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Executive Summary 
System testing of software is defined as the “investigation conducted to evaluate whether a complete and 

integrated software system complies with its specified requirements”
1
. Thus system testing is a process 

that requires creation of test cases for every function point of the software and execution of the test cases 

to validate whether the function point conforms to the specified requirements. In case of failure of a test, a 

defect is logged that is fixed by the development team and again re-tested. The system testing process can 

therefore be described by the following steps: (a) Requirements analysis, (b) Test estimation and strategy 

(c) Test planning (d) Creation of test scripts based on requirements (e) Execution of test scripts on the 

software product (f) Reporting of defects (g) Retesting of fixed defects and (h) Test Closure 

The system testing process described in steps (e)-(g) is a cyclic process and requires allocation of 

resources (software testers) to complete testing in allocated time. However, as businesses increasingly 

tend to reduce the time to market of their products and services, coupled with the fact that upstream 

activities (Requirement Gathering, Infrastructure setup, Development etc) often consume more time that 

what is allocated, the time allocated to testing is often squeezed. This in turn leads to a tradeoff between 

resources (costs) and allocated time. This leads to the decision problem that every test manager has to 

deal with, as to what is the optimal investment in execution of a test case (or a collection of test cases) 

that in turn ensures that system testing meets the schedule and budget constraints. 

In sequential decision making problems, a decision maker or agent chooses consecutive actions according 

to a system status and her preferences to form a decision policy. The essence of these problems is that the 

decisions made now can have both immediate and long term effects and the ultimate goal of the agent’s 

actions would be to maximize the expected utility of such decisions. Markov and semi-Markov Decision 

Processes provide a mathematical representation of these problems. Decisions are made sequentially, 

obtaining an immediate utility after each decision, which also modifies the environment for future 

decisions. Semi-Markov Decision Processes generalize the Markov Decision Processes mainly by 

allowing the actions to be history dependent and by modeling the transition time distribution of each 

action. Our primary endeavor in this paper is to implement a semi-Markov decision process on the test 

execution Markov chain and thus build a model that solves the sequential decision problem of software 

test management 

As business managers demand more control over IT expenditures and especially the return on investment 

in quality assurance activities, the decisions that software test managers make in terms of resources and 

time (i.e. test management) will need to be much more scientific and not just driven by intuition and 

experience, though any amount of mathematical modeling will not be a substitute for wisdom, and we 

certainly believe that the best decisions are made at the confluence of scientific rigor and intuition.   

 

 

1 IEEE Standard Glossary of Software Engineering Terminology 
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Introduction 
System testing, as defined by the IEEE standard glossary of software engineering terminology is the 

“investigation conducted to evaluate whether a complete and integrated software system complies with its 

specified requirements”. Downs [6] proposed that test cases should be considered as independent 

Bernoulli trials and test execution as a sequence of Bernoulli trails on logic paths /function points through 

the software product. Downs [6] derived the failure rate of a software system, the distribution of the 

number of faults in a path and using these parameters proposed different testing strategies. Finally, the 

optimum test execution profile of a software product was estimated. However, the interdependence 

among test cases (and therefore test execution) requires a Markov Chain modeling of system testing as 

proposed by Whittaker et al. [3] wherein the logic paths in a software product can be modeled as a 

Markov chain and hence the test execution process along these logic paths. A popular model for software 

project management is PERT. Though easy to compute, PERT suffers from a drawback of not allowing 

loops between two activities which is very important for testing, as a test might fail multiple times due to 

improper bug fixing and might have to be executed many times. Pritsker [5] proposed a model called 

GERT (Graphical Evaluation and Review Technique) wherein he showed that a set of interconnected 

activities that take a random amount of time to complete can be modeled as a semi-Markov process. 

Elmaghraby [1] further showed that GERT can be used as a model for project management of activities 

which contain loops. Cangussu et al.[4], [11] take a system theoretic approach to propose a feedback 

control model for software test process that takes into account presence of unforeseen perturbations and 

noise in the data. 

The models of system testing referred above do not model test execution as a stochastic process wherein 

the time required to execute a test case is a random variable defined on a probability space and depends 

on the next test case to be executed. Therefore the probability of test execution being in a particular state 

at time T depends on the transition probability of reaching the state and the probability that the state will 

be reached in time T. Moreover, when test execution on a logic path fails, the software tester may decide 

to move on to test another logic path with a certain transition probability while the defect in the first logic 

path is being fixed by the development team. Similarly, execution of a test case might fail and the tester 

might decide to retest with a certain transition probability depending on the complexity of the test case. 

Such properties of test execution further necessitate the need to model test execution as a walk (with 

certain transition probabilities) on a finite graph. Therefore, the stochastic nature of the test execution 

process requires a stochastic control model that enables a test manager to take optimal decisions regarding 

cost and time. 

The aim of this paper is to model system testing as a semi-Markov process and then extend it to a semi-

Markov decision process for the purpose of test management. This model enables us to compute the 

stationary probability that test execution is in a given state when execution time is a random variable, and 

the average time to execute a test case. Moreover, the model computes the expected time to complete 

execution of all test cases in the test suite. The modeling as a decision process allows us to compute the 

long run average cost of test execution and we use policy iteration to analyze the impact of additional 

investment on future costs and time. Therefore, based on the history of the system testing process, the test 

manager, at a decision epoch can analyze how a decision regarding additional investment will impact the 

budget and schedule in future. This model will enable the test manager to take a decision that minimizes 

the costs while ensuring that the schedule constraints are met. We also propose a Linear Programming 
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formulation for computing the optimal additional investment, such that the probability of completing 

system testing on or before a specified time is maximized. 

2. Exponential Distribution and Test Execution Time 
Here we consider two important properties of the exponential distribution namely ‘a constant rate’ and 

‘momorylessness’ and try to analyze this in the framework of software testing. 

The exponential distribution is characterized by the rate parameter 0λ ≥  which is the expected number 

of events that occur per unit of time in a ‘continuous time counting process’. This continuous time 

counting process { , 0}
t

N t ≥  is also known as a homogeneous Poisson process and satisfies the following 

properties. 

1. The rate parameter λ  does not change over time 

2. N  is a counting process i.e 

• 0tN t
+∈ ∀ ≥�  

• ,
t s

t s N N∀ ≥ ≥  

• (no two occurrence can occur simultaneously), 0,lim lim 1s ss t s t
t N N↓ ↑∀ ≥ ≤ +   

3.  0 0N = a.s. 

4. (Independence of increments) ( )
t s

N Nσ − and ( , )
u

N u sσ ≤  are independent i.e the 

number of occurrences counted in disjoint intervals are independent of each other.  

5. (stationarity of increments) 
d

t s t sN N N s t−− = ∀ ≤  i.e the probability distribution of the 

number of occurrences counted in any time interval only depends on the length of the interval 

If all the five properties mentioned above are satisfied, then the time between occurrences of two events 

of a homogeneous Poisson process is exponentially distributed. The independence of increments 

described in property 5, leads to an important property of the exponential distribution called 

‘momorylessness’ which can be formally defined as 

                                ( | ) ( ) , 0P T t t T t P T t t t> + ∆ > = > ∆ ∀ ∆ ≥                                       (1) 

Now let us try to analyze these properties for the software test execution process where 
t

N  denotes the 

number of test case executed till time‘t’. Properties (2) and (3) are clearly satisfied and therefore need no 

further explanation. The rate parameter in testing parlance is the test execution rate which is defined as 

the average number of test cases executed by a software tester per unit of time. Property (5) is also an 

acceptable regularity condition for test execution wherein we say that the probability distribution of the 

number of test cases executed during a time interval only depends on the length of the interval. 

Let us now look at property (4) which implies that the number of test cases executed in a particular time 

interval will be independent of the number of test cases executed in the previous time interval. A critical 

analysis of the software testing process reveals that this might not necessarily be true as there might 

occur instances, where the tester speeds or slows down the test execution process based on the number of 
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test cases executed in the previous disjoint interval. Speeding up the process does not have a major 

impact because the number of test cases that can be executed is constrained by the skill set of the tester 

and which does not vary during the duration of test execution. However, slowing down when the tester 

has executed more than the average number of test cases in the previous interval and decides to ease up, 

renders the process with memory. But, testing projects, like any other activity, are subject to ‘student 

syndrome’ and such cases are rare. Another scenario that instills memory in to the test execution process 

is that as test execution progresses, the software tester gains a better understanding of the software under 

test and thus if she finds similar test cases (to already executed ones), she executes them quicker. This is 

also true for retesting a failed test case, wherein the time to retest a failed test case is quicker as the tester 

already is familiar with the test case. We therefore model the test execution process as a semi-Markov 

Process in this paper and present an algorithm in section 5.3 to simulate semi-Markov process when the 

test execution time is not exponentially distributed. However, there can be many testing projects where 

the scenarios like the ones mentioned above that instill memory to the test execution process can be 

safely ignored and in such cases property (4) is satisfied. Therefore, if we assume that the test execution 

processes is memoryless, then test execution can be modeled as pure birth-death process where the 

lifespan of a test case is described as follows. A test case is active till the time  

a) It passes or 

b) It fails  

Now, we turn our attention to property (1).In the case of manual testing, the execution rate is primarily a 

function of the skills of the software tester and generally does not fluctuate during the course of test 

execution. However, we can have different execution rates for different types of test cases which can be 

classified as simple, medium or complex. This can be easily tackled by modeling the execution of each 

classification of test cases as independent Poisson processes with different rates  ( , ,
S M C

λ λ λ ). We define 

the set of Poisson processes , , 0S M C

t t tN N N t∀ ≥  (that satisfy property (2), (3),(4) and (5)) to be 

independent if for 
1 20 ... ,kt t t k

+< < < < ∀ ∈� ,the random variables 

1 2 1 2 1 2
, ,..., ; , ,...,   , ,...,

k k k

S S S M M M C C C

t t t t t t t t tN N N N N N and N N N  are independent of each other. Therefore, we can combine 

the three independent Poisson processes to form a Poisson process 
t

N with rate 
S M C

λ λ λ λ= + +

Therefore the test execution process satisfies property (1) as well. Thus, with certain assumptions 

regarding the independence of the number of test cases executed in disjoint time intervals, we can 

conclude that the time to execute a test case is exponentially distributed. 
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3. SMC as a model for System Testing 
The SMC model is the de facto model used by most test managers to estimate the time required to 

complete test execution of ‘N’ test cases in the test suite by segregating the test cases into three 

complexity classes (Simple, Medium and Complex), each type having its own execution rate and then 

taking a weighted average. Let us consider a basic test suite of 16 test cases with 8 test cases of 

complexity as simple, 4 test cases with complexity as medium and 4 test cases with complexity as 

complex. The average execution rate per hour λ  of each type of test cases is given in the Table 1. As per 

the SMC model the expected execution time of the 16 test cases would be 260 minutes (4 hours 20 

minutes) 

Now let us model the Test Execution Process as a homogeneous Poisson process where the test execution 

time of each test case is exponentially distributed. The first point to note is that the SMC model is just a 

linear combination of the average rate of execution and does not take into account that the test execution 

time is a random variable and therefore there is a certain probability associated with the event that 

execution of a test case will complete within the expected time and also a certain probability associated 

with the event that test execution will not complete in expected time. 

 So when expected execution time per test case is 
1

λ
(because the execution time per test case is 

exponentially distributed) , the probability of completing execution of a test case by the expected time 
1

λ

is given by 

1
1 1

( ) (1 ) (1 ) 63.21%P T e
e

λ
λ

λ

−
≤ = − = − = , while the probability of not completing the 

execution of a test case by the expected time is 
1 1 1

( ) 1 ( ) 36.79%P T P T
eλ λ

> = − ≤ = = and what is 

important is these probabilities are independent of the complexity of the test cases as well as the 

execution rate of the test cases belonging to each complexity class. What makes the situation even worse 

is that the probability that all 16 test cases in the test suite will complete in expected time is 
16(63.21%)

=0.065% which is an alarmingly low number even for a very small test suite , and will tend to 0 as ‘N’ 

gets large. 

Table 1: Average test execution time and probability of completing test execution (not) on schedule for test cases belonging 

to different complexity classes 

Complexity 

Average 

Execution Rate 

per hour( λ ) 

Average 

Execution Time 

per test case,

1
t

λ
=   

Probability of 

completing 

execution in 

time
1

( )P T
λ

≤  

Probability of 

not completing 

execution in 

time
1

( )P T
λ

>  

S 6 10 min 63.21% 36.79% 

M 4 15 min 63.21% 36.79% 

C 2 30 min 63.21% 36.79% 

 



 

 

Next, we sampled the test execution time from an exponential distribution with parameter 

12 respectively by using the inverse trans

intuition in practice 

that execution of 

complex test cases 

has a higher chance 

of not being 

completed in 

expected time. 

Another 

interpretation can be 

that when the testing 

skills of the 

software tester is 

low (and in turn λ is 

low), the chances of 

not being able to 

complete testing in 

the expected time is 

quite high which is in line with the intuition in practice. 

Combining the independent Poisson processes into a Poisson process with rate 

probability of not completing test execution 

of not completing test execution for each of

respectively. This conclusion is again in line with the belief in practice that 

of scope reduce the risk of schedule overrun. Thus, we can conclude that tho

execution as a homogenous Poisson process requires us to make a simplifying assumption that the process 

Figure 1: Probability that execution of test cases will complete on or before time, T for different 

execution rates, λ 

Figure 2: Sample Path of Number of Test Cases Executed v/s Elapsed Test Execution Time 
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Next, we sampled the test execution time from an exponential distribution with parameter 

12 respectively by using the inverse transform sampling method and plot the figure below. As can be seen

quite high which is in line with the intuition in practice.  

endent Poisson processes into a Poisson process with rate λ =12,

completing test execution within the expected time is much lesser than the probability 

of not completing test execution for each of the individual Poisson processes with rate 

respectively. This conclusion is again in line with the belief in practice that diversification

reduce the risk of schedule overrun. Thus, we can conclude that though the modeling of test 

execution as a homogenous Poisson process requires us to make a simplifying assumption that the process 

Probability that execution of test cases will complete on or before time, T for different 

Figure 2: Sample Path of Number of Test Cases Executed v/s Elapsed Test Execution Time 
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Next, we sampled the test execution time from an exponential distribution with parameter λ = 6, 4, 2 and 

the figure below. As can be seen 

from Figure 1, the 

exponential 

distribution has 

fatter tails as λ  

decreases, which 

means that the 

there is a large 

probability of not 

being able to 

complete test 

execution in the 

expected time 

when the average 

execution rate is 

low. In other 

words, this 

reinforces the 

=12, ensures that the 

within the expected time is much lesser than the probability 

the individual Poisson processes with rate 6,4,2λ =  

diversification or economies 

ugh the modeling of test 

execution as a homogenous Poisson process requires us to make a simplifying assumption that the process 

Figure 2: Sample Path of Number of Test Cases Executed v/s Elapsed Test Execution Time  
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is memoryless, the model is a very good approximation of test execution in practice and is more accurate 

than the SMC model currently used. This insight opens up the path for modeling of software test 

execution as a Markov chain which we treat in the next sections.             

