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Preface 
This research paper is a mandatory part of the master program Business Analytics at the VU 

University Amsterdam. The goal of this research paper is to examine the influence of erratic 

behaviour and wrong path choice of vehicles at an intersection during roadwork, and the effect this 

behaviour has on the delay experienced. 

I would like to thank my supervisor René Bekker for his help during the writing of this research paper. 

Roan Meulblok, Amsterdam  
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Abstract  
When a road at an intersection is closed, some drivers are unsure of what direction to go. They might 

switch lanes in front of the traffic light, causing delay. Or they might change their mind after they 

have chosen a direction and turn around to return to the intersection. In this paper we examine the 

effect of this uncertainty on the average delay incurred at an intersection, as well as the effect of the 

closed lane on the remaining open lanes. 

This paper first discusses various models to estimate the delay incurred at an intersection under 

normal conditions. However, if more vehicles arrive over time than the intersection can handle, the 

intersection is oversaturated. Most models do not allow periods of oversaturation. To estimate a 

delay for periods of oversaturation, we look at a time-dependent model.  

We add erratic behaviour and wrong path choice to the time-dependent delay model, with the 

assumption that the returning vehicles arrive according to a Poisson process. We also create a 

simulation to compare with the time-dependent model. 

We find that by far the biggest contributor to increased delay at an intersection is the increased 

arrival rate at the other traffic lanes due to the road closure. However, because the intersection is 

continuously under high load, a small increase in load caused by erratic behaviour of a driver will 

have its effect multiplied on the average delay incurred at an intersection.   
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1 Introduction 
When driving home from Hoofddorp I was suddenly standing in a traffic jam before the highway. I 

wondered why this traffic jam occurred at 11 pm, a time far outside rush hour. As it turned out, the 

entry to the highway was blocked because of roadwork. Since there was no notification or directions 

given to drivers, a lot of them were confused. Cars were switching lanes multiple times in front of the 

traffic light; some cars turned around after choosing an, apparently wrong, direction. This made me 

think: how big is the effect of this uncertainty of the drivers, and did it cause a traffic jam at a quiet 

hour? 

Lots of roadwork is done every year, some causing big traffic jams and others hardly affecting the 

flow of traffic. To minimize the delay that vehicles incur at this roadwork, and to appropriately time 

it, understanding the behaviour of vehicles is important. This led me to the following research goal: 

How does erratic behaviour and wrong path choice affect delays at an intersection? 

For this research there are 2 sub-questions to be answered: 

 - How can delay at an intersection be quantified? 

  - How can erratic behaviour and wrong path choice be quantified, and what is the effect on 

delays/traffic jams? 

In Chapter 2 we explain some general information regarding delay models at an intersection. Chapter 

3 describes some existing theoretical models that estimate the delay at an intersection, including 

time-dependent models that are able to estimate delay when the demand is larger than the capacity 

of an intersection. In Chapter 4 we describe additions to the model to account for erratic behaviour 

and wrong path choice. Also a description is given of a simulation of an intersection. In Chapter 5 a 

case study is done to examine the effects of various parameters, including erratic behaviour and 

wrong path choice. Conclusions are presented in Chapter 6. 

   



6 
 

2 Delay models for intersections 
Intersections come in different varieties, those with traffic lights, and those without. Non-signalised 

intersections are difficult to model, because of the high dependency on human behaviour. Therefore 

the focus of this paper is on an isolated, signalised intersection as shown in Figure 1. 

 

Figure 1 A 4-way intersection with 1 lane for every direction 

Signalised means there are traffic lights on the intersection. The traffic lights turn green according to 

a schedule where non-conflicting lanes have a green light at the same time. There are 2 methods to 

control the traffic light schedule: a fixed-time signal scheme, and fully actuated control. These 

methods are further explained in Paragraph 2.1 and 2.2. 

Isolated means the arrivals at this intersection are not influenced by other intersections: often 

vehicles arrive in platoons at a traffic light because the traffic light at the intersection before it turned 

green. Sometimes intersections are synchronised or communicate, allowing the time a traffic light 

turns green to depend on the intersection before it.  

For simplicity we use a 12-lane symmetrical intersection as displayed in Figure 1. This differs from the 

intersection in Hoofddorp, which has 3 lanes instead of a single lane going towards the northern 

direction. Symmetrical means all lanes are identical: they have an equal vehicle arrival rate, an equal 

vehicle departure rate and equal effective green times. Because of this symmetry we can study the 

effects of changes on a single lane instead of all lanes, which decreases the number of parameters to 

study and allows us to focus more on the effects. Because conflicting lanes cannot have a green light 

at the same time, we need a cycle with at least 4 different periods. For example in period 1 all 

southern lanes (1, 2, and 3) have a green light, in period 2 all eastern lanes have a green light, etc.  
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2.1 Fixed-time signal scheme 
With a fixed-time signal scheme the time each light stays green is fixed; it does not change 

depending on traffic. The delay of vehicles crossing the intersection is related to the time each light 

at the intersection stays green.  The delays of the individual vehicles are estimated and an average 

delay per vehicle is calculated. Then it is estimated which green times have the shortest average 

expected delay at the intersection, often by using empirical data and an optimization model. 

