only, then it appears
that the probability that new customers will have a bad loan performance is
low. Without the results of the previous scoring model, this may lead to the
incorrect impression that new customers have a low risk of default and the
restrictions of the new customers are removed. In this case, the true risk of
default will rise.

In order to obtain unbiased results, the credit scoring model should be
based on randomly accepted applications. But in reality it is not feasible to
obtain data on randomly accepted applications, because this increases the
default risk which will result in high costs.

1.3 Reject inference

In practice, the rejected applications are included in the credit scoring model
in order to avoid biased results. The process of estimating the risk of default
for loan applicants that are rejected under the current acceptance policy is
called reject inference. This can be considered as statistical inference with
incomplete data. The reject inference methods in this paper can also be
applied to other missing data problems such as insurance policy acceptance,
personnel selection and medical diagnosis.
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Reject inference has attracted a great deal of interest and many differ-
ent methods have been proposed for the reject inference problem. But it is
difficult to evaluate the performance of these methods since the true credit-
worthiness of the rejected applications is unknown. It is also unknown what
kind of methods for reject inference are being used by banks, since they are
reluctant to share this valuable information with other competitors.

1.4 Objective

This paper will present the primary models for handling reject inference in
credit scoring. Each reject inference method can be applied to a certain type
of data set. The models will be elaborated and compared with other models,
which will finally lead to the discussion of the advantages and disadvantages
of each reject inference method.

1.5 Outline of this document

The rejected applications are considered to be missing data. There are
different types of missing data which will be described in chapter 2. The
approach to handling reject inference depends on the type of missing data.

When the data are missing at random then the logistic regression tech-
nique, discriminant analysis and the mixture model are suggested, which are
described respectively in chapters 3, 4 and 5. Chapter 6 describes Heckman'’s
model, which can be applied in case the data are missing not at random.
In the final chapter, an overview of the suggested models is given and each
model is evaluated.
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Chapter 2

Missing data

The data on the loan performance of the rejected applications are missing.
There are three types of missing data [1]: missing completely at random,
missing at random and missing not at random. The different types of missing
data will be elaborated in this chapter. But first the notations will be
introduced.

The characteristics of the applicant is based on what has been filled
in on the application form, together with the information regarding the
credit history of the applicant which can be obtained from the central credit
bureau. The characteristics can be completely observed for each applicant
and will be denoted as a vector of variables x= (x1,...,xg).

The outcome mechanism is denoted by the class label y € {0,1} and the
selection mechanism by the auxiliary variable a € {0, 1}. If the application
is accepted then a = 1, and if it is rejected then a = 0. The class label y can
only be observed when a = 1. If the accepted application has a good loan
performance then y = 1, and if the loan performance is bad then y = 0.

2.1 Missing completely at random

When the applications are randomly accepted, then the class label y is
missing completely at random (MCAR). This means that the probability
that the application will be accepted does not depend on the characteristics
of the applicant nor on the loan performance, which is formulated below.

Pla = 1x,y) =P(a =1)

In that case, there is no reject inference problem since analysis of the ac-
cepted applications will yield unbiased results.
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2.2 Missing at random

Many creditors use a selection model to determine which application will be
accepted or not. When the selection model is based on the observable charac-
teristics of the applicant and not on the loan performance, then the rejected
applications are missing at random (MAR). In that case, the probability
that the application is accepted depends on the observable characteristics
of the applicant only. This is formulated as follows.

P(a = 1|x,y) = P(a = 1|x)

When the equality above holds, then it can be shown that the probability
of a good loan performance depends also on the observable characteristics
of the applicant and not on the selection model. This is formulated below.

Py =1lx,a=1) =P(y = 1|x,a = 0) = P(y = 1|x)

That means that the loan performance of the rejected applications has the
same distribution as the one of the accepted applications for any fixed value
of x.

2.3 Missing not at random

When the selection model is also based on the impression made by the ap-
plicant or other characteristics that can not be observed, then the rejected
applications are missing not at random (MNAR). In that case, the probabil-
ity that the application is accepted depends on the loan performance, even
when conditioned on the observable characteristics of the applicant. This is
formulated as follows.

Pla = 1x,y) # P(a = 1|x)

From the inequality above, it follows that the probability of a good loan
performance depends also on the selection model when conditioned on the
observable characteristics of the applicant. This is formulated below.

