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Preface

As a student of the master Business Analytics (formerly Business Mathematics and Informatics)
at VU University Amsterdam, one of my tasks is writing a research paper. This research paper
has been written at TNO, a large organisation for applied scientific research in the Netherlands.
I have been working in the Technical Science Expertise Group, within the Performance of
Networks & Systems department (PoNS) under the supervision of Rob van der Mei (VU), Rob
Kooij (TNO) and Wendy Ellens (TNO), whose survey of robustness measures [2] served as a
basis for this research paper. Within PoNS, a lot of applied research on networks, their graphs
and performance is conducted. With a lot of (business) mathematicians and econometrists,
similarities with some of the Business Analytics master components are easy to find.

Within my master I chose the optional course ‘Performance analysis of communication
networks’, taught by Rob van der Mei. In this course we apply probability theory and scheduling
models on communication networks. In a guest lecture Rob Kooij gave during this course, he
made the remark that the same theory is applicable to metro networks. This specific context
interested me, and when he mentioned he always had room for interns, I made a mental note
that this might be interesting for my research paper ‘course’ at the end of the year.

And indeed, I ended up doing a project for Rob Kooij, not directly linked to the metro
networks but nevertheless a very interesting one. The subject of the project was to compare
different mathematical robustness measures. By calculating the robustness of theoretical and
real network graphs, we wanted to show that not all of the measures were pointing in the same
direction. It turned out working on this subject was fun and I enjoyed my time at TNO very
much. I would like to thank Rob Kooij for creating such an explicit assignment and PoNS for
making me feel welcome from the very first moment. I would like to thank all three of my
supervisors Rob, Rob and Wendy for their input, support and trust.
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Summary

Over the years, the number of application areas where graphs have been used to study networks
has grown. Examples of this are power grids, telephone networks, motorways, the railway system
and digital virus spread, as well as the more traditional biological virus spread. Mathematical
graph theory can be used to evaluate the networks and possibly help to improve them, or to
protect humans and systems against viruses. Part of this is done by looking at the robustness
of networks. This means we try to find out how well a network will behave when it is under
attack or when it endures failures.

Different robustness measures have been developed over the years, but little is known about
the relation between all these measures. In this paper we want to gain a fundamental insight
into these relations by checking the consistency of robustness measures. The main question
therefore is:

For each combination of robustness measures, is it possible to find a pair of graphs such that
the robustness measures point in opposite directions?

We call these examples contradictions or counterexamples: there is no consistency among the
measures.

To adress this question, first, we discuss the eleven robustness measures that were used. For
all measures, we answer three questions: What does the measure mean?, What is its formula?
and How should we interpret the outcomes? (i.e. the outcome range and what value indicates
high robustness).

Then we have a look at sixteen simple graphs. For each graph we calculate the robustness
values and we discuss with what other graphs it is comparable. This way we can easily make
the comparison and search for incompatibleness among the measures. Next we have a look at
some large networks: three hypothetical testbed networks, the network of US motorways and
three IP backbone networks. Again we calculate the robustness values and discuss to what
extent the measures are inconsistent with each other.

The main results of our work are the following:

• It turned out to be quite easy to find graph pairs that show incompatibility between the
robustness measures.

• It was possible to find examples for all measure combinations, this is something that was
not clear from the beginning.

• For a lot of graph pairs and measures similarities were visible as well.

• For large networks we found the same results: inconsistencies as well as trends are visible.
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1 Introduction

1.1 Relevance

In day to day life, we make use of a lot of networks, although most people will not be aware
of this. Think for example of public transportation networks, power grids, social networks,
motorways, the internet and telephone networks. These networks exist in the real world and
thus might possibly suffer from failures. These can be due to human errors, technical failures
or attacks. Think about the fire on the Vodafone network in the Netherlands on the fourth of
April of this year. A lot of people who subscribe to the Vodafone network did not have access
to telephone or internet connections for multiple days. This fire is an example of a very big
failure or attack and the Vodafone network did not appear to be very robust: Vodafone has
no systematic alternative solutions installed for when a significant part of their network breaks
down. Another way of looking at this is evaluating a network in terms of the possibilities it has
for virus spreading. In this case, you could say a network is robust if there is little possibility
for (biological or digital) viruses to spread.

Over time, a lot of robustness measures for networks have been developed, but little is known
about how they relate to each other. This would be interesting to know, because when it turns
out that certain topologies are typically linked to high robustness values, this can be used to
change other topologies and decrease failures.

