
System Test Evaluation and

Review Technique

Stochastic Modeling and Optimal

Control for System Testing of Software

Author: Aniket Mitra

Supervisor: dr. Sandjai Bhulai

VU University, Amsterdam

Faculty of Sciences

1081 HV Amsterdam

May, 2013

System Test Execution Process

Test Manager

System Test Execution Model

'H

τ

 µ

 *µ

 [()]
arg max lim i

t

E c t

t

µ

µ
→∞

 −

 System Test Evaluation and Review Technique|2

Preface
This work is part of my Master’s degree program at VU University, where each student is required to

perform a research regarding a specific problem motivated by practice. I would like to extend my

gratitude to dr. Sandjai Bhulai whose course in Stochastic Optimization instilled in me the belief that it

was mathematically feasible to build a model for System Test Execution and Test Management. His

research, ideas, efforts and enthusiasm have helped me enormously in writing this paper. I am grateful to

Shunji Osaki and Hisashi Mine for their paper on Semi-Markov Decision Processes which helped me gain

deep insight into the subject. Also, I would like to extend my gratitude to Salah E Elmaghraby for his

work on GERT and SMP’s which was enormously helpful for writing this paper. Finally, to James A

Whittaker who pioneered the work on Markov Chain Modeling of Software Testing which in turn became

the foundation on which I could perform my research in this area. This paper is my humble effort to

extend the research in the field of Modeling of Software Testing and Test Management.

Aniket Mitra

aniketmitra001@gmail.com

May, 2013

 System Test Evaluation and Review Technique|3

Executive Summary
System testing of software is defined as the “investigation conducted to evaluate whether a complete and

integrated software system complies with its specified requirements”
1
. Thus system testing is a process

that requires creation of test cases for every function point of the software and execution of the test cases

to validate whether the function point conforms to the specified requirements. In case of failure of a test, a

defect is logged that is fixed by the development team and again re-tested. The system testing process can

therefore be described by the following steps: (a) Requirements analysis, (b) Test estimation and strategy

(c) Test planning (d) Creation of test scripts based on requirements (e) Execution of test scripts on the

software product (f) Reporting of defects (g) Retesting of fixed defects and (h) Test Closure

The system testing process described in steps (e)-(g) is a cyclic process and requires allocation of

resources (software testers) to complete testing in allocated time. However, as businesses increasingly

tend to reduce the time to market of their products and services, coupled with the fact that upstream

activities (Requirement Gathering, Infrastructure setup, Development etc) often consume more time that

what is allocated, the time allocated to testing is often squeezed. This in turn leads to a tradeoff between

resources (costs) and allocated time. This leads to the decision problem that every test manager has to

deal with, as to what is the optimal investment in execution of a test case (or a collection of test cases)

that in turn ensures that system testing meets the schedule and budget constraints.

In sequential decision making problems, a decision maker or agent chooses consecutive actions according

to a system status and her preferences to form a decision policy. The essence of these problems is that the

decisions made now can have both immediate and long term effects and the ultimate goal of the agent’s

actions would be to maximize the expected utility of such decisions. Markov and semi-Markov Decision

Processes provide a mathematical representation of these problems. Decisions are made sequentially,

obtaining an immediate utility after each decision, which also modifies the environment for future

decisions. Semi-Markov Decision Processes generalize the Markov Decision Processes mainly by

allowing the actions to be history dependent and by modeling the transition time distribution of each

action. Our primary endeavor in this paper is to implement a semi-Markov decision process on the test

execution Markov chain and thus build a model that solves the sequential decision problem of software

test management

As business managers demand more control over IT expenditures and especially the return on investment

in quality assurance activities, the decisions that software test managers make in terms of resources and

time (i.e. test management) will need to be much more scientific and not just driven by intuition and

experience, though any amount of mathematical modeling will not be a substitute for wisdom, and we

certainly believe that the best decisions are made at the confluence of scientific rigor and intuition.

1 IEEE Standard Glossary of Software Engineering Terminology

 System Test Evaluation and Review Technique|4

Table of Contents
1. Introduction .. 5

2. Exponential Distribution and Test Execution Time ... 6

3. SMC as a model for System Testing .. 8

4. Markov Chain Modeling of System Testing .. 10

4.1 Stationary Distribution of System Testing .. 12

4.2 Expected Time required to complete System Testing .. 12

4.2.1 Algorithm for Simulating System Testing in Discrete Time .. 12

5. Modeling System Testing as a Semi-Markov Process ... 13

5.1 Interval Transition Probability of System Testing ... 14

5.2 Stationary Distribution (invariant measure) of System Testing .. 16

5.3 Simulating the Semi-Markov Process of System Testing .. 16

5.3.1 Algorithm for Simulating System Testing in Continuous Time .. 17

6. Optimal Control of System Testing-The Test Management Model .. 18

6.1 The Cost Function of System Testing .. 19

6.2 Semi-Markov Process Model of System Testing with Costs ... 20

6.3 Expected Long-Run Stationary Cost of System Testing .. 20

6.4 The Control Space and Control Policy of System Test Management .. 20

6.5 Semi-Markov Decision Process Model for System Test Management ... 21

6.5.1 Policy Iteration to find the Optimal Policy ... 22

7. The Optimal Additional Investment in System Testing ... 23

8. Results & Discussion ... 27

9. Conclusion and Future Work .. 42

Appendix ... 43

Monotone Convergence Theorem .. 43

Jensen’s Inequality .. 43

Linearity Property of Expectation ... 43

Tonelli’s Theorem ... 43

Law of the unconscious statistician .. 43

References .. 44

 System Test Evaluation and Review Technique|5

Introduction
System testing, as defined by the IEEE standard glossary of software engineering terminology is the

“investigation conducted to evaluate whether a complete and integrated software system complies with its

specified requirements”. Downs [6] proposed that test cases should be considered as independent

Bernoulli trials and test execution as a sequence of Bernoulli trails on logic paths /function points through

the software product. Downs [6] derived the failure rate of a software system, the distribution of the

number of faults in a path and using these parameters proposed different testing strategies. Finally, the

optimum test execution profile of a software product was estimated. However, the interdependence

among test cases (and therefore test execution) requires a Markov Chain modeling of system testing as

proposed by Whittaker et al. [3] wherein the logic paths in a software product can be modeled as a

Markov chain and hence the test execution process along these logic paths. A popular model for software

project management is PERT. Though easy to compute, PERT suffers from a drawback of not allowing

loops between two activities which is very important for testing, as a test might fail multiple times due to

improper bug fixing and might have to be executed many times. Pritsker [5] proposed a model called

GERT (Graphical Evaluation and Review Technique) wherein he showed that a set of interconnected

activities that take a random amount of time to complete can be modeled as a semi-Markov process.

Elmaghraby [1] further showed that GERT can be used as a model for project management of activities

which contain loops. Cangussu et al.[4], [11] take a system theoretic approach to propose a feedback

control model for software test process that takes into account presence of unforeseen perturbations and

noise in the data.

The models of system testing referred above do not model test execution as a stochastic process wherein

the time required to execute a test case is a random variable defined on a probability space and depends

on the next test case to be executed. Therefore the probability of test execution being in a particular state

at time T depends on the transition probability of reaching the state and the probability that the state will

be reached in time T. Moreover, when test execution on a logic path fails, the software tester may decide

to move on to test another logic path with a certain transition probability while the defect in the first logic

path is being fixed by the development team. Similarly, execution of a test case might fail and the tester

might decide to retest with a certain transition probability depending on the complexity of the test case.

Such properties of test execution further necessitate the need to model test execution as a walk (with

certain transition probabilities) on a finite graph. Therefore, the stochastic nature of the test execution

process requires a stochastic control model that enables a test manager to take optimal decisions regarding

cost and time.

The aim of this paper is to model system testing as a semi-Markov process and then extend it to a semi-

Markov decision process for the purpose of test management. This model enables us to compute the

stationary probability that test execution is in a given state when execution time is a random variable, and

the average time to execute a test case. Moreover, the model computes the expected time to complete

execution of all test cases in the test suite. The modeling as a decision process allows us to compute the

long run average cost of test execution and we use policy iteration to analyze the impact of additional

investment on future costs and time. Therefore, based on the history of the system testing process, the test

manager, at a decision epoch can analyze how a decision regarding additional investment will impact the

budget and schedule in future. This model will enable the test manager to take a decision that minimizes

the costs while ensuring that the schedule constraints are met. We also propose a Linear Programming

 System Test Evaluation and Review Technique|6

formulation for computing the optimal additional investment, such that the probability of completing

system testing on or before a specified time is maximized.

2. Exponential Distribution and Test Execution Time
Here we consider two important properties of the exponential distribution namely ‘a constant rate’ and

‘momorylessness’ and try to analyze this in the framework of software testing.

The exponential distribution is characterized by the rate parameter 0λ ≥ which is the expected number

of events that occur per unit of time in a ‘continuous time counting process’. This continuous time

counting process { , 0}
t

N t ≥ is also known as a homogeneous Poisson process and satisfies the following

properties.

1. The rate parameter λ does not change over time

2. N is a counting process i.e

• 0tN t
+∈ ∀ ≥�

• ,
t s

t s N N∀ ≥ ≥

• (no two occurrence can occur simultaneously), 0,lim lim 1s ss t s t
t N N↓ ↑∀ ≥ ≤ +

3. 0 0N = a.s.

4. (Independence of increments) ()
t s

N Nσ − and (,)
u

N u sσ ≤ are independent i.e the

number of occurrences counted in disjoint intervals are independent of each other.

5. (stationarity of increments)
d

t s t sN N N s t−− = ∀ ≤ i.e the probability distribution of the

number of occurrences counted in any time interval only depends on the length of the interval

If all the five properties mentioned above are satisfied, then the time between occurrences of two events

of a homogeneous Poisson process is exponentially distributed. The independence of increments

described in property 5, leads to an important property of the exponential distribution called

‘momorylessness’ which can be formally defined as

 (|) () , 0P T t t T t P T t t t> + ∆ > = > ∆ ∀ ∆ ≥ (1)

Now let us try to analyze these properties for the software test execution process where
t

N denotes the

number of test case executed till time‘t’. Properties (2) and (3) are clearly satisfied and therefore need no

further explanation. The rate parameter in testing parlance is the test execution rate which is defined as

the average number of test cases executed by a software tester per unit of time. Property (5) is also an

acceptable regularity condition for test execution wherein we say that the probability distribution of the

number of test cases executed during a time interval only depends on the length of the interval.

Let us now look at property (4) which implies that the number of test cases executed in a particular time

interval will be independent of the number of test cases executed in the previous time interval. A critical

analysis of the software testing process reveals that this might not necessarily be true as there might

occur instances, where the tester speeds or slows down the test execution process based on the number of

 System Test Evaluation and Review Technique|7

test cases executed in the previous disjoint interval. Speeding up the process does not have a major

impact because the number of test cases that can be executed is constrained by the skill set of the tester

and which does not vary during the duration of test execution. However, slowing down when the tester

has executed more than the average number of test cases in the previous interval and decides to ease up,

renders the process with memory. But, testing projects, like any other activity, are subject to ‘student

syndrome’ and such cases are rare. Another scenario that instills memory in to the test execution process

is that as test execution progresses, the software tester gains a better understanding of the software under

test and thus if she finds similar test cases (to already executed ones), she executes them quicker. This is

also true for retesting a failed test case, wherein the time to retest a failed test case is quicker as the tester

already is familiar with the test case. We therefore model the test execution process as a semi-Markov

Process in this paper and present an algorithm in section 5.3 to simulate semi-Markov process when the

test execution time is not exponentially distributed. However, there can be many testing projects where

the scenarios like the ones mentioned above that instill memory to the test execution process can be

safely ignored and in such cases property (4) is satisfied. Therefore, if we assume that the test execution

processes is memoryless, then test execution can be modeled as pure birth-death process where the

lifespan of a test case is described as follows. A test case is active till the time

a) It passes or

b) It fails

Now, we turn our attention to property (1).In the case of manual testing, the execution rate is primarily a

function of the skills of the software tester and generally does not fluctuate during the course of test

execution. However, we can have different execution rates for different types of test cases which can be

classified as simple, medium or complex. This can be easily tackled by modeling the execution of each

classification of test cases as independent Poisson processes with different rates (, ,
S M C

λ λ λ). We define

the set of Poisson processes , , 0S M C

t t tN N N t∀ ≥ (that satisfy property (2), (3),(4) and (5)) to be

independent if for
1 20 ... ,kt t t k

+< < < < ∀ ∈� ,the random variables

1 2 1 2 1 2
, ,..., ; , ,..., , ,...,

k k k

S S S M M M C C C

t t t t t t t t tN N N N N N and N N N are independent of each other. Therefore, we can combine

the three independent Poisson processes to form a Poisson process
t

N with rate
S M C

λ λ λ λ= + +

Therefore the test execution process satisfies property (1) as well. Thus, with certain assumptions

regarding the independence of the number of test cases executed in disjoint time intervals, we can

conclude that the time to execute a test case is exponentially distributed.

 System Test Evaluation and Review Technique|8

3. SMC as a model for System Testing
The SMC model is the de facto model used by most test managers to estimate the time required to

complete test execution of ‘N’ test cases in the test suite by segregating the test cases into three

complexity classes (Simple, Medium and Complex), each type having its own execution rate and then

taking a weighted average. Let us consider a basic test suite of 16 test cases with 8 test cases of

complexity as simple, 4 test cases with complexity as medium and 4 test cases with complexity as

complex. The average execution rate per hour λ of each type of test cases is given in the Table 1. As per

the SMC model the expected execution time of the 16 test cases would be 260 minutes (4 hours 20

minutes)

Now let us model the Test Execution Process as a homogeneous Poisson process where the test execution

time of each test case is exponentially distributed. The first point to note is that the SMC model is just a

linear combination of the average rate of execution and does not take into account that the test execution

time is a random variable and therefore there is a certain probability associated with the event that

execution of a test case will complete within the expected time and also a certain probability associated

with the event that test execution will not complete in expected time.