Webster [1] was in 1958 one of the first to create an optimization model based on his own delay 

estimation. This estimation is explained in Chapter 3. 

A variant of the fixed time schedule is pre-time control: changing the green times at the intersection 

based on the time of the day (e.g. longer green times during rush hour).  

2.2 Fully actuated control 
Fully actuated control is a system that is used most nowadays: there are loops in the road which 

measure arriving vehicles and the number of vehicles in queue. A traffic light will stay green until all 

vehicles have departed. This is called an exhaustive service: to serve all vehicles in a queue until the 

queue is empty. Fully actuated traffic lights also have a maximum green time, to ensure the system 

does not get stuck on a single light on moments of heavy traffic or sensor malfunction. 

Studies on signalised intersections [2] have shown that intersections with light traffic and short 

queues benefit most from having fully actuated control, since it decreases the chance of a vehicle 

arriving just as the light turned red. The heavier the traffic is and the longer the queue is, the more a 

fixed-time schedule is preferable. When there is very heavy traffic on an intersection, the traffic 

lights often hit the maximum green time set, and will behave like a fixed-time schedule. 

In this paper we are interested in heavy traffic: by closing down a lane we are increasing the load on 

the intersection. We assume fixed-time control, because it is easier to model and the preferable 

control in heavy traffic situations. 
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3 Calculating delay at an intersection 
Over the years multiple models have been created to predict the average delay at an intersection; we 

discuss a few of the most common ones. But first we introduce some terminology. 

g effective green time (seconds) – As shown in Figure 2 vehicles need some time to accelerate when 

the light turns green, and some time to stop when the light turns yellow. Therefore most calculations 

are done using the effective green time. This is the real green + yellow time of a traffic light in 

seconds with some time deducted from the start and end to account for the starting and stopping of 

vehicles. 

 

 

Figure 2 Effective green time [3] 

Clearing time – the time between a light turning red and the next light turning green. This allows the 

last vehicles to safely depart. 

C traffic signal cycle length (seconds) – the time in seconds it takes to complete a full cycle of all 

traffic lights. This consists of the sum of all disjoint effective green times and clearing times. 

s saturation flow rate (veh/h) – the maximum speed at which vehicles can cross the traffic light, in 

other words the service rate in vehicles per hour. 

v vehicle arrival flow rate (veh/h) – the rate at which vehicles arrive at the traffic light. 

c s · g / C capacity of a traffic lane (veh/h) – the service rate weighted by the ratio green time-cycle 

time. 

X v/c  volume-to-capacity ratio or saturation – in other words the load weighted by the ratio green 

time- cycle time. If the saturation is below 1 the system is under-saturated: in the long run the 

system can handle all the vehicles that arrive. If the saturation is above 1 the system is 
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oversaturated: more vehicles are arriving than the system can handle, and over time the queues will 

grow. 

d average delay per vehicle in seconds. 

3.1 Deterministic queueing model 
In the deterministic queueing model the arrivals at the intersection are assumed to be of a 

deterministic nature. The model predicts the average delay when the saturation is less than 1: more 

vehicles are able to depart than there are arriving. Furthermore a couple of assumptions are made 

with this model:  

1. The vehicles arrive at a uniform and constant rate. 

2. The vehicles decelerate and accelerate instantaneously. 

3. Vehicles queue vertically at the stop line – the distance between the vehicle and the traffic 

light is ignored in the delay calculation. 

The average delay can then be derived from the following formula: 
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The derivation of this formula is explained in Appendix A. 

3.2 Steady-state stochastic delay models 
Webster [1] was in 1958 the first to create a model that no longer assumes the arrivals to be 

deterministic. In his paper he proposed a formula that estimates delay in case of Poisson arrivals:  
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This formula consists of 3 parts. The first term is equal to the right-hand side of Equation ( 1 ) and 

gives an estimation of the average delay assuming uniform deterministic arrivals. The second term 

adds delay attributed to randomness of arrivals. And the third term is an empirical correction to let 

the delay be more consistent with simulation results. Over the following years other researchers 

have created variations of Webster’s stochastic model, for example Miller (1963) [4], Newell (1950) 

[5], McNeil (1968) [6] and Heidemann (1994) [7]. These models all make the following assumptions: 

1. The number of arrivals follows a known distribution, usually Poisson, and this distribution 

does not change over time. 

2. The headways between departures are identical or follow a known distribution with a 

constant mean. 

3. The system is under-saturated. 

4. The system has been running long enough to settle into a steady state. 
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5. The vehicles decelerate and accelerate instantaneously. 

3.3 Oversaturation 
All of these models have the assumption that the saturation is below 1. If the capacity of the traffic 

light is below the vehicle arrival rate, the queue will grow and the delay eventually goes to infinity. 

