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1 PREFACE 

This paper is part of the mandatory curriculum of Business Mathematics and 

Informatics.  

During a project at the university I came across the subject of forecasting with taut 

strings. In this project we had to forecast the number of calls arrived in a call centre 

via the smoothing extensions of the taut strings. Since we did not do a very good 

comparison with other methods, I wondered if the taut string algorithm would be a 

good algorithm to use in a call centre. This was exactly what my supervisor, Sandjai 

Bhulai, also wanted to know and the idea of this paper was born. 

I want to thank Sandjai for his support and comments during the writing of this 

paper. 

Bas Meeuwissen 

Amsterdam 2009 
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2 SUMMARY 

In this paper the possibility to forecast incoming calls in a call centre with 

extensions of the taut string algorithm has been researched. A forecast is for 

example the average number of calls received during one interval. To see if the 

algorithms can be used, a comparison has been made with a number of common 

forecasting techniques. The forecasting techniques are; 

 Mean per interval 

 Median per interval 

 Moving average per day 

 Exponential smoothing per day 

 ARIMA model per day 

The extensions of the taut string algorithms do not work that good on forecasting the 

number of incoming calls. 12 days were forecasted, but only 3 times the taut string 

algorithm was the best to choose. A remark here is that none of the other forecasting 

techniques outperformed the rest. 
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4 INTRODUCTION 

This paper is about forecasting with Taut Strings. The technique is newly developed 

to describe a dataset with better accuracy than the current techniques. The field of 

the taut strings is being researched by A. Kovac, L. Dümbgen, P.L. Davies, E. 

Mammen, S. van de Geer and others. In this paper, the taut string algorithm will be 

used to forecast and compare the results with the results of more common 

techniques.  

Forecasting is a mathematical technique to say something about the future while 

certain parameters are unknown. For example, what can be said about the number 

of calls a call centre will receive next Monday, next month or maybe next year. 

Throughout the paper, the call centre will be used as an illustrative example. 

Thereby, the math on call centres is highly developed and a lot is known about the 

patterns, waiting and service times. 

4.1 BACKGROUND 

In the current economy, the forecast has become a highly important tool to run a 

business. A bad forecast means a head start for the competition and less income, a 

smaller market share for your business or a worse service to your customers. These 

effects can occur because, for example, the cost price of a product is actually less 

then what is forecasted. This can happen if the forecast of the sales are too low and 

all the overhead costs and material costs are based on the sales forecast. Using this 

for the product cost will make you charge the customer to much(1). Businesses with 

a bad forecast model even went bankrupt!(2) 

Since all private businesses need income to survive, they aim at the biggest net 

profit they can get. Therefore a lot of forecasts are made to evaluate the cost or 

profits increase or decrease of certain future decisions made by the management. 

Other topics which are forecasted regularly are the market share, the customer 

satisfaction and goods consumption. 

Business can be divided into segments. Every segment has its own specific problems, 

which is the result of specific characteristics. I divide the business into two 

segments; those with an inventory (the classical businesses, like supermarkets), 

those without an inventory (the service businesses, like call centres).  

Businesses with an inventory are likely interested in how much they sell this 

summer, so they can fill their stock to the right level. An incorrect inventory costs 

too much money, since an inventory level which is too low wastes income, but an 

inventory which is too high produces extra costs, but no extra income.  

Service oriented business, like ENECO and NUON, want to know how much power 

the consumers will consume on a certain day. Electricity cannot efficiently be stored 

in an inventory at the moment(3), so all the electricity which will not be used is 
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wasted. If too few electricity is produced, the customer satisfaction will drop. These 

companies have the difficulty to make a trade-off between service level and costs. 

For all these problems forecasting methods exist. Every method has its strengths 

and weaknesses for a certain problem. For most problems, it is important to find the 

best method, since methods perform weakly on problems they are not designed for. 

The preconditions per problem are important and not to be violated to get a good 

result. However, it is not the intention of this paper to find the right forecasting 

methods to the right problems, but to compare the different forecasting techniques 

with the Taut Strings forecasting method on one specific problem, forecasting for a 

call centre. 

4.2 ISSUE AT HAND 

For any given call centre, there are a two characteristics(4) which I will explain first. 

The characteristics are arrivals and service level and the relation between those two 

characteristics. 

The arrivals in a call centre are assumed to be Poisson distributed with an arrival 

rate 𝜆. This arrival rate depends on time, size of the call centre, the weather outside, 

business rules and lots of other (unknown) factors. Unexpected changes, like the 

weather outside or dramatic events, cannot be forecasted and always result in a 

unreliable forecast. 

The arrival rate is also dependents on itself. The morning is often a good indication 

for the rest of the day. A busy morning, thus a high arrival rate in the beginning of 

the day, often results in busier than usual day. 

In the figure below it can be seen that the number of arrivals vary during the day. 

For this call centre the busiest moments are between 8 A.M. - 11 A.M. and 1:30 P.M. 

– 5 P.M. There are also differences between a Tuesday and a Sunday. The Tuesday 

is busier than the Sunday. It is also clear that the beginning of the week is quiet and 

it gets busier at the end of the week. 



 7 

 

FIGURE 1: ARRIVALS ON A TUESDAY, A THURSDAY AND A SUNDAY 

In the figure above it is not clearly visible that for example Sunday has the same 

characteristics as Thursday. This is because the axis has to fit all data, but if the 

axis is zoomed in on Sunday, the same pattern as Thursday is visible (Figure 2). 