 So when expected execution time per test case is
1

λ
(because the execution time per test case is

exponentially distributed) , the probability of completing execution of a test case by the expected time
1

λ

is given by

1
1 1

() (1) (1) 63.21%P T e
e

λ
λ

λ

−
≤ = − = − = , while the probability of not completing the

execution of a test case by the expected time is
1 1 1

() 1 () 36.79%P T P T
eλ λ

> = − ≤ = = and what is

important is these probabilities are independent of the complexity of the test cases as well as the

execution rate of the test cases belonging to each complexity class. What makes the situation even worse

is that the probability that all 16 test cases in the test suite will complete in expected time is
16(63.21%)

=0.065% which is an alarmingly low number even for a very small test suite , and will tend to 0 as ‘N’

gets large.

Table 1: Average test execution time and probability of completing test execution (not) on schedule for test cases belonging

to different complexity classes

Complexity

Average

Execution Rate

per hour(λ)

Average

Execution Time

per test case,

1
t

λ
=

Probability of

completing

execution in

time
1

()P T
λ

≤

Probability of

not completing

execution in

time
1

()P T
λ

>

S 6 10 min 63.21% 36.79%

M 4 15 min 63.21% 36.79%

C 2 30 min 63.21% 36.79%

Next, we sampled the test execution time from an exponential distribution with parameter

12 respectively by using the inverse trans

intuition in practice

that execution of

complex test cases

has a higher chance

of not being

completed in

expected time.

Another

interpretation can be

that when the testing

skills of the

software tester is

low (and in turn λ is

low), the chances of

not being able to

complete testing in

the expected time is

quite high which is in line with the intuition in practice.

Combining the independent Poisson processes into a Poisson process with rate

probability of not completing test execution

of not completing test execution for each of

respectively. This conclusion is again in line with the belief in practice that

of scope reduce the risk of schedule overrun. Thus, we can conclude that tho

execution as a homogenous Poisson process requires us to make a simplifying assumption that the process

Figure 1: Probability that execution of test cases will complete on or before time, T for different

execution rates, λ

Figure 2: Sample Path of Number of Test Cases Executed v/s Elapsed Test Execution Time

 System Test Evaluation and Review Technique

Next, we sampled the test execution time from an exponential distribution with parameter

12 respectively by using the inverse transform sampling method and plot the figure below. As can be seen

quite high which is in line with the intuition in practice.

endent Poisson processes into a Poisson process with rate λ =12,

completing test execution within the expected time is much lesser than the probability

of not completing test execution for each of the individual Poisson processes with rate

respectively. This conclusion is again in line with the belief in practice that diversification

reduce the risk of schedule overrun. Thus, we can conclude that though the modeling of test

execution as a homogenous Poisson process requires us to make a simplifying assumption that the process

Probability that execution of test cases will complete on or before time, T for different

Figure 2: Sample Path of Number of Test Cases Executed v/s Elapsed Test Execution Time

System Test Evaluation and Review Technique|9

Next, we sampled the test execution time from an exponential distribution with parameter λ = 6, 4, 2 and

the figure below. As can be seen

from Figure 1, the

exponential

distribution has

fatter tails as λ

decreases, which

means that the

there is a large

probability of not

being able to

complete test

execution in the

expected time

when the average

execution rate is

low. In other

words, this

reinforces the

=12, ensures that the

within the expected time is much lesser than the probability

the individual Poisson processes with rate 6,4,2λ =

diversification or economies

ugh the modeling of test

execution as a homogenous Poisson process requires us to make a simplifying assumption that the process

Figure 2: Sample Path of Number of Test Cases Executed v/s Elapsed Test Execution Time

 System Test Evaluation and Review Technique|10

is memoryless, the model is a very good approximation of test execution in practice and is more accurate

than the SMC model currently used. This insight opens up the path for modeling of software test

execution as a Markov chain which we treat in the next sections.

4. Markov Chain Modeling of System Testing
We use the TDLR (Top Down Left Right) naming convention for numbering test cases as introduced by

Lavenberg and Shedler [8]. Let us denote the number of test cases in the test suite by N ∈�Therefore

the state space {0,1,...N}ℵ = < ∞ .Let i, j=1,..,N denote the current state/test case that is being executed

and the state/test cases immediately connected to the current test case . In case of a failure of a test the

system stays in the current state i.e i=j or moves to the test case in the next branch. The transition

probability
1

; (0) 0; () 1
N

ij ij ij

j

p p p
+

=

∈ = ∞ =∑� , is the probability of transitioning from test case ‘i’ to

test case ‘j’ and P is the N N× transition probability matrix. Moreover we impose the conditions that
()

0, ,
n

ijp i j> ∀ and 1,ijp i j< ∀ = . Let the stochastic process { ; 0}
t

X t∈ℵ ≥ denote test execution status

wherein
t

X i= denotes that test case ‘i’ is being executed at time‘t’. A stochastic process

{ ; 0}
t

X t∈ℵ ≥ is called a Markov Chain if for all times 0t ≥ and all states ,i j ∈ℵ ,

1 1 0(X | , 1,..., 1)t t t ijP j X i X i X p+ −= = = − = = (2)

This means that the probability of transition from test case ‘i’ to test case ‘j’ at any time ‘t’ depends only

on being in test case ‘i’ at that particular time ‘t’, but its independent of the history of arrival at test case

‘i’ .Test execution along a given logic path means that the execution of the next test case ‘j’ at time ‘t+1’

is dependent on the current test case ‘i’ and ‘i’ has absorbed all the information up to time ‘t’. So a walk

along the test chain when test cases keep passing satisfies the Markov property. It is however important to

consider the case when a test case fails. Once a defect is fixed (after the test case failed), the test case that

had lead to the identification of the defect is re-executed to validate the fix. Now we can assume that this

test case behaves like a new test case (though this is not true in practice as the time required to perform a

test is a decreasing function of the number of retests and therefore has memory, but this is not the case for

automated testing where test execution again satisfies the memoryless property). Thus we assume that the

test execution satisfies the Markov property though we relax this assumption in section [5.3], wherein we

present an algorithm for simulating a semi-Markov process where holding times do not have an

exponential distribution.

The transition probability
ijp also depends on the complexity of the test case i.e complex test case will

have the lowest transition probability to the next test case in the logic path and the highest transition

probability to itself. On the other hand, a simple test case will have the lowest transition probability to

itself and the highest transition probability to the next test case in the logic path. This is explained by the

fact the complex test cases have the highest probability of failure while simple test cases have the lowest

probability of failure.

 System Test Evaluation and Review Technique|11

 A Markov chain model for test execution of sixteen test cases is shown in Figure 3.

Figure 3: Markov Chain Model of System Test Execution

In the Markov chain model of system testing as shown above, the terminal test cases are linked to the

initial state/test case (for example the path from test case 6 to test case 1). This is explained by the fact

that , once test execution reaches the terminal test case, it is evident that all test cases in that logic path

have already passed and the next option would be to move to the next branch. Another important point to

note is that if there is more than one branch for a test case, and if one of the branches has a terminal test

case while the other branch has further sub branches, then once the terminal test case passes, test

execution jumps to the corresponding test case that exists at the same level (for example the path from test

case 9 to test case 10). The explanation for this as the same as given above. The system test chain also has

test cases for which there exists a path to the previous test case (for example the path from test case 2 to

test case 1). This models the phenomenon, that once a test case fails execution, the tester might decide to

jump to the next logic path instead of waiting at the same test case. Self loops model re-testing of a failed

test case. As evident above, the test execution process is a random walk on a finite graph and as discussed

by Sarkar [9], a stationary distribution (*∏) can exist iff the chain is

a) Aperiodic i.e 0(| X) 0
t

P X i i= = > which can be obtained by ensuring that the GCD of all cycle

lengths in the Markov chain is 1.

b) Irreducible i.e
()

0(| X) 0
n

t ijP X j i p= = = > which can be obtained by ensuring that there exists a

path from every state to every other state.

c) Recurrent i.e 0inf{t 1; | }; () 1
i t i

X i X i Pτ τ= ≥ = = < ∞ = where
i

τ is the hitting time

1

2

3

4

5

6

7

8

9

10

11

12

13 15

14

16

1

 System Test Evaluation and Review Technique|12

Therefore it is imperative to ensure that the Markov chain model of the test suite satisfies (a), (b) and (c)

in order to attain a stationary distribution.

4.1 Stationary Distribution of System Testing

As shown by Bhulai and Koole [11], a Markov chain has an invariant measure (stationary distribution),

*lim
t t→∞ Π = Π for some arbitrary distribution 0

1

; 1; 0
N

j j

j=

Π Π = Π ≥∑ iff the Markov chain is ergodic

(aperiodic, recurrent and irreducible). Then the distribution *Π is the unique solution of

 * *
PΠ = Π

 (3)

Which is obtained by iterating through 1t t
P+∏ = ∏ until convergence is attained.

4.2 Expected Time required to complete System Testing

We use the algorithms given by Sigman[12] for simulating Markov Chains and modify it to run until all

states of the Markov Chain have been walked at least once.

4.2.1 Algorithm for Simulating System Testing in Discrete Time

1. Set 1i = , 0τ = ,wlkVec=[i]

2. If i wlkVec i∃ ∈ ∀ ∈ℵthen stop; otherwise goto step 3

3. Generate [0,1]u U∼ , set i j= where
,

1

j

i k

k

u p
=

≤∑ ; set 1τ τ= + ;add i to wlkVec

4. Go to step 2

The Weak Law of Large Numbers implies

 ()lim P [T] 0 0
n n

Eτ ε ε→∞ − > = ∀ > (4)

Therefore, if we run the simulation for a sufficiently long time such that [T] , 0
n

Eτ ε ε− ≤ ∀ > , then the

average of the time (τ) obtained from each run of the simulator will converge in probability to the

expected time (T) required to walk all the states. This is an important insight for the test manager because

it helps her see the relationship between test design and expected completion time of test execution.

 System Test Evaluation and Review Technique|13

5. Modeling System Testing as a Semi-Markov Process
Elmaghraby [1] defines a semi-Markov Process as a stochastic process that makes its transition from state

‘i’ to any other state ‘j’ (including i=j), according to the transitional probability matrix of a Markov

Process but whose time between transitions is a random variable that may depend on both ‘i’ and ‘j’.

Software Test Execution has a structural similarity to the above because once a tester reaches test case ‘i’,

she chooses the next test, ‘j’ to be executed. This decision is made according to the probabilities
i jp of

the transition probability matrix. Now, test case ‘i’ is executed for a random duration t
i jT∈ ; [0,)ijT ∈ ∞

and this duration depends on both ‘i’ and ‘j’ as the decision to move on to test case ‘j’ influences the

inputs to test case ‘i’ and thus the duration of time spent on test case ‘i’. Moreover, test case ‘i’ can be an

absorbing state/trapping state in case the test case fails but the recurrence property of the imbedded

Markov chain defined above and 1,ijp i j< ∀ = we can safely conclude that the process will jump out of

the trapping state in finite time.

The duration of executing a test case is denoted by the random variable, [0,)ijT ∈ ∞ where

0

([0,)) () () 1
i j i j

t

i j T TP T F t f dτ τ∈ ∞ = = =∫ and 0 () () 1, [0,)
i ji j TP T t f t t≤ = = ≤ ∀ ∈ ∞ .The expected duration of

executing a test case is denoted by

0

[] () , [0 ,)
i jij TE T tf t d t t

∞

= ∀ ∈ ∞∫ . Since () 1ijP T < ∞ = and

assuming that absolute integrability (Lebesgue Integrability) is satisfied i.e

0

| | ()
ijTt f t dt

∞

< ∞∫ , implies

[]ijE T < ∞ .The Laplace-Stieltjes transform ()
i j

T s� for the non negative random variable
ijT is defined as

' ()

0 0

() () () () , 0; () 1, 0; (0) 1, (0) =-E(), (0) (1) E()ij

ij ij

sT st st r r r

ij T T ij ij ij ij ij ij

t t

T s E e e dF t e f t dt s T s s T T T T T

∞ ∞
− − −

= =

= = = ≥ ≤ ∀ ≥ = = −∫ ∫� � � � �

We define ()
ijij T

p F t as the transition distribution from state ‘i’ to state ‘j’.

A test manager, watching the system in state ‘i’ can only infer the unconditional probability density

function of the waiting time at state ‘i’ (as it’s the tester who is executing the test case and has made the

decision of moving to test case ‘j’ from ‘i’).Therefore, let the unconditional waiting time in state ‘i’ be

denoted by the random variable Wi(t) [0,)∈ ∞ ∀ t [0,)∈ ∞ where the density function of
i

W is given by

| |

1

() ()
i ij

N

W ij T

j

f t p f t
=

=∑ and

0

([0,)) () () 1;0 () () 1, [0,)
i i i

t

i W W i WP W F t f d P W t f t tτ τ∈ ∞ = = = ≤ = = ≤ ∀ ∈ ∞∫ .The

expected unconditional waiting time in test case ‘i’ is given by:

1 1 10 0 0

[] () (()) (t) []
i i j ij

N N N

i W ij T ij T ij ij

j j j

E W tf t dt t p f t dt p tf dt p E T

∞ ∞ ∞

= = =

= = = =∑ ∑ ∑∫ ∫ ∫ (5)

 System Test Evaluation and Review Technique|14

Similar to the expected value of the conditional waiting/transition time we assume that the expected value

of the unconditional waiting/transition time satisfies absolute integrability and therefore exists and is

finite. The interchange of sum and integral in (5) is due to Tonelli’s theorem since
1

() 0
ij

N

ij T

j

p f t dt
=

>∑ .

The Laplace-Stieltjes transform of the unconditional waiting time is given by:

' ()

0 0

() () () () , 0; () 1, 0; (0) 1, (0) =-E(), (0) (1) E()i

i i

sW st st r r r

i W W i i i i i i

t t

W s E e e dF t e f t dt s W s s W W W W W

∞ ∞

− − −

= =

= = = ≥ ≤ ∀ ≥ = = −∫ ∫� � � � �

5.1 Interval Transition Probability of System Testing

Let the interval transition probability be denoted by 0() P(X |)ij tt j X iφ = = = which is the

(conditional) probability that test case ‘j’ is being executed at time ‘t’, given that that tester was at test

case ‘i’ at t=0.Therefore ()ij tφ is the (conditional) probability of being in test case ‘j’ at time ‘t’,

through multiple transitions, starting from test case ‘i’. Whereas, ij
p is the (conditional) probability of a

single transition from test case ‘i’ to ‘j’, ‘j’ being the immediate successor of ‘i’ in this case .φ is often

called the interval transition probability.