4. Markov Chain Modeling of System Testing  
We use the TDLR (Top Down Left Right) naming convention for numbering test cases as introduced by 

Lavenberg and Shedler [8]. Let us denote the number of test cases in the test suite by N ∈�Therefore 

the state space {0,1,...N}ℵ = < ∞ .Let i, j=1,..,N denote the current state/test case that is being executed 

and the state/test cases immediately connected to the current test case . In case of a failure of a test the 

system stays in the current state i.e i=j or moves to the test case in the next branch. The transition 

probability
1

; (0) 0; ( ) 1
N

ij ij ij

j

p p p
+

=

∈ = ∞ =∑� , is the probability of transitioning from test case ‘i’ to 

test case ‘j’ and P is the N N×  transition probability matrix. Moreover we impose the conditions that 
( )

0, ,
n

ijp i j> ∀  and 1,ijp i j< ∀ = . Let the stochastic process { ; 0}
t

X t∈ℵ ≥  denote test execution status 

wherein 
t

X i=  denotes that test case ‘i’ is being executed at time‘t’. A stochastic process 

{ ; 0}
t

X t∈ℵ ≥  is called a Markov Chain if for all times 0t ≥ and all states ,i j ∈ℵ , 

                      
1 1 0(X | , 1,..., 1)t t t ijP j X i X i X p+ −= = = − = =                                  (2) 

This means that the probability of transition from test case ‘i’ to test case ‘j’ at any time ‘t’ depends only 

on being in test case ‘i’ at that particular time ‘t’, but its independent of the history of arrival at  test case 

‘i’ .Test execution along a given logic path means that the execution of the next test case ‘j’ at time ‘t+1’ 

is dependent on the current test case ‘i’ and ‘i’ has absorbed all the information up to time ‘t’. So a walk 

along the test chain when test cases keep passing satisfies the Markov property. It is however important to 

consider the case when a test case fails. Once a defect is fixed (after the test case failed), the test case that 

had lead to the identification of the defect is re-executed to validate the fix. Now we can assume that this 

test case behaves like a new test case (though this is not true in practice as the time required to perform a 

test is a decreasing function of the number of retests and therefore has memory, but this is not the case for 

automated testing where test execution again satisfies the memoryless property). Thus we assume that the 

test execution satisfies the Markov property though we relax this assumption in section [5.3], wherein we 

present an algorithm for simulating a semi-Markov process where holding times do not have an 

exponential distribution.  

The transition probability 
ijp  also depends on the complexity of the test case i.e  complex test case will 

have the lowest transition probability to the next test case in the logic path and the highest transition 

probability to itself. On the other hand, a simple test case will have the lowest transition probability to 

itself and the highest transition probability to the next test case in the logic path. This is explained by the 

fact the complex test cases have the highest probability of failure while simple test cases have the lowest 

probability of failure. 
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 A Markov chain model for test execution of sixteen test cases is shown in Figure 3. 

 

Figure 3: Markov Chain Model of System Test Execution 

In the Markov chain model of system testing as shown above, the terminal test cases are linked to the 

initial state/test case (for example the path from test case 6  to test case 1). This is explained by the fact 

that , once test execution reaches the terminal test case, it is evident that all test cases in that logic path 

have already passed and the next option would be to move to the next branch. Another important point to 

note is that if there is more than one branch for a test case, and if one of the branches has a terminal test 

case while the other branch has further sub branches, then once the terminal test case passes, test 

execution jumps to the corresponding test case that exists at the same level (for example the path from test 

case 9 to test case 10). The explanation for this as the same as given above. The system test chain also has 

test cases for which there exists a path to the previous test case (for example the path from test case 2 to 

test case 1). This models the phenomenon, that once a test case fails execution, the tester might decide to 

jump to the next logic path instead of waiting at the same test case. Self loops model re-testing of a failed 

test case. As evident above, the test execution process is a random walk on a finite graph and as discussed 

by Sarkar [9],   a stationary distribution ( *∏ ) can exist iff the chain is  

a) Aperiodic i.e 0( | X ) 0
t

P X i i= = >  which can be obtained by ensuring that the GCD of all cycle 

lengths in the Markov chain is 1. 

b) Irreducible i.e
( )

0( | X ) 0
n

t ijP X j i p= = = >  which can be obtained by ensuring that there exists a 

path from every state to every other state. 

c) Recurrent i.e 0inf{t 1; | }; ( ) 1
i t i

X i X i Pτ τ= ≥ = = < ∞ =  where 
i

τ  is the hitting time 

1

2

3

4

5

6

7

8

9

10

11

12

13 15

14

16

1
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Therefore it is imperative to ensure that the Markov chain model of the test suite satisfies (a), (b) and (c) 

in order to attain a stationary distribution. 

4.1 Stationary Distribution of System Testing  

As shown by Bhulai and Koole [11], a Markov chain has an invariant measure (stationary distribution), 

*lim
t t→∞ Π = Π   for some arbitrary distribution 0

1

; 1; 0
N

j j

j=

Π Π = Π ≥∑  iff the Markov chain is ergodic 

(aperiodic, recurrent and irreducible). Then the distribution *Π is the unique solution of 

                                                                            * *
PΠ = Π

                                                                  (3)          

Which is obtained by iterating through 1t t
P+∏ = ∏ until convergence is attained. 

4.2 Expected Time required to complete System Testing 

We use the algorithms given by Sigman[12] for simulating  Markov Chains and modify it to run until all 

states of the Markov Chain have been walked at least once. 

4.2.1 Algorithm for Simulating System Testing in Discrete Time 

1. Set 1i = , 0τ = ,wlkVec=[i] 

2. If  i wlkVec i∃ ∈ ∀ ∈ℵthen stop; otherwise goto step 3 

3. Generate [0,1]u U∼ , set i j= where 
,

1

j

i k

k

u p
=

≤∑  ; set 1τ τ= + ;add i to wlkVec 

4. Go to step 2 

 

The Weak Law of Large Numbers implies 

                                                    ( )lim P [T] 0 0
n n

Eτ ε ε→∞ − > = ∀ >                                                   (4) 

Therefore, if we run the simulation for a sufficiently long time such that [T] , 0
n

Eτ ε ε− ≤ ∀ > , then the 

average of the time (τ ) obtained from each run of the simulator will converge in probability to the 

expected time (T) required to walk all the states. This is an important insight for the test manager because 

it helps her see the relationship between test design and expected completion time of test execution. 
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5. Modeling System Testing as a Semi-Markov Process 
Elmaghraby [1] defines a semi-Markov Process as a stochastic process that makes its transition from state 

‘i’ to any other state ‘j’ (including i=j), according to the transitional probability matrix of a Markov 

Process but whose time between transitions is a random variable that may depend on both ‘i’ and ‘j’. 

Software Test Execution has a structural similarity to the above because once a tester reaches test case ‘i’, 

she chooses the next test, ‘j’ to be executed. This decision is made according to the probabilities 
i jp  of 

the transition probability matrix. Now, test case ‘i’ is executed for a random duration t 
i jT∈ ; [0, )ijT ∈ ∞

and this duration depends on both ‘i’ and ‘j’ as the decision to move on to test case ‘j’ influences the 

inputs to test case ‘i’ and thus the duration of time spent on test case ‘i’. Moreover, test case ‘i’ can be an 

absorbing state/trapping state in case the test case fails but the recurrence property of the imbedded 

Markov chain defined above and 1,ijp i j< ∀ = we can safely conclude that the process will jump out of 

the trapping state in finite time. 

The duration of executing a test case is denoted by the random variable, [0, )ijT ∈ ∞ where

0

( [0, )) ( ) ( ) 1
i j i j

t

i j T TP T F t f dτ τ∈ ∞ = = =∫  and  0 ( ) ( ) 1, [0, )
i ji j TP T t f t t≤ = = ≤ ∀ ∈ ∞ .The expected duration of 

executing a test case is denoted by 

0

[ ] ( ) , [0 , )
i jij TE T tf t d t t

∞

= ∀ ∈ ∞∫ . Since ( ) 1ijP T < ∞ = and 

assuming that absolute integrability (Lebesgue Integrability) is satisfied i.e 

0

| | ( )
ijTt f t dt

∞

< ∞∫ , implies  

[ ]ijE T < ∞ .The Laplace-Stieltjes transform ( )
i j

T s�  for the non negative random variable 
ijT  is defined as  

' ( )

0 0

( ) ( ) ( ) ( )  , 0; ( ) 1, 0; (0) 1,  (0) =-E( ),  (0) ( 1) E( )ij

ij ij

sT st st r r r

ij T T ij ij ij ij ij ij

t t

T s E e e dF t e f t dt s T s s T T T T T

∞ ∞
− − −

= =

= = = ≥ ≤ ∀ ≥ = = −∫ ∫� � � � �

We define ( )
ijij T

p F t  as the transition distribution from state ‘i’ to state ‘j’. 

A test manager, watching the system in state ‘i’ can only infer the unconditional probability density 

function of the waiting time at state ‘i’ (as it’s the tester who is executing the test case and has made the 

decision of moving to test case ‘j’ from ‘i’).Therefore, let the unconditional waiting time in state ‘i’ be 

denoted by the random variable Wi(t) [0, )∈ ∞ ∀  t [0, )∈ ∞ where the density function of 
i

W  is given by 

| |

1

( ) ( )
i ij

N

W ij T

j

f t p f t
=

=∑  and 

0

( [0, )) ( ) ( ) 1;0 ( ) ( ) 1, [0, )
i i i

t

i W W i WP W F t f d P W t f t tτ τ∈ ∞ = = = ≤ = = ≤ ∀ ∈ ∞∫ .The 

expected unconditional waiting time in test case ‘i’ is given by: 

                               
1 1 10 0 0

[ ] ( ) ( ( )) (t) [ ]
i i j ij

N N N

i W ij T ij T ij ij

j j j

E W tf t dt t p f t dt p tf dt p E T

∞ ∞ ∞

= = =

= = = =∑ ∑ ∑∫ ∫ ∫                       (5) 
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Similar to the expected value of the conditional waiting/transition time we assume that the expected value 

of the unconditional waiting/transition time satisfies absolute integrability and therefore exists and is 

finite. The interchange of sum and integral in (5) is due to Tonelli’s theorem since
1

( ) 0
ij

N

ij T

j

p f t dt
=

>∑ .  

The Laplace-Stieltjes transform of the unconditional waiting time is given by: 

' ( )

0 0

( ) ( ) ( ) ( )  , 0; ( ) 1, 0; (0) 1,  (0) =-E( ),  (0) ( 1) E( )i

i i

sW st st r r r

i W W i i i i i i

t t

W s E e e dF t e f t dt s W s s W W W W W

∞ ∞

− − −

= =

= = = ≥ ≤ ∀ ≥ = = −∫ ∫� � � � �  

5.1 Interval Transition Probability of System Testing 

Let the interval transition probability be denoted by 0( ) P(X | )ij tt j X iφ = = =  which is the 

(conditional) probability that test case ‘j’ is being executed at time ‘t’, given that that tester was at test 

case ‘i’ at t=0.Therefore ( )ij tφ  is the (conditional) probability of being in test case ‘j’ at time ‘t’, 

through multiple transitions, starting from test case ‘i’. Whereas, ij
p is the (conditional) probability of a 

single transition from test case ‘i’ to ‘j’, ‘j’ being the immediate successor of ‘i’ in this case .φ is often 

called the interval transition probability. 

Let use introduce the Kronecker delta,
1 if i=j

0   o.w .
ij

δ =




 .Where 1ijδ = denotes that the test case has failed 

and the test execution is stuck at this state. The probability of the unconditional waiting time when a test 

case fails is given by 
1

( ) 1 ( ) (t)= 1 - ( )
i i j i j i

N

W ij T ii T W

j

f t p f t p f f t
=

= − =∑  where 

1

1 ,
N

ii ij

j

p p i j
=

= − ∀ ≠∑  is the probability that the test case fails after being
 
executed for a duration ‘t’.

 

Therefore, the distribution of the (unconditional) waiting time in the event of failure of a test case can be 

represented as F (t) = 1- ( )
i iW WF t .

 
Intuitively, if ( )

i
W

F t  is the probability of completing execution of test 

case ‘i’ in time ‘t’ and then moving on to a successive test case, then F  = 1- ( )(t)
ii WW F t  is the probability of 

remaining in state ‘i’ even after time ‘t’, which can only occur in case of a failure.  

Therefore the probability that the test execution started at test case ‘i’ and has remained there all the time 

is given by ( )
iij W

F tδ .Let ‘k’ be an intermediate test case between ‘i’ and ‘j’ and 0 tτ≤ <  be the time 

required to execute test case ‘i’. Thus, if ‘i’ and ‘j’ are connected by test case ‘k’ and if it takes a duration 

‘t’ to reach test case ‘j’, then τ  is the amount of time required to reach test case ‘k’ and the remaining 
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t τ−  is the amount of time required to transition from test case ‘k’ to test case ‘j’. The following figure 

shows the execution time for different transitions of the testing Markov chain. 