 

FIGURE 2: ARRIVALS FOR A SUNDAY 
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Looking at the arrival rate, a uniform forecast for all days is not desirable. The 

forecasts have to be specific for the days they are made for. The techniques have to 

take these patterns into account for a proper forecast. 

Another property about the arrivals is that they will shift during the day or even 

during the week. People who call a call centre and have to wait too long before 

getting served hang up and probably will call back some other time. These calls will 

shift for example 30 minutes. This can happen if the call centre does not employ 

enough personnel or if an exceptional high number of people call at once. Not 

employing enough personnel disturbs the data and will make it difficult to give a 

good forecast. 

A change in business rules can have a changing effect on the arrivals as well. If 

management should decide to close the call centre on Sunday mornings, then the 

arrivals will change. If this decision is made the last month and the data is one year 

old, then the forecasts will be useless. Most of the data is not based on the current 

business rules, thus not applicable for forecasting.   

Another characteristic of call centres is service level. The service level of a call 

centre consists of different measurements. A few of these measurements are average 

speed of answer, the number of calls answered within a certain time span and the 

number of abandonments. If the number of arrivals are known then the number of 

agents can be calculated to achieve a certain service level. A specific number of 

agents can handle a limited range of arrivals. The more arrivals agents have to 

handle, the less good the service level will be. Up to the point were just a fraction of 

all arrivals will be served. 

Taking the two characteristics into account the problem with forecasts is that they 

have to be detailed and precise. It is not very useful to have a forecast of the number 

of calls for one whole day, since the arrivals vary per interval. And the forecasts 

have to be precise, because a difference in the number of calls will result in a 

difference of employees needed, and thus on costs and service level. 

4.3 PROBLEM 

For an imaginary call centre we are asked what the best method is to forecast their 

incoming calls. They have heard about quite a few forecasting methods and want to 

know which works best for their situation. The manager has read something about 

taut strings and is very interested in this method. At the same time he wants a 

comparison with the more common techniques. 

4.4 APPROACH 

I will discuss the most common forecasting techniques and their performance on a 

real world dataset. The dataset is a large matrix of numbers with a new day at a 

new row. For every day (261 from one year), the incoming calls are registered per 15 
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minutes interval and put in columns (68 in total), thus the dataset looks like the 

following table. 

    7:00 7:15 7:30 7:45 8:00 

3-1-1999 Sunday 11 25 21 14 22 

10-1-1999 Sunday 7 9 8 12 12 

17-1-1999 Sunday 10 8 10 12 16 

24-1-1999 Sunday 5 5 5 14 7 

TABLE 1: A SMALL PART OF THE DATASET 

Since the taut string is the main interest of this paper, this technique will have its 

own chapter. Within the chapter some more detailed information and explanations 

will be given. 

After these theoretical parts, the techniques will be used on the dataset to create 

forecasts. These experiments are conducted in the following way. 

At first a few known days are taken and removed from the dataset. From these days 

a few intervals are taken. These intervals always start at 7 o’clock in the morning 

and end somewhere between 8.30 A.M. and 11.30 A.M. The intervals serve as input 

to the Pearson Correlation Distance (PCD). The PCD is a method to calculate the 

likeliness of two matrices of numbers with the same number of elements. I will use it 

to calculate the likeliness of two strings with the same number of numbers. The 

result of this calculation is a dimensionless value. 

The PCD needs two strings of numbers to calculate a value, and that is what the 

dataset is for. If we know for example the first 10 intervals of a day we need another 

10 intervals for the PCD to calculate a value. These 10 unknown intervals are 

extracted from the dataset. For every day, the first 10 intervals are taken and put in 

the PCD together with the 10 intervals we know. This gives the Pearson correlation 

distance between the days in the dataset and the day we want to forecast. 

After calculating the PCD for all days, the 40 days with the highest PCD will be 

used for the forecasts. The reason these 40 days will be used is that of the arrivals 

rate. We know that the characteristics for arrival rate is more or less the same for 

every day. We also know that the number of calls in the morning is a good indication 

about the number of calls in the afternoon. Thus it is only necessary to find the days 

where, for the known intervals, the likeliness is the best. 

The forecasts will be created according to the descriptions of the methods in chapters 

0 and 6. An extra operation is needed to adjust the forecasts to usable numbers. The 

forecasts will give real valued numbers, but the number of arrivals are integers. 

Therefore the forecasts will be rounded off. This will have an effect on the Pearson 

correlation distance, but I have never heard of 9,3 arriving calls in 15 minutes. 
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The forecasts have to be measured again. Therefore the PCD is used again, but now 

on the forecast and rest of the known day. If we knew 10 intervals, there were 58 

intervals not used the first time the PCD was calculated. These 58 intervals had to 

be forecasted, which is done during the experiments. The forecasted intervals, 

together with the unused intervals, will be put in de PCD. This gives the 

measurement used to compare the forecasts with each other. 
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5 FORECASTING TECHNIQUES 

There exist a lot of different forecasting techniques. They are based on different 

mathematical calculations, called statistics, like mean and median. Statistics can 

also be more complex. The exponential smoothing uses weights for the past 

statistics, which are calculations by themselves, and weights for the current data. 

A forecasting technique can be simple, like the average number of calls received on 

the past five weeks, which will be the estimate of the next intervals. More complex 

techniques like the ARIMA exist. This technique is constructed of multiple models, 

where statistics are dependent and error estimates are taken into account. 