Ply=1x,a=1) #P(y = 1|x,a = 0)

Therefore, the loan performance of the accepted applications has a different
distibution from the one of the rejected applications for any fixed value of
X.

2.4 Overview

The selection mechanism is ignorable when the rejected applications are
MAR. But if the rejected applications are MNAR, then the selection mech-
anism is nonignorable. In that case, the selection mechanism should be
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included in the model in order to obtain reliable parameter estimates of the
outcome mechanism.

The following chapters will describe different approaches to handling
reject inference in case the selection mechanism is either ignorable or non-
ignorable. An overview is given below:

e Ignorable selection mechanism (MAR)

— Chapter 3: Logistic regression
— Chapter 4: Discriminant analysis

— Chapter 5: Mixture model
e Nonignorable selection mechanism (MNAR)

— Chapter 6: Heckman’s model
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Chapter 3

Logistic regression

The objective in credit scoring is to model the outcome mechanism. When
the data are MAR, then the selection mechanism is ignorable in the scoring
model (see section 2.2). In that case, the outcome mechanism is modelled
as the probability of a good loan given the characteristics of the applicant.
This is denoted as follows.

p=Ply=1x)=1-Py =0x)

In that case, the relationship between the independent variables x = (z1, ..., zy)
and the dependent variable y can be investigated by means of logistic re-
gression [3]. This will be further described in the following sections.

3.1 Logit function

In logistic regression, the variable y has a Bernoulli distribution with the
unknown parameter p.

y~ B(1,p)
The link between p and x is determined by the logit function, which models
the logit of p as a linear function of z and 0, where z = (1,z1,...,z)) with

weights @ = (Ao, ...,0;)". This is formulated below.

ln<1p> =20 = 0o+ 2101 + - + 23,0
-p

When the logit function is rewritten, then p can be defined as follows.

1

)= — 3.1
PO = s (3.1
Figure 3.1 shows an example of logistic regression with a one-dimensional x,
where the datapoints with (x,y)-coordinates are estimated by the logistic

curve.
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Figure 3.1: Logistic regression

3.2 Maximum likelihood estimation

The vector of parameters 6 can be estimated by the maximum likelihood
estimator (MLE) . The MLE estimates the parameters by maximizing
the loglikelihood function. The loglikelihood function 1l(6) for y given x is
formulated as follows.

N
Uy(6) =Y yiln(p(6)) + (1 — ;) In(1 — p(6))
i=1

When taking the derivative of I[,() with respect to 6, then the MLE 6 can
be found by taking the 6§ that sets the derivative to zero. This requires an
iterative procedure, like the Newton-Raphson method or Fisher’s scoring
method.

3.3 Cut-off score

The class label y of an incoming application is based on the estimation of
the probability p. The estimated probability p can be obtained by plugging
the characteristics of the applicant x and the parameter estimates 6 in (3.1).
Given a cut-off score ¢, when p > ¢ then the application is labelled as a good
loan but if p < ¢ then the application is labelled as a bad loan. The cut-off
score depends on the risk that the creditor is willing to take.

There are two types of errors in statistics: Type I error and Type II
error. In credit scoring, the Type I error occurs when an actual bad loan
is labelled as a good loan, and if a good loan is labelled as a bad loan then
this is considered as a Type II error. The cut-off score depends on the Type
I error which is allowed by the creditor.



Chapter 4

Discriminant analysis

The logistic regression technique directly estimates the probability of a good
loan given the application characteristics. But in discriminant analysis, the
probability is indirectly estimated by means of Bayes theorem. In both
cases, the data are assumed to be MAR (see section 2.2).

In the following sections, the discriminant analysis will be further elab-
orated [4]. At the end of the chapter, it will be shown that discriminant
analysis leads to biased results.

4.1 Bayes theorem

In discriminant analysis, the conditional probability of a good loan is mod-
elled by means of Bayes theorem below with class conditional probability
function p;(x) = P(x|y = j) and unconditional probability 7; = P(y = j)
for discrete x and class j € {0, 1}.

—{lx) = m1p1(X)
Ply = 1) = Topo(x) + m1p1(x) (4.1)

When the data sample is divided into two subsets with the same class
label y = j, then each subset can be used separately to estimate m; and
pj(x) in order to obtain an estimate of P(y = 1|x). The following sections
show how the prior probability 7; and posterior probability p;(x) can be
modelled as a discriminant function.