Let use introduce the Kronecker delta,
1 if i=j

0 o.w .
ij

δ =

 .Where 1ijδ = denotes that the test case has failed

and the test execution is stuck at this state. The probability of the unconditional waiting time when a test

case fails is given by
1

() 1 () (t)= 1 - ()
i i j i j i

N

W ij T ii T W

j

f t p f t p f f t
=

= − =∑ where

1

1 ,
N

ii ij

j

p p i j
=

= − ∀ ≠∑ is the probability that the test case fails after being

executed for a duration ‘t’.

Therefore, the distribution of the (unconditional) waiting time in the event of failure of a test case can be

represented as F (t) = 1- ()
i iW WF t .

Intuitively, if ()

i
W

F t is the probability of completing execution of test

case ‘i’ in time ‘t’ and then moving on to a successive test case, then F = 1- ()(t)
ii WW F t is the probability of

remaining in state ‘i’ even after time ‘t’, which can only occur in case of a failure.

Therefore the probability that the test execution started at test case ‘i’ and has remained there all the time

is given by ()
iij W

F tδ .Let ‘k’ be an intermediate test case between ‘i’ and ‘j’ and 0 tτ≤ < be the time

required to execute test case ‘i’. Thus, if ‘i’ and ‘j’ are connected by test case ‘k’ and if it takes a duration

‘t’ to reach test case ‘j’, then τ is the amount of time required to reach test case ‘k’ and the remaining

 System Test Evaluation and Review Technique|15

t τ− is the amount of time required to transition from test case ‘k’ to test case ‘j’. The following figure

shows the execution time for different transitions of the testing Markov chain.

Figure 4: Transition Time of the System Test Markov Chain

As shown by Osaki and Mine [2] and also by Elmaghraby [1], ()
ij

tφ can be formally defined with the

following recursive equation

1 0

() () () ()
i i k

tN

ij ij W ik T kj

k

t F t p f t dφ δ τ φ τ τ
=

= + −∑ ∫ (6)

This implies that when i=j, there are two events, one is that the system has stayed in the same state till

time ‘t’ and another is that the system visits state ‘k’ at time τ and returns to state ’i’ at time ‘t’. These

two events are mutually exclusive .When i j≠ , the system visits state ‘k’ in time τ and transitions from

state ‘k’ to state ‘j’ in time t τ− .

The convolution in (1) can be written as a Laplace transform as follows,

0

() () () ()
ik

t

T kj i k kjf t d T s sτ φ τ τ φ− =∫ �� ;

0 0

() () () () , 0jk

kj kj

s st st
kj

t t

s E e e dF t e f t dt s
φ

φ φφ
∞ ∞

− − −

= =

= = = ≥∫ ∫�

 () 1, 0
kj

s sφ ≤ ∀ ≥� ;
' ()

(0) 1, (0) =-E(), (0) (1) E()
r r r

kj kj k j kj k jφ φ φ φ φ= = −� � � .Also,

0

1
(1)

st
L e dt

s

∞
−= =∫

Therefore transforming (6), we obtain

1

1
(s) [1 ()] () ()

i

N

ij ij W ik ik kj
k

F s p T s s
s

φ δ φ
=

= − + ∑� �� �
 (7)

Let, () [()], () [()], () [()],
iij ij ij W ij W ijs s q s p T s F s F s Iφ φ δ δ= = = =� � � � �� be N N× matrices. Then (7) can be

rewritten in matrix form as
1 1

() [()] () () [()] (s) [()]W Ws I F s q s s I q s I F s
s s

φ φ φ= − + ⇒ − = −� � �� �� �

1 1

() [()] [()]Ws I q s I F s
s

φ −⇒ = − −� �� (8)

i

t

i k j

τ t τ−

i k

τ

t τ−

 System Test Evaluation and Review Technique|16

We assume here that the transition distribution ()
ijij T

p F t is invertible which is a necessary condition for

the existence of
1[()]I q s −− � .

5.2 Stationary Distribution (invariant measure) of System Testing

Osaki and Mine [2] define a semi-Markov process to be ergodic if the imbedded Markov chain is ergodic.

We now discuss the limiting behavior of an ergodic semi-Markov process. To derive the stationary

performance, the behavior of the system as t → ∞ , we use the final value theorem

0lim (t) lim ()t sf sF s→∞ →= � of Laplace-Stieltjes transform to obtain 0lim () lim ()t st s sφ φ→∞ →= � .

Thus (8) can be written in the form 1

0 0

1
lim () lim [()] [()]s s Ws s s I q s I F s

s
φ −

→ →= − −� �� .Using L’Hopital’s

rule we get
'

0

0

[()]
1

lim [()] (0) [()]

[]

W

s W W ij i

s

d
I F s

dsI F s F E W
ds

s
ds

δ→

=

−
− = = − =

�

� � .Howard (1964) proved that

1

1

0

1
1

...
1

[()] : ... :

() ...

N

s N

j j N
j

lim s I q s

E W

−
→

=

Π Π
 − =

Π Π Π ∑
� where the vector 1 2(, ,...,)

N
Π = Π Π Π is the

vector of the steady state probabilities of the ‘imbedded Markov Chain’. Therefore, the limiting transition

probability, that after a long period of time, test execution will be at test case ‘j’ is given by

1

[]
; 1, 2, ...,

[]

j j

j N

j j

j

E W
j N

E W

φ

=

Π
= =

Π∑
 (9)

5.3 Simulating the Semi-Markov Process of System Testing

If the execution time of a test case
ijT does not have an exponential distribution, then the resulting semi-

Markov process does not possess the Markov property. This means that the execution time
ijT of test case

‘i’ has a general distribution
ijT

F .We assume that
ijT

F can be computed analytically and has a tractable

expression for the probabilities and is invertible. When
ijT

F cannot be computed analytically and has no

tractable expression, we need to resort to Monte Carlo Markov Chain methods (MCMC) to simulate the

Semi-Markov Process and is out of the scope of this paper. We use the algorithm given by Sigman[12] for

simulating semi-Markov Chains when
ijT follows a general analytically tractable distribution

ijT
F and

modify it to run until all states of the semi-Markov Chain have been walked at least once.

 System Test Evaluation and Review Technique|17

5.3.1 Algorithm for Simulating System Testing in Continuous Time

1. Set 1i = , Generate
ijij T

T F∼ ,set
ijTτ = , wlkVec=[i]

2. If i wlkVec i∃ ∈ ∀ ∈ℵthen stop; otherwise goto step 3

3. Generate [0,1]u U∼ , set j where
,

1

j

i k

k

u p
=

≤∑

4. if j>=i and : ; 0jkk wlkVec k j k N p∉ ∀ ≤ ≤ > goto step 5 else goto step 6

5. Generate
ijij T

T F∼ and set
ijTτ τ= +

6. set i j= ; add i to wlkVec

7. Go to step 2

We generate ()ij iT Exp λ∼ when the execution time is exponentially distributed and as a result the

Markov Process is a Continuous Time Markov Chain.

Again, by the Weak Law of Large Numbers given in equation(4) we conclude that if we run the

simulation for a sufficiently long time such that [T] , 0n Eτ ε ε− ≤ ∀ > , then the average of the time (τ)

obtained from each run of the simulator will converge in probability to the expected time (T) required to

walk all the states.

 System Test Evaluation and Review Technique|18

6. Optimal Control of System Testing-The Test Management Model

Figure 5: Optimal Control Model for System Test Execution Process

Gimbert[13] defines a controllable Markov Chain (, , ,)U pµℵ to satisfy the following properties

- The state space | |ℵ < ∞ and the control space | |U < ∞

- For each state
t

X ∈ℵ a control
t

U U∈ can be selected according to some policy : Uµ ℵ →

- The transition probability, P : Uℵ× →ℵ where the triplet (, ,)i u j represents a transition with

transition probability P(| ,) 0j i u > , ,i j ∈ℵ and u U∈

The cost space C would depend on the action space, () : , ()C t U C t C+ℵ× → ∀ ∈� .A policy µ is a

decision making function of control strategy of the agent, representing a mapping from the state space to

the control space.

Let us first define and elaborate on the decision epoch. A test manager reviews the test execution progress

(based on the history of the process) at scheduled checkpoints, during the testing cycle and it is at these

discrete points in time that the manager takes a decision thus applying a feedback control in order to the

stabilize (maximize the expected utility) the test execution process.

A history of the process until decision epoch
' 1,2,...τ = denoted by a random vector 'H

τ
 is a sequence

of transitions such that
' '

'

' ' '

'

1

'

1

(, ,) | | 0, () if 1

(, , ,) | 0, (),u if 1

ij

ij

ij T

ij T

X i t X j i j p t f t
H

X i U u t X j i j p t f t U

τ τ

τ

τ τ τ

τ

τ

+

+

 = = ∀ ∃ ≠ =
=

= = = ∀ ∃ ≠ ∈ >

∼

∼

The semi-Markov decision process therefore should satisfy the following Markov Property

System Test Execution Process

Test Manager

System Test Execution Model

'H

τ

 µ

 *µ

 [()]
arg max lim i

t

E c t

t

µ

µ
→∞

 −

 System Test Evaluation and Review Technique|19

 ' ' ' ' ' '
1 1

(, | ,) (, | ,)ij ijP T t X j H U u P T t X j X i U u
τ τ τ τ τ τ+ +

= = = = = = = = (10)

The test management problem is a finite horizon stochastic optimal control problem and can be solved by

Stochastic Dynamic Programming. Since we have considered a simplified model of software test

execution in this paper with only one tester, the state space is not multi dimensional and therefore does

not suffer from the curse of dimensionality.

We denote [()]iE c t
µ

 as the expected cost up to time ‘t’ beginning from test case ‘i’ as the initial state

and applying policy : Uµ ℵ → .Thus our optimal control problem is to find a policy
*µ that minimizes

the average expected long run cost when starting in test case ‘i’ over execution of N test cases which can

be formulated as

[()]

arg max lim i
t

E c t

t

µ

µ
→∞

 −

 (11)

6.1 The Cost Function of System Testing

The costing of most testing projects is either ‘Time and Material’ or ‘Fixed Price’. In this paper we will

only consider ‘Time and Material’ costing wherein cost of test execution is calculated as follows:

 Cost of Executing a Test Case=Duration of Execution Billing Rate× (12)

The billing rate is a contractual agreement and does not fluctuate during the course of test execution (and

is therefore constant).Thus, we can safely assume that the cost of test execution is a linear function of

time and the total cost of test execution is a linear combination of the cost of executing each test case in

the test suite.

Let ic +∈� be the cost of executing test case ‘i’ (1,.., N)i = .Therefore, we define cost as a monotone

non decreasing function :ic + +→� � of duration (ijT) wherein ()
(t)() (())

ijic t i T
F y P c F y= ≤ ,the

function of a random variable is also a random variable. We define the random execution time of test case

‘i’, ijT on the probability space (, ,)F PΩ .

Then we can write (,) () : ([0,) , ([0,))) (, ())
ii c

d dc t f t B F B∞ ×Ω ∞ ⊗ →� � � to define the

dependence of cost ic on ()
i jTf t .It is important to note that we denote (1)

i
c as

i
c which is a constant.

Moreover, since the test execution Markov chain is recurrent, the duration of time spent in execution of

test case ‘i’ is finite. This implies by definition that the cost ()
i

c t of executing test case ‘i’ is finite as well

and () as i ic t c t↑ → ∞ . Thus, by the Monotone Convergence Theorem, we can conclude that the

lim [()] [lim ()]t i t iE c t E c t→∞ →∞↑

Further, assuming absolute integrability
()

0

| () | [()]
ii c t ic t dF E c t

∞

< ∞ ⇒ < ∞∫

 System Test Evaluation and Review Technique|20

6.2 Semi-Markov Process Model of System Testing with Costs

 Now we shall consider the total expected cost up to time‘t’, [(t)]
i

E c < ∞ when test execution starts from

test case ‘i’ at time zero. [(t)]
i

E c satisfies the following equation of renewal type, 0t∀ ≥

1 0

[(t)] [1 F ()] { [()]} ()
i ij

N

i W i ij i j T

j

E c t c t p c E c t f dτ τ τ τ
∞

=

= − + + −∑ ∫ (13)

The tail distribution of the unconditional waiting time 1 ()
iWF t− approaches zero as ‘t’ gets large. This is

explained by the fact that the probability that a test case will remain in failed state will tend to zero as the

number of retests and hence the duration of testing ‘t’ gets large. Moreover, [] [1 ()] 0
ii WE W F t< ∞⇒ − → .