At first, the simple techniques will be discussed to get to the more complex 

techniques and models at the end of this chapter. 

To explain the forecasting techniques, the usage of these techniques on the dataset 

will be explained. The dataset used is the dataset created by the 40 rows which have 

the highest PCD. This means that the procedures written in the next sections is also 

the approach for the forecasts. One main concept about the forecasts is that the data 

has to be seen as a 2 dimensional dataset, an matrix. Some techniques use one 

dimensional data in their forecast (either along the intervals or the days) and other 

techniques use both dimensions. The techniques that use one dimensional data for 

their forecast are adjusted to work with the 2 dimensional dataset. 

5.1 AVERAGE(5) 

The average is the expected value of a dataset. The most commonly used average is 

the arithmetic mean, or just called mean. Other examples of an average are the 

trimmed mean and weighted mean. Many more averages exist, but they are not used 

frequently. 

A definition of average is :  the value obtained by dividing the sum of a set of 

quantities by the number of quantities in the set1. If the number of quantities is big 

and there is just one big number in the set of quantities, then the contribution of the 

large number is not noticed very well. 

5.1.1 WEIGHTED MEAN 

The weighted mean is a method to calculate an average. It is possible to give weights 

to data points. This is usually done for time dependent data. Although the data is 

time dependent, this property is not used for the forecasts. 

The formula for the weighted mean is 

                                                

1 www.thefreedictonairy.com 
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𝑠 =
 𝛼𝑖𝑥𝑖
𝑛
𝑖=1

 𝛼𝑖
𝑛
𝑖=1

 

Where 𝑛 is the number of observations, 𝛼𝑖  is the weight which is applied to an 

observation 𝑥𝑖 . Since all observations have the same weight, the formula becomes 

𝑠 =
 𝑥𝑖
𝑛
𝑖=1

𝑛
 

which is called the arithmetic mean. 

In the forecasts, the arithmetic mean is used in one dimension. The dimension is the 

interval. Thus for a forecast for an interval, all observations for the same interval for 

all 40 days are used. 

The graph below shows an example of the above text.  

 

FIGURE 3: EXAMPLE OF THE AVERAGE USED ON THE DATASET 

The purple line shows the average of the 3 other lines, where the average is 

calculated per interval.  

5.1.2 TRIMMED MEAN 
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The formula of the trimmed mean is 

𝑠 =
 𝛼𝑖𝑥𝑖
𝑛−𝑗
𝑖=𝑗

 𝛼𝑖
𝑛−𝑗
𝑖=𝑗

 where 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛  and 𝑗 < 𝑛 

𝑗 is the number of observations which will be left out on both sides, and 𝛼𝑖  is a 

weight which can be applied. 

The 50% trimmed mean is a regularly used statistic. It even has its own name, the 

median. The median is insensitive to outliers at all. It just looks at the single value 

that is halfway the dataset. For an uneven number of rows, the median is the 

number in the middle. For an even number of rows there is a problem. Let us take a 

look at a small example. If we have four numbers, say 3, 5, 6 and 8, the number in 

the middle would lay between 5 and 6. But that number doesn’t exist, thus we take 

the average of those two numbers. 

 

FIGURE 4: EXAMPLE OF THE MEDIAN USED ON THE DATASET 

The median works on the same dimension as the average. Thus the average is 

calculated every interval. It is clear from the graph that the median just takes the 

number in the middle, since it overlaps the lines which are in the middle. It also can 

be seen that the median is calculated per interval, otherwise the median would have 

followed the green line. 
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The advantage of a trimmed mean is that is less sensitive to outliers the more data 

is excluded. 

There is a disadvantage using the trimmed mean. If the number of calls in a certain 

interval have a steep rise of sharp fall, then the median probably would not notice it. 

It would only notice it if more than half the selected days have the same pattern on 

that interval. 

5.2 SIMPLE MOVING AVERAGE(6) 

The moving average is a method to use one of the above statistics to create a 

continuously changing prediction in a time series. The moving average is not a 

single value to describe a complete dataset, but it takes a few points to calculate for 

example the weighted mean or trimmed mean to calculate the current data point. 

The total number of points taken is called the step. A two step moving average uses 

two data points to calculate the average. 

The formula for the moving average at time t is 

𝑠𝑡 =
1

𝑗
 𝛼𝑖𝑥𝑖

𝑡

𝑖=𝑡−𝑗+1

 

𝑗 is the step, the number of data points taken into account. The 𝑡 is the time of the 

current statistic, for example interval 10. 𝛼𝑖  is the weight given to the number of 

calls 𝑥𝑖 . 

The formula itself says that the calls for this interval are calculated as the calls of 

𝑗 − 1 intervals before and this interval itself.  

There are two possibilities to calculate the moving average on the selected days. The 

first possibility is to calculate the average per interval and then use this calculated 

number of calls with the moving average. This would be no more than calculating 

the moving average of the prediction made in section 5.1.1. The second possibility is 

to calculate the moving average of all 40 selected days and take the average over 

these calculated days. 

It is the second possibility which will be used in this paper to create a forecast. I will 

explain this method with a little example. In the table below I have taken two days 

which are not very much alike. I have done this, because the graph which comes 

with this example would be unreadable if the days would be very much alike. 