All measures (or metrics) that are discussed here, are topological measures. This indicates
that the measures only take the shape of the network into account, not the meaning or back-
ground of the network. For example in the case of a study of train networks, different paths
that are used are not taken into account, nor do we look at the fact that not all trains (intercity
trains, local trains) visit all stations (here the vertices) although they are using the same track
(edges).

1.2 Aim of this paper

In this paper we will want to gain a fundamental insight into the relationship between a series
of robustness measures that has been developed. We do this by comparing eleven of these
measures. The aim of this paper therefore is to answer the question:

For each combination of robustness measures, is it possible to find a pair of graphs such that
the robustness measures point in opposite directions?

We call these examples contradictions or counterexamples: there is no consistency among the
measures. To avoid condusion, we emphasize that is not our goal to determine what the best
robustness measure is, nor to find the optimal topology.

To be able to answer the main question, we start with gaining an insight into the eleven
measures. For all measures, we answer three questions: What does the measure mean?, What
is its formula? and How should we interpret the outcomes? (i.e. the outcome range and what
value indicates high robustness).

Next, we look at how different graphs are represented by the different measures. We discuss
the differences between the graphs and what graphs can be compared to what extend. (E.g. we
prefer the graphs in a comparison pair to be of the same size.) What follows is a comparison of
all measures and the search for contradictions.

Finally, we will calculate the robustnesses some large networks and compare these values.

1.3 Outline

The remainder of this paper is organized as follows. In section 2, we start with explaining
some basic notations, mathematical concepts and the software that was used. A reader who is
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very familiar with the field of graph robustness might want to skip this part. Next, we arrive
at the two main parts of the paper. In section 3, the robustness measures that were used are
discussed. For all measures, we tried to answer three questions: what does the measure mean,
what is its formula and how should we interpret the outcomes (i.e. the outcome range and what
value indicates high robustness). A list of abbreviations that are used to refer to the measures
in the tables through the paper, can be found in Appendix A. The next main section, section
4, contains an overview of 16 theoretical graphs. Here we calculate their robustnesses and we
make the comparisons between the measures. Next is section 5 with some real (IP) networks.
After explaining the networks and their origins, we conduct the robustness calculations for
these networks as well. In section 6 we conclude by summarizing the different outcomes and
discussing them.
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2 Definitions and methods

2.1 Basic notations and definitions

Because networks are studied in different fields, different names and notations are being used.
In this paper we will stick to the (mathematical) graph theoretical notation. When we look at
a graph G, we denote this as G = (V,E) where V are the vertices, with |V | = n and E are the
edges, with |E| = m. (i, j) indicates the edge (connection) between vertices i and j. In other
fields such as network theory, you might encounter the words nodes (for vertices) and links
(indicating edges). In this paper we focus on simple, undirected, unweighted, connected, finite
and deterministic graphs. This means that if there is a connection (i, j), the connection (j, i)
exists as well (undirected). All connections have equal length, weight or costs (unweighted),
and there is no vertex in the graph that is not connected to any other vertex (connected).

The adjacency matrix of a graph G is denoted by A(G) = (aij)N×N , where aij = x if there
exists an edge with weight x from vertex i to j, otherwise aij = 0 . As explained before, aij = 1
for unweighted graphs, aij = aji for undirected graphs. If the ith row and column both only
contain zero, this is seen as a disconnected vertex i. Figure 1 shows cycle graph H and its
adjacency matrix A(H).

1 2

34


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0



Figure 1. Graph H and its adjacency matrix

2.2 Mathematical background

In multiple measures, the concept of vertex degrees is being used. This degree δi of a vertex i
expresses the number of connections the vertex has. When making use of adjacency matrices,
this can be seen as the sum of the elements in a row (or column, these values will be equal for
undirected graphs).

Next to vertex degrees, a notion that is often used is eigenvalues. The eigenvalues for a
matrix B of size n can be found by solving Bx = λx where x is the eigenvector of the matrix
and λ an eigenvalue. A well-known way to derive λ (in the case the eigenvector is not known)
is solving the characteristic polynomial, which is known to be the outcome of the characteristic
equation det(B − λI) = 0 where I is the identity matrix with ones on the diagonal, zeroes
elsewhere and with a size n similar to B. The characteristic polynomial will have the form
(y1 − λ)(y2 − λ) · · · (yn − λ) = 0.