 

Figure 4: Transition Time of the System Test Markov Chain 

As shown by Osaki and Mine [2] and also by Elmaghraby [1], ( )
ij

tφ can be formally defined with the 

following recursive equation 

 
1 0

( ) ( ) ( ) ( )
i i k

tN

ij ij W ik T kj

k

t F t p f t dφ δ τ φ τ τ
=

= + −∑ ∫   (6) 

This implies that when i=j, there are two events, one is that the system has stayed in the same state till 

time ‘t’ and another is that the system visits state ‘k’ at time τ  and returns to state ’i’ at time ‘t’. These 

two events are mutually exclusive .When i j≠ , the system visits state ‘k’ in time τ and transitions from 

state ‘k’ to state ‘j’ in time t τ− . 

The convolution in (1) can be written as a Laplace transform as follows, 

0

( ) ( ) ( ) ( )
ik

t

T kj i k kjf t d T s sτ φ τ τ φ− =∫ ��  ;

0 0

( ) ( ) ( ) ( )  , 0jk

kj kj

s st st
kj

t t

s E e e dF t e f t dt s
φ

φ φφ
∞ ∞

− − −

= =

= = = ≥∫ ∫�  

 ( ) 1, 0
kj

s sφ ≤ ∀ ≥� ;
' ( )

(0) 1,  (0) =-E( ),  (0) ( 1) E( )
r r r

kj kj k j kj k jφ φ φ φ φ= = −� � � .Also,

0

1
(1)

st
L e dt

s

∞
−= =∫  

Therefore transforming (6), we obtain  

                                               
1

1
(s) [1 ( )] ( ) ( )

i

N

ij ij W ik ik kj
k

F s p T s s
s

φ δ φ
=

= − + ∑� �� �
                           (7)                                  

Let, ( ) [ ( )], ( ) [ ( )], ( ) [ ( )],
iij ij ij W ij W ijs s q s p T s F s F s Iφ φ δ δ= = = =� � � � �� be N N× matrices. Then (7) can be 

rewritten in matrix form as 
1 1

( ) [ ( )] ( ) ( ) [ ( )] (s) [ ( )]W Ws I F s q s s I q s I F s
s s

φ φ φ= − + ⇒ − = −� � �� �� �  

                                               
1 1

( ) [ ( ) ] [ ( ) ]Ws I q s I F s
s

φ −⇒ = − −� ��                             (8) 

i

t

i k j

τ t τ−

i k

τ

t τ−
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We assume here that the transition distribution ( )
ijij T

p F t  is invertible which is a necessary condition for 

the existence of
1[ ( )]I q s −− � .  

5.2 Stationary Distribution (invariant measure) of System Testing 

Osaki and Mine [2] define a semi-Markov process to be ergodic if the imbedded Markov chain is ergodic. 

We now discuss the limiting behavior of an ergodic semi-Markov process. To derive the stationary 

performance, the behavior of the system as t → ∞ , we use the final value theorem 

0lim (t) lim ( )t sf sF s→∞ →= �  of Laplace-Stieltjes transform to obtain 0lim ( ) lim ( )t st s sφ φ→∞ →= � .  

Thus (8) can be written in the form 1

0 0

1
lim ( ) lim [ ( )] [ ( )]s s Ws s s I q s I F s

s
φ −

→ →= − −� �� .Using L’Hopital’s 

rule we get
'

0

0

[ ( )]
1

lim [ ( )] (0) [ ( )]

[ ]

W

s W W ij i

s

d
I F s

dsI F s F E W
ds

s
ds

δ→

=

−
− = = − =

�

� � .Howard (1964) proved that 

1

1

0

1
1

...
1

[ ( )] : ... :

( ) ...

N

s N

j j N
j

lim s I q s

E W

−
→

=

Π Π 
 − =  

Π  Π Π ∑
�  where the vector 1 2( , ,..., )

N
Π = Π Π Π  is the 

vector of the steady state probabilities of the ‘imbedded Markov Chain’. Therefore, the limiting transition 

probability, that after a long period of time, test execution will be at test case ‘j’ is given by  

                                                        

1

[ ]
; 1, 2, ...,

[ ]

j j

j N

j j

j

E W
j N

E W

φ

=

Π
= =

Π∑
                                               (9) 

5.3 Simulating the Semi-Markov Process of System Testing 

If the execution time of a test case 
ijT does not have an exponential distribution, then the resulting semi-

Markov process does not possess the Markov property. This means that the execution time 
ijT  of test case 

‘i’ has a general distribution 
ijT

F .We assume that 
ijT

F can be computed analytically and has a tractable 

expression for the probabilities and is invertible. When 
ijT

F cannot be computed analytically and has no 

tractable expression, we need to resort to Monte Carlo Markov Chain methods (MCMC) to simulate the 

Semi-Markov Process and is out of the scope of this paper. We use the algorithm given by Sigman[12] for 

simulating  semi-Markov Chains  when 
ijT follows a general analytically tractable distribution 

ijT
F and 

modify it to run until all states of the semi-Markov Chain have been walked at least once.  
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5.3.1 Algorithm for Simulating System Testing in Continuous Time 

1. Set 1i = , Generate
ijij T

T F∼  ,set
ijTτ = , wlkVec=[i] 

2. If  i wlkVec i∃ ∈ ∀ ∈ℵthen stop; otherwise goto step 3 

3. Generate [0,1]u U∼ , set j  where 
,

1

j

i k

k

u p
=

≤∑  

4. if j>=i and  : ; 0jkk wlkVec k j k N p∉ ∀ ≤ ≤ >  goto step 5 else goto step 6 

5. Generate
ijij T

T F∼   and set
ijTτ τ= +  

6. set i j= ; add i to wlkVec 

7. Go to step 2 

We generate ( )ij iT Exp λ∼ when the execution time is exponentially distributed and as a result the 

Markov Process is a Continuous Time Markov Chain. 

Again, by the  Weak Law of Large Numbers given in equation(4) we conclude that if we run the 

simulation for a sufficiently long time such that [T] , 0n Eτ ε ε− ≤ ∀ > , then the average of the time (τ ) 

obtained from each run of the simulator will converge in probability to the expected time (T) required to 

walk all the states. 
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6. Optimal Control of System Testing-The Test Management Model 

 
Figure 5: Optimal Control Model for System Test Execution Process 

 

Gimbert[13] defines a controllable Markov  Chain ( , , , )U pµℵ   to satisfy the following properties  

- The state space | |ℵ < ∞  and the control space | |U < ∞  

- For each state 
t

X ∈ℵ  a control 
t

U U∈ can be selected according to some policy : Uµ ℵ →  

- The transition probability, P : Uℵ× →ℵ  where the  triplet ( , , )i u j  represents a transition with 

transition probability P( | , ) 0j i u > , ,i j ∈ℵ  and u U∈  

The cost space C would depend on the action space, ( ) : , ( )C t U C t C+ℵ× → ∀ ∈� .A policy µ  is a 

decision making function of control strategy of the agent, representing a mapping from the state space to 

the control space. 

Let us first define and elaborate on the decision epoch. A test manager reviews the test execution progress 

(based on the history of the process) at scheduled checkpoints, during the testing cycle and it is at these 

discrete points in time that the manager takes a decision thus applying a feedback control in order to the 

stabilize (maximize the expected utility) the test execution process. 

A history of the process until decision epoch 
' 1,2,...τ =   denoted by a random vector 'H

τ
 is a sequence 

of transitions such that 
' '

'

' ' '

'

1

'

1

( , , ) |  | 0, ( ) if 1

( , , , )  | 0, ( ),u  if 1

ij

ij

ij T

ij T

X i t X j i j p t f t
H

X i U u t X j i j p t f t U

τ τ

τ

τ τ τ

τ

τ

+

+

 = = ∀ ∃ ≠ =
= 

= = = ∀ ∃ ≠ ∈ >

∼

∼

  

The semi-Markov decision process therefore should satisfy the following Markov Property 

System Test Execution Process

Test Manager

System Test Execution Model

 
'H

τ

 µ

 *µ

 [ ( )]
arg max lim  i

t

E c t

t

µ

µ
→∞

 −
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                             ' ' ' ' ' '
1 1

( , | , ) ( , | , )ij ijP T t X j H U u P T t X j X i U u
τ τ τ τ τ τ+ +

= = = = = = = =                 (10) 

The test management problem is a finite horizon stochastic optimal control problem and can be solved by 

Stochastic Dynamic Programming. Since we have considered a simplified model of software test 

execution in this paper with only one tester, the state space is not multi dimensional and therefore does 

not suffer from the curse of dimensionality.   

We denote  [ ( )]iE c t
µ

 as the expected cost up to time ‘t’ beginning from test case ‘i’ as the initial state 

and applying policy : Uµ ℵ → .Thus our optimal control problem is to find a policy 
*µ that minimizes 

the  average expected long run cost when starting in test case ‘i’ over execution of N test cases which can 

be formulated as 

                                                               
[ ( )]

arg max lim  i
t

E c t

t

µ

µ
→∞

 −
 
 

                                                  (11) 

6.1 The Cost Function of System Testing 

The costing of most testing projects is either ‘Time and Material’ or ‘Fixed Price’. In this paper we will 

only consider ‘Time and Material’ costing wherein cost of test execution is calculated as follows: 

                          Cost of Executing a Test Case=Duration of  Execution  Billing Rate×              (12)
 

The billing rate is a contractual agreement and does not fluctuate during the course of test execution (and 

is therefore constant).Thus, we can safely assume that the cost of test execution is a linear function of 

time and the total cost of test execution is a linear combination of the cost of executing each test case in 

the test suite. 

Let ic +∈� be the cost of executing test case ‘i’ ( 1,.., N)i = .Therefore, we define cost as a monotone 

non decreasing function :ic + +→� �  of duration ( ijT ) wherein ( )
(t)( ) ( ( ) )

ijic t i T
F y P c F y= ≤ ,the 

function of a random variable is also a random variable. We define the random execution time of test case 

‘i’, ijT  on the probability space ( , , )F PΩ . 

Then we can write ( , ) ( ) : ([0, ) , ([0, )) ) ( , ( ))
ii c

d dc t f t B F B∞ ×Ω ∞ ⊗ →� � �  to define the 

dependence of cost ic   on ( )
i jTf t .It is important to note that we denote (1)

i
c  as 

i
c which is a constant. 

Moreover, since the test execution Markov chain is recurrent, the duration of time spent in execution of 

test case ‘i’ is finite. This implies by definition that the cost ( )
i

c t of executing test case ‘i’ is finite as well 

and ( )  as i ic t c t↑ → ∞ . Thus, by the Monotone Convergence Theorem, we can conclude that the 

lim [ ( )] [lim ( )]t i t iE c t E c t→∞ →∞↑  

Further, assuming absolute integrability 
( )

0

| ( ) | [ ( )]
ii c t ic t dF E c t

∞

< ∞ ⇒ < ∞∫  
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6.2 Semi-Markov Process Model of System Testing with Costs 

 Now we shall consider the total expected cost up to time‘t’, [ (t)]
i

E c < ∞ when test execution starts from 

test case ‘i’ at time zero. [ (t)]
i

E c satisfies the following equation of renewal type, 0t∀ ≥  

                                    
1 0

[ (t)] [1 F ( )] { [ ( )]} ( )
i ij

N

i W i ij i j T

j

E c t c t p c E c t f dτ τ τ τ
∞

=

= − + + −∑ ∫                                (13) 

The tail distribution of the unconditional waiting time 1 ( )
iWF t− approaches zero as ‘t’ gets large. This is 

explained by the fact that the probability that a test case will remain in failed state will tend to zero as the 

number of retests and hence the duration of testing ‘t’ gets large. Moreover, [ ] [1 ( )] 0
ii WE W F t< ∞⇒ − → . 

Therefore, for large ‘t’, (4) can be re-written as 

  
1 1 10 0 0

[ ( )] ( ) [ ( )] ( ) [ ] [ ( )] ( )
ij ij ij

N N N

i ij i T ij j T i i ij j T

j j j

E c t p c f d p E c t f d c E W p E c t f dτ τ τ τ τ τ τ τ τ
∞ ∞ ∞

= = =

= + − ⇒ + −∑ ∑ ∑∫ ∫ ∫    (14) 

Let us introduce, [ ] [ ]1 1 2 1 1 2[ (t)] [ (t)] [ ( )] ... [ ( )] ; ...
N N N N

E c E c E c t E c t c c c c× ×= =  

[ ] [ ( )]; (t) [ (t)]
ijN N ij i N N ij T

E W E W q p fδ× ×= = .We can then re-write (5) as  

                                                          [ ( )] [ ] ( ) [ ( )]E c t E W c q t E c t= + ∗                                                  (15) 

Where ‘*’ denotes convolution. Taking the Laplace-Stieltjes transform, we get  

11 1
[ ( )] [ ] (s) E[ ( )] [ ( )] [ ( )] [ ]E c s E W c q c s E c s I q s E W c

s s

−= + ⇒ = −� � � �                        (16) 

We are interested in the limiting behavior of (6) i.e 
0

lim [ ( )] lim [ ( )]
t s

E c t sE c t→∞ →= �  

6.3 Expected Long-Run Stationary Cost of System Testing 

As shown by Osaki and Mine [2], the expected long-run stationary cost which is the average cost of 

executing a test case ( i∀ ∈ℵ ), when the duration of test execution t → ∞ can be written as  

                                                 
1

0

1

[ ]
1

lim [ ( ) ]

[ ]

N

j j jt

j

t i N

j j

j

E W c

E c d g
t

E W

τ τ =
→∞

=

Π

= =
Π

∑
∫

∑
                                         (17)                            

6.4 The Control Space and Control Policy of System Test Management 

We model the control space U as {0,1}U = where 0u = would mean no additional investment is required 

while 1u =  implies that additional investment is required. Thus we define the control policy as follows: 

At execution epoch of every test case, i ∈ℵ , the test manager can decide to make an additional 
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investment (and thus reduce the time to complete test execution, thereby increasing cost) or choose not to 

make any additional investment if she finds that there is no risk of schedule overrun. Formally, 

                                                        
1     

0 . .
i

if additional investment is made

o w
µ


= 


                                  (18) 

When the test manager chooses a control policy ,
i

u i u Uµ = ∀ ∈ℵ ∈ , then the system obeys the 

probability law ( )
ij

u u

ij T
p F t where 

u

ij
p is the transition probability from test case ‘i’ to ‘j’ when control ‘u’ is 

applied and  
ij

u

T
F  is the probability distribution of waiting in state ‘i’ when the next state ‘j’ is chosen and 

control ‘u’ is applied. It is important to note that 
0 1 ,  or 1
ij ij

p p i j j≤ ∀ < = ;
1 0  & 1
ij ij

p p i j j≤ ∀ ≥ ≠ and 

0 0 1 1( ) ( ) ( ) ( ) ,
ij ijT ij ij T

F t P T t P T t F t i j= ≤ < ≤ = ∀ ∈ℵThis further implies that
1 0[ ] [ ] ,

ij ij
E T E T i j< ∀ ∈ℵ .An 

intuitive explanation for this is that if the test manager wants to make additional investment in execution 

of test case ‘i’, then the probability that the test execution will jump out of state ‘i’  is equal to or higher 

than that with no investment. Similarly, an additional investment in execution of test case ‘i’, should 

reduce the probability of waiting in state ‘i’ upto time ‘t’ and hence the expected waiting time as well. 