The moving average is a 2 step moving average and both data points are weighted 

equally. So, to calculate the new [7:15 7:30] interval using the Sunday, the 

calculated interval becomes 1

2
 11+25 = 18. This is also the value on the third row. The 

same trick is used to calculate the rest of the row and to calculate the moving 

average (MA) of Thursday. The average per interval of those two rows (MA Sunday 
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and MA Thursday) is the value of the final moving average. In the table the round 

off can be seen as well. The average of 18 and 5.5 is 11.75, which is rounded off to 12. 

 7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 

Sunday 

 
11 25 21 14 22 36 40 42 30 27 33 40 

Thursday 

 
6 5 5 13 17 25 49 31 31 15 34 24 

MA 

Sunday 
 18 23 17,5 18 29 38 41 36 28,5 30 36,5 

MA 

Thursday 
 5,5 5 9 15 21 37 40 31 23 24,5 29 

Final MA 

 
 12 14 13 17 25 38 41 34 26 27 33 

TABLE 2: THE MOVING AVERAGE 

The figure below is a graphical representation of the table above. The moving 

averages for the days are the dotted lines and the final moving average is the 

blocked line. In the figure it is clear that the moving average is always at least one 

step behind the changes in the data.  

 

FIGURE 5: GRAPHICAL REPRESENTATION OF TABLE 2 

0

10

20

30

40

50

60

7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45

Example of the moving average

Sunday Thursday Moving average Sunday Moving average Thursday Final moving average



 16 

Because the moving average needs two data points, the first interval does not have a 

value. This is solved for the forecasting problem by beginning the moving average 

one step before the actual forecast is needed. The number of intervals known is 

always more than one, thus this trick can be applied on every forecast. 

5.3 EXPONENTIAL SMOOTHING(7) 

Exponential Smoothing is a special case of the moving average. The exponential 

smoothing does not need a few data points to calculate the next value. Instead, it 

calculates the next value by applying a smoothing factor to the old data and the new 

data. 

The formula for the exponential smoothing at time t is 

𝑠0 = 𝑥0

𝑠𝑡 =  1 − 𝛼 𝑥𝑡 + 𝛼𝑠𝑡−1
 

Where 𝛼 is the smoothing factor and 0 < 𝛼 < 1. The value 𝑠𝑡 is a simple weighted 

average of the last observation 𝑥𝑡  and the previous smoothed statistic 𝑠𝑡−1. 

The value of 𝛼 has an impact on the weights for the current statistic. An 𝛼 close to 

zero gives more weight to the current observation which means that the statistic will 

be less smoothed, but is more responsive to changes in the observations. An 𝛼 close 

to one gives more weight to the smoothed statistic 𝑠𝑡−1 which is less responsive to 

changes in the observations, but has a more smoothing effect. 

The exponential smoothing can also be used in two ways. Here, I have chosen to use 

it the same way as the moving average. First, the exponential smoothing is 

calculated for every selected day and then the average is taken for the calculated 

intervals. Since there is no optimal value for the smoothing factor 𝛼, its value will be 

0,5. I have chosen for this value, because it is in the middle of all possible value. 

I will explain the exponential smoothing with a little example. 
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 7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 

Sunday 

 
11 25 21 14 22 36 40 42 30 27 33 40 

Thursday 

 
6 5 5 13 17 25 49 31 31 15 34 24 

ES 

Sunday 11,0 18,0 19,5 16,8 19,4 27,7 33,8 37,9 34,0 30,5 31,7 35,9 

ES 

Thursday 6,0 5,5 5,3 9,1 13,1 19,0 34,0 32,5 31,8 23,4 28,7 26,3 

Final ES 

 9 12 12 13 16 23 34 35 33 27 30 31 

TABLE 3: EXPONENTIAL SMOOTHING EXAMPLE 

The data for the Sunday and Thursday is the same as the data for the moving 

average example. It is clear that the exponential smoothing does not have the 

problem of needing an extra data point to create a forecast. Instead, the original 

value is used as the first forecasted value for the first interval. After that, the 

average of the forecasted value of the first interval and a new data point from the 

second interval is a new forecasted value for the second interval. Thus to forecast 

the [7:15 7:30] interval, the ES Sunday [7:00 7:15] value and the Sunday [7:15 7:30] 

value are averaged: 1

2
 11+25 =18. This trick continues until the end. 

The 2 forecasts from the exponential smoothing are averaged per interval to create 

the final forecast. The figure below (next page) contains the example, but then 

visually. 

For the exponential smoothing I thought of two options how to use this method. The 

first method is to begin 1 interval earlier than the forecast is actually needed. With 

this, the forecast would not contain any original numbers from the 40 selected days. 

The other option was to use the exponential smoothing as it is described in the 

formula at the beginning of this section. 

I have chosen to use the exponential smoothing the way it is described in this 

section. The method has coped with the problem to forecast the first value and I 

wanted to leave the method intact. 
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FIGURE 6: THE EXPONENTIAL SMOOTHING 

5.4 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE(8) 

The ARIMA model is the integrated variant of the autoregressive moving average 

(ARMA). Therefore I will explain the ARMA first, and later on the ARIMA. The 

ARMA model itself is a compounded model, which exists of an autoregressive 

process (AR) and a moving average process (MA). So the explanation is divided into 

four parts. First, the concept of an AR process is explained. After that the MA will be 

explained. This moving average is different than the moving average explained in 

5.2. The whole ARMA comes as third. Thereafter the explanation of the ARIMA will 

follow. 