4.2 Decision rule

The objective of discriminant analysis is to divide the vector space of x into
regions 2 = {Q,Q;} where x lies in Q; if y is classified as j, such that
the probability of making a classification error is minimized with the Bayes
minimum error rule. This is formulated below where two scenarios for ‘>’
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and ‘<’ are denoted by ‘2’ which leads to classification of respectively (g
and €.
Q
Py =03 2 By = 1) = x < { g
1
When using Bayes theorem in (4.1), then the decision rule above can be
rewritten in the following likelihood ratio form.

po(x) _ m { Q

— =X Cc
m(x) < 7 O

If a bad loan is misclassified as a good loan, then this is a Type I error.
The probability of a Type I error is denoted by «, which is derived as follows.

a = Ply=0,xe )
= / P(x,y = 0)dx
1951

= / mopo(x)dx
1971

The Type II error occurs if a good loan is misclassified as a bad loan. The
probability of a Type II error is denoted by 3, which is derived in the same
way as a. See below.
B=[ mpi(x)dx
Qo

When the goal is to minimize the probability of the Type II error where
the probability of the Type I error is set to a fixed level, then this can be
formulated as an optimization problem where the objective is to minimize §
subject to a fixed . The minimum can be found by means of the Lagrange
function Ag with Lagrange multiplier Ag.

Ag = / mip1(x)dx + Ag </Q1 mopo(x)dx — a) (4.2)

Qo

Note that the whole space of x is Qy U £2; which means that the following
equation holds.
/ mip1(x)dx =1 —/ mp1(x)dx
Qo 951
When the first term on the right-hand side of (4.2) is substituted by the
right-hand side of the equation above, then this leads to the following result.

A5:1—)\50£+/

Agmopo(x) — mp1(x) )dx
L )

The Lagrange function above will be minimized when 2; is chosen such that
the following holds.

/\ﬁﬂ'opo(x) < m1p1 (X) = X c Q1
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When the decision rule above is rewritten, then this leads to the following

likelihood ratio.
po(X) > 1 { QO
= X c
p1(x) < ABTo O

For specified 7; and p;(x), the Lagrange multiplier A3 can be estimated by
means of numerical methods.

4.3 Linear discriminant function

The decision rules in the previous section have been expressed as functions
of x via p;(x), where only the relative magnitude matters and not the ab-
solute values of p;(x). Therefore, the decision rule can be formulated more
generally with discriminant function g(x) and a constant d.

g(x)zdixe{ O,

The discriminant function can have the form of any monotonic function
without effecting the decision rule.

When the discriminant function is assumed to be linear, then this will
have a low analytical complexity with computational advantages. In that
case, the decision rule and the linear discriminant function h(x) with thresh-
old weight wy and weight vector w can be formulated as follows.

h(x) = wo +w’x

h(x)20:>X€{ {lo

)

The weights in the linear discriminant function can be estimated by means of
the following approaches: linear programming formulation, error correction
approaches, Fisher’s method and least squares methods.

An example of linear discriminant analysis is shown in figure 4.1 with
a two-dimensional x, where the datapoints are separated by the linear dis-
criminant line h(x) = 0. The upper area is classified as ; and the lower
area as {1y, where the green dots represent good loans and the red dots
bad loans. When a datapoint lies on the discriminant line, then it can be
assigned to either class or be left undefined.

Figure 4.2 shows an example of the distributions pg(x) and p;(x) which
are represented by respectively the red and green curves, where two scenarios
are shown for C'1 and C2 which are the lines used to discriminate between
good loans and bad loans. In case of C'1, the red and purple areas represent
the Type I error. When C2 is used, then the green and purple areas represent
the Type II error.
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Figure 4.1: Linear discriminant analysis
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Figure 4.2: Type I and Type 1I errors

4.4 Bias in distribution

When the scoring model depends on the distribution p;(x) for j € {0,1}
that are estimated from data which are missing at random, then this leads
to incorrect classification of the loan performance. This will be illustrated
with an example below.

In figure 4.3, the distribution p(x|y = j) for the complete set of appli-
cations and the truncated distribution p(xja = 1,y = j) for the accepted
applications only are shown in respectively the upper and lower figure [2].
In the complete set of applications, the good loans have a higher mean than
the bad loans.