Moreover, 
u

ic  will denote the cost of executing test case ‘i’ per unit time under the influence of control 

‘u’ and 
1

[ ] [ ]
N

u u u

i ij ij

j

E W p E T
=

=∑ is the expected unconditional waiting time in test case ‘i’ when control ‘u’ 

is applied. As a consequence, 
0 1

i ic c i< ∀ ∈ℵand
0 1[ ] [ ]i iE W E W i> ∀ ∈ℵ .Therefore we obtain the 

following expression for the expected long-run stationary cost under control policy µ                                                            

                                
1

0

1

[ ]
1

lim [ ( ) ]

[ ]

N
u u u

j j jt

j

t i N
u u

j j

j

c E W

E c d g
t

E W

µ µτ τ =
→∞

=

∏

= =
∏

∑
∫

∑
                              (19) 

6.5 Semi-Markov Decision Process Model for System Test Management 

We use the same arguments as given by Bhulai and Koole [11] to derive the average expected long-run 

costs [ ]iE c
µ

 when starting in test case ‘i’. As defined earlier, [ ( )]iE c t
µ

 denotes the total expected cost till 

time ‘t’ when beginning from test case ‘i’ at time 0, and control u U∈  is applied. From (5), we have 

1 0

[ ( )] [ ] [ ( )] ( )
ij

N

i i i ij j T

j

E c t c E W p E c t f d
µ µ µ µ µ µτ τ τ

∞

=

= + −∑ ∫  and [ ] lim { [ ( )] }i t iE c E c t g t
µ µ µ

→∞= −  is the total 

expected difference in costs between starting in test case ‘i’ and starting in stationarity. Therefore we can 

write, 
1

[ (t)] g [ ] o(1) [ ] [ (t)]
N

i i i i ij j

j

E c E W c E W p E c
µ µ µ µ µ µ µ

=

+ + = +∑  

Subtracting g tµ
 from both sides and taking the limit T → ∞ leads to the Poisson equation  
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1

[ ] g [ ] [ ] [ ]
N

i i i i ij j

j

E c E W c E W p E c
µ µ µ µ µ µ µ

=

+ = +∑                                          (20) 

An important point to note here is 
1 1[ ] lim { [ ( )] } 0tE c E c t g t
µ µ µ

→∞= − =  which is implies from (19) 

because 

0

lim [ ( ) ]

t

t iE c d g t
µ µτ τ→∞ =∫ which is the expected of cost executing a test case over all test cases 

in the system and with time t → ∞ . It is also important to note the condition. Another condition that is 

necessary to impose on the Poisson equation in (20) is that [ ] 0
j

E c j i
µ = ∀ ≤ . This follows from the 

argument given for the formulation equation (14) that as t → ∞ , the probability that the test case will 

keep failing tends to 0 and therefore the probability of waiting in the same test case, 1 ( )
iWF t−  converges 

to 0 faster than ( )
i

c t  diverges. 

6.5.1 Policy Iteration to find the Optimal Policy 

Next we present the algorithm given be Bhulai and Koole [11] to find the optimal policy using Bellman 

Equation in (21) 

1. Choose 0  1
i

orµ =  

2. Compute g µ
and [ ]iE c

µ−  i∀ ∈ℵ . 

3. Find the optimal policy 
*

iµ  .If 
*

i iµ µ= , then stop else goto step 4 

                                             
*

1

argmax{( ) [ ] [ ]}
N

u u u

i i i ij j
u U j

c g E W p E c
µ µµ

∈ =

= − + + −∑                                             (21) 

4. Set  
*

i iµ µ=  and goto step 2. 
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7. The Optimal Additional Investment in System Testing 
In this section we consider the solution proposed by Elmaghraby [1] for computing the optimum 

additional investment and present it in the framework of system testing. Let us assume that an additional 

amount [0, )ijr ∈ ∞ is invested in order to reduce the expected time taken to execute test case ‘i’ (and 

thus realize test path ‘ij’). We have already  defined the random execution time of test case ‘i’, ijT  on the 

probability space ( , , )F PΩ .Then we can write 

( , ) ( ) : ([0, ) , ([0, )) ) ( , ( ))
ij

d d
rr t f t B F B∞ ×Ω ∞ ⊗ →� � �  to define the dependence of   ( )

i jTf t on 

additional investment ijr , wherein 
0 ( )
ijT

f t  is the probability of completing execution of test path ‘ij’ at 

time t, without any additional investment. This would mean that the expected value of the execution time 

i.e.  [ ]ijE T  reduces by a certain amount whenever and additional investment is made. Let the new 

expected value of the execution time be denoted as ˆ[ ] [ ]i j i jE T E T< . Please note that if the above 

inequality does not hold true for any 0ijr > , it would be futile to invest any additional amount in the first 

place. Let us denote the reduction in expected execution time as a function of additional investment,

( )ijrζ .Therefore, ˆ[ ] [ ] ( )ij ij ijE T E T rζ= −  and ˆ[ ( )] [ ( )]ij ij ijE c t E c t r= + . Moreover, we make a 

simplifying assumption that the decrease in average duration is a linear function of investment. Thus, we 

can rewrite the average duration and cost introduced earlier as follows    

             ( )
[ ]ˆ ˆ ˆ ˆ[ ] [ ]  , - 0; [ ] [ ] [ ] , 0

ij

ij ij ij ij ijt
E T

E T E T qr q E c E mT r mE T r m
r

= + < < = + = + ≥            (22) 

Therefore, we can also write ( ) [ ( )] ( 1) , 0ˆ[ ] [ ] ( 1) , 0
ijij ijt E c t mq r mE c mE T mq r m + + ≥= + + ≥ ⇒

  

where q is the marginal decrease in the test execution time per unit increase in investment and ‘m’ is the 

linear slope of the cost function. It’s important to note that the amount of capital r available to a test 

manager is finite and therefore q  is bounded.  Also it’s important to note that the probability of realizing 

a test case depends on the path that is chosen (there can exist multiple logic paths through a test 

case).Therefore, the expected cost (without any additional investment) given by the ‘law of unconscious 

statistician’ is 
0

[ ( )] ( ) ( )
ij

b

ij ij T

a

E c t c t dF t= ∫  where ‘a’ and ‘b’ are the limits on the duration of execution of 

test path ‘ij’. Further, if an investment ijr  is made in test path ‘ij’, the new expected cost will be given by 

ˆ

ˆ

ˆ ˆ ˆ[ ( )] ( ) ( )ij

ij

b
r

ij ij ij T

a

E c t r c t dF t= + ∫ where â  and b̂ are the new limits on the duration when investment 
ijr  

has been made in test path ‘ij’. Now, either of the following can be true 0ijr∀ > , ˆ[ ( )] [ ( )]
ij ij

E c t E c t≤  or  

ˆ[ ( )] [ ( )]
ij ij

E c t E c t≥ . We will only consider ˆ[ ( )] [ ( )]
ij ij

E c t E c t≤  as that is the objective of a test manager 

which means the additional investment 
ijr  is adequately compensated by the decrease in duration of test 
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case ‘i’ and eventually reduces the cost. Therefore there exists a minimum additional investment for test 

path ‘ij’ in order to minimize the expected cost. Suppose, that the status of testing (as revealed in the test 

execution report) at some time t>0 after its initiation, reveals that the execution of one or more test cases 

has taken so long to complete that the probability of completing one or more test/logic paths is 

dangerously low. Then the optimization problem translates to  

‘what is the optimal allocation of a fixed amount of capital K among the remaining test cases such that 

the probability of realizing the terminal test cases on or before a specified time is maximized’ 

Let us denote the set of terminal test cases as { | 1}llL l N p= ∈ = .Therefore, lT l L∀ ∈ ; lC l L∀ ∈ and 

lP l L∀ ∈  is the execution time from the first test case to the terminal test case, the cost of reaching the 

terminal test case starting from the first test case and the probability of reaching the terminal test case 

respectively. Let 
x

lπ denote the path ‘x’ from the starting test case to the terminal test case ‘l’ and 

( ) or ,x x
l lP P l Lπ ∈  denote the probability of realizing test case l L∈  along path ‘x’. Similarly, let 

xT

be the duration of realizing path ‘x’, therefore 
( ) x

x
ijl

ij

T T
π∈

= ∑ is the sum of independent random variables 

ijT .Hence, 
k k

l l l l
k

PT P T=∑ implies [ ]

k k
l

k
l

l

P T

E T E
P

 
 
 
  

=
∑

.Since,  
k k

l
k

P T∑ where 
k

k
ij

ij

T T
π∈

= ∑ , 

using Linearity Property , we can write the following 

[ ] [ ][ ]

[ ]
k k

k kk k
ij ijl ll

k kij ijk
l

l l l

P E T P E TP E T

E T
P P P

π π∈ ∈= = =
∑ ∑ ∑ ∑∑

.Replacing, ˆ[ ] [ ]ij ij ij ijE T E T q r= − , we 

get 

ˆ( [ ] )

ˆ[ ] [ ]
k k

k k
ij ij ij ij ijl l

k kij ij

l l

l l

P E T q r P q r

E T E T
P P

π π∈ ∈

−

= = −
∑ ∑ ∑ ∑

. Therefore, 

                                                       ˆ[ ] [ ]
k

k
ij ijl

k ij

l l

l

P q r

E T E T
P

π∈= +
∑ ∑

                                                     (23) 

                                                

( 1)

ˆ[ ] [ ]
k

k
ij ijl

k ij

l l

l

P mq r

E C E C
P

π∈

+

= +
∑ ∑

                                              (24) 

 

Let us denote the estimated completion time for terminal test case l  as lτ .Then the optimization problem 

is  
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ˆmaximize  [T ]

. . 

0 ,

k

l l

k

ij

k ij

k

ij ij

s t r K

r r ij

π

τ

π

∈

Ρ ≤

≤

≤ ≤ ∀ ∈

∑∑                                                          (25) 

Where ijr  is the upper limit on the amount to be invested in test path ‘ij’ such that 

 and ij ijr K r K≤ >∑ We assumed earlier that any additional investment i.e 0ijr∀ > , reduces the 

expected execution time test path ‘ij’ by a certain amount such that ˆ[ ] [ ]ij ijE T E T< . 

Consequently, 
0ˆ[T ] ( ) [T ] ( )

k
ij

kk ij

k k
l l

k k

r

l l l l l lF Fπ

π π
τ τ τ τ∈

∑∑

∑ ∑
Ρ ≤ = > Ρ ≤ = .Furthermore, by continuity and 

linearity of ˆ[ ] [ ]ij ijE T E T<  in ijr  we deduce that ˆ[T ]l lτΡ ≤  is a continuous and monotone non 

decreasing function of 
k

k

ij

k ij

r
π∈

∑∑  for any lτ .Therefore maximizing ˆ[T ]l lτΡ ≤  is equivalent to 

minimizing ˆ[ ]lE T .Hence, we can rewrite the objective function of optimization problem defined above 

as ˆmaximize [ ] [ ]l lE T E T− . An important point to note is that there might be investments which lead to 

the same reduction in execution time of a test path. Which investment to choose in such a case? To 

correct this problem, we modify the objective function further to
r

ˆ[ ] [ ]
maximize  

ˆ[ ] [ ]

l l

l l

E T E T

E C E C

−

−
. Therefore 

the optimization problem in (25) can be re-written as  

                                                          

maximize

              
( 1)

subject to

                  

                   0 ,

k

k

k

k

l ij ij

k ij

k

l ij ij

k ij

k

ij

k ij

k

ij ij

P q r

P mq r

r K

r r ij

π

π

π

π

∈

∈

∈

−

+

≤

≤ ≤ ∀ ∈

∑ ∑

∑ ∑

∑∑
                                                  (26) 
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Since the objective function in (26) is non-linear we use a Charnes-Cooper transformation as shown by 

Borza et all. [14], to translate the linear-fractional program to an LP problem. We substitute  

                                                             
1

( 1)
k

k

l ij ij

k ij

y
P mq r

π∈

=
+∑ ∑

                                                        (27) 

Therefore the optimization problem in (26) translates to the following Linear Programming Problem 

                                                   

maximize

                       -

subject to

                  0

                   1 

                   0 ,

k

k

k

l ij ij

k ij

ij

k ij

k

ij ij

P q r y

r y Ky

y

r y r y ij

π

π

π

∈

∈

− ≤

≥

≤ ≤ ∀ ∈

∑ ∑

∑∑
                                                 (28) 
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8. Results & Discussion 
 

 

 

 

Table 4: Stationary Distribution П* 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S M M C M S S C S C S C M S S S

∏* 14.14% 5.86% 6.45% 8.22% 5.48% 4.90% 1.30% 11.75% 1.86% 11.56% 1.83% 10.40% 6.93% 6.20% 1.64% 1.49%

Test Case ID

Test Case 

Id Complexity

Average 

Execution Time 

(minutes)

1 S 10

2 M 15

3 M 15

4 C 30

5 M 15

6 S 10

7 S 10

8 C 30

9 S 10

10 C 30

11 S 10

12 C 30

13 M 15

14 S 10

15 S 10

16 S 10

Table 2: Average test execution time (in minutes) 

for test case belonging to each complexity class 

(Simple, Medium and Complex) 

1

2

3

4

5

6

7

8

9

10

11

12

13 15

14

16

1

pij 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 5.00% 35.00% 0 0 0 0 0 50.00% 0 0 0 0 0 0 0 10.00%

2 5.00% 10.00% 85.00% 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 5.00% 10.00% 85.00% 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 10.00% 30.00% 45.00% 0 15.00% 0 0 0 0 0 0 0 0 0

5 0 0 0 5.00% 10.00% 85.00% 0 0 0 0 0 0 0 0 0 0

6 95.00% 0 0 0 0 5.00% 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 95.00% 0 5.00% 0 0 0 0 0 0 0 0 0

8 10.00% 0 0 0 0 0 0 30.00% 15.00% 45.00% 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 5.00% 95.00% 0 0 0 0 0 0

10 0 0 0 0 0 0 0 10.00% 0 30.00% 15.00% 45.00% 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 5.00% 95.00% 0 0 0 0

12 0 0 0 0 0 0 0 0 0 10.00% 0 30.00% 45.00% 0 15.00% 0

13 0 0 0 0 0 0 0 0 0 0 0 5.00% 10.00% 85.00% 0 0

14 95.00% 0 0 0 0 0 0 0 0 0 0 0 0 5.00% 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 95.00% 0 5.00% 0

16 95.00% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.00%

Figure 6: Test Execution Markov Chain 

Table 3: The Transition Probability Matrix, P 



 

 

We consider a test suite of 16 test cases

2. As described in section [4], we obtain

the forward recurrence formula given in (3), we obtain

test cases as show in the Table 4. Convergence was attained in 40 steps.

stationary distribution obtained for each test case corresponds to its complexity class. For instance, the 

system testing process has the highest probability

the starting test case) followed by test case 8

number of sub branches in the test suite. 

of failure and the probability that the system testing process will be in test case 8 is the highest. Similarl

the model assigns a lower probability to test cases of medium complexity followed by simple test cases.