The ARIMA process is a time series model. This means that the model is used to 

predict or describe an event which is dependent on time. For example the call centre, 

the number of calls at 11 o’clock depends on the number of calls received at 10 

o’clock. So this model can be used with the call centre data without manipulation. 

5.4.1 AUTOREGRESSIVE 

The autoregressive (AR) part of the ARIMA is a process which looks at p previous 

events and gives them a certain weight. To calculate the current statistic, the p 

weighted events get an extra component of white noise. White noise is a number 

which is drawn from the normal distribution with mean 0 en standard deviation 1. 

The formula for the AR(p) process is: 

0

5

10

15

20

25

30

35

40

45

50

7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45

Example of the exponential smoothing

Sunday Thursday Exponential smoothing Sunday

Exponential smoothing Thursday Final exponential smoothing



 19 

𝑋𝑡 = 𝑐 + 𝜑𝑖𝑋𝑡−𝑖 + 𝜀𝑡

𝑝

𝑖=1

 

The formula means that the current observation is dependent on the previous 

observations with a parameter 𝜑 per observation, plus an undetectable error, which 

is assumed to be normally distributed with mean zero. This is the white noise. 

5.4.2 MOVING AVERAGE 

The moving average (MA) part of the ARIMA is a process which takes q white noise 

data points and gives them a certain weight. To calculate the current statistic, the q 

weighted events are added. The formula for the AM(q) process is: 

𝑋𝑡 = 𝜀𝑡 + 𝜃𝑖𝜀𝑡−𝑖

𝑞

𝑖=1

 

5.4.3 AUTOREGRESSIVE MOVING AVERAGE 

The ARMA process is the combination of an AR(p) and an AM(q) process. The two 

processes are added, but the parameters per process are independent of each other. 

The formula for the ARMA process is: 

𝑋𝑡 = 𝜀𝑡 + 𝜑𝑖𝑋𝑡−𝑖

𝑝

𝑖=1

+ 𝜃𝑖𝜀𝑡−𝑖

𝑞

𝑖=1

 

The formula above can be expressed in the Lag operator. This is a function which 

operates on an element of a time series. For example; 

𝐿𝑋𝑡 = 𝑋𝑡−1 

With the Lag operator, the previous formula for the ARMA becomes; 

 1− 𝜑𝑖𝐿
𝑖

𝑝

𝑖=1

 𝑋𝑡 =  1 + 𝜃𝑖𝐿
𝑖

𝑞

𝑖=1

 𝜀𝑡  

This is an equation which can be directly used for the ARIMA. 

5.4.4 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE 

The ARIMA process is the ARMA process with an integrated MA process. The 

integration has an advantage. The ARMA process needs a stationary dataset to work 

on. This means that the dataset itself is not allowed to have seasonality or trend, 

and is supposed to follow a random walk. The ARIMA process does not have that 

precondition on the dataset. Even if the dataset has a trend or seasonality, the 

ARIMA process can handle it. The formula for the ARIMA process is: 
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 1− 𝜑𝑖𝐿
𝑖

𝑝

𝑖=1

  1− 𝐿 𝑑𝑋𝑡 =  1 + 𝜃𝑖𝐿
𝑖

𝑞

𝑖=1

 𝜀𝑡  

For the ARIMA process, there are also two possible ways to use the method. The 

ARIMA can work on the whole dataset at once (a multivariate ARIMA) or it can 

work on a whole day. It would have been nice to use the multivariate ARIMA, but 

the program I used did not support multivariate ARIMA (xlstat). Therefore, the 

ARIMA is calculated per day and the average is taken for the predictions given by 

the multiple ARIMAS. 

5.5 COMPARISON 

In this section the strengths and the weaknesses of the models above will be listed in 

a table. 

Model Strengths Weaknesses 

Weighted mean Easy to compute Sensitive to outliers 

Needs a tweak to work 

with time series 

Trimmed mean Easy to compute Does not respond very 

well to changes in the data 

Needs a tweak to work 

with time series 

Simple moving average Easy to compute 

Does work with time 

series without tweaking 

Is always a few steps 

behind the changing data 

Exponential smoothing Does work with time 

series without tweaking 

Not a uniform answer for 

alpha. 

ARIMA Does work with time 

series without tweaking 

Complex. 

Sometimes needs extra 

preparation of the data 

No uniform answer due to 

a lot of input parameters 
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6 TAUT STRINGS(9) 

The concept of taut strings is relatively new. Half way the previous century, the 

concept was developed. The idea of a taut string is to create some kind of function, 

which is able to describe a dataset. The exact formula is usually unknown, but some 

properties of the dataset are needed. This is the field of the regressions. Regression 

methods are iterative processes where the best fit of a curve or line is computed. The 

taut string algorithm is an iterative process where small continuous functions are 

created to come up with one long string of numbers. 

The taut string method is an integrated process with linear interpolation between 

design points. These design points are created as follows; 

𝑌0 = 0

𝑌𝑗 =  𝑦𝑗    𝑗 = 1,… ,𝑛 

𝑗

𝑖=1

 

These design points create the function 𝑌. The function 𝑌 is the basis for a tube, 

which is created by adding and subtracting a number 𝜆 ⇒  𝑌 + 𝜆,𝑌 − 𝜆 . This tube is 

the basis for the taut string. The left panel of Figure 7 shows the function 𝑌 (the line 

in the middle) and the tube, created by adding and subtracting 𝜆. This middle string 

is tightened, which can be visualised as two hands pulling the string to the sides. 