Therefore, for large ‘t’, (4) can be re-written as

1 1 10 0 0

[()] () [()] () [] [()] ()
ij ij ij

N N N

i ij i T ij j T i i ij j T

j j j

E c t p c f d p E c t f d c E W p E c t f dτ τ τ τ τ τ τ τ τ
∞ ∞ ∞

= = =

= + − ⇒ + −∑ ∑ ∑∫ ∫ ∫ (14)

Let us introduce, [] []1 1 2 1 1 2[(t)] [(t)] [()] ... [()] ; ...
N N N N

E c E c E c t E c t c c c c× ×= =

[] [()]; (t) [(t)]
ijN N ij i N N ij T

E W E W q p fδ× ×= = .We can then re-write (5) as

 [()] [] () [()]E c t E W c q t E c t= + ∗ (15)

Where ‘*’ denotes convolution. Taking the Laplace-Stieltjes transform, we get

11 1
[()] [] (s) E[()] [()] [()] []E c s E W c q c s E c s I q s E W c

s s

−= + ⇒ = −� � � � (16)

We are interested in the limiting behavior of (6) i.e
0

lim [()] lim [()]
t s

E c t sE c t→∞ →= �

6.3 Expected Long-Run Stationary Cost of System Testing

As shown by Osaki and Mine [2], the expected long-run stationary cost which is the average cost of

executing a test case (i∀ ∈ℵ), when the duration of test execution t → ∞ can be written as

1

0

1

[]
1

lim [()]

[]

N

j j jt

j

t i N

j j

j

E W c

E c d g
t

E W

τ τ =
→∞

=

Π

= =
Π

∑
∫

∑
 (17)

6.4 The Control Space and Control Policy of System Test Management

We model the control space U as {0,1}U = where 0u = would mean no additional investment is required

while 1u = implies that additional investment is required. Thus we define the control policy as follows:

At execution epoch of every test case, i ∈ℵ , the test manager can decide to make an additional

 System Test Evaluation and Review Technique|21

investment (and thus reduce the time to complete test execution, thereby increasing cost) or choose not to

make any additional investment if she finds that there is no risk of schedule overrun. Formally,

1

0 . .
i

if additional investment is made

o w
µ

=

 (18)

When the test manager chooses a control policy ,
i

u i u Uµ = ∀ ∈ℵ ∈ , then the system obeys the

probability law ()
ij

u u

ij T
p F t where

u

ij
p is the transition probability from test case ‘i’ to ‘j’ when control ‘u’ is

applied and
ij

u

T
F is the probability distribution of waiting in state ‘i’ when the next state ‘j’ is chosen and

control ‘u’ is applied. It is important to note that
0 1 , or 1
ij ij

p p i j j≤ ∀ < = ;
1 0 & 1
ij ij

p p i j j≤ ∀ ≥ ≠ and

0 0 1 1() () () () ,
ij ijT ij ij T

F t P T t P T t F t i j= ≤ < ≤ = ∀ ∈ℵThis further implies that
1 0[] [] ,

ij ij
E T E T i j< ∀ ∈ℵ .An

intuitive explanation for this is that if the test manager wants to make additional investment in execution

of test case ‘i’, then the probability that the test execution will jump out of state ‘i’ is equal to or higher

than that with no investment. Similarly, an additional investment in execution of test case ‘i’, should

reduce the probability of waiting in state ‘i’ upto time ‘t’ and hence the expected waiting time as well.

Moreover,
u

ic will denote the cost of executing test case ‘i’ per unit time under the influence of control

‘u’ and
1

[] []
N

u u u

i ij ij

j

E W p E T
=

=∑ is the expected unconditional waiting time in test case ‘i’ when control ‘u’

is applied. As a consequence,
0 1

i ic c i< ∀ ∈ℵand
0 1[] []i iE W E W i> ∀ ∈ℵ .Therefore we obtain the

following expression for the expected long-run stationary cost under control policy µ

1

0

1

[]
1

lim [()]

[]

N
u u u

j j jt

j

t i N
u u

j j

j

c E W

E c d g
t

E W

µ µτ τ =
→∞

=

∏

= =
∏

∑
∫

∑
 (19)

6.5 Semi-Markov Decision Process Model for System Test Management

We use the same arguments as given by Bhulai and Koole [11] to derive the average expected long-run

costs []iE c
µ

 when starting in test case ‘i’. As defined earlier, [()]iE c t
µ

 denotes the total expected cost till

time ‘t’ when beginning from test case ‘i’ at time 0, and control u U∈ is applied. From (5), we have

1 0

[()] [] [()] ()
ij

N

i i i ij j T

j

E c t c E W p E c t f d
µ µ µ µ µ µτ τ τ

∞

=

= + −∑ ∫ and [] lim { [()] }i t iE c E c t g t
µ µ µ

→∞= − is the total

expected difference in costs between starting in test case ‘i’ and starting in stationarity. Therefore we can

write,
1

[(t)] g [] o(1) [] [(t)]
N

i i i i ij j

j

E c E W c E W p E c
µ µ µ µ µ µ µ

=

+ + = +∑

Subtracting g tµ
 from both sides and taking the limit T → ∞ leads to the Poisson equation

 System Test Evaluation and Review Technique|22

1

[] g [] [] []
N

i i i i ij j

j

E c E W c E W p E c
µ µ µ µ µ µ µ

=

+ = +∑ (20)

An important point to note here is
1 1[] lim { [()] } 0tE c E c t g t
µ µ µ

→∞= − = which is implies from (19)

because

0

lim [()]

t

t iE c d g t
µ µτ τ→∞ =∫ which is the expected of cost executing a test case over all test cases

in the system and with time t → ∞ . It is also important to note the condition. Another condition that is

necessary to impose on the Poisson equation in (20) is that [] 0
j

E c j i
µ = ∀ ≤ . This follows from the

argument given for the formulation equation (14) that as t → ∞ , the probability that the test case will

keep failing tends to 0 and therefore the probability of waiting in the same test case, 1 ()
iWF t− converges

to 0 faster than ()
i

c t diverges.

6.5.1 Policy Iteration to find the Optimal Policy

Next we present the algorithm given be Bhulai and Koole [11] to find the optimal policy using Bellman

Equation in (21)

1. Choose 0 1
i

orµ =

2. Compute g µ
and []iE c

µ− i∀ ∈ℵ .

3. Find the optimal policy
*

iµ .If
*

i iµ µ= , then stop else goto step 4

*

1

argmax{() [] []}
N

u u u

i i i ij j
u U j

c g E W p E c
µ µµ

∈ =

= − + + −∑ (21)

4. Set
*

i iµ µ= and goto step 2.

 System Test Evaluation and Review Technique|23

7. The Optimal Additional Investment in System Testing
In this section we consider the solution proposed by Elmaghraby [1] for computing the optimum

additional investment and present it in the framework of system testing. Let us assume that an additional

amount [0,)ijr ∈ ∞ is invested in order to reduce the expected time taken to execute test case ‘i’ (and

thus realize test path ‘ij’). We have already defined the random execution time of test case ‘i’, ijT on the

probability space (, ,)F PΩ .Then we can write

(,) () : ([0,) , ([0,))) (, ())
ij

d d
rr t f t B F B∞ ×Ω ∞ ⊗ →� � � to define the dependence of ()

i jTf t on

additional investment ijr , wherein
0 ()
ijT

f t is the probability of completing execution of test path ‘ij’ at

time t, without any additional investment. This would mean that the expected value of the execution time

i.e. []ijE T reduces by a certain amount whenever and additional investment is made. Let the new

expected value of the execution time be denoted as ˆ[] []i j i jE T E T< . Please note that if the above

inequality does not hold true for any 0ijr > , it would be futile to invest any additional amount in the first

place. Let us denote the reduction in expected execution time as a function of additional investment,

()ijrζ .Therefore, ˆ[] [] ()ij ij ijE T E T rζ= − and ˆ[()] [()]ij ij ijE c t E c t r= + . Moreover, we make a

simplifying assumption that the decrease in average duration is a linear function of investment. Thus, we

can rewrite the average duration and cost introduced earlier as follows

 ()
[]ˆ ˆ ˆ ˆ[] [] , - 0; [] [] [] , 0

ij

ij ij ij ij ijt
E T

E T E T qr q E c E mT r mE T r m
r

= + < < = + = + ≥ (22)

Therefore, we can also write () [()] (1) , 0ˆ[] [] (1) , 0
ijij ijt E c t mq r mE c mE T mq r m + + ≥= + + ≥ ⇒

where q is the marginal decrease in the test execution time per unit increase in investment and ‘m’ is the

linear slope of the cost function. It’s important to note that the amount of capital r available to a test

manager is finite and therefore q is bounded. Also it’s important to note that the probability of realizing

a test case depends on the path that is chosen (there can exist multiple logic paths through a test

case).Therefore, the expected cost (without any additional investment) given by the ‘law of unconscious

statistician’ is
0

[()] () ()
ij

b

ij ij T

a

E c t c t dF t= ∫ where ‘a’ and ‘b’ are the limits on the duration of execution of

test path ‘ij’. Further, if an investment ijr is made in test path ‘ij’, the new expected cost will be given by

ˆ

ˆ

ˆ ˆ ˆ[()] () ()ij

ij

b
r

ij ij ij T

a

E c t r c t dF t= + ∫ where â and b̂ are the new limits on the duration when investment
ijr

has been made in test path ‘ij’. Now, either of the following can be true 0ijr∀ > , ˆ[()] [()]
ij ij

E c t E c t≤ or

ˆ[()] [()]
ij ij

E c t E c t≥ . We will only consider ˆ[()] [()]
ij ij

E c t E c t≤ as that is the objective of a test manager

which means the additional investment
ijr is adequately compensated by the decrease in duration of test

 System Test Evaluation and Review Technique|24

case ‘i’ and eventually reduces the cost. Therefore there exists a minimum additional investment for test

path ‘ij’ in order to minimize the expected cost. Suppose, that the status of testing (as revealed in the test

execution report) at some time t>0 after its initiation, reveals that the execution of one or more test cases

has taken so long to complete that the probability of completing one or more test/logic paths is

dangerously low. Then the optimization problem translates to

‘what is the optimal allocation of a fixed amount of capital K among the remaining test cases such that

the probability of realizing the terminal test cases on or before a specified time is maximized’

Let us denote the set of terminal test cases as { | 1}llL l N p= ∈ = .Therefore, lT l L∀ ∈ ; lC l L∀ ∈ and

lP l L∀ ∈ is the execution time from the first test case to the terminal test case, the cost of reaching the

terminal test case starting from the first test case and the probability of reaching the terminal test case

respectively. Let
x

lπ denote the path ‘x’ from the starting test case to the terminal test case ‘l’ and

() or ,x x
l lP P l Lπ ∈ denote the probability of realizing test case l L∈ along path ‘x’. Similarly, let

xT

be the duration of realizing path ‘x’, therefore
() x

x
ijl

ij

T T
π∈

= ∑ is the sum of independent random variables

ijT .Hence,
k k

l l l l
k

PT P T=∑ implies []

k k
l

k
l

l

P T

E T E
P

=
∑

.Since,
k k

l
k

P T∑ where
k

k
ij

ij

T T
π∈

= ∑ ,

using Linearity Property , we can write the following

[] [][]

[]
k k

k kk k
ij ijl ll

k kij ijk
l

l l l

P E T P E TP E T

E T
P P P

π π∈ ∈= = =
∑ ∑ ∑ ∑∑

.Replacing, ˆ[] []ij ij ij ijE T E T q r= − , we

get

ˆ([])

ˆ[] []
k k

k k
ij ij ij ij ijl l

k kij ij

l l

l l

P E T q r P q r

E T E T
P P

π π∈ ∈

−

= = −
∑ ∑ ∑ ∑

. Therefore,

 ˆ[] []
k

k
ij ijl

k ij

l l

l

P q r

E T E T
P

π∈= +
∑ ∑

 (23)

(1)

ˆ[] []
k

k
ij ijl

k ij

l l

l

P mq r

E C E C
P

π∈

+

= +
∑ ∑

 (24)

Let us denote the estimated completion time for terminal test case l as lτ .Then the optimization problem

is

 System Test Evaluation and Review Technique|25

ˆmaximize [T]

. .

0 ,

k

l l

k

ij

k ij

k

ij ij

s t r K

r r ij

π

τ

π

∈

Ρ ≤

≤

≤ ≤ ∀ ∈

∑∑ (25)

Where ijr is the upper limit on the amount to be invested in test path ‘ij’ such that

 and ij ijr K r K≤ >∑ We assumed earlier that any additional investment i.e 0ijr∀ > , reduces the

expected execution time test path ‘ij’ by a certain amount such that ˆ[] []ij ijE T E T< .

Consequently,
0ˆ[T] () [T] ()

k
ij

kk ij

k k
l l

k k

r

l l l l l lF Fπ

π π
τ τ τ τ∈

∑∑

∑ ∑
Ρ ≤ = > Ρ ≤ = .Furthermore, by continuity and

linearity of ˆ[] []ij ijE T E T< in ijr we deduce that ˆ[T]l lτΡ ≤ is a continuous and monotone non

decreasing function of
k

k

ij

k ij

r
π∈

∑∑ for any lτ .Therefore maximizing ˆ[T]l lτΡ ≤ is equivalent to

minimizing ˆ[]lE T .Hence, we can rewrite the objective function of optimization problem defined above

as ˆmaximize [] []l lE T E T− . An important point to note is that there might be investments which lead to

the same reduction in execution time of a test path. Which investment to choose in such a case? To

correct this problem, we modify the objective function further to
r

ˆ[] []
maximize

ˆ[] []

l l

l l

E T E T

E C E C

−

−
. Therefore

the optimization problem in (25) can be re-written as

maximize

(1)

subject to

 0 ,

k

k

k

k

l ij ij

k ij

k

l ij ij

k ij

k

ij

k ij

k

ij ij

P q r

P mq r

r K

r r ij

π

π

π

π

∈

∈

∈

−

+

≤

≤ ≤ ∀ ∈

∑ ∑

∑ ∑

∑∑
 (26)

 System Test Evaluation and Review Technique|26

Since the objective function in (26) is non-linear we use a Charnes-Cooper transformation as shown by

Borza et all. [14], to translate the linear-fractional program to an LP problem. We substitute

1

(1)
k

k

l ij ij

k ij

y
P mq r

π∈

=
+∑ ∑

 (27)

Therefore the optimization problem in (26) translates to the following Linear Programming Problem

maximize

 -

subject to

 0

 1

 0 ,

k

k

k

l ij ij

k ij

ij

k ij

k

ij ij

P q r y

r y Ky

y

r y r y ij

π

π

π

∈

∈

− ≤

≥

≤ ≤ ∀ ∈

∑ ∑

∑∑
 (28)

 System Test Evaluation and Review Technique|27

8. Results & Discussion

Table 4: Stationary Distribution П*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S M M C M S S C S C S C M S S S

∏* 14.14% 5.86% 6.45% 8.22% 5.48% 4.90% 1.30% 11.75% 1.86% 11.56% 1.83% 10.40% 6.93% 6.20% 1.64% 1.49%

Test Case ID

Test Case

Id Complexity

Average

Execution Time

(minutes)

1 S 10

2 M 15

3 M 15

4 C 30

5 M 15

6 S 10

7 S 10

8 C 30

9 S 10

10 C 30

11 S 10

12 C 30

13 M 15

14 S 10

15 S 10

16 S 10

Table 2: Average test execution time (in minutes)

for test case belonging to each complexity class

(Simple, Medium and Complex)

1

2

3

4

5

6

7

8

9

10

11

12

13 15

14

16

1

pij 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 5.00% 35.00% 0 0 0 0 0 50.00% 0 0 0 0 0 0 0 10.00%

2 5.00% 10.00% 85.00% 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 5.00% 10.00% 85.00% 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 10.00% 30.00% 45.00% 0 15.00% 0 0 0 0 0 0 0 0 0

5 0 0 0 5.00% 10.00% 85.00% 0 0 0 0 0 0 0 0 0 0

6 95.00% 0 0 0 0 5.00% 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 95.00% 0 5.00% 0 0 0 0 0 0 0 0 0

8 10.00% 0 0 0 0 0 0 30.00% 15.00% 45.00% 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 5.00% 95.00% 0 0 0 0 0 0

10 0 0 0 0 0 0 0 10.00% 0 30.00% 15.00% 45.00% 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 5.00% 95.00% 0 0 0 0

12 0 0 0 0 0 0 0 0 0 10.00% 0 30.00% 45.00% 0 15.00% 0

13 0 0 0 0 0 0 0 0 0 0 0 5.00% 10.00% 85.00% 0 0

14 95.00% 0 0 0 0 0 0 0 0 0 0 0 0 5.00% 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 95.00% 0 5.00% 0

16 95.00% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.00%

Figure 6: Test Execution Markov Chain

Table 3: The Transition Probability Matrix, P

We consider a test suite of 16 test cases

2. As described in section [4], we obtain

the forward recurrence formula given in (3), we obtain

test cases as show in the Table 4. Convergence was attained in 40 steps.

stationary distribution obtained for each test case corresponds to its complexity class. For instance, the

system testing process has the highest probability

the starting test case) followed by test case 8

number of sub branches in the test suite.

of failure and the probability that the system testing process will be in test case 8 is the highest. Similarl

the model assigns a lower probability to test cases of medium complexity followed by simple test cases.