Note that for some measures the eigenvalues of the adjacency matrix are calculated, where
other measures make use of eigenvalues belonging to the Laplacian. This Laplacian is a matrix
constructed as follows, L = D−A where A is the adjacency matrix and D is the degree matrix
of the graph which has vertex degrees on its diagonal and zeroes elsewhere. This construction
of the Laplacian of graph H is shown in Figure 2. In the example in the last paragraph, B can
be a Laplacian or adjacency matrix.
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2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

−


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


Figure 2. The Laplacian constructed from the degree matrix and the adjacency matrix of graph H

2.3 Software

With the development of graph and network theory, together with the different robustness mea-
sures, some software has been developed. We tried and used different programs like Cytoscape,
newGRAPH and Gephi, which all aim on clear visualisation of graphs. The programs can be
used for calculations as well, for example Cytoscape can return the clustering coefficient and
average distance. Still, it turned out that Matlab is the most useful program because new func-
tions (like new robustness measures) can easily be added. This is especially true when making
use of “The MatlabBGL library” [4] in Matlab. This library already includes different measures
and methods to loop through graphs. It can return all kinds of connectivity and makes it easy
to spot shortest paths, for example.

In contrast with the other programs mentioned, in Matlab a visual input of a graph can
not directly be used for calculations. Instead, we make use of the adjacency matrices of the
networks. As mentioned before, if the ith row and column both only contain zero, this is
seen as a disconnected vertex i. For programming (as we do in Matlab), it is an important
insight because turning all inputs for a certain vertex to 0 does not remove the vertex, it only
disconnects it.

We performed all computations in Matlab, except for the calculations of the resilience factor.
Still, the other programs where useful, especially to validate the Matlab functions we wrote
ourselves. This validation part is extremily important, especially when you rely heavily on the
outcomes of certain calculations. Minor errors in (Matlab) scripts can have major effects, e.g.
with a small mistype values can be multiplied. Apart from using the other software for this
objective, validation was done by comparing our values with values we found in the different
papers that describe or discuss the robustness measures.

The resilience factor was not implemented completely correctly in Matlab, and therefore
was calculated by hand. The algorithm to find the total graph diversity was developed by the
authors of [7], and we were happy to be able to make use of this.
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3 Robustness measures

In this section we explore the different robustness measures we are going to compare. We discuss
four typical classical graph measures, three spectral graph measures and four recently proposed
measures.

In sections 4 and 5, we refer to the measures with abbreviations. These abbreviations are
listed in Appendix A.

3.1 Edge connectivity

The first measure we discuss is the concept of edge connectivity, which is less general than the
classical connectivity measure. The latter distinguishes only between connected graphs (κ = 1)
and unconnected graphs (κ = 0), which lacks at least one connecting edge between a pair of
vertices.

Next to this general connectivity and the frequently used measure edge connectivity, vertex
connectivity is often used as well and comparable with edge connectivity. The edge (vertex)
connectivity κe (κv) represents the minimal number of edges (vertices) that has to be removed
to disconnect the graph. So the edge (vertex) connectivity of a graph depends on the least
connected part of the graph. The measured value is integer because it represents a number of
edges (vertices) and κe ≥ 1. (If κe = 0 the graph is disconnected.) The larger κe, the harder
it is to disconnect the graph and thus the graph is considered to be more robust. These three
statements also hold for κv. [2]

3.2 Average distance

The distance measure dij is defined as the length (number of edges) of the shortest path between
vertices i and j. dmax is the maximum over the distances, also known as the diameter. The
average distance over all pairs is denoted by d̄ and is equal to 2

n(n−1) times the sum of the

lengths of the shortest paths (the Wiener index) [2]:

d̄ =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

dij

Values can take any number larger than or equal to 1, where d̄ = 1 means all vertices are
directly connected with each other. Therefore it holds that the shorter the path, and thus the
smaller the average distance, the robuster it is.

3.3 Efficiency

Similar to the distance, we have the efficiency measure E, which is the averaged sum of the
reciprocal (multiplicative inverse) of the distances. Thus, instead of dij we now have 1

dij
in the

formula:

E =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

1

dij

Because the formula consists of the reciprocal of the distance, the range of outcomes is the
reciprocal as well. Therefore values are in the interval (0, 1], so here as well E = 1 means all
vertices are directly connected with each other. Because we take the inverse, it now holds that
the greater the value, the greater its robustness. [2]

In a paper by Latora and Marchiori, this type of efficiency is called average efficiency or
global efficiency. They also define local efficiency, which is the average of the efficiency of all
subgraphs of a network. More on this topic can be found in [5].
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3.4 Clustering coefficient

The clustering coefficient captures the presence of triangles, and compares the number of trian-
gles to the number of connected triples. This coefficient returns the portion of vertex pairs j, k
sharing a neighbour i where j and k are also neighbours themselves. The clustering coefficient
ci of a vertex i is defined as the number of edges e among neighbours of i, divided by the total
possible number of edges among its neighbours: δi(δi − 1)/2. Here δi is the degree (number of
neighbours) of a vertex i.