Assume that the cut-off score is located between the means of the good
loans and bad loans. In that case, many expected bad loans are rejected
which strongly affects the distribution p(x|a = 1,y = 0). As a result, the
mean of the bad loans is overestimated and the variance is underestimated.
The distribution p(x|a = 1,y = 1) on the other hand, is hardly affected.
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Figure 4.3: Bias in distribution of characteristics

The discrimininant function is based on the class conditional distribution
of the characteristics. This means that the estimates of p;(x) for j € {0,1}
that are based on the accepted applications only, are biased due to the
acceptance rule. The magnitude of the bias depends on the true distribution
and the acceptance rule.

The bias in the distribution can be avoided by including the characteris-
tics of the rejected applications in the estimation process of the conditional
distributions. This will be described in the next chapter.
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Chapter 5

Mixture model

This chapter will describe the mixture model of the probability distribution
[8], where the data are assumed to be MAR (see section 2.2). The mixture
model includes the rejected applications in the estimated distribution of the
characteristics, which avoids the bias that resulted in discriminant analysis.

5.1 Two-component mixture distribution

When the applications consist of good loans and bad loans, then the proba-
bility distribution of x can be modelled as a finite mixture distribution with
two components. See figure 5.1 for an example where the red and green
curves represent respectively the distributions p(x,y = 0) for the bad loans
and p(x,y = 1) for the good loans, and the blue curve represents the mixture
distribution p(x) for the complete set of loans.

/N
J \\

Figure 5.1: Two-component mixture distribution

In the mixture distribution, it is necessary to make assumptions about
the parametric density of x. The probability function p(x) is derived as
follows, where the prior probability m; is considered as the proportion of
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p;(x,9;) in the mixture model with unknown parameter +J; for j € {0, 1}.

p(x) = px,y=0)+pxy=1)
= mopo(x, ) + mip1(x, Y1)

Note that mg + m1 = 1 where 0 < m; < 1.

In reality, the outcome of the accepted applications only are observed
but not the rejected applications. When taking the missing data problem
into account, then the likelihood function I; with x; and y; for observation
1 is defined as follows.

[ — { mopo(Xi, Jo) + m1p1(xi, Y1) if y; is missing
¢ ;P (xi, V) if y; = j for j € {0,1}

When there are m rejected applications and n accepted applications, then
the loglikelihood function of the incomplete data [l;,. is formulated as fol-
lows.

Uine = Y log{mopo(xi,do) + mipi1(xi, 1)}
i=1
m+n
+ Y (1= i) log{mopo(xi,90)} + yilog{mipa(xi, 1)}
i=m+1

The parameter vector ¢ = (mg, 71,9, 1) can be estimated by the max-
imum likelihood estimator ¢. The MLE is the set of parameters which
maximizes the loglikelihood function. The loglikelihood function llin.(p) is
a complex function of ¢. In order to find the MLE of ¢, this requires a
special computational algorithm.

5.2 EM algorithm

The expectation-maximization (EM) algorithm is an iterative procedure,
which can be used to compute the MLE when the data is incomplete. The
maximum of the incomplete-data loglikelihood function is estimated by opti-
mizing the complete-data loglikelihood function .y, which is less complex
than llinc(¢). The complete-data loglikelihood function ll¢op, is defined as
follows.

m+n

Heom = Y (1 = y;)log{mopo(xi, 9o)} + yi log{mip1 (x,¥1)}

i=1
The objective of the EM algorithm is to maximize ll..;, by means of iterative
optimization of the expectation of llcom.

The EM algorithm has two steps: expectation step (E-step) and max-

imization step (M-step). This will be further described in the following
subsections.
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5.2.1 E-step

The EM algorithm starts with arbitrary parameter estimates ¢(®). Since
the likelihood function may have multiple (local) maxima, the initial val-
ues of the parameter estimates are critical for finding the global maximum.
Therefore, the procedure should be repeated with different starting values
because a poor choice of initial values may lead to bad estimates.

In the E-step, the expectation of I, is formulated by replacing ¥; with
E[y|x;]. Note that E[y|x;] = P(y = 1]x;). When (=1 is given in iteration
t, then the estimate of P(y = j|x;) is denoted by o; for j € {0,1} which can
be calculated by means of Bayes theorem in (4.1) as follows.

t—1 t—1
(t—l)) _ 7T§' )pj (Xi7 195 ))
tfl)po(xi’ ﬁétfl)) + ﬂ_gtfl)p1 (Xi’ﬁgtfl))

0

The expectation of lleom is denoted by Q(p|¢*~1)) for iteration ¢ which is
formulated as follows.

m+n

Qele"™D) = > oo, ¢!V log{mopo(xi, o) }+o1 (xi, ) log{mipr (3, 91)}

=1

5.2.2 M-step

In the M-step, a new set of parameters p*) is computed such that Q(¢|p*~1)
is maximized for iteration t. This is formulated below, where the computa-
tion of 7{” and ¥\ for s € {0, 1} will be described in this subsection.

o) = arg max Qplp!=)

The prior probability wﬁ“ for s € {0,1} can be derived by means of the
Lagrange function Ag with Lagrange multiplier A\g, where the objective is

to maximize @ subject to the constraint mg + 71 = 1. See below.