Next, we simulated a walk on the

presented in section (4.2.1) and plot a sample

probability that one or more test cases in this branch fail is the highest. This in turn results in test case 14

being visited the most number of times along with test case 1(which is evident as it acts a connect

between the start and end of testing along a logic path).We also observe that system testing process

oscillates a few times between test case 8 and test case 10 which is expected because test case 8 and test

case 10 both belong to the complexity class ‘

look at the plot also reveals some flat paths (at test case 12), which explains the phenomenon of retesting

of a test case, while the jump to the previous test case (from test case 2 to test case

fact that the test case under execution failed and the tester

path while the defect identified by test case 2 is being fixed.

Figure 7: Sample Path of Test Execution Process in Discrete Time. The plot shows the jumps of the test

execution process to each test case over time

 System Test Evaluation and Review Technique

a test suite of 16 test cases (Figure 6) and the average test execution rate

described in section [4], we obtained the transition probability matrix P as shown

recurrence formula given in (3), we obtained the stationary distribution
*

∏

. Convergence was attained in 40 steps. It’s important to note that the

for each test case corresponds to its complexity class. For instance, the

system testing process has the highest probability (14.13%) of being in test case 1 (which is evident as it’s

the starting test case) followed by test case 8 (11.75%), which is a complex test case and has the highest

number of sub branches in the test suite. Therefore the logic path of test case 8 has the highest probability

of failure and the probability that the system testing process will be in test case 8 is the highest. Similarl

the model assigns a lower probability to test cases of medium complexity followed by simple test cases.

a walk on the System Testing Markov Chain in discrete time using the algorithm

and plot a sample path. As we can see in Figure 7, the test execution process,

probability that one or more test cases in this branch fail is the highest. This in turn results in test case 14

being visited the most number of times along with test case 1(which is evident as it acts a connect

between the start and end of testing along a logic path).We also observe that system testing process

oscillates a few times between test case 8 and test case 10 which is expected because test case 8 and test

case 10 both belong to the complexity class ‘C’ and therefore have a high probability of failure.

look at the plot also reveals some flat paths (at test case 12), which explains the phenomenon of retesting

of a test case, while the jump to the previous test case (from test case 2 to test case 1) is explained by the

fact that the test case under execution failed and the tester decided to test the test cases in the next logic

path while the defect identified by test case 2 is being fixed.

Figure 7: Sample Path of Test Execution Process in Discrete Time. The plot shows the jumps of the test

over time

System Test Evaluation and Review Technique|28

ate as shown in Table

n in Table 3.Using

*
∏ for each of the 16

important to note that the

for each test case corresponds to its complexity class. For instance, the

of being in test case 1 (which is evident as it’s

mplex test case and has the highest

Therefore the logic path of test case 8 has the highest probability

of failure and the probability that the system testing process will be in test case 8 is the highest. Similarly,

the model assigns a lower probability to test cases of medium complexity followed by simple test cases.

Markov Chain in discrete time using the algorithm

, the test execution process,

visits test case

14 quite a few

times. This is

explained by the

fact that the

logic path to

which test case

14 belongs to

have the

maximum

number of test

cases that

belong to the

complexity class

‘C’ (namely 8,

10 and 12) and

therefore the

probability that one or more test cases in this branch fail is the highest. This in turn results in test case 14

being visited the most number of times along with test case 1(which is evident as it acts a connector

between the start and end of testing along a logic path).We also observe that system testing process

oscillates a few times between test case 8 and test case 10 which is expected because test case 8 and test

high probability of failure. A close

look at the plot also reveals some flat paths (at test case 12), which explains the phenomenon of retesting

1) is explained by the

decided to test the test cases in the next logic

We applied the Weak Law of Large

to complete test execution. As can be seen in

simulator to return the results in a limited number of recursions.

obtained from each run of the simulator converges al

allow the simulator to run for a considerably long time and with greater number of recursions. Though, it

is important to note that as the size of the test suite gro

larger. Moreover, test managers are mostly concerned with an approximate estimate of the

completion time; hence a convergence in probability would be sufficient.

Then using the algorithm in section 5

the execution time being exponentially distributed with rate of execution as given in the table above. A

plot of the sample path is shown in Figure 9

and jumps to test case 8.However, test execution

system jumped back to test case 1.By the

resulted in failure of test case 8 was fixed. However, since 1 has already been tested, it now just acts as

transition case and no longer has an execution time

jump from test case 8 to test case 1 is shown by a steep

and execution moves on to the subsequent test cases in the logic path until it reaches test case 12, which

fails and continues to fail the retests for a considerable amount of time. One important point to

is that the system does not jump back to test case 10 (and subsequently to test case 11) during this

process. This is because test case 12 is a complex test case while test case 11 is a simple test case. Thus

the probability that the system would

after multiple failures is high. Towards the extreme right of the plot, the jumps are steep, again due to the

reason, that once a test case/sequence of test cases have passed, they do

merely act as a connector to the test cases that haven’t yet passed.

Figure 8: Convergence of the Expected Time, E[T] to Complete Test Execution

 System Test Evaluation and Review Technique

Large Numbers given in equation (4) to obtain the expected

complete test execution. As can be seen in Figure 8, the average of the steps obtained from each run of

the results in a limited number of recursions. However, the average of the steps

m each run of the simulator converges almost surely to the expected number of steps

run for a considerably long time and with greater number of recursions. Though, it

as the size of the test suite grows large, the steps to convergence will also get

larger. Moreover, test managers are mostly concerned with an approximate estimate of the

hence a convergence in probability would be sufficient.

g the algorithm in section 5.3.1, we simulated a walk on the System Testing Markov Chain with

the execution time being exponentially distributed with rate of execution as given in the table above. A

f the sample path is shown in Figure 9. As can be seen, the test execution process starts at test case 1

, test execution of test case 8 failed (it being a complex test case) and the

system jumped back to test case 1.By the time, the system jumped back to test case 1, the defect that

e of test case 8 was fixed. However, since 1 has already been tested, it now just acts as

transition case and no longer has an execution time (and thus does not add to the counting process)

jump from test case 8 to test case 1 is shown by a steep line. During the retest though, test case 8 passes

and execution moves on to the subsequent test cases in the logic path until it reaches test case 12, which

the retests for a considerable amount of time. One important point to

is that the system does not jump back to test case 10 (and subsequently to test case 11) during this

because test case 12 is a complex test case while test case 11 is a simple test case. Thus

the probability that the system would prioritize test case 12 and execution will stay in this test case even

Towards the extreme right of the plot, the jumps are steep, again due to the

reason, that once a test case/sequence of test cases have passed, they do not have an execution time and

merely act as a connector to the test cases that haven’t yet passed.

Figure 8: Convergence of the Expected Time, E[T] to Complete Test Execution

System Test Evaluation and Review Technique|29

the expected number of steps

obtained from each run of

the simulator

converges in

probability to

the expected

number of

steps which is

approximately

145. It is

important to

mention that

we only

consider

convergence

in probability

because we

choose

0.001ε =
which in turn

allows the

However, the average of the steps

most surely to the expected number of steps, if we

run for a considerably long time and with greater number of recursions. Though, it

gence will also get

larger. Moreover, test managers are mostly concerned with an approximate estimate of the average

, we simulated a walk on the System Testing Markov Chain with

the execution time being exponentially distributed with rate of execution as given in the table above. A

ess starts at test case 1

of test case 8 failed (it being a complex test case) and the

the system jumped back to test case 1, the defect that

e of test case 8 was fixed. However, since 1 has already been tested, it now just acts as

(and thus does not add to the counting process), so the

line. During the retest though, test case 8 passes

and execution moves on to the subsequent test cases in the logic path until it reaches test case 12, which

the retests for a considerable amount of time. One important point to note here

is that the system does not jump back to test case 10 (and subsequently to test case 11) during this

because test case 12 is a complex test case while test case 11 is a simple test case. Thus

prioritize test case 12 and execution will stay in this test case even

Towards the extreme right of the plot, the jumps are steep, again due to the

not have an execution time and

Figure 9: Sample Path of Test Execution Process in Continuous Time. The plot

execution process to each test case when the execution time is exponentially distributed

Figure 10: Sample Path of Number of Test Cases Executed v/s Elapsed Test Execution Time

 System Test Evaluation and Review Technique

Sample Path of Test Execution Process in Continuous Time. The plot shows the jumps of the test

execution process to each test case when the execution time is exponentially distributed

Figure 10: Sample Path of Number of Test Cases Executed v/s Elapsed Test Execution Time

System Test Evaluation and Review Technique|30

As described

in section 3,

we also plot

the sample

path

(Figure10) of

number of

test cases

executed
t

N

and as

expected the

path is same

as that of a

Poisson

Process. The

plot
t

N

shows that

the process

attains a

value of 20

test cases

shows the jumps of the test

while the total number of test cases in the test suite is 16.

homogeneous Poisson Process described in section (2) we count retesting of a test cases as a new event of

from each run of the simulator converges in probability to the

We chose 0.0001ε = for the continuous time case

method but the difference is not large and the estimate obtained by our model is more reliable because as

shown above, it replicates the system te

failure of test cases. Now, if we compute the probability of

within 5.6 hours even with the slowest rate

very small probability of schedule overrun.

The expected execution time for each test case

we computed []jE W for each test case

in this example. This is because we have considered the test execution time to be exponentially

distributed and do not differentiate in the rate of execution of test case

execution chain is either a simple, medium or complex test case. If, however the expected execution time

of test case ‘i’, []ijE T is made dependent on the next test case

row of the above matrix would be different and

semi-Markov model of system testing accommodates this scenario as well

Figure 11: Convergence of Expected Time (in hours), E[T] to Complete Test Execution

 System Test Evaluation and Review Technique

while the total number of test cases in the test suite is 16. This is because as per the properties of a

on Process described in section (2) we count retesting of a test cases as a new event of

from each run of the simulator converges in probability to the expected time of approximately 5.

the continuous time case. This is higher than the estimate obtained by the SMC

method but the difference is not large and the estimate obtained by our model is more reliable because as

shown above, it replicates the system testing process quite well by modeling the time to retest due to

, if we compute the probability of not completing test execution of all test cases

slowest rate of 2λ = , we get
5.6 5(5.6) 1.37 10P T e λ− −> = = ×

edule overrun.

The expected execution time for each test case []ijE T is shown in Table 5. Therefore,

for each test case as shown in Table 6. It is important to note that

. This is because we have considered the test execution time to be exponentially

distributed and do not differentiate in the rate of execution of test case ‘i’ if the next test case

e, medium or complex test case. If, however the expected execution time

is made dependent on the next test case ‘j’ to be executed then the values in each

row of the above matrix would be different and []jE W would have a different value from

Markov model of system testing accommodates this scenario as well

Figure 11: Convergence of Expected Time (in hours), E[T] to Complete Test Execution

System Test Evaluation and Review Technique|31

This is because as per the properties of a

on Process described in section (2) we count retesting of a test cases as a new event of

the counting

process.

Similar to

the discrete

case, we

applied the

Weak Law

of Large

Number as

presented in

equation (4)

to obtain the

expected

time to

complete test

execution.

As can be

seen in the

plot below,

the average

of the time

obtained

expected time of approximately 5.6 hours.

higher than the estimate obtained by the SMC

method but the difference is not large and the estimate obtained by our model is more reliable because as

time to retest due to

execution of all test cases
5.6 5(5.6) 1.37 10− −> = = × which is a

 using equation (5)

It is important to note that [] []j ijE W E T=

. This is because we have considered the test execution time to be exponentially

if the next test case in the

e, medium or complex test case. If, however the expected execution time

to be executed then the values in each

would have a different value from []ijE T .The

 System Test Evaluation and Review Technique|32

Table 5: Expected Test Execution Time (in hours)

Table 6: Unconditional Expected Waiting Time at each Test Case (in hours)

Next, we computed the limiting transition probabilities
jφ by equation (9) and the values are presented in

Table 7. An important inference from the result of the limiting transition probability
jφ is that it

computes the probability of being in test case 1 to be 7.2 % in contrast to the probability of 14.13%

obtained from the stationary distribution
*

∏ .Though by design test case 1 acts as a connecting state for

most test cases, its complexity is simple, which means that a test manager observing the system testing

process for a long time will see test execution at test case 1 with low probability as compared to complex

test cases.