Next, we simulated a walk on the 

presented in section (4.2.1) and plot a sample

probability that one or more test cases in this branch fail is the highest. This in turn results in test case 14 

being visited the most number of times along with test case 1(which is evident as it acts a connect

between the start and end of testing along a logic path).We also observe that system testing process 

oscillates a few times between test case 8 and test case 10 which is expected because test case 8 and test 

case 10 both belong to the complexity class ‘

look at the plot also reveals some flat paths (at test case 12), which explains the phenomenon of retesting 

of a test case, while the jump to the previous test case (from test case 2 to test case

fact that the test case under execution failed and the tester

path while the defect identified by test case 2 is being fixed.

Figure 7: Sample Path of Test Execution Process in Discrete Time. The plot shows the jumps of the test 

execution process to each test case over time
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a test suite of 16 test cases (Figure 6) and the average test execution rate 

described in section [4], we obtained the transition probability matrix P as shown 

recurrence formula given in (3), we obtained the stationary distribution 
*

∏

. Convergence was attained in 40 steps. It’s important to note that the 

for each test case corresponds to its complexity class. For instance, the 

system testing process has the highest probability (14.13%) of being in test case 1 (which is evident as it’s 

the starting test case) followed by test case 8 (11.75%), which is a complex test case and has the highest 

number of sub branches in the test suite. Therefore the logic path of test case 8 has the highest probability 

of failure and the probability that the system testing process will be in test case 8 is the highest. Similarl

the model assigns a lower probability to test cases of medium complexity followed by simple test cases.

a walk on the System Testing Markov Chain in discrete time using the algorithm 

and plot a sample path. As we can see in Figure 7, the test execution process, 

probability that one or more test cases in this branch fail is the highest. This in turn results in test case 14 

being visited the most number of times along with test case 1(which is evident as it acts a connect

between the start and end of testing along a logic path).We also observe that system testing process 

oscillates a few times between test case 8 and test case 10 which is expected because test case 8 and test 

case 10 both belong to the complexity class ‘C’ and therefore have a high probability of failure.

look at the plot also reveals some flat paths (at test case 12), which explains the phenomenon of retesting 

of a test case, while the jump to the previous test case (from test case 2 to test case 1) is explained by the

fact that the test case under execution failed and the tester decided to test the test cases in the next logic 

path while the defect identified by test case 2 is being fixed.  

Figure 7: Sample Path of Test Execution Process in Discrete Time. The plot shows the jumps of the test 

over time 
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ate as shown in Table 

n  in Table 3.Using 

*
∏ for each of the 16 

important to note that the 

for each test case corresponds to its complexity class. For instance, the 

of being in test case 1 (which is evident as it’s 

mplex test case and has the highest 

Therefore the logic path of test case 8 has the highest probability 

of failure and the probability that the system testing process will be in test case 8 is the highest. Similarly, 

the model assigns a lower probability to test cases of medium complexity followed by simple test cases.  

Markov Chain in discrete time using the algorithm 

, the test execution process, 

visits test case 

14 quite a few 

times. This is 

explained by the 

fact that the 

logic path to 

which test case 

14 belongs to 

have the 

maximum 

number of test 

cases that 

belong to the 

complexity class 

‘C’ (namely 8, 

10 and 12) and 

therefore the 

probability that one or more test cases in this branch fail is the highest. This in turn results in test case 14 

being visited the most number of times along with test case 1(which is evident as it acts a connector 

between the start and end of testing along a logic path).We also observe that system testing process 

oscillates a few times between test case 8 and test case 10 which is expected because test case 8 and test 

high probability of failure. A close 

look at the plot also reveals some flat paths (at test case 12), which explains the phenomenon of retesting 

1) is explained by the 

decided to test the test cases in the next logic 



 

 

We applied the Weak Law of Large 

to complete test execution. As can be seen in 

simulator to return the results in a limited number of recursions. 

obtained from each run of the simulator converges al

allow the simulator to run for a considerably long time and with greater number of recursions. Though, it 

is important to note that as the size of the test suite gro

larger. Moreover, test managers are mostly concerned with an approximate estimate of the 

completion time; hence a convergence in probability would be sufficient.

Then using the algorithm in section 5

the execution time being exponentially distributed with rate of execution as given in the table above. A 

plot of the sample path is shown in Figure 9

and jumps to test case 8.However, test execution

system jumped back to test case 1.By the 

resulted in failure of test case 8 was fixed. However, since 1 has already been tested, it now just acts as  

transition case and no longer has an execution time 

jump from test case 8 to test case 1 is shown by a steep 

and execution moves on to the subsequent test cases in the logic path until it reaches test case 12, which 

fails and continues to fail the retests for a considerable amount of time. One important point to 

is that the system does not jump back to test case 10 (and subsequently to test case 11) during this 

process. This is because test case 12 is a complex test case while test case 11 is a simple test case. Thus 

the probability that the system would

after multiple failures is high. Towards the extreme right of the plot, the jumps are steep, again due to the 

reason, that once a test case/sequence of test cases  have passed, they do

merely act as a connector to the test cases that haven’t yet passed.

Figure 8: Convergence of the Expected Time, E[T]  to Complete Test Execution
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Large Numbers given in equation (4) to obtain the expected 

complete test execution. As can be seen in Figure 8, the average of the steps obtained from each run of 

the results in a limited number of recursions. However, the average of the steps

m each run of the simulator converges almost surely to the expected number of steps

run for a considerably long time and with greater number of recursions. Though, it 

as the size of the test suite grows large, the steps to convergence will also get 

larger. Moreover, test managers are mostly concerned with an approximate estimate of the 

hence a convergence in probability would be sufficient. 

g the algorithm in section 5.3.1, we simulated a walk on the System Testing Markov Chain with 

the execution time being exponentially distributed with rate of execution as given in the table above. A 

f the sample path is shown in Figure 9. As can be seen, the test execution process starts at test case 1 

, test execution of test case 8 failed (it being a complex test case) and the 

system jumped back to test case 1.By the time, the system jumped back to test case 1, the defect that 

e of test case 8 was fixed. However, since 1 has already been tested, it now just acts as  

transition case and no longer has an execution time (and thus does not add to the counting process)

jump from test case 8 to test case 1 is shown by a steep line. During the retest though, test case 8 passes 

and execution moves on to the subsequent test cases in the logic path until it reaches test case 12, which 

the retests for a considerable amount of time. One important point to 

is that the system does not jump back to test case 10 (and subsequently to test case 11) during this 

because test case 12 is a complex test case while test case 11 is a simple test case. Thus 

the probability that the system would prioritize test case 12 and execution will stay in this test case even 

Towards the extreme right of the plot, the jumps are steep, again due to the 

reason, that once a test case/sequence of test cases  have passed, they do not have an execution time and 

merely act as a connector to the test cases that haven’t yet passed.  

Figure 8: Convergence of the Expected Time, E[T]  to Complete Test Execution 
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the expected number of steps 

obtained from each run of 

the simulator 

converges in 

probability to 

the expected 

number of 

steps which is 

approximately 

145. It is 

important to 

mention that 

we only 

consider 

convergence 

in probability 

because we 

choose 

0.001ε =
which in turn 

allows the 

However, the average of the steps 

most surely to the expected number of steps, if we 

run for a considerably long time and with greater number of recursions. Though, it 

gence will also get 

larger. Moreover, test managers are mostly concerned with an approximate estimate of the average 

, we simulated a walk on the System Testing Markov Chain with 

the execution time being exponentially distributed with rate of execution as given in the table above. A 

ess starts at test case 1 

of test case 8 failed (it being a complex test case) and the 

the system jumped back to test case 1, the defect that 

e of test case 8 was fixed. However, since 1 has already been tested, it now just acts as  

(and thus does not add to the counting process), so the 

line. During the retest though, test case 8 passes 

and execution moves on to the subsequent test cases in the logic path until it reaches test case 12, which 

the retests for a considerable amount of time. One important point to note here 

is that the system does not jump back to test case 10 (and subsequently to test case 11) during this 

because test case 12 is a complex test case while test case 11 is a simple test case. Thus 

prioritize test case 12 and execution will stay in this test case even 

Towards the extreme right of the plot, the jumps are steep, again due to the 

not have an execution time and 



 

 

Figure 9: Sample Path of Test Execution Process in Continuous Time. The plot 

execution process to each test case when the execution time is exponentially distributed

Figure 10: Sample Path of Number of Test Cases Executed v/s Elapsed Test Execution Time 
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Sample Path of Test Execution Process in Continuous Time. The plot shows the jumps of the test 

execution process to each test case when the execution time is exponentially distributed 

Figure 10: Sample Path of Number of Test Cases Executed v/s Elapsed Test Execution Time  
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As described 

in section 3, 

we also plot 

the sample 

path 

(Figure10) of 

number of 

test cases 

executed 
t

N  

and as 

expected the 

path is same 

as that of a 

Poisson 

Process. The 

plot 
t

N  

shows that 

the process 

attains a 

value of 20 

test cases 

shows the jumps of the test 



 

 

while the total number of test cases in the test suite is 16. 

homogeneous Poisson Process described in section (2) we count retesting of a test cases as a new event of 

from each run of the simulator converges in probability to the 

We chose 0.0001ε = for the continuous time case

method but the difference is not large and the estimate obtained by our model is more reliable because as 

shown above, it replicates the system te

failure of test cases. Now, if we compute the probability of

within 5.6 hours even with the slowest rate

very small probability of schedule overrun.

The expected execution time for each test case 

we computed [ ]jE W   for each test case

in this example. This is because we have considered the test execution time to be exponentially 

distributed and do not differentiate in the rate of execution of test case 

execution chain is either a simple, medium or complex test case. If, however the expected execution time 

of test case ‘i’, [ ]ijE T  is made dependent on the next test case 

row of the above matrix would be different and 

semi-Markov model of  system testing accommodates  this scenario as well

 

Figure 11: Convergence of Expected Time (in hours), E[T] to Complete Test Execution
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while the total number of test cases in the test suite is 16.  This is because as per the properties of a 

on Process described in section (2) we count retesting of a test cases as a new event of 

from each run of the simulator converges in probability to the expected time of approximately 5.

the continuous time case. This is higher than the estimate obtained by the SMC 

method but the difference is not large and the estimate obtained by our model is more reliable because as 

shown above, it replicates the system testing process quite well by modeling the time to retest due to 

, if we compute the probability of not completing test execution of all test cases

slowest rate of 2λ = , we get 
5.6 5( 5.6) 1.37 10P T e λ− −> = = ×

edule overrun. 

The expected execution time for each test case [ ]ijE T  is shown in Table 5. Therefore, 

for each test case as shown in Table 6. It is important to note that

. This is because we have considered the test execution time to be exponentially 

distributed and do not differentiate in the rate of execution of test case ‘i’ if the next test case 

e, medium or complex test case. If, however the expected execution time 

is made dependent on the next test case ‘j’ to be executed then the values in each  

row of the above matrix would be different and [ ]jE W  would have a different value from 

Markov model of  system testing accommodates  this scenario as well 

Figure 11: Convergence of Expected Time (in hours), E[T] to Complete Test Execution 
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This is because as per the properties of a 

on Process described in section (2) we count retesting of a test cases as a new event of 

the counting 

process. 

Similar to 

the discrete 

case, we 

applied the 

Weak Law 

of Large 

Number as 

presented in 

equation (4) 

to obtain the 

expected 

time to 

complete test 

execution. 

As can be 

seen in the 

plot below, 

the average 

of the time 

obtained 

expected time of approximately 5.6 hours. 

higher than the estimate obtained by the SMC 

method but the difference is not large and the estimate obtained by our model is more reliable because as 

time to retest due to 

execution of all test cases 
5.6 5( 5.6) 1.37 10− −> = = ×  which is a 

 using equation (5) 

It is important to note that [ ] [ ]j ijE W E T=  

. This is because we have considered the test execution time to be exponentially 

if the next test case in the 

e, medium or complex test case. If, however the expected execution time 

to be executed then the values in each  

would have a different value from [ ]ijE T .The 
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Table 5: Expected Test Execution Time (in hours) 

 

Table 6: Unconditional Expected Waiting Time at each Test Case (in hours) 

 

Next, we computed the limiting transition probabilities 
jφ  by equation (9) and the values are presented in 

Table 7. An important inference from the result of the limiting transition probability 
jφ  is that it 

computes the probability of being in test case 1 to be 7.2 % in contrast to the probability of 14.13% 

obtained from the stationary distribution 
*

∏ .Though by design test case 1 acts as a connecting state for 

most test cases, its complexity is simple, which means that a test manager observing the system testing 

process for a long time will see test execution at test case 1 with low probability as compared to complex 

test cases. 