1
Ag = Qele'™ ) + Aq (Z T — 1)

=0

When the partial derivatives of Ag are set to zero, then this results in the
following set of equations.

8AQ 1 m—+n (t-1)

— . p— -1
o AQ + o ZEZI 0s(Xi, ¢ )=0 (5.1)
OAg !
o - E :Wj —1=0 (5.2)

J=0
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When 75 in (5.1) is solved and substituted in (5.2), then this leads to the
following result.

1 1 m+n m+4n 1
(4w ) o1 o
=0 O i—1 j—0

Note that go(xi, o~ D) + 01(x, 1) = 1. When this is plugged in the
formula above, then this leads to the following result.

—(m+n) = AQ

When the result above is substituted in (5.1), then ﬂgt) for iteration ¢ can
be formulated as follows.

+
) — (t 1)
Ts m+n g s(Xi 0

The component parameter 199) for s € {0,1} is computed such that the

relevant part of Q(¢|p®~1) is maximized, see below.
m—4+n
19(t) = arg max Z Qs Xis Qo(t_l)) log{ﬂ-sps (Xi, 195)}
=1

(®)

The computation of ¥5’ can be further specified when the parametric den-
sity is given. For some distributions, it is possible to obtain an analytical
expression for 192“.

The E- and M-steps are repeated until the stopping criteria with conver-
gence level ¢ > 0 is met, where Q(¢®) and Q (1) result from respectively

iteration ¢t + 1 and iteration t.

Q') — Q") < ¢

When 7; and p;(x,9;) are finally estimated, then P(y = j|x) can be
computed by means of Bayes theorem in (4.1).
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Heckman’s model

In the previous three chapters, different reject inference methods have been
proposed where data are assumed to be MAR (see section 2.2). When data
are MNAR (see section 2.3), then the selection mechanism is nonignorable.
In that case, the performance of the rejected applications can be inferred
with Heckman’s model [6] which will be described in this chapter.

6.1 Bivariate distribution

In Heckman’s model, the selection mechanism a; and the outcome mecha-
nism y; are modelled by respectively the unobserved numeric variables a
and y; for observation i.

(]

1 if application is accepted: af >0

1

0 - { 0 if application is rejected: af <0
e

yi = { 0 if loan is bad: ¥ <0

1 if loan is good: ¥y >0

Note that the loan performance y; is only observed when the application
is accepted (a; = 1). For a complete dataset, the variables a} and y; are
defined as follows with parameters 5 and v and random noise d; and e; .

*
a;, = Xiﬁ + di
*
Y, = Xy te
The random errors d; and e; are assumed to be bivariate normally distributed
with mean p as vector of zeros and variance-covariance matrix > where p is
the unknown correlation between d; and e;.

a]mem u=[5] e[l 7]
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6.2 Omitted variables

The reject inference problem is a sample selection bias, which is caused by
omitting variables in the bivariate model. This will be illustrated by means
of the regression function.

In case of a complete dataset, the regression function for the outcome
mechanism can be formulated as follows for observation 1.

Ely;] = xiv

When data are available on accepted applications only, then the regression
function is formulated as follows.

Ely/la; > 0] = x;v+ Eleila; > 0]
= x7 + Eleildi > —x;5]
If the parameter ~y is estimated by omitting the final term in the equation
above, then the reject inference problem arises.

The sample selection bias can be corrected by formulating the conditional
expectation as follows with correlation p and hazard function H;.

Ele;|d; > —x;0] = pH;

The hazard function is also called the inverse Mills ratio, and it consists of
density function ¢ and cumulative distribution function ® for the standard
normal distribution.

d(—x;8)

1 —®(—x;)
When the omitted variables are included, then the outcome mechanism
is modelled as follows.