We are able to determine the length of this queue for the deterministic queueing model: every cycle 

a number of vehicles remain in queue, equal to the difference between the arrival and departure 

rate. If the time is known, the length of the queue can be estimated because we know the amount of 

cycles that have passed. Based on that length we can create an estimation for the delay during 

oversaturation in seconds: 

 

 
      ((   )  √(   ) )   ( 3 ) 

 

where T is the duration of the analysis period in hours and X is the volume-to-capacity ratio. The 

derivation of this formula is further explained in Appendix B. 

3.4 Time-dependent stochastic delay model 
In Webster’s model, the delay approaches infinity as the saturation approaches 1. This makes its use 

when the saturation is close to 1 unrealistic, and impossible for oversaturation. Unfortunately in 

practice oversaturation can occur during some periods of time, for example when it is rush hour. 

Therefore Robertson [8] conceived the idea to implement time-based delay in the stochastic delay 

model. In this model the delay should become tangent to the deterministic model once the 

saturation approaches and even surpasses 1, as shown in Figure 3 below. 

 

Figure 3 Estimated delay comparison [3] 
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In Figure 3 the delay is shown over a fixed time T, with no initial queue. We see that for saturations 

below 0.8 the model follows the same estimation as the steady-state stochastic model, for 

saturations above 1.2 it follows the deterministic oversaturation estimation, and between 0.8 and 

1.2 the estimation is an interpolation between these two. 

The theoretical basis for this approach is lacking (Hurdle, 1984) [9], however empirical evidence 

shows these models yield reasonable results. Over the years multiple formulas have been proposed, 

and some have been incorporated in capacity guides from countries such as the United States, 

Australia and Canada (Dion, et al. [3]). 

The average delay over a fixed time T can be derived using the following formula: 
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where 

    delay based on a deterministic under-saturated queueing model, see Equation ( 2 ) 
    progression factor, consisting off: 
P  proportion of vehicles arriving during the effective green interval 
    adjustment factor for batch arrivals 

By adjusting these parameters the system can be set up to account for platoon arrivals. If a 
bigger proportion of vehicles arrive during the green light interval (P > g/C), the average delay 
will be shorter since vehicles do not have to wait as long during a red light, and the progression 
factor will be < 1. Lowering the progression factor means the estimated delay decreases. 

   delay based on a deterministic oversaturated queueing model of Equation ( 3 ), with an added 
component to match the model to empirical data 

m, n model parameter used to match the model to empirical data 
k, I adjustment factors for the effects of signal controller types and arrival patterns affected by 

upstream signalized intersections. For more information on these parameters see Paragraph 
5.1. 

X0  volume-to-capacity ratio below which the overflow delay is negligible in capacity guide models 
d3  residual delay for oversaturation queues that may have existed before the analysis period  
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    adjustment factor for residual delay 
 
This model makes the following assumptions: 

1. Arrivals follow a Poisson distribution that remains constant over time 

2. The headway between departures has a known distribution with a constant mean 

3. The arrival and departure flow rates have been stationary for an indefinite period of time 

The capacity guide models from various countries use different values for the parameters. For 

example, only the US model takes residual delay, the delay that might have occurred before the start 

of the model, into account. The Australian model handles batch arrivals by adjusting the parameter 

m, whereas the US model adjusts progression factor. For the case study we use the parameters as 

described in the Highway Capacity Model [10] of the US. 

The US model allows multiple time-periods in the time-dependent model using the following 

equations: 
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where 

    initial queue at the start of period T 
u  delay parameter 
t  the duration of the unmet demand in T (hours) 
The duration of the unmet demand t is the time during the analysis period where the initial queue is 

being handled, and is calculated using Equation ( 9 ). 
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If t equals T, the delay parameter u can be calculated using Equation ( 10 ). 
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The initial queue in time period i can be calculated as shown in Equation ( 11 ). 

           (           (    ))               ( 11 ) 

Finally, if there is an initial queue Equation ( 5 ) needs to be time-weighted as shown in Equation ( 12 

). 
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where ds is the delay during which an oversaturation queue exists and has to be calculated using a 

value of X = 1, and du is the time during which no oversaturation queue exists and has to be 

calculated using the actual value of X.  

3.5 Shock wave delay model 
A different approach is to model the traffic flow through an analogy with fluid dynamics. First 

developed by Lighthill and Whitham (1955) [11], as well as Richards (1956) [12], the model describes 
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the speed at which changes in traffic characteristics propagate along a roadway. It does this by 

dividing the road into zones, and then calculating the behaviour of traffic in that zone. In each zone 

the traffic flow rate is a product of the traffic density and the traffic flow rate. This can then be used 

to estimate delay. This estimation is complex and will not be used in this paper. 