Table 7: Limiting Transition Probability φj 

 

As expected, the test execution process has the highest probability of being in test case 8 (17.96%) as it 

has the highest complexity (given by the fact that it is the parent of two complex test cases namely test 

case 10 and test case 12). The other complex test cases, 10, 12 and 4 are assigned probabilities in 

decreasing order which corresponds to the complexity of test cases linked to each of them. Similarly, test 

cases of medium complexity have a higher limiting transition probability than simple test cases. If  we 

look at the limiting transition probabilities of test case 2 and test case 3 both of which belong to the 

complexity class of medium, we see that test case 3 has a higher limiting transition probability(4.9%) than 

test case 2(4.4%).This is because, test case 4 which is the immediate test case that follows 3 is a complex 

test case and therefore has a higher probability of failure whereas that test case 2 is linked to test cases 3 

and 4, which are both simple test cases. Similarly, if we compare the limiting transition probabilities of 

two simple test cases, namely test case 6 and test case 9, we observe that test case 6(2.4%) has a higher 

limiting transition probability than test case 9(0.9%) which is again explained by the fact that test case 9 

belongs to a much shorter logic path than test case 6 and the probability of one or more test cases failing 

E[Tij] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1/6 1/6 0 0 0 0 0 1/6 0 0 0 0 0 0 0 1/6

2 1/4 1/4 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1/4 1/4 1/4 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 1/2 1/2 1/2 0 1/2 0 0 0 0 0 0 0 0 0

5 0 0 0 1/4 1/4 1/4 0 0 0 0 0 0 0 0 0 0

6 1/6 0 0 0 0 1/6 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 1/6 0 1/6 0 0 0 0 0 0 0 0 0

8 1/2 0 0 0 0 0 0 1/2 1/2 1/2 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 1/6 1/6 0 0 0 0 0 0

10 0 0 0 0 0 0 0 1/2 0 1/2 1/2 1/2 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 1/6 1/6 0 0 0 0

12 0 0 0 0 0 0 0 0 0 1/2 0 1/2 1/2 0 1/2 0

13 0 0 0 0 0 0 0 0 0 0 0 1/4 1/4 1/4 0 0

14 1/6 0 0 0 0 0 0 0 0 0 0 0 0 1/6 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 1/6 0 1/6 0

16 1/6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/6

S M M C M S S C S C S C M S S S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E[Wj] 1/6 1/4 1/4 1/2 1/4 1/6 1/6 1/2 1/6 1/2 1/6 1/2 1/4 1/6 1/6 1/6

Test Case ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S M M C M S S C S C S C M S S S

φj 7.21% 4.48% 4.93% 12.56% 4.19% 2.50% 0.66% 17.97% 0.95% 17.67% 0.93% 15.90% 5.30% 3.16% 0.84% 0.76%

Test Case ID
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in the logic path of test case 6 is higher than that of test case 9.We obtained the average waiting time at a 

test case (or the expected time between two jumps of the test execution process) as 

1

[ ] 19.62
N

j j

j

E W
=

∏ =∑ minutes. Therefore the average time to complete test execution would be 

1

[ ] 5.23
N

j j

j

N E W
=

∏ =∑ hours which is approximates to the expected completion time of 5.6 hours 

obtained from simulation. 

Table 8: Cost of test execution per hour 

 

Table 8 shows the hourly cost of executing each test case. We obtained the average cost of executing a 

test case as 
1

[ ] 13.58
N

j j j

j

E W c
=

∏ =∑ euros. This results in an average cost of executing all 16 test cases as 

1

[ ] 217.24
N

j j j

j

N E W c
=

∏ =∑ euros. Then using equation (17), we divided the average cost of executing a 

test case by the average waiting time of 0.327 hours(19.62 minutes)  to obtained the long run average cost 

(stationary cost) of executing a test case as, 41.51g = euros which in turn results in the long run average 

cost (stationary cost) of  executing all 16 test cases as 644.28Ng = euros. We contrast this to the  

computation where the test manager only takes into account the execution time of each test case and 

multiplies it with the cost per hour (
1

[ ]
N

j j

j

E W c
=
∑ ) thereby  underestimating the  budget to €145.83 ,  thus 

failing to take into account the fact that failure of a test case results in retesting  and hence adds to the 

cost. As shown in section 6.4, this 

further necessitates the need to have a 

control model for system testing in order 

to ensure that system testing is on track. 

Test Case 1 is a simple test case (and in 

most cases the test initiation state) and 

after it passes, it acts just as a transition 

test cases without adding to the test 

execution time. Therefore, we remodel 

the test execution chain as shown in 

Figure 12, wherein we remove test case 

1 and connect test case 6 to test case 8 

and test case 16. Therefore, once a 

terminal test case on an execution branch 

is reached, execution can jump to the 

next branch without having to pass through a transition case. Similarly, once test execution reaches test 

case 14, it jumps to the first test case of the next branch i.e test case 2 or test case 16. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S M M C M S S C S C S C M S S S

cj € 10.00 € 30.00 € 30.00 € 45.00 € 30.00 € 20.00 € 5.00 € 60.00 € 5.00 € 55.00 € 5.00 € 50.00 € 30.00 € 10.00 € 5.00 € 5.00

Figure 12: Test Execution Markov Chain 
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The transition probability matrix P 

expected time to complete test execution E[T]  

given in Table 9 , Table 10 and Figure 13 

execution E[T]=5.7 hours. 

Table 9: Transition Probability Matrix, P 

Table 10: Expected Test Execution Time (in hours)

Figure 13: Convergence of Expected Waiting Time

pij 2 3 4 5

2 10.00% 85.00% 0 0

3 5.00% 10.00% 85.00% 0

4 0 10.00% 30.00% 45.00%

5 0 0 5.00% 10.00%

6 0 0 0 0

7 0 0 0 95.00%

8 10.00% 0 0 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0

12 0 0 0 0

13 0 0 0 0

14 85.00% 0 0 0

15 0 0 0 0

16 0 0 0 0

E[Tij] 2 3 4 5

2 0 1/4 0 0

3 0 0 1/4 0

4 0 0 1/2 0

5 0 0 0 1/4

6 0 0 0 0

7 0 0 0 1/6

8 1/2 0 0 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0

12 0 0 0 0

13 0 0 0 0

14 1/6 0 0 0

15 0 0 0 0

16 0 0 0 0
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The transition probability matrix P , the expected execution time of each test case 

expected time to complete test execution E[T]  for the remodeled test execution chain of Figure 12 is 

and Figure 13  respectively. We obtained the expected time to complete test 

: Expected Test Execution Time (in hours) 

: Convergence of Expected Waiting Time (in hours), E[T] to Complete Test Execution 

6 7 8 9 10 11 12 13

0 0 5.00% 0 0 0 0 0

0 0 0 0 0 0 0 0

0 15.00% 0 0 0 0 0 0

85.00% 0 0 0 0 0 0 0

5.00% 0 85.00% 0 0 0 0 0

0 5.00% 0 0 0 0 0 0

0 0 30.00% 15.00% 45.00% 0 0 0

0 0 0 5.00% 95.00% 0 0 0

0 0 10.00% 0 30.00% 15.00% 45.00% 0

0 0 0 0 0 5.00% 95.00% 0

0 0 0 0 10.00% 0 30.00% 45.00%

0 0 0 0 0 0 5.00% 10.00%

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 95.00%

47.50% 0 0 0 0 0 0 0

6 7 8 9 10 11 12 13

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1/2 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1/6 0 0 0 0 0

0 1/6 0 0 0 0 0 0

0 0 1/2 1/2 1/2 0 0 0

0 0 0 1/6 1/6 0 0 0

0 0 1/2 0 1/2 1/2 1/2 0

0 0 0 0 0 1/6 1/6 0

0 0 0 0 1/2 0 1/2 1/2

0 0 0 0 0 0 1/4 1/4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1/6

1/6 0 0 0 0 0 0 0
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the expected execution time of each test case [ ]ijE T  and the 

for the remodeled test execution chain of Figure 12 is 

We obtained the expected time to complete test 

 

 

 

14 15 16

0 0 0

0 0 0

0 0 0

0 0 0

0 0 10.00%

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 15.00% 0

85.00% 0 0

5.00% 0 10.00%

0 5.00% 0

47.50% 0 5.00%

14 15 16

0 0 0

0 0 0

0 0 0

0 0 0

0 0 1/6

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1/2 0

1/4 0 0

1/6 0 1/6

0 1/6 0

1/6 0 1/6
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Moreover, we obtained the stationary distribution, the unconditional expected execution time and the 

limiting transition probability for the remodeled Markov chain as shown in Table 11. In contrast to the 

limiting probabilities (Table 7) of the first model, the probabilities are evenly distributed with test cases of 

medium complexity having a higher limiting probability. We obtained the average waiting time at a test 

case 
1

[ ] 20.56
N

j j

j

E W
=

∏ =∑  minutes. Using the same cost matrix as shown in Table 8, we obtained 

g=42.65 euros. 

Table 11: Stationary Distribution П*, Unconditional Expected Test Execution Time, E[Wj] and Limiting Transition Probability φj 

 

Next, we defined the control policy as shown in equation (18). Therefore, for 1
i

iµ = ∀ ∈ℵ , the transition 

probability
1

ijp , the expected execution time of each test cases 
1[ ]ijE T and the expected time to complete 

test execution 
1[ ]E T  is Table 12, Table 13 and Figure 14 respectively. As can be seen in Figure 14, the 

expected time to complete test execution under additional investment reduces to 3.7 hours. Similarly, we 

obtained the stationary distribution
1

*Π , the unconditional expected execution time 
1[ ]jE W  and the 

limiting transition probability  
1

jφ  as shown in Table 14.The average waiting time at a test case under 

control policy 1
i

µ =   is 
1 1

1

[ ] 14.10
N

j j

j

E W
=

∏ =∑ minutes and using the cost matrix defined in Table 15 we 

obtained the stationary cost of executing a test case under policy 1
i

µ =  as 
1g =78.19 euros. 

 

 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M M C M S S C S C S C M S S S

∏* 8.29% 9.12% 11.63% 7.75% 7.71% 1.84% 11.57% 1.83% 11.38% 1.80% 10.24% 6.83% 6.87% 1.62% 1.53%

E[Wj] 1/4 1/4 1/2 1/4 1/6 1/6 1/2 1/6 1/2 1/6 1/2 1/4 1/6 1/6 1/6

φj 6.04% 6.65% 16.97% 5.66% 3.75% 0.89% 16.88% 0.89% 16.60% 0.87% 14.94% 4.98% 3.34% 0.79% 0.75%

μ=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 5.00% 94.00% 0 0 0 0 1.00% 0 0 0 0 0 0 0 0

3 1.00% 5.00% 94.00% 0 0 0 0 0 0 0 0 0 0 0 0

4 0 5.00% 10.00% 65.00% 0 20.00% 0 0 0 0 0 0 0 0 0

5 0 0 1.00% 5.00% 94.00% 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 1.00% 0 89.00% 0 0 0 0 0 0 0 10.00%

7 0 0 0 99.00% 0 1.00% 0 0 0 0 0 0 0 0 0

8 5.00% 0 0 0 0 0 10.00% 20.00% 65.00% 0 0 0 0 0 0

9 0 0 0 0 0 0 0 1.00% 99.00% 0 0 0 0 0 0

10 0 0 0 0 0 0 5.00% 0 10.00% 20.00% 65.00% 0 0 0 0

11 0 0 0 0 0 0 0 0 0 1.00% 99.00% 0 0 0 0

12 0 0 0 0 0 0 0 0 5.00% 0 10.00% 65.00% 0 20.00% 0

13 0 0 0 0 0 0 0 0 0 0 1.00% 5.00% 94.00% 0 0

14 89.00% 0 0 0 0 0 0 0 0 0 0 0 1.00% 0 10.00%

15 0 0 0 0 0 0 0 0 0 0 0 99.00% 0 1.00% 0

16 0 0 0 0 49.50% 0 0 0 0 0 0 0 49.50% 0 1.00%

Table 12: Transition Probability Matrix, P under control policy, μi=1 



 

 

Figure 14: Convergence of Expected Time to Complete Test Execution under control policy, μ

Table 14: Stationary Distribution П*, Unconditional Expected Test Execution Time, E[W

under control policy, μi=1 

Table 15: Cost of Test Execution (per hour) under control policy, μ

 

 

2 3 4 5

M M C M

∏* 8.73% 9.15% 9.65% 8.64%

E[Wj] 1/5 1/5 1/3 1/5

φj 7.43% 7.78% 13.68% 7.34%

μ=1

2 3 4 5

M M C M

cj 60.00€    60.00€    90.00€    60.00€    €   

μ=1

E[Tij] 2 3 4 5

2 0 1/5 0 0

3 0 0 1/5 0

4 0 0 1/3 0

5 0 0 0 1/5

6 0 0 0 0

7 0 0 0 1/7

8 1/3 0 0 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0

12 0 0 0 0

13 0 0 0 0

14 1/7 0 0 0

15 0 0 0 0

16 0 0 0 0

Table 13: Expected Test Execution Time (in hours) under control policy, μ
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: Convergence of Expected Time to Complete Test Execution under control policy, μi=1 

, Unconditional Expected Test Execution Time, E[Wj] and Limiting Transition Probability φ

: Cost of Test Execution (per hour) under control policy, μi=1 

6 7 8 9 10 11 12 13

S S C S C S C M

9.10% 1.95% 9.63% 1.95% 9.60% 1.94% 9.16% 8.19%

1/7 1/7 1/3 1/7 1/3 1/7 1/3 1/5

5.53% 1.18% 13.65% 1.18% 13.61% 1.18% 12.98% 6.97%

6 7 8 9 10 11 12 13

S S C S C S C M

40.00€    10.00€    120.00€  10.00€    110.00€  10.00€    100.00€  60.00€    €   

6 7 8 9 10 11 12 13

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1/3 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1/7 0 0 0 0 0

0 1/7 0 0 0 0 0 0

0 0 1/3 1/3 1/3 0 0 0

0 0 0 1/7 1/7 0 0 0

0 0 1/3 0 1/3 1/3 1/3 0

0 0 0 0 0 1/7 1/7 0

0 0 0 0 1/3 0 1/3 1/3

0 0 0 0 0 0 1/5 1/5

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1/7

1/7 0 0 0 0 0 0 0

: Expected Test Execution Time (in hours) under control policy, μi=1 
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] and Limiting Transition Probability φj 

 

 

14 15 16

S S S

8.68% 1.85% 1.80%

1/7 1/7 1/7

5.27% 1.12% 1.09%

14 15 16

S S S

20.00€    10.00€    10.00€    

14 15 16

0 0 0

0 0 0

0 0 0

0 0 0

0 0 1/7

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1/3 0

1/5 0 0

1/7 0 1/7

0 1/7 0

1/7 0 1/7
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As described in section 6.5, as t → ∞ , the probability that test cases will keep failing would tend to 

0.Therefore we obtain the asymptotic transition probability matrix as shown in Table 16 and Table 17 for 

control policy 0
i

µ =  and 1
i

µ = respectively. 