H = (6.1)

Elyila; = 0] = xv + pH,i (6.2)

6.3 Two-step estimation

The parameters in Heckman’s model can be estimated in two steps. In the
first step, the parameter 3 is estimated by probit analysis in order to obtain
an estimate of H;. When H; is estimated, then the parameters v and p
are estimated by least squares estimation in the second step. This will be
further described in the following subsections.

6.3.1 Probit analysis

The objective in the first step is to estimate H;, which is done by estimating
B. The MLE of 8 can be computed by means of probit analysis as follows,
where the data is assumed to be complete.

Ela;] = ®(x;3)
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The corresponding loglikelihood function ll,, is derived as follows.
N
I, = Zai InP(a; =1)
=1
N
= Z a; InE(a;)
=1

N
= Z a; In ®(x;5)

i=1

The MLE of 3 is obtained by taking  which sets the derivative of ll, to
zero. When the MLE of 3 is plugged in (6.1), then this leads to the estimate
H;.

6.3.2 Least squares estimation

After obtaining the estimate H;, the resulting model can be considered as
the ordinary least squares problem where the parameters v and p in (6.2)
are estimated by the least squares estimators (LSE). The LSEs are the ~y
and p that minimize the sum of squared errors (SSE). The SSE is defined
as follows.

N
SSE =3 "(ys — Ely;|a; > 0))?
=1

In case of no sample bias, the errors d; and e; are independent. Therefore,
the presence of sample bias can be indicated by testing the null hypothesis
that p = 0. The hypothesis can be tested by means of the Wald test,
likelihood ratio test or Lagrange multiplier test.

6.4 Robustness

Empirical research indicates that the estimators of Heckman’s model are not
robust [7]. It is assumed that the bivariate model is linear with errors that
are normal distributed and homoscedastic. When the assumptions do not
hold, then the estimates are not reliable.

It also appears that collinearity problems between the explanatory vari-
ables often arise. In literature, extensions of Heckman’s model or alternative
approaches are suggested which can yield more reliable parameter estimates.
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Chapter 7

Conclusion

An important question is whether reject inference can really improve the
performance of the credit scoring model [5]. It is difficult to compare the
different reject inference techniques, since the true creditworthiness of the
rejected applications is unknown. That explains why little empirical studies
have been published about the comparison of reject inference techniques.
Simulation studies may be helpful in evaluating the reject inference tech-
niques.

This chapter will first give an overview of the proposed models and then
each model is evaluated.

7.1 Overview

This paper describes the main approaches to reject inference. The choice
of the reject inference method depends on the type of missing data. There
are three types of missing data: missing completely at random, missing at
random and missing not at random. When data are MCAR, then there is
no reject inference problem at all. In case of MAR, the selection mecha-
nism is ignorable. But if data are MNAR, then the selection mechanism is
nonignorable.

This paper describes four reject inference techniques which can be ap-
plied in the following situations:

e Ignorable selection mechanism (MAR)

— Logistic regression
— Discriminant analyisis

— Mixture model
e Nonignorable selection mechanism (MNAR)

— Heckman’s model



26 Conclusion

7.2 Evaluation

For an ignorable selection mechanism, both logistic regression and discrim-
inant analysis perform reject inference by extrapolating the outcome of the
rejected applications from the outcome of the accepted applications. This
means that when the fraction of accepted applications is relatively small,
then the foundation of the scoring model may be weak due to bad extrapo-
lation.

In logistic regression, no assumptions are made about the class con-
ditional distribution of the application characteristics. Therefore, logistic
regression is able to perform the extrapolation unbiased when it is based
on the accepted applications only. On the other hand, the performance of
the model will not be improved when the rejected applications are included.
This means that when the characteristics of the rejected applications are
available, then logistic regression is not able to handle the available infor-
mation efficiently.

Unlike logistic regression, discriminant analysis depends on the class
conditional distribution of the characteristics, which means that the results
are biased when the model is not based on the complete set of applications.
The mixture model can avoid this bias by including the characteristics of
the rejected applications in the model. Unfortunately, it is possible that the
EM algorithm returns a local maximum which leads to bad estimates of the
mixture model. Note that in the mixture model, it is necessary to make
assumptions about the parametric density of the characteristics.

For a nonignorable selection mechanism, Heckman’s model corrects the
bivariate model by taking the omitted variables into account. But empirical
studies indicate that the parameter estimators are not reliable, which may
lead to unreliable estimates. In literature, extensions or alternatives are
suggested which can produce more reliable estimates.
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