3.6 Microscopic simulation delay model 
Another way to estimate the delay at an intersection is to create a microscopic simulation. This 

simulation will simulate the arrivals of each independent vehicle arriving at the intersection. One 

example of a simulation model is the cellular automaton model [13]: this model separates the road 

into small blocks. There can only be 1 vehicle in each block, and the behaviour of each vehicle is 

determined by its current speed and the presence of a vehicle in the block in front of it. 
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4 Adjustments to the model to account for roadwork 
When doing a simulation, it is fairly straightforward to add wrong decisions or erratic behaviour to a 

model. However the literature on theoretical models seems to be lacking. We adjust the time-

dependent stochastic delay model by using some assumptions.  

4.1 Introducing wrong decisions to a model 
When a driver makes a wrong decision it means he took a wrong turn and has to return to the 

intersection and choose a different direction. We assume that a vehicle will not return to the 

direction it originally came from.  

The vehicles in the model are departing following a deterministic pattern, and there would be a 

correlation between the green time of a traffic light and the re-entry of vehicles into another lane. 

However the moment when a driver decides he has to turn around is most likely random. This 

randomness allows us to model the re-entry rate as a Poisson process. Because both re-entry arrivals 

and normal arrivals at a lane are Poisson they can be combined. This combination also constitutes a 

Poisson process with a new arrival rate: 

 New arrival rate = normal arrival rate + arrival rate wrong decision lanes * chance of wrong 

decisions, 

where wrong decision lanes are the lanes with vehicles that, if they decide to return to the 

intersection, will return to the lane we are calculating the arrival rate for. 

This modification does not work if the system is oversaturated – it would add re-entries to the lane 

that might not have been served during the period under consideration due to oversaturation. 

Therefore the model has to be adjusted to account for oversaturation. 

 New arrival rate = normal arrival rate + min( arrival rate wrong decision lane, capacity wrong 

decision lane) * percentage of wrong decisions. 

To the best of our knowledge, no quantitative studies have appeared in the literature regarding the 

chance a driver makes a wrong decision. Furthermore, this chance is influenced by many factors, 

such as the layout and location of the intersection, if drivers are familiar in the area, etc. We 

investigate the behaviour of the model using multiple re-entry percentages. 

4.2 Driver’s erratic behaviour 
If a driver is unsure about which way to go because of the road closure, he might switch lanes 

multiple times before actually departing. This assumption could be added to the model by adding 

randomness in the departure. Most traditional models assume arrivals are deterministic, except for 

the time-dependent stochastic delay model: this model only assumes that the headway between 

departures is of a distribution with a known mean. This allows us to add a random factor with a 

known mean to the departure:  

New departure rate = departure rate + erratic behaviour factor. 

4.3 Simulation 
We choose, in addition to the time-dependent stochastic delay model, to run a simulation to 

determine the average expected delay. We create a discrete-time event simulation [14]. A discrete-
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time event simulation determines the time each event takes place and disregards the time in 

between because nothing changes. 

We start off with a standard 4-way intersection – each side has 3 lanes, one for every direction, as 

shown in Figure 1. Each lane is simulated separately. To simulate the intersection we need 4 events: 

1. The start of the green time – when the light turns green the first vehicle starts its departure. 
Also a time when the light will turn red again is scheduled, equal to the current time + the 
green time of this traffic light. 

2. The end of the green time – no more vehicles can depart. The next time the light will turn 
green is scheduled, which is the current time + the time of a full cycle - the green time of the 
traffic light. 

3. The arrival of a vehicle – Once a vehicle arrives a new arrival with rate λ can be scheduled. If 
there are no vehicles in queue and the light is green, the vehicle can immediately depart and 
thus a departure is scheduled at the current time. 

4. The departure of a vehicle – If the light is green, the vehicle can depart with a service time of 
1/s.  

 
This leads to the following basic algorithm: 

While time < maximum run time { 

 Handle event { 

 case: green light  {  

if (vehicle in queue) { schedule departure } 

          schedule turn light red  

} 

 case: red light   {  

schedule turn light green  

} 

 case: arrival    {  

add vehicle to queue 

          schedule next arrival with rate λ 

          if ( queue is empty & light is green ) { 

            schedule departure  

} 

         } 

 case: departure   {  

if ( light is green ) { 

           lower the queue 

           schedule new departure at (time + 1/s)  

} } 

} } 

To simulate closing a lane there are 3 changes we make to the current system: 

1. Since an outgoing traffic lane is closed the lanes that are driving in that direction have their 

traffic distributed evenly over the other 2 lanes. For Figure 1 we consider the scenario in 

which we close off the northern lane. This means that the incoming traffic of lane 6 has to be 

divided over lanes 4 and 5, the traffic of lane 2 has to be divided over lanes 1 and 3 and the 

traffic of lane 10 has to be divided over lanes 11 and 12. As described in Chapter 4.1 we are 

able to combine two Poisson arrivals rates into a single arrival rate. An example using lane 4 

when the northern outgoing lane is closed: the new arrival rate λ4 = arrival rate λ4 + 50% * 

arrival rate λ6. 