The overall clustering coefficient of a graph is the average over the clustering coefficients
of the vertices, which can be expressed as the sum of the ij-th elements aij of the adjacency
matrix A [2]:

C =
1

n

∑
i∈V ;δi>1

ci =
1

n

∑
i∈V ;δi>1

2

δi(δi − 1)
ei =

1

n

∑
i∈V ;δi>1

2

δi(δi − 1)

n∑
j=1

n∑
k=1

aijajkaki =
1

n

∑
i∈V ;δi>1

2

δi(δi − 1)
(A3)ii

A high clustering coefficient indicates high robustness, because a lot of triangles mean a lot
of alternative paths in case of failures on a vertex or edge. The clustering coefficients range
between 0 and 1, where 1 indicates all vertices are interconnected so all possible triangles exist.

3.5 Algebraic connectivity

The algebraic connectivity is the second smallest eigenvalue of the Laplacian L, which has been
explained in section 2.2. The eigenvalues of this matrix L can be ordered from small to large
(0 = λ1 ≤ λ2 ≤ ... ≤ λn), now the algebraic connectivity is equal to λ2. [2]

If λ2 = 0 the graph is disconnected, so a higher value means the graph is more robust. Most
values are between zero and one, but can be equal to the number of vertices when all vertices
are interconnected.

3.6 Number of spanning trees

A spanning tree is a subgraph containing n−1 edges, all n vertices and no cycles. This definition
is not exclusive and therefore a graph can have multiple different spanning trees. As a robustness
measure, we count all possible spanning trees that exist for a graph. The number of spanning
trees is normally integer, and can grow quite big. It has been proven that the number of
spanning trees ξ can be written as a function of the unweighted Laplacian eigenvalues [2]:

ξ =
1

n

n∏
i=2

λi

3.7 Effective graph resistance

When a graph is seen as an electrical circuit, you can see an edge (i, j) corresponding to a resistor
or rij = 1 Ohm. The effective resistance Rij between two vertices i, j of a network (when a
voltage is connected across them) can be calculated by series and parallel manipulations. The
effective graph resistance is the sum of the effective resistances over all pairs of vertices. It is
proven this can also be written as a function of non-zero Laplacian eigenvalues:

R =
∑

1≤i=j≤n
Rij = n

n∑
i=2

1

λi
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A small value of the effective graph resistance indicates a robust network. The values vary
significantly and can grow up to up to several hundred thousands. [3]

3.8 Natural connectivity

In their paper in 2008, Wu et al. [9] propose natural connectivity as a robustness measure.
Natural connectivity is based on the number of closed walks in a graph, that can be related to
the sum of eigenvalues. A walk of length k is a path over the vertices and edges of the graph,
starting at v0, passing k − 1 vertices and k edges to end in vk. If v0 = vk this path is called a
closed walk. A closed walk may contain repeated vertices, so the length can be infinite. A closed
walk of length k = 2 will only reach one other vertex and pass the same edge twice, a closed
walk of length k = 3 is a triangle. So closed walks are directly related to subgraphs and can
serve as a measure for networks. Wu et al. introduce a measure based on the sum of numbers of
closed walks. They argue that for some graphs (e.g. M and N in Figure 3) with identical edge
connectivity and algebraic connectivity, a distinction can be made by their proposed natural
connectivity.

(a) Graph M (b) Graph N

Figure 3. Graph M and N with identical edge connectivity of 2 and algebraic connectivity 0.7369 but
different natural connectivity.

Let S be the weighted sum of numbers of closed walks, S =
∑∞

k=0(
nk
k! ) where nk is the

number of closed walks of length k. Using matrix theory, we find nk =
∑n

i=1 λ
k
i where λi is the

ith largest eigenvalue of the associated adjacency matrix. Now we can write S =
∑n

i=1 e
λi and we

can calculate the scaled ‘average eigenvalue’: the natural connectivity (or natural eigenvalue).
For the full derivation, see [9].

λ̄ = ln

(
S

n

)
= ln

(∑n
i=1 e

λi

n

)
λi was the ith largest eigenvalue, so in accordance with the notation used in this paper it

should be denoted as λn+1−i. Nevertheless, because we sum eλi over all i and the order does
not change the outcome, this can be neglected.

In our calculations, λ̄ ∈ [0, 2], where a higher value indicates a more robust graph.