Because the tube does not change, the string is pulled along the different sides of the 

tube, creating a taut string. The right panel of Figure 7 is the result. This gives the 

function 𝐹𝜆 . Differentiating the function 𝐹𝜆  yields the approximation 𝑓𝜆 . This is the 

function we were looking for. 

A few properties of the taut strings are; 

 Piecewise constant 

 Modality increases monotonically with decreasing tube width, dus het aantal 

pieken of relatieve maxima neemt toe als de tube kleiner wordt. 

In the next part, I will explain the properties step by step. 
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FIGURE 7: DESIGN POINTS WITH 𝜆 ADDED AND SUBTRACTED AND THE TAUT 

STRING 

The taut string is piecewise constant. This comes from the fact that the string inside 

the tube makes a jump at a local extreme. Between local extremes the value of the 

function is the average of two local extremes (see Figure 8). 

 

FIGURE 8: THE TAUT STRING WITH THE RESULTING FUNCTION 
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The modality, i.e. the number of local maxima or minima, increases monotonically 

with decreasing tube width. This is true because the string within the tube bounces 

between the upper and lower bound. If a local maximum is passed, the string will 

lay on the lower bound. For a local minimum it is the counter case, the string will 

touch the upper bound. If the tube width is large, the string will have a lot of space 

to go from one point to another without touching the bounds. By decreasing the tube 

width, the string will have less space to go from one point to another and will 

encounter a bound more frequently. In the figure below the right panel shows a 

large tube and there are no local extremes. The line can pass through the tube 

without touches the boundaries. In the left panel, the tube width is smaller and the 

line touches the boundaries. 

 

FIGURE 9: MODALITY WITH LARGE AND SMALL TUBE WIDTH 

A smaller tube width, creating more local extremes, will create a more precise 

function. This is because at every extreme value, the function 𝐹𝜆  makes a jump and 

becomes the average of the values before reaching another extreme. This effect is 

visible in the figure below. The taut string is used to fit the Doppler effect2. On the 

left panels is the tube with the string within. The upper panel has a large tube 

width, the lower panel a smaller tube width. The right panels show the result of the 

fit. 

In the upper panels it is visible that for every extreme value, i.e. the string touches 

the upper or lower bound, the value of the function makes a jump. The value of the 

                                                

2 http://en.wikipedia.org/wiki/Doppler_effect 
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function becomes the average of the string between two extremes. The lower panels 

show a better approximation of the Doppler effect. 

 

FIGURE 10: THE DOPPLER EFFECT VIA TAUT STRING  

The formula for the taut string method is 

𝑇 𝐹 =   𝑦𝑖 − 𝑓 𝑖 
2

𝑛

𝑖=1

+  𝜆𝑗  𝑓 𝑗+1 − 𝑓 𝑗  

𝑛−1

𝑗=1

 

The formula consists of two parts. The first part is the difference between the found 

function and the original data points squared. The second part is the total variation 

of the function 𝑓 . 

The total variation of a function is the distance travelled along the y-axis (one 

dimensional function) if we follow the function along the x-axis. The easiest function 
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to calculate the total variation is a straight line. The total variation of this function 

is  𝑓 𝑥𝑚𝑎𝑥  − 𝑓 𝑥𝑚𝑖𝑛   . 

The simple formula above is actually the same formula as the second part of the taut 

string formula. Because every function other than a straight line cannot be 

computed by subtracting the minimum value of the maximum value, the summation 

is needed. A complex line is cut into 𝑛 equally distanced parts to create small lines 

which are approximated by a straight line. The formula to calculate the total 

variation of a straight line is known, thus summing the approximations of the 𝑛 

pieces gives the total variation of the complex line. 

These two parts combined make the taut string method a fast algorithm for 

minimising. 

6.1 QUANTILE REGRESSION(10) 

Quantile regression is a form of regression where the regression results in estimates 

of approximating either the median or other quantiles of the response variable. It is 

possible to solve these problems with the taut string method. Therefore, the formula 

is a little bit adjusted; 

𝑇 𝐹 =   
 𝑓 𝑖 

2
−  𝛽 −

1

2
 𝑓 𝑖 

𝑛

𝑖=1

+  𝜆𝑗  𝑓 𝑗+1 − 𝑓 𝑗  

𝑛−1

𝑗=1

 

Where 𝛽 is a quantile. 

6.2 POISON REGRESSION(10) 

If the data available is Poisson distributed, Poisson regression is the key to the 

problem. Another extension of the standard taut string is the ability to let it solve 

Poisson regression problems. The formula of the original taut string is adjusted in 

the following way to handle Poisson distributed data. 

𝑇 𝐹 =  exp 𝑓 𝑖 − 𝑓 𝑖𝑦𝑖

𝑛

𝑖=1

+  𝜆𝑗  𝑓 𝑗+1 − 𝑓 𝑗  

𝑛−1

𝑗=1

 

Although the data is based on a call centre, the number of calls is probably not 

Poisson distributed. The data is real life data, which is most of the times different 

from the theoretical data. In theory this extension of the taut string should work 

best on the data. 
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6.3 USING THE TAUT STRING EXTENSIONS 

The taut string algorithm is capable of using two dimensional data at once. This 

means that the 40 selected days can be given to the algorithm and that it will come 

up with a one dimensional function; our forecast. 