2. To account for erratic behaviour, we add a random component to the departure time. 
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3. To account for a wrong choice, we have to add an arrival event to the lane where the car will 

return. For example, if a driver wrongly chooses lane 5, he will return to lane 12 to drive in 

the correct direction. As described Chapter 4.1, we add the arrival in case of under-

saturation, and the capacity in case of oversaturation. Because both arrivals follow a Poisson 

process, we can add the two arrival processes together: new arrival rate λ12 = arrival rate λ12 

+ (chance vehicle returns to the intersection) * min(arrival rate λ5,capacity s5). 

Our new algorithm looks as follows: 

While time < maximum run time { 

 Handle event { 

 case: green light  {  

if (vehicle in queue) { schedule departure } 

          schedule turn light red  

} 

 case: red light  {  

schedule turn light green  

} 

 case: arrival   {  

add vehicle to queue 

 

schedule next arrival with rate (λi + 50% * λj + 

∑(return chancek * min(λk, sk))   

// λi is the original arrival rate 

// λj is the arrival rate of the lane that will 

no longer depart because of the closure 

// λk, sk are the arrival rate and capacity of all 

the lanes where the vehicles came from 

 

if ( queue is empty & light is green ) { 

            schedule departure  

} 

}  

 case: departure  {  

if ( light is green ) { 

            lower the queue 

schedule new departure at (time + μ + random 

component) 

          }  

} 

} } 

We will now use this simulation in a case study to compare with the time-dependent stochastic delay 

model.   
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5 Case study 
In this case study the behaviour of the time-dependent stochastic delay model is studied and 

compared to simulation. For this we analyse a symmetrical intersection where all arrival and 

departure rates and effective green times are equal. Because of this symmetry, we only have to 

examine the results for a single lane. We start off by examining the behaviour of the model under 

normal conditions. We then close off the lane, after which we will add re-entries and erratic 

behaviour to the model. After that we examine the effect of the timing of roadwork, after which we 

will answer the research question. 

5.1 Normal Conditions 
To get an idea of the behaviour of the model, we first examine what happens without re-entry and 

erratic behaviour. There are several variables which can be examined, the most interesting being: 

C the cycle time 

g/C the effective green time / cycle time ratio 

v the vehicle arrival flow rate 

s the saturation flow rate 

First, the influence of different cycle times is examined, while keeping the effective green time-cycle 

time ratio equal. Because the intersection is symmetric, the green time ratio is set at ¼. We assume 

this is an isolated intersection, and can therefore set     to 1. We measure the delay for a timeframe 

of T = 15 minutes = 0.25 hour. For the parameters m, k, I, and X0 we use the values as used in HCM 

2000 [10]. This model, which has been in use for at least 16 years in the United States, specifies the 

values at respectively 8, 0.5, 1, and 0.  

In Figure 4 the volume-to-capacity ratio is used on the horizontal axis. This ratio is set by changing 

the arrival rate, from 0.02 * 450 = 9 to 1.5 * 450 = 675 vehicles per hour. The only part of the model 

that changes with a different cycle time and an equal g/C-ratio is Equation ( 5 ), the estimation for 

the deterministic uniform delay. We can confirm this by drawing the delay for 3 different cycle times: 

60, 120, and 180 seconds. 
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Figure 4 Estimated delay over 15 minutes using time-dependent stochastic delay model 

In Figure 4 we confirm that the delays for the different cycle times are parallel. We run the 

simulation to compare with the model displayed in Figure 4: 

 

Figure 5 Estimated delay over 15 minutes, model (dotted lines) and simulation (solid lines) 

As we can see, the shape of the diagram is fairly similar. However, when the volume-to-capacity ratio 

rises above 1, the model tends to overestimate the delay. Also the delay at C = 120 seconds increases 

faster than for the other 2 values. This is because of the discrete, deterministic  departures in the 

simulation: at C = 120 the last vehicle departs 28 seconds after the light turned green, yielding a total 

of 15 departures or 7.5 departures per minute. However at C = 60 the last vehicle departs at 14 

seconds after the light turned green, for a total of 8 departures per minute. For C = 180 this total is 

23/3 = 7⅔ departures per minute. The theoretical models do not have this problem, because they 

use continuous values to determine the average delay. 

For these graphs we kept an effective green time to cycle time ratio of 0.25. But in practice, due to 

the start and stop time of vehicles, as shown in Figure 2, this ratio should be lower. To account for 

this effect, we estimate the combined start and stop time at 4 seconds. We create a new plot, where 
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the effective green time is reduced by 4 seconds. We expect that the delay values will cross each 

other: on a cycle time of 60 seconds, cutting 4 seconds of the green time of 15 seconds will have 

more effect than reducing the green time of 45 seconds to 41 seconds at a cycle time of 180. We 

expect that for longer timeframes the short cycle time will surpass the higher cycle time in estimated 

delay. Because adding the clearing time to the model changes the actual volume-to-capacity ratios 

between the models, we cannot compare equal volume-to-capacity ratios. Therefore, we plot against 

the arrival rates that were used to create the original volume-to-capacity ratio of 0.02 to 1.5 of Figure 

4 and Figure 5. 