Table 16: Transition Probability Matrix when t→∞ and control �i=0 

 

Table 17: Transition Probability Matrix when t→∞ and control �i=1 

 

Moreover, by equation (21), we computed the expected long run costs  [ ], ,iE c iµ µ− ∀  and the results 

are presented in Table 18.The expected long run cost for each test case is presented along the diagonal 

elements of the matrix in Table 18. The values in the columns other than the diagonal entries are the 

values obtained from the Bellman equation of (21) for 1...j N= . The cells highlighted in green are the 

maximum value of [ ]iE cµ− across the two policies (without and with investment). These results in the 

optimal policy vector shown in Table 19.Therefore we obtained an optimal policy wherein additional 

should be made in the terminal test cases 6 and 14.Thus, when additional investment doubles the cost 

function as shown in Table 15, additional investment in test cases that connect to the next execution 

branch minimizes the average expected long run costs. 

 

μ=0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 0 85.00% 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 85.00% 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 45.00% 0 15.00% 0 0 0 0 0 0 0 0 0

5 0 0 0 0 85.00% 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 85.00% 0 0 0 0 0 0 0 10.00%

7 0 0 0 95.00% 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 15.00% 45.00% 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 95.00% 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 15.00% 45.00% 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 95.00% 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 45.00% 0 15.00% 0

13 0 0 0 0 0 0 0 0 0 0 0 0 85.00% 0 0

14 85.00% 0 0 0 0 0 0 0 0 0 0 0 0 0 10.00%

15 0 0 0 0 0 0 0 0 0 0 0 95.00% 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

μ=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 0 94.00% 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 94.00% 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 65.00% 0 20.00% 0 0 0 0 0 0 0 0 0

5 0 0 0 0 94.00% 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 89.00% 0 0 0 0 0 0 0 10.00%

7 0 0 0 99.00% 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 20.00% 65.00% 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 99.00% 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 20.00% 65.00% 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 99.00% 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 65.00% 0 20.00% 0

13 0 0 0 0 0 0 0 0 0 0 0 0 94.00% 0 0

14 89.00% 0 0 0 0 0 0 0 0 0 0 0 0 0 10.00%

15 0 0 0 0 0 0 0 0 0 0 0 99.00% 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 18: Average expected long run cost when starting at test case 'i' and under control policy μ. The table shows the long 

run expected difference in costs when starting at test case ‘i’ and starting in stationarity 

 

Table 19: The Optimal Policy Vector 

 

Next, we only changed the cost function wherein additional investment increases the cost function by a 

factor of 1.5 instead of a factor of 2. The new cost function is shown in Table 20.Under the new cost 

function we obtained 
1g =46.20 euros. Again, we computed [ ], ,iE c iµ µ− ∀  using the Bellman equation 

in (21) and the results are shown in Table 21. Therefore as shown in Table 22, additional investment in 

test case 6 and test case 8 minimizes the average long run cost 

Table 20: Cost of Test Execution (per hour) under control policy, μi=1 

 

 

 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 € 5.68 € 2.96 (€ 0.24) (€ 0.01) (€ 3.74) € 6.26 (€ 9.58) € 3.31 (€ 3.12) € 9.66 € 3.56 € 10.61 € 8.76 € 16.36 € 6.28

3 € 5.85 € 3.11 (€ 0.06) € 0.28 (€ 3.39) € 6.54 (€ 9.17) € 3.96 (€ 2.44) € 10.75 € 4.71 € 12.55 € 11.05 € 18.20 € 6.28

4 € 5.01 € 2.17 (€ 0.12) € 0.19 (€ 3.50) € 6.45 (€ 9.30) € 3.76 (€ 2.65) € 10.41 € 4.35 € 11.94 € 10.33 € 17.62 € 6.28

5 € 7.04 € 4.56 € 1.65 € 0.41 (€ 3.24) € 9.28 (€ 9.00) € 4.25 (€ 2.14) € 11.23 € 5.22 € 13.41 € 12.06 € 19.02 € 6.28

6 € 8.42 € 6.18 € 3.55 € 6.37 (€ 3.07) € 12.33 (€ 8.79) € 4.58 (€ 1.79) € 11.79 € 5.81 € 14.41 € 13.23 € 19.96 € 6.28

7

8 € 5.96 € 3.29 € 0.15 € 0.64 (€ 2.97) € 6.89 (€ 9.16) € 3.99 (€ 2.41) € 10.79 € 4.76 € 12.63 € 11.14 € 18.28 € 6.28

9

10 € 5.12 € 2.31 (€ 1.01) (€ 1.32) (€ 5.27) € 5.02 (€ 11.39) € 0.41 (€ 2.62) € 10.45 € 4.40 € 12.03 € 10.43 € 17.70 € 6.28

11

12 € 4.90 € 2.04 (€ 1.32) (€ 1.85) (€ 5.90) € 4.52 (€ 12.12) (€ 0.76) (€ 7.40) € 2.79 € 4.30 € 11.86 € 10.23 € 17.55 € 6.28

13 € 5.20 € 2.40 (€ 0.90) (€ 1.13) (€ 5.05) € 5.20 (€ 11.13) € 0.83 (€ 5.74) € 5.46 (€ 0.85) € 12.08 € 10.49 € 9.28 € 6.28

14 € 5.50 € 2.75 (€ 0.49) (€ 0.44) (€ 4.24) € 5.86 (€ 10.17) € 2.37 (€ 4.11) € 8.07 € 1.89 € 7.79 € 10.75 € 13.68 € 6.28

15

16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 € 3.95 € 0.33 (€ 3.52) (€ 1.81) (€ 5.80) € 7.95 (€ 13.75) € 7.69 (€ 2.08) € 17.42 € 7.75 € 15.42 € 12.53 € 25.00 € 9.74

3 € 7.06 € 1.49 (€ 2.28) (€ 0.35) (€ 4.25) € 9.39 (€ 12.00) € 9.73 (€ 0.02) € 19.82 € 10.18 € 18.28 € 15.57 € 27.84 € 9.74

4 € 3.59 (€ 0.06) (€ 3.54) (€ 1.84) (€ 5.83) € 7.92 (€ 13.77) € 7.66 (€ 2.11) € 17.38 € 7.72 € 15.37 € 12.48 € 24.96 € 9.74

5 € 8.03 € 4.68 € 1.10 € 0.06 (€ 3.81) € 13.35 (€ 11.50) € 10.31 € 0.57 € 20.51 € 10.87 € 19.09 € 16.44 € 28.64 € 9.74

6 € 11.88 € 8.76 € 5.45 € 8.77 (€ 2.06) € 18.42 (€ 9.54) € 12.59 € 2.88 € 23.21 € 13.60 € 22.31 € 19.86 € 31.83 € 9.74

7
8 € 3.83 € 0.20 (€ 3.66) (€ 1.97) (€ 5.97) € 7.79 (€ 13.65) € 7.80 (€ 1.96) € 17.55 € 7.89 € 15.58 € 12.70 € 25.16 € 9.74

9

10 (€ 0.58) (€ 4.49) (€ 8.65) (€ 7.86) (€ 12.24) € 1.96 (€ 20.97) (€ 0.75) (€ 4.62) € 14.45 € 4.76 € 11.88 € 8.77 € 21.51 € 9.74

11

12 (€ 2.82) (€ 6.88) (€ 11.19) (€ 10.85) (€ 15.42) (€ 1.00) (€ 24.55) (€ 4.92) (€ 14.81) € 2.55 € 3.17 € 10.01 € 6.78 € 19.65 € 9.74

13 (€ 0.55) (€ 4.46) (€ 8.62) (€ 7.82) (€ 12.19) € 2.00 (€ 20.93) (€ 0.70) (€ 10.54) € 7.53 (€ 2.23) € 11.91 € 8.80 € 13.35 € 9.74

14 € 2.43 (€ 1.28) (€ 5.24) (€ 3.83) (€ 7.95) € 5.95 (€ 16.16) € 4.87 (€ 4.92) € 14.09 € 4.40 € 11.46 € 11.46 € 21.08 € 9.74

15

16

μ=0

μ=1

E[-ci]

E[-ci]

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M M C M S S C S C S C M S S S

μ 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M M C M S S C S C S C M S S S

cj € 36.00 € 36.00 € 54.00 € 36.00 € 24.00 € 6.00 € 72.00 € 6.00 € 66.00 € 6.00 € 60.00 € 36.00 € 12.00 € 6.00 € 6.00

μ=1
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Table 21: Average expected long run cost when starting at test case 'i' and under control policy μ. The table shows the long 

run expected difference in costs when starting at test case ‘i’ and starting in stationarity 

 

Table 22: Optimal Policy Vector 

 

Additionally, we also considered the case where under policy 1
i

µ = , the transition probability matrix is 

the same as the transition probability matrix under policy 0
i

µ =  i.e 
0 1

ij ijp p= .As a consequence we 

obtained the stationary distribution, unconditional execution time of a test case and the limiting 

probability as shown in Table 23. 

Table 23: Stationary Distribution П*, Unconditional Expected Test Execution Time, E[Wj] and Limiting Transition Probability φj 

under control policy, μi=1 

Furthermore, we obtained the average waiting time at a test case 
1 1

1

[ ] 14.79
N

j j

j

E W
=

∏ =∑ minutes and 

1 49.41g =  euros (the cost matrix being the same as the one given in Table20). 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 € 5.68 € 2.96 (€ 0.24) (€ 0.01) (€ 3.74) € 6.26 (€ 9.58) € 3.31 (€ 3.12) € 9.66 € 3.56 € 10.61 € 8.76 € 16.36 € 6.28

3 € 5.85 € 3.11 (€ 0.06) € 0.28 (€ 3.39) € 6.54 (€ 9.17) € 3.96 (€ 2.44) € 10.75 € 4.71 € 12.55 € 11.05 € 18.20 € 6.28

4 € 5.01 € 2.17 (€ 0.12) € 0.19 (€ 3.50) € 6.45 (€ 9.30) € 3.76 (€ 2.65) € 10.41 € 4.35 € 11.94 € 10.33 € 17.62 € 6.28

5 € 7.04 € 4.56 € 1.65 € 0.41 (€ 3.24) € 9.28 (€ 9.00) € 4.25 (€ 2.14) € 11.23 € 5.22 € 13.41 € 12.06 € 19.02 € 6.28

6 € 8.42 € 6.18 € 3.55 € 6.37 (€ 3.07) € 12.33 (€ 8.79) € 4.58 (€ 1.79) € 11.79 € 5.81 € 14.41 € 13.23 € 19.96 € 6.28

7

8 € 5.96 € 3.29 € 0.15 € 0.64 (€ 2.97) € 6.89 (€ 9.16) € 3.99 (€ 2.41) € 10.79 € 4.76 € 12.63 € 11.14 € 18.28 € 6.28

9

10 € 5.12 € 2.31 (€ 1.01) (€ 1.32) (€ 5.27) € 5.02 (€ 11.39) € 0.41 (€ 2.62) € 10.45 € 4.40 € 12.03 € 10.43 € 17.70 € 6.28

11

12 € 4.90 € 2.04 (€ 1.32) (€ 1.85) (€ 5.90) € 4.52 (€ 12.12) (€ 0.76) (€ 7.40) € 2.79 € 4.30 € 11.86 € 10.23 € 17.55 € 6.28

13 € 5.20 € 2.40 (€ 0.90) (€ 1.13) (€ 5.05) € 5.20 (€ 11.13) € 0.83 (€ 5.74) € 5.46 (€ 0.85) € 12.08 € 10.49 € 9.28 € 6.28

14 € 5.50 € 2.75 (€ 0.49) (€ 0.44) (€ 4.24) € 5.86 (€ 10.17) € 2.37 (€ 4.11) € 8.07 € 1.89 € 7.79 € 10.75 € 13.68 € 6.28

15

16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 € 2.37 € 0.20 (€ 2.11) (€ 1.09) (€ 3.48) € 4.77 (€ 8.25) € 4.61 (€ 1.25) € 10.45 € 4.65 € 9.25 € 7.52 € 15.00 € 5.85

3 € 4.24 € 0.90 (€ 1.37) (€ 0.21) (€ 2.55) € 5.64 (€ 7.20) € 5.84 (€ 0.01) € 11.89 € 6.11 € 10.97 € 9.34 € 16.70 € 5.85

4 € 2.15 (€ 0.03) (€ 2.13) (€ 1.10) (€ 3.50) € 4.75 (€ 8.26) € 4.59 (€ 1.27) € 10.43 € 4.63 € 9.22 € 7.49 € 14.98 € 5.85