The implemented algorithm does not really see the data as two dimensional, but it 

will see it as values on a two dimensional grid. This grid is like the x-axis and y-axis 

of a graph and the values of the days are fit into that grid.  

In (10) a section is devoted to the choice of the tuning parameters 𝜆. This parameter 

can be fixed for all data points or it can be adaptable during the calculation of the 

algorithm. 

Since we want the deviations between the real data and the estimation to be as 

small as possible, we will set the algorithm to use an adaptable 𝜆. 
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7 EXPERIMENTS 

The experiments consist of numerous forecasts of the number of calls received. 

Every method described in the previous two chapters will be tested on 12 different 

data strings. A data string is for example the number of calls received on a Tuesday 

during the first 20 intervals. The 12 data strings will differ in length (number of 

intervals known) and day. 

For every method and for every data string a string with numbers will be created by 

the forecast. The original data string will be compared with the forecast by a 

Pearson correlation distance. This distance calculates the likeliness of the two 

strings. 

The methods used for the forecasting are; 

 M1: Arithmetic mean 

 M2: Median 

 M3: Moving average 

 M4: Exponential smoothing 

 M5: ARIMA(1,1,2) 

 M6: Taut string with quantile regression  𝛽 = 0.5  

 M7: Taut string with Poisson regression 

A data string is chosen from the dataset available. The chosen data string will be 

deleted from the dataset as long as the data string is used for forecasting. This 

prevents the methods from using the original data within a forecast, which would 

influence the forecast. 

The dataset contains 261 days with data. Every row has 68 intervals (columns). To 

create a forecast, the algorithm will search for 40 rows which have the smallest 

Pearson correlation distance with the given data string. These 40 rows are used to 

create the forecast. 

The more intervals are known, the more data is available for the Pearson correlation 

distance (PCD). For every known interval, the PCD is calculated. With more 

intervals known, the difference between rows increases. Two rows can have the 

same number of calls on the first interval, but the rest can be very different. With a 

single interval known, this difference won’t be noticed by the PCD. 

The data used as input for the forecast is displayed in the table below. The first 

column contains the day, the rest of the columns contain the number of calls for the 

intervals [07:00 07:15] (1) till [11:15 11:30] (19). If an interval has no data in it, the 

interval is not known. 
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TABLE 4: THE INTERVALS USED FOR INPUT 

Code Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

D1 Mon 9 12 10 11 14 19 32 19 27           

D2 Mon 9 17 11 19 18 17 20 16 26 37 48 54        

D3 Mon 14 7 10 10 19 15 24 27 22 25 26 32 28 36 28 31 20 28 20 

D4 Tue 6 9 9 13 11 21              

D5 Tue 15 15 24 21 24 35 35 41 35 50 54 53 60 56 46 44 43   

D6 Wed 6 7 6 19 13 11 26 20 27 46 33 28 21 26 26 27 20 24 32 

D7 Thu 7 9 9 18 6 17 22 36 34 29          

D8 Thu 15 11 15 12 29 31 37 29 39 27 25         

D9 Thu 6 7 11 13 21 19 23             

DA Sun 11 25 21 14 22 36 40 42 30 27 33 40 51 41      

DB Sun 8 5 10 7 18 19 37 32 33 32          

DC Sun 2 7 8 15 11 19 29 25 37 40 45 47        
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8 RESULTS 

I have to make a remark about the data first. After all the tests were 

performed, I saw that there was an error in the data of D1. This day had a 15 

minute interval with 137 incoming calls. The rest of the day looked normal, 

and I changed the value to 37. The number of calls in the previous interval is 

39 and in the next interval is 20. The value of 37 looked like a good value, 

because an extra 1 could have been added by error. 

This had no implications on the 40 selected days, but it had an impact on the 

PCD of the forecasts since the error did not occur in the intervals to select the 

days. The only difference is that the PCD for all methods has gone up, but the 

order of best to lower performance is exactly the same. 

The results show that forecasting the number of calls in a call centre is difficult by 

using the number of calls per interval. The forecast changes relatively much as more 

and more data becomes available during the day. And it would probably be easier to 

forecast the total calls of a new day. 

The table below shows the PCD of the forecasted number of calls. It can be seen that 

none of the methods used really outperforms the other methods. The simple 

methods, like mean and median, outscore the more complex models on more than 

one occasion.  

 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC 

 

Mean 

 

0,782 0,187 0,718 0,849 0,823 0,403 0,779 0,777 0,793 0,730 0,845 0,609 

 

Median 

 

0,779 0,178 0,725 0,840 0,827 0,387 0,759 0,795 0,798 0,716 0,839 0,596 

Moving 

average 

 

0,770 0,163 0,691 0,864 0,824 0,372 0,784 0,789 0,807 0,748 0,847 0,612 

Exponential 

smoothing 

 

0,785 0,151 0,700 0,856 0,819 0,373 0,783 0,790 0,808 0,748 0,850 0,612 

 

ARIMA 

 

0,772 0,112 0,672 0,833 0,802 0,335 0,772 0,782 0,781 0,754 0,843 0,598 

Taut string 

quantile 

 

0,782 0,186 0,724 0,843 0,828 0,403 0,765 0,792 0,800 0,713 0,830 0,593 

Taut string 

Poisson 

regression 

0,789 0,106 0,681 0,793 0,782 0,450 0,726 0,695 0,412 0,749 0,790 0,563 

TABLE 5: THE PEARSON DISTANCE CORRELATION FOR THE FORECASTED DATA 

The moving average has the best overall performance. Three times it creates the 

best forecast, and several other times it is second best. Still it cannot be said that 
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one method is better than another method. Therefore the differences in PCD are still 

very small and the number of occurrences to little. 