Table 7: Limiting Transition Probability φj

As expected, the test execution process has the highest probability of being in test case 8 (17.96%) as it

has the highest complexity (given by the fact that it is the parent of two complex test cases namely test

case 10 and test case 12). The other complex test cases, 10, 12 and 4 are assigned probabilities in

decreasing order which corresponds to the complexity of test cases linked to each of them. Similarly, test

cases of medium complexity have a higher limiting transition probability than simple test cases. If we

look at the limiting transition probabilities of test case 2 and test case 3 both of which belong to the

complexity class of medium, we see that test case 3 has a higher limiting transition probability(4.9%) than

test case 2(4.4%).This is because, test case 4 which is the immediate test case that follows 3 is a complex

test case and therefore has a higher probability of failure whereas that test case 2 is linked to test cases 3

and 4, which are both simple test cases. Similarly, if we compare the limiting transition probabilities of

two simple test cases, namely test case 6 and test case 9, we observe that test case 6(2.4%) has a higher

limiting transition probability than test case 9(0.9%) which is again explained by the fact that test case 9

belongs to a much shorter logic path than test case 6 and the probability of one or more test cases failing

E[Tij] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1/6 1/6 0 0 0 0 0 1/6 0 0 0 0 0 0 0 1/6

2 1/4 1/4 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1/4 1/4 1/4 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 1/2 1/2 1/2 0 1/2 0 0 0 0 0 0 0 0 0

5 0 0 0 1/4 1/4 1/4 0 0 0 0 0 0 0 0 0 0

6 1/6 0 0 0 0 1/6 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 1/6 0 1/6 0 0 0 0 0 0 0 0 0

8 1/2 0 0 0 0 0 0 1/2 1/2 1/2 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 1/6 1/6 0 0 0 0 0 0

10 0 0 0 0 0 0 0 1/2 0 1/2 1/2 1/2 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 1/6 1/6 0 0 0 0

12 0 0 0 0 0 0 0 0 0 1/2 0 1/2 1/2 0 1/2 0

13 0 0 0 0 0 0 0 0 0 0 0 1/4 1/4 1/4 0 0

14 1/6 0 0 0 0 0 0 0 0 0 0 0 0 1/6 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 1/6 0 1/6 0

16 1/6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/6

S M M C M S S C S C S C M S S S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E[Wj] 1/6 1/4 1/4 1/2 1/4 1/6 1/6 1/2 1/6 1/2 1/6 1/2 1/4 1/6 1/6 1/6

Test Case ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S M M C M S S C S C S C M S S S

φj 7.21% 4.48% 4.93% 12.56% 4.19% 2.50% 0.66% 17.97% 0.95% 17.67% 0.93% 15.90% 5.30% 3.16% 0.84% 0.76%

Test Case ID

 System Test Evaluation and Review Technique|33

in the logic path of test case 6 is higher than that of test case 9.We obtained the average waiting time at a

test case (or the expected time between two jumps of the test execution process) as

1

[] 19.62
N

j j

j

E W
=

∏ =∑ minutes. Therefore the average time to complete test execution would be

1

[] 5.23
N

j j

j

N E W
=

∏ =∑ hours which is approximates to the expected completion time of 5.6 hours

obtained from simulation.

Table 8: Cost of test execution per hour

Table 8 shows the hourly cost of executing each test case. We obtained the average cost of executing a

test case as
1

[] 13.58
N

j j j

j

E W c
=

∏ =∑ euros. This results in an average cost of executing all 16 test cases as

1

[] 217.24
N

j j j

j

N E W c
=

∏ =∑ euros. Then using equation (17), we divided the average cost of executing a

test case by the average waiting time of 0.327 hours(19.62 minutes) to obtained the long run average cost

(stationary cost) of executing a test case as, 41.51g = euros which in turn results in the long run average

cost (stationary cost) of executing all 16 test cases as 644.28Ng = euros. We contrast this to the

computation where the test manager only takes into account the execution time of each test case and

multiplies it with the cost per hour (
1

[]
N

j j

j

E W c
=
∑) thereby underestimating the budget to €145.83 , thus

failing to take into account the fact that failure of a test case results in retesting and hence adds to the

cost. As shown in section 6.4, this

further necessitates the need to have a

control model for system testing in order

to ensure that system testing is on track.

Test Case 1 is a simple test case (and in

most cases the test initiation state) and

after it passes, it acts just as a transition

test cases without adding to the test

execution time. Therefore, we remodel

the test execution chain as shown in

Figure 12, wherein we remove test case

1 and connect test case 6 to test case 8

and test case 16. Therefore, once a

terminal test case on an execution branch

is reached, execution can jump to the

next branch without having to pass through a transition case. Similarly, once test execution reaches test

case 14, it jumps to the first test case of the next branch i.e test case 2 or test case 16.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S M M C M S S C S C S C M S S S

cj € 10.00 € 30.00 € 30.00 € 45.00 € 30.00 € 20.00 € 5.00 € 60.00 € 5.00 € 55.00 € 5.00 € 50.00 € 30.00 € 10.00 € 5.00 € 5.00

Figure 12: Test Execution Markov Chain

2

3

4

5

6

7

8

9

10

11
12

13
1514

16

16

8

The transition probability matrix P

expected time to complete test execution E[T]

given in Table 9 , Table 10 and Figure 13

execution E[T]=5.7 hours.

Table 9: Transition Probability Matrix, P

Table 10: Expected Test Execution Time (in hours)

Figure 13: Convergence of Expected Waiting Time

pij 2 3 4 5

2 10.00% 85.00% 0 0

3 5.00% 10.00% 85.00% 0

4 0 10.00% 30.00% 45.00%

5 0 0 5.00% 10.00%

6 0 0 0 0

7 0 0 0 95.00%

8 10.00% 0 0 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0

12 0 0 0 0

13 0 0 0 0

14 85.00% 0 0 0

15 0 0 0 0

16 0 0 0 0

E[Tij] 2 3 4 5

2 0 1/4 0 0

3 0 0 1/4 0

4 0 0 1/2 0

5 0 0 0 1/4

6 0 0 0 0

7 0 0 0 1/6

8 1/2 0 0 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0

12 0 0 0 0

13 0 0 0 0

14 1/6 0 0 0

15 0 0 0 0

16 0 0 0 0

 System Test Evaluation and Review Technique

The transition probability matrix P , the expected execution time of each test case

expected time to complete test execution E[T] for the remodeled test execution chain of Figure 12 is

and Figure 13 respectively. We obtained the expected time to complete test

: Expected Test Execution Time (in hours)

: Convergence of Expected Waiting Time (in hours), E[T] to Complete Test Execution

6 7 8 9 10 11 12 13

0 0 5.00% 0 0 0 0 0

0 0 0 0 0 0 0 0

0 15.00% 0 0 0 0 0 0

85.00% 0 0 0 0 0 0 0

5.00% 0 85.00% 0 0 0 0 0

0 5.00% 0 0 0 0 0 0

0 0 30.00% 15.00% 45.00% 0 0 0

0 0 0 5.00% 95.00% 0 0 0

0 0 10.00% 0 30.00% 15.00% 45.00% 0

0 0 0 0 0 5.00% 95.00% 0

0 0 0 0 10.00% 0 30.00% 45.00%

0 0 0 0 0 0 5.00% 10.00%

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 95.00%

47.50% 0 0 0 0 0 0 0

6 7 8 9 10 11 12 13

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1/2 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1/6 0 0 0 0 0

0 1/6 0 0 0 0 0 0

0 0 1/2 1/2 1/2 0 0 0

0 0 0 1/6 1/6 0 0 0

0 0 1/2 0 1/2 1/2 1/2 0

0 0 0 0 0 1/6 1/6 0

0 0 0 0 1/2 0 1/2 1/2

0 0 0 0 0 0 1/4 1/4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1/6

1/6 0 0 0 0 0 0 0

System Test Evaluation and Review Technique|34

the expected execution time of each test case []ijE T and the

for the remodeled test execution chain of Figure 12 is

We obtained the expected time to complete test

14 15 16

0 0 0

0 0 0

0 0 0

0 0 0

0 0 10.00%

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 15.00% 0

85.00% 0 0

5.00% 0 10.00%

0 5.00% 0

47.50% 0 5.00%

14 15 16

0 0 0

0 0 0

0 0 0

0 0 0

0 0 1/6

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1/2 0

1/4 0 0

1/6 0 1/6

0 1/6 0

1/6 0 1/6

 System Test Evaluation and Review Technique|35

Moreover, we obtained the stationary distribution, the unconditional expected execution time and the

limiting transition probability for the remodeled Markov chain as shown in Table 11. In contrast to the

limiting probabilities (Table 7) of the first model, the probabilities are evenly distributed with test cases of

medium complexity having a higher limiting probability. We obtained the average waiting time at a test

case
1

[] 20.56
N

j j

j

E W
=

∏ =∑ minutes. Using the same cost matrix as shown in Table 8, we obtained

g=42.65 euros.

Table 11: Stationary Distribution П*, Unconditional Expected Test Execution Time, E[Wj] and Limiting Transition Probability φj

Next, we defined the control policy as shown in equation (18). Therefore, for 1
i

iµ = ∀ ∈ℵ , the transition

probability
1

ijp , the expected execution time of each test cases
1[]ijE T and the expected time to complete

test execution
1[]E T is Table 12, Table 13 and Figure 14 respectively. As can be seen in Figure 14, the

expected time to complete test execution under additional investment reduces to 3.7 hours. Similarly, we

obtained the stationary distribution
1

*Π , the unconditional expected execution time
1[]jE W and the

limiting transition probability
1

jφ as shown in Table 14.The average waiting time at a test case under

control policy 1
i

µ = is
1 1

1

[] 14.10
N

j j

j

E W
=

∏ =∑ minutes and using the cost matrix defined in Table 15 we

obtained the stationary cost of executing a test case under policy 1
i

µ = as
1g =78.19 euros.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M M C M S S C S C S C M S S S

∏* 8.29% 9.12% 11.63% 7.75% 7.71% 1.84% 11.57% 1.83% 11.38% 1.80% 10.24% 6.83% 6.87% 1.62% 1.53%

E[Wj] 1/4 1/4 1/2 1/4 1/6 1/6 1/2 1/6 1/2 1/6 1/2 1/4 1/6 1/6 1/6

φj 6.04% 6.65% 16.97% 5.66% 3.75% 0.89% 16.88% 0.89% 16.60% 0.87% 14.94% 4.98% 3.34% 0.79% 0.75%

μ=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 5.00% 94.00% 0 0 0 0 1.00% 0 0 0 0 0 0 0 0

3 1.00% 5.00% 94.00% 0 0 0 0 0 0 0 0 0 0 0 0

4 0 5.00% 10.00% 65.00% 0 20.00% 0 0 0 0 0 0 0 0 0

5 0 0 1.00% 5.00% 94.00% 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 1.00% 0 89.00% 0 0 0 0 0 0 0 10.00%

7 0 0 0 99.00% 0 1.00% 0 0 0 0 0 0 0 0 0

8 5.00% 0 0 0 0 0 10.00% 20.00% 65.00% 0 0 0 0 0 0

9 0 0 0 0 0 0 0 1.00% 99.00% 0 0 0 0 0 0

10 0 0 0 0 0 0 5.00% 0 10.00% 20.00% 65.00% 0 0 0 0

11 0 0 0 0 0 0 0 0 0 1.00% 99.00% 0 0 0 0

12 0 0 0 0 0 0 0 0 5.00% 0 10.00% 65.00% 0 20.00% 0

13 0 0 0 0 0 0 0 0 0 0 1.00% 5.00% 94.00% 0 0

14 89.00% 0 0 0 0 0 0 0 0 0 0 0 1.00% 0 10.00%

15 0 0 0 0 0 0 0 0 0 0 0 99.00% 0 1.00% 0

16 0 0 0 0 49.50% 0 0 0 0 0 0 0 49.50% 0 1.00%

Table 12: Transition Probability Matrix, P under control policy, μi=1

Figure 14: Convergence of Expected Time to Complete Test Execution under control policy, μ

Table 14: Stationary Distribution П*, Unconditional Expected Test Execution Time, E[W

under control policy, μi=1

Table 15: Cost of Test Execution (per hour) under control policy, μ

2 3 4 5

M M C M

∏* 8.73% 9.15% 9.65% 8.64%

E[Wj] 1/5 1/5 1/3 1/5

φj 7.43% 7.78% 13.68% 7.34%

μ=1

2 3 4 5

M M C M

cj 60.00€ 60.00€ 90.00€ 60.00€ €

μ=1

E[Tij] 2 3 4 5

2 0 1/5 0 0

3 0 0 1/5 0

4 0 0 1/3 0

5 0 0 0 1/5

6 0 0 0 0

7 0 0 0 1/7

8 1/3 0 0 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0

12 0 0 0 0

13 0 0 0 0

14 1/7 0 0 0

15 0 0 0 0

16 0 0 0 0

Table 13: Expected Test Execution Time (in hours) under control policy, μ

 System Test Evaluation and Review Technique

: Convergence of Expected Time to Complete Test Execution under control policy, μi=1

, Unconditional Expected Test Execution Time, E[Wj] and Limiting Transition Probability φ

: Cost of Test Execution (per hour) under control policy, μi=1

6 7 8 9 10 11 12 13

S S C S C S C M

9.10% 1.95% 9.63% 1.95% 9.60% 1.94% 9.16% 8.19%

1/7 1/7 1/3 1/7 1/3 1/7 1/3 1/5

5.53% 1.18% 13.65% 1.18% 13.61% 1.18% 12.98% 6.97%

6 7 8 9 10 11 12 13

S S C S C S C M

40.00€ 10.00€ 120.00€ 10.00€ 110.00€ 10.00€ 100.00€ 60.00€ €

6 7 8 9 10 11 12 13

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1/3 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1/7 0 0 0 0 0

0 1/7 0 0 0 0 0 0

0 0 1/3 1/3 1/3 0 0 0

0 0 0 1/7 1/7 0 0 0

0 0 1/3 0 1/3 1/3 1/3 0

0 0 0 0 0 1/7 1/7 0

0 0 0 0 1/3 0 1/3 1/3

0 0 0 0 0 0 1/5 1/5

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1/7

1/7 0 0 0 0 0 0 0

: Expected Test Execution Time (in hours) under control policy, μi=1

System Test Evaluation and Review Technique|36

] and Limiting Transition Probability φj

14 15 16

S S S

8.68% 1.85% 1.80%

1/7 1/7 1/7

5.27% 1.12% 1.09%

14 15 16

S S S

20.00€ 10.00€ 10.00€

14 15 16

0 0 0

0 0 0

0 0 0

0 0 0

0 0 1/7

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1/3 0

1/5 0 0

1/7 0 1/7

0 1/7 0

1/7 0 1/7

 System Test Evaluation and Review Technique|37

As described in section 6.5, as t → ∞ , the probability that test cases will keep failing would tend to

0.Therefore we obtain the asymptotic transition probability matrix as shown in Table 16 and Table 17 for

control policy 0
i

µ = and 1
i

µ = respectively.