3.9 Percolation limit

The percolation limit (or percolation threshold) returns the critical fraction of nodes that need
to be removed before the network disintegrates (disconnects). The percolation limit is used to
study the robustness of the internet. Here p is the fraction of the nodes (vertices) and their
connections (edges) of a graph/network that is (randomly) removed. Here, we calculate the
treshold pc which means that if p > pc the network desintegrates into smaller, disconnected
parts.

According to [1], 1− pc = (κ0− 1)−1 where κ0 =
〈k20〉
〈k0〉 , for the original graph. In an example

with n vertices v1, v2, ..., vn with corresponding vertex degrees δ1, δ2, ..., δn, these values k0
and k20 are defined in such a way that:

7



〈k0〉 =
δ1 + δ2 + ...+ δn

n〈
k20
〉

=
δ21 + δ22 + ...+ δ2n

n

So we can calculate

pc = 1− 1

〈κ20〉
〈κ0〉 − 1

making use of the original adjacency graph, we do not have to simulate random removals. Of
course, κ0 is not allowed to equal 1 but this will not happen for connected graphs with more
than two vertices. Because pc is a fraction, values are expected to be in the [0, 1] range, but
it can also become negative. Therefore we suggest to let pc = max 0, pc. Nevertheless, in the
remainder of this paper, we will make use of the limit as defined by Cohen et al. For futher
interpretation we have to know that a higher percolation limit indicates the fraction of vertices
that can be removed without problems is higher, which means the network is more robust.

3.10 Resilience factor

When we consider robustness (or similarly resilience), we look at the capability of a network
to remain in service when vertices or edges fail. The resilience factor expresses the fraction of
subgraphs where 1 up to n−2 vertices are removed and where the remainings are still connected.
A graph with n−1 vertices removed consists only of one vertex, and is therefore not of interest.
For a graph with n vertices, removing i vertices can be done in

(
n
i

)
= n!

i!(n−i)! ways. Now k(i)

denotes the number of connected subgraphs divided by this total of
(
n
i

)
for each set of subgraphs

with i vertices removed. Now the resilience factor RF can be constructed as the average of these
fractions:

RF =

∑n−2
i=1 k(i)

(n− 2)

In [8] i ranges from 2 up to n− 1, k(i) here represents the fraction of connected subgraphs
where i − 1 vertices are removed. The k we use here does not correspond with the k used for
calculations of the percolation limit.

Values are between zero and one, as we are working with fractions. A higher RF is better
because this indicates the graph will stay connected in more cases of vertex removal than a
graph with lower RF .

3.11 Graph diversity

Another way of checking the ability of a graph to remain connected, is by calculating the path
diversity. For two vertices in a graph, the different paths that are possible between both vertices
are determined. For every path, we look at the number of vertices it shares with the shortest
path. A diversity of 1 expresses the fact that the paths do not share a vertex. This means that
in case of failure, the combination of the paths guarantees robustness. So this is more robust
than a diversity of 2

3 which indicates an overlap of 1
3 . Over all paths the effective path diversity

(EPD) is calculated, and the average of all EPD’s is denoted as the total path diversity (TPD),
which is the measure we included in our comparison.

To calculate the path diversity, let the shortest path between a pair of vertices (i, j) be
P0. The diversity function D(x) with respect to P0 is defined as D(Pk) for any other path Pk
between (i, j). So

D(Pk) = 1− |Pk ∩ P0|
|P0|

8



where |P0| is the total number of vertices and edges of the shortest path for (i, j), |Pk ∩ P0| is
the combined number of vertices and edges that P0 and Pk share.

Now the effective path diversity (EPD) is EPD = 1− e−λki,j where ki,j is a measure of the
added diversity, defined as:

ki,j =
k∑
i=1

Dmin(Pi)

The total graph diversity (TGD) can now be defined as the average of the EPD values of all
node pairs within that graph, TGD =

∑n
i=1

∑n
j=i+1 for undirected graphs, for directed graphs

the second summation should be
∑n

j 6=i.
Total graph diversity was calculated with the original Matlab files of Rohrer and Sterbenz,

who proposed these measures in [7]. Here you can choose k, the number of alternative paths
that is used for the calculations. As the outcomes converge when k increases, we let Matlab
increase this value until the outcomes differed less than 0.00001.

All values range between [0, 1]. As mentioned in [7], a star topology has a TGD of 0 (graph
I), a ring has a TGD of 0.6 given λ = 1. As a ring is generally considered as more robust than
a star, and given the path diversity explanation, a bigger TGD indicates greater robustness.
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4 Comparing graphs

In this section, we are going to make a comparison between the different robustness measures.
In order to do this, we calculate the robustness of different graphs. We will explain the graphs
we used in section 1. Then we calculate the robustness of theoretical graphs in different ways
in section 2. Next we compare the outcomes and list some of the contradictions in section 3.
Section 4 describes some cases where we did not find a contradiction.