For the experiments where the taut strings performed best, the forecasts and the 

actual data are displayed in the figures below. The figures show that, although the 

forecasts have the best likeliness to the real data, the forecasts are not that good. 

 
FIGURE 11: THE FORECASTED DATA OF EXPERIMENT D1 

In Figure 11 the forecast of the taut string with the Poisson regression has the best 

likeliness with the original data. It can be seen though that the forecast is mostly too 

high and does not really follow the pattern of the incoming calls.  

The forecasts displayed in Figure 12 are not that good either. The pattern is followed 

a bit more strictly, but the forecasts are consistently too low. 

For Figure 13 the same results as Figure 11 can be seen. The forecast to high and 

the pattern not really followed. The anomaly here is that the incoming calls start 

way too high and it takes a long time before the forecasts are reasonably good again.  

Another thing we see at the figures is that the original data is very jagged. Between 

two subsequent intervals, the differences can be up to hundreds of percentages. This 

is a big change is a short period, which is difficult to keep up with. 
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FIGURE 12: THE FORECASTED DATA OF EXPERIMENT D5 

 

FIGURE 13: THE FORECASTED DATA OF EXPERIMENT D6  
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9 CONCLUSION 

The taut string algorithms can be used to forecast the number of calls in a call 

centre. In the setting used, it does not perform better than the average or the 

median though. 

A reason why the taut strings did not perform very well might be explained by the 

form of the data. The days used are alike. For every day put in the data, there are 

just more data points on one interval. The taut string might want to create a 

function between those data points, but it can only create a line from interval to 

interval. 

The figure below shows the number of incoming calls for the 40 selected days on the 

interval [9:15 24:00]. It is clear that there is no function which would touch all the 

dots in the figure, thus the best function is sought. Since this best function has to 

minimize the error for 40 days, it is possible that the function does not find the best 

solution for the problem. 

 

FIGURE 14: THE DATA OF ALL SELECTED DAYS AND THE FORECAST OF THE TAUT 

STRING WITH POISSON REGRESSION 

In Figure 14 all days and the forecast of the taut string Poisson regression is 

displayed. The figure tells us that the function found is nice. Of all available data 

points, the line is somewhere halfway. The question is, would the forecast be better 

if we had created a function per day and then take the average? 
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It could also be that the number of days is too much. With a smaller amount of days, 

the characteristics of an individual day should be better preserved. An experiment 

with more than 40 days can be conducted as well, but in that case, with just 261 

days in the dataset, the chance of creating the same forecast for different known 

intervals increases. 

Another interesting fact is about the number of intervals known. I thought that an 

increasing number of intervals known, would lead to better forecasts. This is not the 

case. The worst forecasts are made when most information was available. Take 

experiment D6 for example. 19 intervals were known, but the Pearson correlation 

distances of the forecasts did not come higher than 0.45. 

 

FIGURE 15: RELATION BETWEEN INTERVALS KNOWN AND PCD 

According to my thoughts there should have been a line from the lower left corner to 

the upper right corner. This is clearly not the case. It might be explained by the 

Pearson correlation distance. The less information is available for this formula, the 

easier it is for two string to look alike, or just the opposite. While longer strings can 

have more disruptions to become not alike anymore. 

Another explanation for the bad performance when a lot of information is known 

might be the dataset. The PCD with a lot of information can better select days which 

are alike, but what if there are just 20 of those days available? Then another 20 days 

which are not very much alike will be selected as well. These not alike days will 

disrupt the forecasts. 
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10 RECOMMENDATIONS 

I would recommend to use other settings for testing the forecasting capabilities of 

the taut strings. During this research I have learned that is more than one solution 

to this problem. 

At first, I want to recommend to use a bigger dataset. 261 days seem to be a lot, 

especially if you take the effect of changing characteristics of the incoming calls with 

the change of business rules, capabilities of agents etc, but it seems not to be enough 

to hold a lot of different patterns. Every day is unique, but with a lot of days 

available which are about the same, better forecasts could be made. 

The second recommendation is to use less days for a forecast. 40 days seems to be 

too much. With this many days the specific characteristics of the selected days seem 

to disappear. I think it would be very useful to forecast with 20 days. 

As third, it would be more appropriate to test the taut string with more different 

settings. In this research just two settings were used, but there are a lot more values 

which can be used. The taut string with the quantile regression should be tested on 

the most common quantiles at least. And for both variants of the taut string, the 

value of 𝜆 could be fixed. This has an impact on the total variation and will definitely 

have an impact on the forecasts. 

A fourth recommendation is to change the input to the taut strings algorithm. 

Instead of entering all data in the algorithm at once, it might be interesting what 

would happen if the taut strings work on the individual days and then take the 

mean or the median from the results as a forecast. 

We have seen that the real world data is not always perfect. A lot of big changes 

happen during very short periods of time, which are unusual for a theoretical call 

centre. To prove the potential of the taut string methods, it is possible to simulate 

call centre data and test the forecasts on the generated data. This might prove that 

the methods work very good, in theory at least. 

At last I can think of varying the number of known intervals per day. The research 

concentrated itself on the different days, with different number of intervals known. 

But does the forecasts differ that much as well as the day is kept the same, but the 

number of intervals is changed? 
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