Table 16: Transition Probability Matrix when t→∞ and control �i=0

Table 17: Transition Probability Matrix when t→∞ and control �i=1

Moreover, by equation (21), we computed the expected long run costs [], ,iE c iµ µ− ∀ and the results

are presented in Table 18.The expected long run cost for each test case is presented along the diagonal

elements of the matrix in Table 18. The values in the columns other than the diagonal entries are the

values obtained from the Bellman equation of (21) for 1...j N= . The cells highlighted in green are the

maximum value of []iE cµ− across the two policies (without and with investment). These results in the

optimal policy vector shown in Table 19.Therefore we obtained an optimal policy wherein additional

should be made in the terminal test cases 6 and 14.Thus, when additional investment doubles the cost

function as shown in Table 15, additional investment in test cases that connect to the next execution

branch minimizes the average expected long run costs.

μ=0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 0 85.00% 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 85.00% 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 45.00% 0 15.00% 0 0 0 0 0 0 0 0 0

5 0 0 0 0 85.00% 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 85.00% 0 0 0 0 0 0 0 10.00%

7 0 0 0 95.00% 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 15.00% 45.00% 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 95.00% 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 15.00% 45.00% 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 95.00% 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 45.00% 0 15.00% 0

13 0 0 0 0 0 0 0 0 0 0 0 0 85.00% 0 0

14 85.00% 0 0 0 0 0 0 0 0 0 0 0 0 0 10.00%

15 0 0 0 0 0 0 0 0 0 0 0 95.00% 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

μ=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 0 94.00% 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 94.00% 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 65.00% 0 20.00% 0 0 0 0 0 0 0 0 0

5 0 0 0 0 94.00% 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 89.00% 0 0 0 0 0 0 0 10.00%

7 0 0 0 99.00% 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 20.00% 65.00% 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 99.00% 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 20.00% 65.00% 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 99.00% 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 65.00% 0 20.00% 0

13 0 0 0 0 0 0 0 0 0 0 0 0 94.00% 0 0

14 89.00% 0 0 0 0 0 0 0 0 0 0 0 0 0 10.00%

15 0 0 0 0 0 0 0 0 0 0 0 99.00% 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 System Test Evaluation and Review Technique|38

Table 18: Average expected long run cost when starting at test case 'i' and under control policy μ. The table shows the long

run expected difference in costs when starting at test case ‘i’ and starting in stationarity

Table 19: The Optimal Policy Vector

Next, we only changed the cost function wherein additional investment increases the cost function by a

factor of 1.5 instead of a factor of 2. The new cost function is shown in Table 20.Under the new cost

function we obtained
1g =46.20 euros. Again, we computed [], ,iE c iµ µ− ∀ using the Bellman equation

in (21) and the results are shown in Table 21. Therefore as shown in Table 22, additional investment in

test case 6 and test case 8 minimizes the average long run cost

Table 20: Cost of Test Execution (per hour) under control policy, μi=1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 € 5.68 € 2.96 (€ 0.24) (€ 0.01) (€ 3.74) € 6.26 (€ 9.58) € 3.31 (€ 3.12) € 9.66 € 3.56 € 10.61 € 8.76 € 16.36 € 6.28

3 € 5.85 € 3.11 (€ 0.06) € 0.28 (€ 3.39) € 6.54 (€ 9.17) € 3.96 (€ 2.44) € 10.75 € 4.71 € 12.55 € 11.05 € 18.20 € 6.28

4 € 5.01 € 2.17 (€ 0.12) € 0.19 (€ 3.50) € 6.45 (€ 9.30) € 3.76 (€ 2.65) € 10.41 € 4.35 € 11.94 € 10.33 € 17.62 € 6.28

5 € 7.04 € 4.56 € 1.65 € 0.41 (€ 3.24) € 9.28 (€ 9.00) € 4.25 (€ 2.14) € 11.23 € 5.22 € 13.41 € 12.06 € 19.02 € 6.28

6 € 8.42 € 6.18 € 3.55 € 6.37 (€ 3.07) € 12.33 (€ 8.79) € 4.58 (€ 1.79) € 11.79 € 5.81 € 14.41 € 13.23 € 19.96 € 6.28

7

8 € 5.96 € 3.29 € 0.15 € 0.64 (€ 2.97) € 6.89 (€ 9.16) € 3.99 (€ 2.41) € 10.79 € 4.76 € 12.63 € 11.14 € 18.28 € 6.28

9

10 € 5.12 € 2.31 (€ 1.01) (€ 1.32) (€ 5.27) € 5.02 (€ 11.39) € 0.41 (€ 2.62) € 10.45 € 4.40 € 12.03 € 10.43 € 17.70 € 6.28

11

12 € 4.90 € 2.04 (€ 1.32) (€ 1.85) (€ 5.90) € 4.52 (€ 12.12) (€ 0.76) (€ 7.40) € 2.79 € 4.30 € 11.86 € 10.23 € 17.55 € 6.28

13 € 5.20 € 2.40 (€ 0.90) (€ 1.13) (€ 5.05) € 5.20 (€ 11.13) € 0.83 (€ 5.74) € 5.46 (€ 0.85) € 12.08 € 10.49 € 9.28 € 6.28

14 € 5.50 € 2.75 (€ 0.49) (€ 0.44) (€ 4.24) € 5.86 (€ 10.17) € 2.37 (€ 4.11) € 8.07 € 1.89 € 7.79 € 10.75 € 13.68 € 6.28

15

16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 € 3.95 € 0.33 (€ 3.52) (€ 1.81) (€ 5.80) € 7.95 (€ 13.75) € 7.69 (€ 2.08) € 17.42 € 7.75 € 15.42 € 12.53 € 25.00 € 9.74

3 € 7.06 € 1.49 (€ 2.28) (€ 0.35) (€ 4.25) € 9.39 (€ 12.00) € 9.73 (€ 0.02) € 19.82 € 10.18 € 18.28 € 15.57 € 27.84 € 9.74

4 € 3.59 (€ 0.06) (€ 3.54) (€ 1.84) (€ 5.83) € 7.92 (€ 13.77) € 7.66 (€ 2.11) € 17.38 € 7.72 € 15.37 € 12.48 € 24.96 € 9.74

5 € 8.03 € 4.68 € 1.10 € 0.06 (€ 3.81) € 13.35 (€ 11.50) € 10.31 € 0.57 € 20.51 € 10.87 € 19.09 € 16.44 € 28.64 € 9.74

6 € 11.88 € 8.76 € 5.45 € 8.77 (€ 2.06) € 18.42 (€ 9.54) € 12.59 € 2.88 € 23.21 € 13.60 € 22.31 € 19.86 € 31.83 € 9.74

7
8 € 3.83 € 0.20 (€ 3.66) (€ 1.97) (€ 5.97) € 7.79 (€ 13.65) € 7.80 (€ 1.96) € 17.55 € 7.89 € 15.58 € 12.70 € 25.16 € 9.74

9

10 (€ 0.58) (€ 4.49) (€ 8.65) (€ 7.86) (€ 12.24) € 1.96 (€ 20.97) (€ 0.75) (€ 4.62) € 14.45 € 4.76 € 11.88 € 8.77 € 21.51 € 9.74

11

12 (€ 2.82) (€ 6.88) (€ 11.19) (€ 10.85) (€ 15.42) (€ 1.00) (€ 24.55) (€ 4.92) (€ 14.81) € 2.55 € 3.17 € 10.01 € 6.78 € 19.65 € 9.74

13 (€ 0.55) (€ 4.46) (€ 8.62) (€ 7.82) (€ 12.19) € 2.00 (€ 20.93) (€ 0.70) (€ 10.54) € 7.53 (€ 2.23) € 11.91 € 8.80 € 13.35 € 9.74

14 € 2.43 (€ 1.28) (€ 5.24) (€ 3.83) (€ 7.95) € 5.95 (€ 16.16) € 4.87 (€ 4.92) € 14.09 € 4.40 € 11.46 € 11.46 € 21.08 € 9.74

15

16

μ=0

μ=1

E[-ci]

E[-ci]

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M M C M S S C S C S C M S S S

μ 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M M C M S S C S C S C M S S S

cj € 36.00 € 36.00 € 54.00 € 36.00 € 24.00 € 6.00 € 72.00 € 6.00 € 66.00 € 6.00 € 60.00 € 36.00 € 12.00 € 6.00 € 6.00

μ=1

 System Test Evaluation and Review Technique|39

Table 21: Average expected long run cost when starting at test case 'i' and under control policy μ. The table shows the long

run expected difference in costs when starting at test case ‘i’ and starting in stationarity

Table 22: Optimal Policy Vector

Additionally, we also considered the case where under policy 1
i

µ = , the transition probability matrix is

the same as the transition probability matrix under policy 0
i

µ = i.e
0 1

ij ijp p= .As a consequence we

obtained the stationary distribution, unconditional execution time of a test case and the limiting

probability as shown in Table 23.

Table 23: Stationary Distribution П*, Unconditional Expected Test Execution Time, E[Wj] and Limiting Transition Probability φj

under control policy, μi=1

Furthermore, we obtained the average waiting time at a test case
1 1

1

[] 14.79
N

j j

j

E W
=

∏ =∑ minutes and

1 49.41g = euros (the cost matrix being the same as the one given in Table20).

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 € 5.68 € 2.96 (€ 0.24) (€ 0.01) (€ 3.74) € 6.26 (€ 9.58) € 3.31 (€ 3.12) € 9.66 € 3.56 € 10.61 € 8.76 € 16.36 € 6.28

3 € 5.85 € 3.11 (€ 0.06) € 0.28 (€ 3.39) € 6.54 (€ 9.17) € 3.96 (€ 2.44) € 10.75 € 4.71 € 12.55 € 11.05 € 18.20 € 6.28

4 € 5.01 € 2.17 (€ 0.12) € 0.19 (€ 3.50) € 6.45 (€ 9.30) € 3.76 (€ 2.65) € 10.41 € 4.35 € 11.94 € 10.33 € 17.62 € 6.28

5 € 7.04 € 4.56 € 1.65 € 0.41 (€ 3.24) € 9.28 (€ 9.00) € 4.25 (€ 2.14) € 11.23 € 5.22 € 13.41 € 12.06 € 19.02 € 6.28

6 € 8.42 € 6.18 € 3.55 € 6.37 (€ 3.07) € 12.33 (€ 8.79) € 4.58 (€ 1.79) € 11.79 € 5.81 € 14.41 € 13.23 € 19.96 € 6.28

7

8 € 5.96 € 3.29 € 0.15 € 0.64 (€ 2.97) € 6.89 (€ 9.16) € 3.99 (€ 2.41) € 10.79 € 4.76 € 12.63 € 11.14 € 18.28 € 6.28

9

10 € 5.12 € 2.31 (€ 1.01) (€ 1.32) (€ 5.27) € 5.02 (€ 11.39) € 0.41 (€ 2.62) € 10.45 € 4.40 € 12.03 € 10.43 € 17.70 € 6.28

11

12 € 4.90 € 2.04 (€ 1.32) (€ 1.85) (€ 5.90) € 4.52 (€ 12.12) (€ 0.76) (€ 7.40) € 2.79 € 4.30 € 11.86 € 10.23 € 17.55 € 6.28

13 € 5.20 € 2.40 (€ 0.90) (€ 1.13) (€ 5.05) € 5.20 (€ 11.13) € 0.83 (€ 5.74) € 5.46 (€ 0.85) € 12.08 € 10.49 € 9.28 € 6.28

14 € 5.50 € 2.75 (€ 0.49) (€ 0.44) (€ 4.24) € 5.86 (€ 10.17) € 2.37 (€ 4.11) € 8.07 € 1.89 € 7.79 € 10.75 € 13.68 € 6.28

15

16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 € 2.37 € 0.20 (€ 2.11) (€ 1.09) (€ 3.48) € 4.77 (€ 8.25) € 4.61 (€ 1.25) € 10.45 € 4.65 € 9.25 € 7.52 € 15.00 € 5.85

3 € 4.24 € 0.90 (€ 1.37) (€ 0.21) (€ 2.55) € 5.64 (€ 7.20) € 5.84 (€ 0.01) € 11.89 € 6.11 € 10.97 € 9.34 € 16.70 € 5.85

4 € 2.15 (€ 0.03) (€ 2.13) (€ 1.10) (€ 3.50) € 4.75 (€ 8.26) € 4.59 (€ 1.27) € 10.43 € 4.63 € 9.22 € 7.49 € 14.98 € 5.85

5 € 4.82 € 2.81 € 0.66 € 0.04 (€ 2.28) € 8.01 (€ 6.90) € 6.18 € 0.34 € 12.30 € 6.52 € 11.46 € 9.86 € 17.19 € 5.85
6 € 7.13 € 5.26 € 3.27 € 5.26 (€ 1.24) € 11.05 (€ 5.73) € 7.56 € 1.73 € 13.92 € 8.16 € 13.39 € 11.92 € 19.10 € 5.85

7

8 € 2.30 € 0.12 (€ 2.19) (€ 1.18) (€ 3.58) € 4.67 (€ 8.19) € 4.68 (€ 1.18) € 10.53 € 4.73 € 9.35 € 7.62 € 15.10 € 5.85

9

10 (€ 0.35) (€ 2.70) (€ 5.19) (€ 4.72) (€ 7.34) € 1.18 (€ 12.58) (€ 0.45) (€ 2.77) € 8.67 € 2.86 € 7.13 € 5.26 € 12.90 € 5.85

11

12 (€ 1.69) (€ 4.13) (€ 6.71) (€ 6.51) (€ 9.25) (€ 0.60) (€ 14.73) (€ 2.95) (€ 8.89) € 1.53 € 1.90 € 6.01 € 4.07 € 11.79 € 5.85

13 (€ 0.33) (€ 2.68) (€ 5.17) (€ 4.69) (€ 7.32) € 1.20 (€ 12.56) (€ 0.42) (€ 6.33) € 4.52 (€ 1.34) € 7.14 € 5.28 € 8.01 € 5.85

14 € 1.46 (€ 0.77) (€ 3.14) (€ 2.30) (€ 4.77) € 3.57 (€ 9.70) € 2.92 (€ 2.95) € 8.46 € 2.64 € 6.87 € 6.87 € 12.65 € 5.85

15

16

μ=1
E[-ci]

μ=0
E[-ci]

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

μ 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M M C M S S C S C S C M S S S

∏* 8.29% 9.12% 11.63% 7.75% 7.71% 1.84% 11.57% 1.83% 11.38% 1.80% 10.24% 6.83% 6.87% 1.62% 1.53%

E[Wj] 1/5 1/5 1/3 1/5 1/7 1/7 1/3 1/7 1/3 1/7 1/3 1/5 1/7 1/7 1/7

φj 6.72% 7.40% 15.73% 6.29% 4.47% 1.06% 15.65% 1.06% 15.39% 1.04% 13.85% 5.54% 3.98% 0.94% 0.89%

μ=1

 System Test Evaluation and Review Technique|40

Again using the Bellman equation in (21) we computed [], ,iE c iµ µ− ∀ as shown in Table 24. Therefore

as shown in Table 25, additional investment in test cases 5, 6, 8 and 10 minimizes the average long run

cost

Table 24: Average expected long run cost when starting at test case 'i' and under control policy μ. The table shows the long

run expected difference in costs when starting at test case ‘i’ and starting in stationarity

Table 25: Optimal Policy Vector

Next, we computed the optimal allocation of capital K=70 euros among the remaining test case ,starting

from test cases 8 such that the probability of realizing test case 14 on or before schedule is

maximized. We considered
ijr as shown in Table 26.