 

 

Figure 6 Estimated delay over 15 minutes with 4 second clearing times, model only 

 

Figure 7 Estimated delay over 15 minutes with 4 second clearing times, model (dotted lines) and simulation (solid lines) 

In this model we can see that higher cycle times indeed result in lower delays when the volume-to-

capacity ratio is sufficiently large. In Figure 6 the delay of the lower cycle time intersects the higher 

cycle time between 0.7 and 0.8, whereas in the simulation of Figure 7 the delay intersect between 

0.85 and 0.95. In general the simulation tends to have lower delay than the model, with the biggest 

difference being at a cycle time of 60 seconds. This difference is caused by the discrete values of the 

simulation: at a cycle time of 60 seconds, the model assumes an average of 11/2 = 5.5 departures, 
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but in the discrete simulation 6 vehicles are able to depart, a difference of 9.1%. At the cycle times of 

120 and 180 this difference is resp. 0% and 2.4%. 

Since the delay is estimated over a fixed timeframe we run the model with the same parameters 

using T = 1 hour. We expect that the overall shape of the graph does not change, but the delay at 

saturations near and above 1 will increase because the queues increase over time when the system is 

oversaturated. 

 

Figure 8 Estimated delay over 1 hour, model (dashed lines) and simulation (solid lines) 

As we can see in Figure 8 our expectations are correct: the overall shape of the graph is the same, 

but the delay increases much faster at v/c ratios above 0.8 due to the increased time. Note that for 

better readability we have adjusted the ratio to go from 0.4 to 1.  

5.2 Closing a lane, adding wrong path choice and erratic behaviour 
We continue our research using only one cycle time: 120 seconds. At this cycle time the simulation 

closely matches the model, there is less problems with discrete values, and it is the cycle time in use 

at the intersection in Hoofddorp as described in the introduction. Using a single cycle time means we 

are no longer comparing different cycle time/green times which change the v/c ratio, which allows us 

to plot using the volume-to-capacity ratio again. Because estimating the delay over a longer period of 

time does not seem to affect the overall shape of the figure, the time period is set at T = 0.25 = 15 

minutes to have more detail in the graph. 

First, we investigate the effect of closing a lane. Closing a lane implies that traffic is diverted to the 

remaining open lanes, directly increasing the arrival rate by 50%. Therefore, we expect each delay of 

Figure 7 to be reached at approximately 1/1.5 of the v/c ratio.  
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Figure 9 Estimated delay over 15 minutes after lane-closure, cycle time 120 seconds 

As we can see in Figure 9 both the simulation and the model reach the delay of resp. 262 and 283 at 

a v/c ratio of 1 instead of 1.5. Note that this plot and all subsequent plots draw the new delay against 

the v/c ratio of the original arrival and departure rates. 

After we close down the lane we can check the effects of wrong decisions and erratic behaviour. To 

study a wrong decision we look at two re-entry rates: 5% and 10%. We expect only the redirected 

traffic to make a possible wrong choice, thereby having a third of the arrivals affected by a possible 

wrong decision. Because a re-entry influences the arrivals at a lane, the v/c ratio is directly 

influenced, which we expect to shift the graph by another 5% * ⅓ = 1.67% and 10% * ⅓ = 3.33%.  

 

Figure 10 Estimated delay over 15 minutes with a vehicle re-entry rate of 5% 
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Figure 11 Estimated delay over 15 minutes with a vehicle re-entry rate of 10% 

In Figure 10 and Figure 11 we see that the re-entry rate has a small but noticeable effect on the delay 

of vehicles. We graph the difference between the new and original model to further examine this 

effect. 

 

Figure 12 Difference estimated delay over 15 minutes with a vehicle re-entry rate of 5% and 10% (dotted line = v/c ratio 
increase) 

The dotted lines in Figure 12 indicate the increase in v/c ratio. We can see that for both the 5% and 

10% re-entry rate the delay increase intersects with the v/c ratio increase at roughly 0.56, and 

reaches the highest value around 0.7. This means that if an intersection has a v/c ratio of 0.56 or 

higher, the actual delay incurred by the vehicles at the intersection will be higher than the increase in 

v/c ratio. If the v/c ratio of an intersection is low, a large percentage of vehicles arrive as the first in 

line, causing the average delay to mainly depend on the arrival time. Therefore the increase in arrival 

rate due to re-entry has a much smaller effect on the increase in average delay. 

Next we switch to adding randomness in departures to the model. We consider two scenarios for the 

additional departure delay: a 5% chance to have an extra delay of 2 seconds (an increase of 100% of 

the original delay), and a 10% chance to have an extra delay of 2 seconds at a departure. Since the 

change in v/c ratio is again 5% * ⅓  = 1.67% and 10% * ⅓ = 3.33%, we expect this change to have a 

similar effect on the delay. 
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Figure 13 Estimated delay over 15 minutes with 5% chance of an extra 2 second delay

 

Figure 14 Estimated delay over 15 minutes with 10% chance of an extra 2 second delay 

As expected the results in Figure 13 and Figure 14 are very similar to those in Figure 10 and Figure 11, 

respectively. To further confirm the similarity we examine the difference between the original delay 

and our new delay in Figure 15.