4.1 Graphs

We considered 16 simple, undirected, unweighted graphs that we found in the literature. Some
are more or less similar and thus hopefully comparable, others are very different. The graphs
are shown in Figure 4.

(a) Graph A (b) Graph B (c) Graph C (d) Graph D

(e) Graph E (f) Graph F (g) Graph G (h) Graph H

(i) Graph I (j) Graph J (k) Graph K (l) Graph L

(m) Graph M (n) Graph N (o) Graph P (p) Graph Q

Figure 4. The graphs that were used for the comparison of the measures.

We divided the graphs into several groups, depending on their numbers of vertices and
edges. These groups were subsequently divided into three categories, containing the same kind
of relations. In sections 4.3 and 4.4, we will refer to these categories to value the comparisons
we made.

category 1 similar number of vertices and similar number of edges: {A,B}, {C,H}, {E,N},
{I, J}, {P,Q}

category 2 only similar number of vertices: {A,B, F}, {C,G,H, I, J}, {D,L}, {E,M,N}

category 3 no similar size, this can be a combination between any two graphs

10



4.2 Calculated measures

Except for the resilience factor (RF) which has been calculated by hand, implementation of the
measures in Matlab made it easy to calculate the robustness measures for all graphs. Graphs
K, P and Q were too big to calculate the RF by hand, these spots are therefore left empty. The
results are displayed in Tables 1 and 2, with the values of a certain measure in each row, and
the graph that is being evaluated in each column. As discussed in section 2 for the individual
measures, for nearly all values it holds that the bigger the value, the more robust the graph
is. Only average distance (AD) and effective graph resistance (EGR) should be interpreted the
other way around i.e. a smaller value indicates higher robustness.

A B C D E F G H

n 7 7 4 5 6 7 4 4
m 10 10 4 6 8 9 6 4

EC 1 2 1 1 2 1 3 2

AD 1.7619 1.8095 1.3333 1.5000 1.4667 1.8095 1 1.3333

EF 0.7024 0.6944 0.8333 0.7833 0.7667 0.6786 1 0.8333

CC 0.5238 0.7143 0.5833 0.5333 0 0.3810 1 0

AC 0.6338 0.5858 1 0.8299 2 0.5858 4 2

NST 55 64 3 8 32 30 16 4

EGR 21.6727 21.5000 6.3333 10.2500 11.5000 23.7333 3 5

NC 1.5140 1.4457 0.9857 1.2345 1.2517 1.2307 1.6672 0.8676

PL 0.5455 0.5000 0.2000 0.4000 0.5000 0.4375 0.5000 0

RF 0.5371 0.6229 0.7083 0.6667 0.7000 0.5276 1 0.8333

TGD 0.6455 0.6083 0.4105 0.5043 0.6533 0.5850 0.8647 0.6321

Table 1. The robustness values for graphs A up to H.

I J K L M N P Q

n 4 4 11 5 6 6 9 9
m 3 3 19 7 7 8 9 9

EC 1 1 2 2 2 2 1 1

AD 1.5000 1.6667 1.9091 1.3000 1.6667 1.6000 2 2

EF 0.7500 0.7222 0.6318 0.8500 0.7111 0.7444 0.5833 0.5833

CC 0 0 0.2909 0.4000 0.3611 0.7778 0.1333 0.0815

AC 1 0.5858 0.8440 2 0.7639 0.7639 0.4586 0.5300

NST 1 1 12625 24 12 24 3 3

EGR 9 10 41.8337 6.4167 16 14.5 64 64

NC 0.6716 0.6465 1.6937 1.3986 1.0879 1.3508 1.0315 1.0332

PL 0 -0.5000 0.6200 0.4615 0.3636 0.4667 0.5714 0.5714

RF 0.6250 0.5000 - 0.8667 0.4375 0.4542 - -

TGD 0 0 0.8781 0.7925 0.5825 0.5980 0.1925 0.1925

Table 2. The robustness values for graphs I up to Q.

4.3 Comparison

In Table 3 graph combinations that result in a counterexample are shown. On both sides, the
11 different measures are displayed. In a certain box, the names of two graphs that result in a
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contradiction are displayed. Input “A:B” means the combination of graphs A and B results in
a ‘counterexample’ for the robustness measures in that corresponding row and column.