Table 26: Additional investment to reduce the expected time to complete execution of test case ‘i’

Moreover, we defined the marginal decrease in test execution time per unit increase in investment as

shown in Table 27.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 € 5.68 € 2.96 (€ 0.24) (€ 0.01) (€ 3.74) € 6.26 (€ 9.58) € 3.31 (€ 3.12) € 9.66 € 3.56 € 10.61 € 8.76 € 16.36 € 6.28

3 € 5.85 € 3.11 (€ 0.06) € 0.28 (€ 3.39) € 6.54 (€ 9.17) € 3.96 (€ 2.44) € 10.75 € 4.71 € 12.55 € 11.05 € 18.20 € 6.28

4 € 5.01 € 2.17 (€ 0.12) € 0.19 (€ 3.50) € 6.45 (€ 9.30) € 3.76 (€ 2.65) € 10.41 € 4.35 € 11.94 € 10.33 € 17.62 € 6.28

5 € 7.04 € 4.56 € 1.65 € 0.41 (€ 3.24) € 9.28 (€ 9.00) € 4.25 (€ 2.14) € 11.23 € 5.22 € 13.41 € 12.06 € 19.02 € 6.28

6 € 8.42 € 6.18 € 3.55 € 6.37 (€ 3.07) € 12.33 (€ 8.79) € 4.58 (€ 1.79) € 11.79 € 5.81 € 14.41 € 13.23 € 19.96 € 6.28

7

8 € 5.96 € 3.29 € 0.15 € 0.64 (€ 2.97) € 6.89 (€ 9.16) € 3.99 (€ 2.41) € 10.79 € 4.76 € 12.63 € 11.14 € 18.28 € 6.28

9

10 € 5.12 € 2.31 (€ 1.01) (€ 1.32) (€ 5.27) € 5.02 (€ 11.39) € 0.41 (€ 2.62) € 10.45 € 4.40 € 12.03 € 10.43 € 17.70 € 6.28

11

12 € 4.90 € 2.04 (€ 1.32) (€ 1.85) (€ 5.90) € 4.52 (€ 12.12) (€ 0.76) (€ 7.40) € 2.79 € 4.30 € 11.86 € 10.23 € 17.55 € 6.28

13 € 5.20 € 2.40 (€ 0.90) (€ 1.13) (€ 5.05) € 5.20 (€ 11.13) € 0.83 (€ 5.74) € 5.46 (€ 0.85) € 12.08 € 10.49 € 9.28 € 6.28

14 € 5.50 € 2.75 (€ 0.49) (€ 0.44) (€ 4.24) € 5.86 (€ 10.17) € 2.37 (€ 4.11) € 8.07 € 1.89 € 7.79 € 10.75 € 13.68 € 6.28

15

16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 € 4.68 € 2.36 (€ 0.39) € 0.36 (€ 2.73) € 6.54 (€ 8.22) € 3.60 (€ 2.74) € 9.19 € 3.14 € 9.69 € 8.25 € 15.41 € 6.20

3 € 4.96 € 2.48 (€ 0.24) € 0.61 (€ 2.44) € 6.78 (€ 7.88) € 4.15 (€ 2.16) € 10.12 € 4.12 € 11.34 € 10.18 € 16.97 € 6.20

4 € 3.86 € 1.38 (€ 0.31) € 0.49 (€ 2.58) € 6.66 (€ 8.04) € 3.89 (€ 2.44) € 9.67 € 3.65 € 10.54 € 9.25 € 16.22 € 6.20

5 € 5.68 € 3.53 € 0.99 € 0.68 (€ 2.35) € 8.75 (€ 7.77) € 4.33 (€ 1.97) € 10.41 € 4.43 € 11.86 € 10.79 € 17.47 € 6.20

6 € 7.00 € 5.08 € 2.82 € 5.77 (€ 2.18) € 11.68 (€ 7.57) € 4.64 (€ 1.64) € 10.95 € 4.99 € 12.81 € 11.92 € 18.37 € 6.20

7

8 € 4.90 € 2.61 (€ 0.09) € 0.86 (€ 2.15) € 7.02 (€ 7.89) € 4.14 (€ 2.17) € 10.09 € 4.09 € 11.29 € 10.13 € 16.93 € 6.20

9

10 € 4.17 € 1.75 (€ 1.09) (€ 0.84) (€ 4.14) € 5.41 (€ 9.87) € 0.95 (€ 2.36) € 9.80 € 3.78 € 10.77 € 9.51 € 16.43 € 6.20

11

12 € 3.96 € 1.50 (€ 1.39) (€ 1.33) (€ 4.73) € 4.93 (€ 10.56) (€ 0.15) (€ 6.69) € 2.85 € 3.69 € 10.61 € 9.33 € 16.29 € 6.20

13 € 4.23 € 1.82 (€ 1.01) (€ 0.70) (€ 3.97) € 5.54 (€ 9.68) € 1.27 (€ 5.20) € 5.24 (€ 1.01) € 10.81 € 9.56 € 8.75 € 6.20

14 € 4.53 € 2.17 (€ 0.61) (€ 0.01) (€ 3.17) € 6.19 (€ 8.73) € 2.78 (€ 3.60) € 7.80 € 1.68 € 7.23 € 9.81 € 13.07 € 6.20

15

16

E[-ci]
μ=1

μ=0
E[-ci]

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

μ 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M M C M S S C S C S C M S S S

ri € 6.00 € 6.00 € 9.00 € 6.00 € 4.00 € 1.00 € 12.00 € 1.00 € 11.00 € 1.00 € 10.00 € 6.00 € 1.00 € 1.00 € 1.00

 System Test Evaluation and Review Technique|41

Table 27: Marginal decrease in test execution time per unit increase in investment

We assumed the billing rate per hour, 40m = euros. The different execution paths from test case 8 to

test case 14 are shown in Table 28.We computed the probability of reaching test case 14 along the

different execution as shown is Table 29. As expected the probability of execution path
4

14π is the

highest. Finally, we solved the LP problem in (28) obtain the optimal additional investment along the

execution paths from test case 8 to test case 14.As can be seen in Table 30, test case 10 requires the

highest investment of 10 euros as its is a complex test case with many branches, followed by test case

12 and 13. In contrast to the additional investment assumed in table 26, the optimal solution does not

require any additional investment in test cases 8,9,11 and 14.

Table 28: The possible execution paths from test case 8 to test case 14

1

14π 8 9 10 11 12 13 14

2

14π 8 10 11 12 13 14

3

14π 8 9 10 12 13 14

4

14π 8 10 12 13 14

5

14π 8 9 10 11 12 15 13 14

6

14π 8 10 11 12 15 13 14

7

14π 8 9 10 12 15 13 14

8

14π 8 10 12 15 13 14

Table 29: Probability of reaching test case 14 along different paths

1

14P
2

14P
3

14P
4

14P
5

14P
6

14P
7

14P
8

14P

0.77% 2.45% 2.45% 7.35% 0.24% 0.77% 0.77% 2.33%

Table 30: The optimal additional investment

qij 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 0 0.015 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0.015 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0.01 0 0.01 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0.015 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0.02 0 0 0 0 0 0 0 0.02

7 0 0 0 0.02 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0.01 0.01 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0.02 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0.01 0.01 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0.02 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0.01 0 0.01 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0 0

14 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02

15 0 0 0 0 0 0 0 0 0 0 0 0.02 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 9 10 11 12 13 14

C S C S C M S

ri € 0.00 € 0.00 € 10.00 € 0.00 € 3.41 € 2.00 € 0.00

 System Test Evaluation and Review Technique|42

9. Conclusion and Future Work
In this research paper we have formulated a stochastic model for system testing and test management

which can be used by a test manager to optimize the tradeoff between test execution time and test

execution cost. We have shown that test execution can be modeled as a counting process with test

execution time being exponentially distributed. Moreover, we have extended the test execution model to a

semi-Markov process where test execution time can have a general distribution. Using this model we have

computed the expected time required for executing a test case and hence the execution time of all test

cases in the test suite. The model also takes into account the complexity of each test case in order to

compute the expected execution time. The results obtained provide a good estimation of the expected time

to perform system testing and is more accurate than the results obtained from the SMC model.

We have further developed the semi-Markov process model of system testing to incorporate decisions

wherein a test manager, based on the history of the system testing process, can decide whether an

additional investment should or should not be made in a test case in order to ensure that the schedule

constraints are satisfied. The results obtained in this paper contradict the usual assumption that additional

investment in defect prevention activities is always optimal. In contrast, out results show that investment

in developing the skill sets of the testers, such that their average test execution rate increases can be an

optimal decision in some situations. Finally, our model allows the test manager to compute the minimum

additional investment that is required in a chain of test cases such that the probability of completing test

execution within as specified time is maximized. Our results show that the highest investment should be

made in test cases which belong to the complexity class ‘C’ and in turn are parent to other complex test

cases.

This paper assumes that test cases are being executed by only one tester. We intend to extend the model to

multiple testers and therefore compute the execution time and the minimum cost of test execution. It will

also be interesting to investigate into skill based assignment of test cases to testers and analyze the impact

on time and costs. The model can also be extended to include a stochastic knapsack which can be used to

model a defect tracking system used by testing teams wherein defects are logged as and when they occur

and are picked up by developers to be fixed. This will help a test manager estimate the number of

developers that should be allocated to fix defects detected by the testing team. Our model of system

testing as a random walk on a finite graph also opens up the possibility of research in the area of mixing

time, martingale property and optimal stopping of the system testing process.

 System Test Evaluation and Review Technique|43

Appendix

Monotone Convergence Theorem

Let { }()nf x be a sequence of functions in
+∑ (the class of non negative simple functions) increasing to

()f x i.e limsup () (),
n

f x f x x X= ∀ ∈ and 1() ()
n n

f x f x+ ≥ a.e.

Then f +∈∑ and (()) ()nf x fµ µ↑ ≤ ∞ . This means lim lim
n n n n

f d f d fdµ µ µ→∞ →∞= =∫ ∫ ∫

Jensen’s Inequality

Let (, ,)F PΩ be a probability space, X an integrable real valued random variable and ϕ a convex

function. Then ([]) E((X)]E Xϕ ϕ≤

Linearity Property of Expectation

Let 1 2,,
n

X X X be random variables, then []
i i

E X E X = ∑ ∑

Tonelli’s Theorem

Let (, ,)X A µ and (Y,B, v) be σ − finite measure spaces and : [0,)f X Y× → ∞ . Then

| (,) | (,)
A B

f x y d x y
×

< ∞∫ and (,) (,) | (,) | (,)
A B B A A B

f x y dy dx f x y dx dy f x y d x y
×

= =

∫ ∫ ∫ ∫ ∫

Law of the unconscious statistician

Let F be the cumulative distribution function of X , then the expected valued of ()g X is given by

[()] () () E g X g x dF x x

∞

−∞

= ∀ ∈∫ �

 System Test Evaluation and Review Technique|44

References
[1] Elmaghraby,Salah E. (1977), Activity Networks: Project Planning and Control by Network Models

[2] Osaki, Shunji & Mine,Hisashi(1968), Linear Programming Algorithms for Semi-Markovian Decision

Processes

[3] Whittaker,James A. & Thomason,Michael G.(1994), A Markov Chain Model for Statistical Software

Testing

[4] Changussu,Joao W.;DeCarlo,Raymond A. & Mathur,Aditya P. (2002), A Formal Model for Software

Test Processes

[5] Pritsker,A.A.B.(1966),GERT:Graphical Evaluation and Review Technique

[6] Downs,Thomas(1985),An Aprroach to the Modeling of Software Testing with Some Applications

[7] Koole,G. and Bhulai,S(2011),Stochastic Optimization

[8] Lavenberg,S.S and Shedler,G.S.(1976),Stochastic Modeling of Processor Scheduling with Application

to Database Management Systems

[9] Sarkar,Purnamitra,Random Walks on Graphs: An overview

[10] Mitra,A.(2007), A Case Study for Package Testing

[11] Cangussu,Joao W.,A Stochastic Control Model of the Software Test Process

[12] Sigman,Karl ,Simulating Markov Chains

[13] Gimbert,Hugo,Pure stationary Optimal Strategies in Markov decision processes

[14] Borza,Mojtaba;Rambely,Azmin Sham & Saraj,Mansour(2012),Solving Linear Fractional

Programming Problems with Interval Coefficients in the Objective Function. A New Approach