 

Figure 15 Difference estimated delay over 15 minutes with chance of increased delay of 5% and 10% (dotted line = v/c 
ratio increase) 
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Figure 15 is very similar to Figure 12, with the delay intersecting the v/c-ratio around 0.53 in this 

case. Also above a volume-to-capacity ratio of approximately 0.55 the increase in delay exceeds the 

increase in volume-to-capacity ratio. To see if this point of intersection changes with model duration 

we examine several different values for this duration T. We expect that the higher the duration of the 

model, the lower the v/c ratio of the intersection point will be.

 

Figure 16 Difference estimated delay over multiple times T with an increase in arrivals of 10% * 1/3 = 3.33% 

In Figure 16 we increased the arrivals by 10% * ⅓ = 3.33% and check its effect with duration T = 0.5, 

1.0, 1.5 and 2.0 using the model. As we can see in Figure 16, the point of intersection seems to 

converge to a v/c ratio of approximately 0.52. Also, an increase in time T causes a direct increase in 

the expected delay, with for all values a peak around 0.7. 

5.3 The effect over a full day 
The previous simulations only ran for a single, relatively short time period. But for those in charge of 

planning road closures, it would be interesting to see what would happen during a full day in the 

event of a road-closure. This will help them decide if it is viable to plan a road closure during the 

week and if traffic needs to be redirected to other roads.  

The arrival rate at an intersection varies during a day. To have an idea of the average arrival rates we 

examined some empirical data. We look at the data from a traffic analysis in Westzaan-Nauerna [15]. 

This analysis has empirical data on several roads. In Figure Figure 17 we chose a road that shows the 

difference between rush hour and normal traffic very well.  
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Figure 17 Average traffic intensity at the J.J. Allanstraat in Westzaan over 24 hours [15] 

In Figure 17 we can see peaks in traffic intensity: morning rush hour at 08:00 and evening rush hour 

at 16:00 hours. Data on other roads show a similar pattern, with some difference in the height and 

time of the peaks. 

We divide the day into time-periods of 15 minutes, for a total of 24 hours / 15 minutes = 96 time 

periods. We set the highest peak to have a volume-to-capacity ratio of 0.9 and set our arrival rate to 

match that ratio. For demonstration purposes we choose the remaining arrival rates such that our 

graph approximates a smooth variant of Figure 17. 

 

Figure 18 Traffic intensity used in model and simulation, time-periods of 15 minutes 

We run the simulation and model for 3 different situations: the original intersection with normal 

arrival rates as shown in Figure 18, the intersection with a closed lane resulting in a 50% increase in 

arrival rate, and a closed lane with an added 10% re-entry rate. We expect the average delay around 

rush hour to increase by a large amount because the system is oversaturated for a long time. Also 
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the difference between the re-entry and normal closed lane will be bigger compared to a single time-

period. 

 

Figure 19 Average expected delay during the day (dotted line = model, solid line = simulation)  

As we can see in Figure 19, the roadwork causes a huge delay, with an average of over 20 minutes in 

the worst case. The 3.3% increase in arrival rates caused by the re-entry of vehicles causes the 

average expected delay to take over an hour longer to return to normal: where traffic returns to 

normal at around 13:00 hours with just a closed lane, it takes until well past 14:00 hours when re-

entries are present. As we can see in Figure 19 the difference in delay seems to be around 200 

seconds between the two. We also note that the model seems to underestimate the delay incurred 

when a time-period starts with an initial queue. To have a more accurate view, we take a look at the 

difference between the case with re-entries and the case without re-entries. 
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Figure 20 Difference in expected delay (simulation) 

As we can see in Figure 20, the difference rises quickly to above 15%, and rises to approximately 

130%. This peak occurs past the peak of rush hour, because the lower the delay becomes the bigger 

the relative difference is between the two cases. There is a much sharper decline in difference at the 

evening peak. This is due to the low arrival rate past 19:00 hours, causing queues to dissipate much 

faster compared to the morning rush hour peak. 

At first we planned to run these models through the situation as it is for the concerning intersection 

in Hoofddorp. However the situation in Hoofddorp only differs in the number of lanes. This 

difference has a predictable effect: the redirected traffic increases the arrivals on the remaining lanes 

by approximately 150%. Therefore we chose not to include this. 

5.4 Extended roadwork 
Roadwork on busy roads is often done in the weekend or on weekdays between 21:00-05:00. During 

this time period there is hardly any difference in expected delay with and without road closure, 

making this an ideal time for roadwork. It is interesting to see what would happen if the roadwork 

got delayed and finished later than expected. In Figure 21 the roadwork stops at 4 different times: 

06:00, 07:00, 08:00, and 09:00. After this time the arrival rate returns to normal. We assume for this 

model all cars remain in their lane – they do not switch to the closed lane once it is re-opened. 
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Figure 21 Expected delay when roadwork ends between 06:00 and 09:00 (model) 

 In Figure 21 we see that delays up to 07:00 hours do not seem to have much effect on the expected 

average delay. After 07:00 the delay starts to increase. If roadwork is delayed until 09:00 hours, the 

delay reaches a peak of over 20 minutes, as in Figure 19 for the morning rush hour. 