5 € 4.82 € 2.81 € 0.66 € 0.04 (€ 2.28) € 8.01 (€ 6.90) € 6.18 € 0.34 € 12.30 € 6.52 € 11.46 € 9.86 € 17.19 € 5.85
6 € 7.13 € 5.26 € 3.27 € 5.26 (€ 1.24) € 11.05 (€ 5.73) € 7.56 € 1.73 € 13.92 € 8.16 € 13.39 € 11.92 € 19.10 € 5.85

7

8 € 2.30 € 0.12 (€ 2.19) (€ 1.18) (€ 3.58) € 4.67 (€ 8.19) € 4.68 (€ 1.18) € 10.53 € 4.73 € 9.35 € 7.62 € 15.10 € 5.85

9

10 (€ 0.35) (€ 2.70) (€ 5.19) (€ 4.72) (€ 7.34) € 1.18 (€ 12.58) (€ 0.45) (€ 2.77) € 8.67 € 2.86 € 7.13 € 5.26 € 12.90 € 5.85

11

12 (€ 1.69) (€ 4.13) (€ 6.71) (€ 6.51) (€ 9.25) (€ 0.60) (€ 14.73) (€ 2.95) (€ 8.89) € 1.53 € 1.90 € 6.01 € 4.07 € 11.79 € 5.85

13 (€ 0.33) (€ 2.68) (€ 5.17) (€ 4.69) (€ 7.32) € 1.20 (€ 12.56) (€ 0.42) (€ 6.33) € 4.52 (€ 1.34) € 7.14 € 5.28 € 8.01 € 5.85

14 € 1.46 (€ 0.77) (€ 3.14) (€ 2.30) (€ 4.77) € 3.57 (€ 9.70) € 2.92 (€ 2.95) € 8.46 € 2.64 € 6.87 € 6.87 € 12.65 € 5.85

15

16

μ=1
E[-ci]

μ=0
E[-ci]

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

μ 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M M C M S S C S C S C M S S S

∏* 8.29% 9.12% 11.63% 7.75% 7.71% 1.84% 11.57% 1.83% 11.38% 1.80% 10.24% 6.83% 6.87% 1.62% 1.53%

E[Wj] 1/5 1/5 1/3 1/5 1/7 1/7 1/3 1/7 1/3 1/7 1/3 1/5 1/7 1/7 1/7

φj 6.72% 7.40% 15.73% 6.29% 4.47% 1.06% 15.65% 1.06% 15.39% 1.04% 13.85% 5.54% 3.98% 0.94% 0.89%

μ=1
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Again using the Bellman equation in (21) we computed [ ], ,iE c iµ µ− ∀  as shown in Table 24. Therefore 

as shown in Table 25, additional investment in test cases 5, 6, 8 and 10 minimizes the average long run 

cost 

Table 24: Average expected long run cost when starting at test case 'i' and under control policy μ. The table shows the long 

run expected difference in costs when starting at test case ‘i’ and starting in stationarity 

 

Table 25: Optimal Policy Vector 

 

Next, we computed the optimal allocation of capital K=70 euros among the remaining test case ,starting 

from test cases 8   such that the probability of realizing   test case 14 on or before schedule is 

maximized. We considered 
ijr  as shown in Table 26. 

Table 26: Additional investment to reduce the expected time to complete execution of test case ‘i’ 

 

Moreover, we defined the marginal decrease in test execution time per unit increase in investment as 

shown in Table 27. 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 € 5.68 € 2.96 (€ 0.24) (€ 0.01) (€ 3.74) € 6.26 (€ 9.58) € 3.31 (€ 3.12) € 9.66 € 3.56 € 10.61 € 8.76 € 16.36 € 6.28

3 € 5.85 € 3.11 (€ 0.06) € 0.28 (€ 3.39) € 6.54 (€ 9.17) € 3.96 (€ 2.44) € 10.75 € 4.71 € 12.55 € 11.05 € 18.20 € 6.28

4 € 5.01 € 2.17 (€ 0.12) € 0.19 (€ 3.50) € 6.45 (€ 9.30) € 3.76 (€ 2.65) € 10.41 € 4.35 € 11.94 € 10.33 € 17.62 € 6.28

5 € 7.04 € 4.56 € 1.65 € 0.41 (€ 3.24) € 9.28 (€ 9.00) € 4.25 (€ 2.14) € 11.23 € 5.22 € 13.41 € 12.06 € 19.02 € 6.28

6 € 8.42 € 6.18 € 3.55 € 6.37 (€ 3.07) € 12.33 (€ 8.79) € 4.58 (€ 1.79) € 11.79 € 5.81 € 14.41 € 13.23 € 19.96 € 6.28

7

8 € 5.96 € 3.29 € 0.15 € 0.64 (€ 2.97) € 6.89 (€ 9.16) € 3.99 (€ 2.41) € 10.79 € 4.76 € 12.63 € 11.14 € 18.28 € 6.28

9

10 € 5.12 € 2.31 (€ 1.01) (€ 1.32) (€ 5.27) € 5.02 (€ 11.39) € 0.41 (€ 2.62) € 10.45 € 4.40 € 12.03 € 10.43 € 17.70 € 6.28

11

12 € 4.90 € 2.04 (€ 1.32) (€ 1.85) (€ 5.90) € 4.52 (€ 12.12) (€ 0.76) (€ 7.40) € 2.79 € 4.30 € 11.86 € 10.23 € 17.55 € 6.28

13 € 5.20 € 2.40 (€ 0.90) (€ 1.13) (€ 5.05) € 5.20 (€ 11.13) € 0.83 (€ 5.74) € 5.46 (€ 0.85) € 12.08 € 10.49 € 9.28 € 6.28

14 € 5.50 € 2.75 (€ 0.49) (€ 0.44) (€ 4.24) € 5.86 (€ 10.17) € 2.37 (€ 4.11) € 8.07 € 1.89 € 7.79 € 10.75 € 13.68 € 6.28

15

16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 € 4.68 € 2.36 (€ 0.39) € 0.36 (€ 2.73) € 6.54 (€ 8.22) € 3.60 (€ 2.74) € 9.19 € 3.14 € 9.69 € 8.25 € 15.41 € 6.20

3 € 4.96 € 2.48 (€ 0.24) € 0.61 (€ 2.44) € 6.78 (€ 7.88) € 4.15 (€ 2.16) € 10.12 € 4.12 € 11.34 € 10.18 € 16.97 € 6.20

4 € 3.86 € 1.38 (€ 0.31) € 0.49 (€ 2.58) € 6.66 (€ 8.04) € 3.89 (€ 2.44) € 9.67 € 3.65 € 10.54 € 9.25 € 16.22 € 6.20

5 € 5.68 € 3.53 € 0.99 € 0.68 (€ 2.35) € 8.75 (€ 7.77) € 4.33 (€ 1.97) € 10.41 € 4.43 € 11.86 € 10.79 € 17.47 € 6.20

6 € 7.00 € 5.08 € 2.82 € 5.77 (€ 2.18) € 11.68 (€ 7.57) € 4.64 (€ 1.64) € 10.95 € 4.99 € 12.81 € 11.92 € 18.37 € 6.20

7

8 € 4.90 € 2.61 (€ 0.09) € 0.86 (€ 2.15) € 7.02 (€ 7.89) € 4.14 (€ 2.17) € 10.09 € 4.09 € 11.29 € 10.13 € 16.93 € 6.20

9

10 € 4.17 € 1.75 (€ 1.09) (€ 0.84) (€ 4.14) € 5.41 (€ 9.87) € 0.95 (€ 2.36) € 9.80 € 3.78 € 10.77 € 9.51 € 16.43 € 6.20

11

12 € 3.96 € 1.50 (€ 1.39) (€ 1.33) (€ 4.73) € 4.93 (€ 10.56) (€ 0.15) (€ 6.69) € 2.85 € 3.69 € 10.61 € 9.33 € 16.29 € 6.20

13 € 4.23 € 1.82 (€ 1.01) (€ 0.70) (€ 3.97) € 5.54 (€ 9.68) € 1.27 (€ 5.20) € 5.24 (€ 1.01) € 10.81 € 9.56 € 8.75 € 6.20

14 € 4.53 € 2.17 (€ 0.61) (€ 0.01) (€ 3.17) € 6.19 (€ 8.73) € 2.78 (€ 3.60) € 7.80 € 1.68 € 7.23 € 9.81 € 13.07 € 6.20

15

16

E[-ci]
μ=1

μ=0
E[-ci]

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

μ 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M M C M S S C S C S C M S S S

ri € 6.00 € 6.00 € 9.00 € 6.00 € 4.00 € 1.00 € 12.00 € 1.00 € 11.00 € 1.00 € 10.00 € 6.00 € 1.00 € 1.00 € 1.00
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Table 27: Marginal decrease in test execution time per unit increase in investment 

 

We assumed the billing rate per hour, 40m =  euros. The different execution paths from test case 8 to 

test case 14 are shown in Table 28.We computed the probability of reaching test case 14 along the 

different execution as shown is Table 29. As expected the probability of execution path 
4

14π  is the 

highest. Finally, we solved the LP problem in (28) obtain the optimal additional investment along the 

execution paths from test case 8 to test case 14.As can be seen in Table 30, test case 10 requires the 

highest investment of 10 euros as its is a complex test case with many branches, followed by test case 

12 and 13. In contrast to the additional investment assumed in table 26, the optimal solution does not 

require any additional investment in test cases 8,9,11 and 14. 

Table 28: The possible execution paths from test case 8 to test case 14 

1

14π  8 9 10 11 12 13 14 
 

2

14π  8 10 11 12 13 14 
  

3

14π  8 9 10 12 13 14 
  

4

14π  8 10 12 13 14 
   

5

14π  8 9 10 11 12 15 13 14 

6

14π  8 10 11 12 15 13 14 
 

7

14π  8 9 10 12 15 13 14 
 

8

14π  8 10 12 15 13 14 
  

 

Table 29: Probability of reaching test case 14 along different paths 

1

14P  
2

14P  
3

14P  
4

14P  
5

14P  
6

14P  
7

14P  
8

14P  

0.77% 2.45% 2.45% 7.35% 0.24% 0.77% 0.77% 2.33% 

 

Table 30: The optimal additional investment  

 

qij 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 0 0.015 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0.015 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0.01 0 0.01 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0.015 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0.02 0 0 0 0 0 0 0 0.02

7 0 0 0 0.02 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0.01 0.01 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0.02 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0.01 0.01 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0.02 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0.01 0 0.01 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0 0

14 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02

15 0 0 0 0 0 0 0 0 0 0 0 0.02 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 9 10 11 12 13 14

C S C S C M S

ri € 0.00 € 0.00 € 10.00 € 0.00 € 3.41 € 2.00 € 0.00
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9. Conclusion and Future Work  
In this research paper we have formulated a stochastic model for system testing and test management 

which can be used by a test manager to optimize the tradeoff between test execution time and test 

execution cost. We have shown that test execution can be modeled as a counting process with test 

execution time being exponentially distributed. Moreover, we have extended the test execution model to a 

semi-Markov process where test execution time can have a general distribution. Using this model we have 

computed the expected time required for executing a test case and hence the execution time of all test 

cases in the test suite. The model also takes into account the complexity of each test case in order to 

compute the expected execution time. The results obtained provide a good estimation of the expected time 

to perform system testing and is more accurate than the results obtained from the SMC model. 

We have further developed the semi-Markov process model of system testing to incorporate decisions 

wherein a test manager, based on the history of the system testing process, can decide whether an 

additional investment should or should not be made in a test case in order to ensure that the schedule 

constraints are satisfied. The results obtained in this paper contradict the usual assumption that additional 

investment in defect prevention activities is always optimal. In contrast, out results show that investment 

in developing the skill sets of the testers, such that their average test execution rate increases can be an 

optimal decision in some situations. Finally, our model allows the test manager to compute the minimum 

additional investment that is required in a chain of test cases such that the probability of completing test 

execution within as specified time is maximized. Our results show that the highest investment should be 

made in test cases which belong to the complexity class ‘C’ and in turn are parent to other complex test 

cases. 

This paper assumes that test cases are being executed by only one tester. We intend to extend the model to 

multiple testers and therefore compute the execution time and the minimum cost of test execution. It will 

also be interesting to investigate into skill based assignment of test cases to testers and analyze the impact 

on time and costs. The model can also be extended to include a stochastic knapsack which can be used to 

model a defect tracking system used by testing teams wherein defects are logged as and when they occur 

and are picked up by developers to be fixed. This will help a test manager estimate the number of 

developers that should be allocated to fix defects detected by the testing team. Our model of system 

testing as a random walk on a finite graph also opens up the possibility of research in the area of mixing 

time, martingale property and optimal stopping of the system testing process. 
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Appendix 

Monotone Convergence Theorem 

Let { }( )nf x be a sequence of functions in 
+∑ (the class of non negative simple functions) increasing to 

( )f x   i.e limsup ( ) ( ),
n

f x f x x X= ∀ ∈  and 1( ) ( )
n n

f x f x+ ≥  a.e. 

Then f +∈∑  and ( ( )) ( )nf x fµ µ↑ ≤ ∞  . This means lim lim
n n n n

f d f d fdµ µ µ→∞ →∞= =∫ ∫ ∫  

Jensen’s Inequality 

Let ( , , )F PΩ  be a probability space, X an integrable real valued random variable and ϕ  a convex 

function. Then ( [ ]) E( (X)]E Xϕ ϕ≤  

Linearity Property of Expectation 

Let 1 2, ....,
n

X X X  be random variables, then [ ]
i i

E X E X  = ∑ ∑  

Tonelli’s Theorem 

Let ( , , )X A µ  and (Y,B, v)  be σ − finite measure spaces and : [0, )f X Y× → ∞ . Then 

| ( , ) | ( , )
A B

f x y d x y
×

< ∞∫  and ( , ) ( , ) | ( , ) | ( , )
A B B A A B

f x y dy dx f x y dx dy f x y d x y
×

   
= =   

   
∫ ∫ ∫ ∫ ∫  

Law of the unconscious statistician 

Let F be the cumulative distribution function of X , then the expected valued of ( )g X  is given by 

[ ( )] ( ) ( ) E g X g x dF x x

∞

−∞

= ∀ ∈∫ �  
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