As we could see, the graphs we calculated are not all very similar. They have different
structures and different numbers of vertices and edges. When we compare the values, we have
a preference for using pairs of graphs of similar size, that is similar number of vertices and if
possible also similar number of edges. Therefore we preferred the comparison of the pairs of
category 1. A counterexample with one of these pairs is marked bold: A:B. Next, we looked at
category 2 but it turned out that all contradictions in this category were already covered by the
first one. Next in line, we have the couple {C,D}. Although they do not share the same number
of vertices nor edges, you can say D is an extension of C. This couple is emphasized by italic
typewriting: C:D. If we did not find a counterexample in one of these categories, we denoted
an example of non-similar graphs (category 3). These are not marked (e.g. D:E). We did not
look at the difference in the values: a contradiction with NCA = 1.5140 and NCJ = 0.6465 is
not preferred over NCP = 1.0332 and NCQ = 1.0315.

EC AD EF CC AC NST EGR NC PL RF TGD

EC X A:B A:B C:H A:B F:G B:C A:B A:B C:E A:B

AD X X D:E A:B J:K A:B A:B E:N C:D A:B C:D

EF X X X A:B D:E A:B A:B E:N C:D A:B C:D

CC X X X X A:B C:H C:H A:B A:B C:H A:B

AC X X X X X A:B A:B C:H C:H A:B C:D

NST X X X X X X C:D A:B A:B C:D A:B

EGR X X X X X X X A:B A:B D:F A:B

NC X X X X X X X X E:N A:B C:H

PL X X X X X X X X X A:B C:H

RF X X X X X X X X X X A:B

TGD X X X X X X X X X X X

Table 3. The graph combinations that result in contradictions.

With {A,B} we could already find 30 of the 55 contradictions. 41 of the couples are in
category 1 and thus share the same number of vertices and edges. By adding {C,D} we could
fill in another 7 spots. For the last couples, we used category 3. For a lot of combinations, more
than one pair of graphs was possible although only one of them is shown here. Especially the
clustering coefficient (CC) had a lot of ‘preferred’ contradictions.

For a lot of combinations of graphs and measures, we did not find a contradiction but only
a difference. Hereby we mean that for some graph couples, one measure did make a difference
between the graphs and the other measure treated them exactly the same. We did not need
such examples to fill the comparison table. Instead, it turned out we did not need all sixteen
graphs to get all comparisons, ten would have been enough. For example, we could have left
out H, I, L, M , P and Q.

The average distance (AD) and effective graph resistance (EGR) were only contradictive
in one example (D:E), and here both values were still very close to each other. This could be
expected from the literature: for some cases it is proven that Rij = dij [3].

4.4 Similarities

For the graphs in categories 1 and 2, we expected similarities in the robustnesses because of their
comparable shapes. For some of these nicely comparable graphs where there was little variation
between the values calculated, this hypothesis was confirmed. Some of the observations are
reported here.
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B:F is not an interesting comparison: for all measures B is considered to be more robust than
F or they are equal (AD, AC).

A:F gives similar results. They have the same edge connectivity (EC) and in all other cases A
is more robust.

D:L is not an interesting combination either. L is more robust except for the CC were D is
larger.

I:J are equal in four cases (EC, CC, NST, TGD), in all other cases I is robuster than J . G:H:I:J
(looking at C:H was enough)

M:N is a combination where N has one edge more than M . Therefore you would expect N
to be robuster, and indeed all measures show this. Wu et al [9] argued that natural
connectivity was a good alternative because sometimes other measures canot distinguish
differences between graphs and they gave the example of graphs M and N . With the
natural connectivity measure the two can be distinguished, but as it turns out there are
a lot of other measures that can help distinguishing between the two. Actually, in our
‘selection’ only EC and AC yield exactly the same values.

P:Q is an interesting couple because they have exactly the same size: the same number of
vertices and the same number of edges. This equality is also visible in their robustnesses:
nearly all of them are equal. The comparison results in only two contradictions: CC/AC
and CC/NC.
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5 Real life networks

In this section we look at real networks and how they are evaluated by the different robustness
measures. Now that all Matlab functions are implemented, we want to test some real networks.
We loaded some networks from ResiliNets [6]. The site can return unweighted and weighted
adjacency files. We used the unweighted ones so our approach and results will be similar to
what we did earlier with the theoretical graphs. Matlab has a nice import function, and after
converting the matrices into sparse matrices we could calculate them with the Matlab functions.

5.1 Real networks

Before we start evaluating different networks, we have a look at what these networks are. The
networks available on the website have between 5 and 573 cities (vertices) and between 0 and
540 links (edges). Most of the networks are IP backbone networks, large networks of devices in
worldwide computer networks.