We take the same traffic intensity but apply it to an intersection based on the situation in Hoofddorp 

as explained in Chapter 2. This intersection has 3 lanes that head towards the closed direction 

instead of one. Therefore the roadwork has much more impact: 3 lanes instead of 1 lane get 

redirected, causing an average increase of 3 x 50% = 150% in arrival rates. We expect a delay in 

roadwork will have a much greater impact. 

 

Figure 22 Expected delay at the intersection in Hoofddorp when roadwork ends between 06:00 and 09:00 (log scale y-
axis, model) 

We see in Figure 22 that indeed the delay of roadwork has a lot of impact. The delay at the start of 

the day is about 40 seconds, equal to the situation in Figure 21. But the delay at 07:00 hours has 

already increased to over 5 minutes. After 07:00 the delay increases to over 1 hour. With such high 
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delays, our assumption that cars do not switch to the re-opened lane does not seem realistic: unless 

cars are physically unable to switch lanes, they will definitely switch lanes once it has re-opened.  

Because roadwork has such a high impact if it is delayed, there should be an alternative available to 

drivers if this long delay situation occurs. Such alternatives could be a redirection of traffic or (if 

possible) the continuation of roadwork on another day. 

5.5 Answer to research question 
In the research question we asked what the effect of erratic behaviour and wrong path choice is on 

delays. Figure 12 and Figure 15 show that the source of the increase in load does not seem to have 

any effect. The effect of increased arrivals due to re-entry of vehicles and the increased departure 

time due to the erratic behaviour of drivers are very similar. For any intersection with a volume-to-

capacity ratio above approximately 0.55 the increase in average delay is greater than the increase in 

arrivals or departure time and reaches its peak at approximately 0.72.  

However the effect of re-entry and erratic behaviour is small compared to the impact the road 

closure itself has on the delay. This means the planning of roadwork is quite important: if roadwork is 

planned at a time with a very low v/c ratio, for example during the night, it has little effect on the 

delay. But if roadwork is done during rush hour it has a much bigger effect, and any increase in arrival 

rate or departure time causes an even greater increase in delay. 

The model gives an accurate estimation on the average delay compared to the simulation. It can be 

used when planning roadwork to create an estimation of the expected delay. If the impact on the 

delay is big, alternatives should be planned. 
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6 Conclusion 
A lot of theoretical models only allow modelling of intersections with a saturation below 1: as the 

volume-to-capacity ratio reaches 1, models tend to approach infinity. Multiple countries use a time-

dependent delay model that is able to handle situations with saturations higher than 1. We applied 

the model that has been used in the United States for at least 16 years to create estimations on the 

average delay experienced by vehicles at an intersection. 

Unfortunately, we could not find literature on wrong decisions and erratic behaviour of drivers. We 

took these features into account by imposing some assumptions on the time-dependent delay 

model. Both the increase of arrivals due to re-entry of vehicles and the increase of departure time 

due to the erratic behaviour of drivers have a similar effect on the increase in delay at the 

intersection. For any intersection with a volume-to-capacity ratio above approximately 0.55 the 

increase in delay is higher than the increase in arrivals or departure time. 

However, by far the biggest influence on the increase of delay for vehicles is the increase of demand 

on the intersection by the closure of a lane. In case of a symmetrical intersection the load is 

increased by 50%. Because closing a lane puts such stress on the capacity of the intersections, any 

extra stress incurred by drivers making wrong decisions should be avoided. This could be done by 

providing clear and concise information of alternative routes to drivers near a road-closure and 

planning the roadwork on the least busy time of the day: approximately between 21:00 and 05:00 

hour. 
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Appendix A Delay deterministic queueing model  
Figure 23 shows the queue length over time in a deterministic queueing model. 

 

Figure 23 Queue length over time [16] 

We see that during a red light the queue increases at rate v, until the light turns green. The queue 

will then decrease with rate s-v until 0 where it will remain until the light turns red again. The cycle 

then repeats itself. 

We model the total delay during a cycle C, which is equal to the surface of the grey area: 
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This formula can be rewritten using  
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Appendix B Delay oversaturated deterministic queueing model 
When the volume-to-capacity ratio is X, on average X – 1 vehicles will be left in queue after each unit 

of time (with an equal number of green and red light times). The term (   )  √(   )   is 0 as 

long as X is below 1, and is 2(X-1) when X is above 1.  A vehicle arrives on average halfway in the 

measured period, at ½ T. So the average delay in hours is 
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 ((   )  √(   ) ) . Multiplying by 3600 gives the average delay in seconds instead of 

hours: 
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