Two of the networks we consider are GpENI L1 and GpENI L2. The abbreviation GpENI
stands for ‘Great plains Environment for Network Innovation’, which is an international pro-
grammable network testbed. This testbed is constructed to enable research on internet archi-
tecture. The L1 network is a subset of the much larger L2 network. GpENI L1 has the shape
of a star graph like graph I, but now with a total of 5 vertices instead of 4.

Similarly, Coronet L1 is a network from the Darpa Coronet Program. The L1 network is a
global hypothetical fiber-optic backbone network developed for use in research. Of the total of
100 cities and 136 links, 76 cities and 100 links are to be found in the US. The other cities are
in Europe and Asia.

US motorways corresponds with the Interstate Highway System in the USA, a network of
over 47000 miles (nearly 76000 km) of public road length. A visualisation of the US Motorways
as a network can be seen in Figure 5, which is created with a Web-based topology map viewer
on the website [6]. In this section we use the abbreviation USmw for this network.

AT&T is a large U.S. telecommunication company and the AT&T L1 network we consider
here is an IP backbone network constructed out of a subset of their data. Similarly, the network
Sprint L1 corresponds to the global voice, data and internet services provider Sprint and Tiscali
L3 which is linked to the Italian company Tiscali. Most of the datapoints in the Tiscali network
can be found in Europe. On ResiliNets more networks of AT&T and Sprint can be found, as
well as networks from other internet providers.

Figure 5. The US motorway network in KU-TopView.
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5.2 Network robustness

For the seven networks that were introduced in the previous section, we calculated some ro-
bustness measures. The results can be found in Table 4. None of the networks was one to one
comparable with regards to the number of vertices and edges. The resilient factor (RF) of the
GpENI L1 was calculated by hand, this was possible because this is a relatively small network.
For the other networks RF was not calculated because of their size. This also resulted in a
problem for calculation of the TGD. The program starts with calculating all minimal paths and
then searches alternative paths. For a graph of 200 vertices, this is quite a job and it seems
Matlab runs into problems. Unfortunately, we therefore have not been able to calculate values
for this metric.

Coronet L1 GpENI L1 Tiscali L3 GpENI L2 USmw AT&T L1 Sprint L1

n 100 5 51 51 400 361 236
m 136 4 129 61 540 466 311

EC 2 1 1 1 1 1 1

AD 6.6741 1.6000 2.4298 4.6965 13.3395 13.5739 14.7751

EF 0.2045 0.7000 0.4693 0.2803 0.1074 0.1064 0.1017

CC 0 0 0.3776 0.1847 0.0526 0.0487 0.0314

AC 0.0508 1 0.5255 0.0533 0.0059 0.0061 0.0053

NST 1.5873e26 1 1.9348e22 5.5638e05 2.8195e92 8.5742e73 1.1732e41

EGR 1.0857e04 16 1.3256e03 4.5582e03 3.2213e05 2.8257e05 2.0127e05

NC 1.1339 0.7443 5.6718 1.2212 1.2151 1.1499 1.0075

PL 0.4925 0.3333 0.8974 0.6187 0.5400 0.5136 0.3890

RF - 0.6000 - - - - -

TGD - 0 - - - - -

Table 4. The robustness values for some ‘real’ networks.

The edge connectivity does not make any difference for six of the graphs, although it would
help if you could look at the number of ways a graph can be disconnected by removing a
number of edges equal to the edge connectivity. This is captured by yet another robustness
measure, the reliability polynomial. We did not include this in our overview because it has a
very large correspondence with the edge connectivity and therefore you would not expect to
find any contradictions. Still, for these networks visible in Table 4 it is interesting to notice
that this value can distinguish them and can show that the networks are indeed very different.
The network disconnection possibilities of GpENI L1, GpENI L2, USmw, AT&T L1 and Sprint
L1 are respectively 4, 14, 34, 40 and 21, where a value of 4 means that there are 4 vertices that
are connected to the network with only one edge. For the remaining part of the network, the
edge connectivity is higher, and therefore that part is more robust. The value of 40 therefore
tends to express that the AT&T L1 network is less robust than the Sprint L1, because there
are more possibilities to disconnect it by only removing one edge.

When neglecting Coronet L1, the networks are now sorted in such an order that the average
distance is increasing. This indicates that, out of the remaining six, GpENI L1 is the most
robust network. Neither the edge connectivity nor the efficiency measure contradicts this. Here
we have to keep in mind that for the average distance a small value indicates robustness, where
for the efficiency a larger value means greater robustness. Nevertheless, the other measures do
not support the order that would be expected from the first couple of measure outcomes, so the
counterexamples we were looking for earlier can be found here as well. A representation of this
ordering, with 1 for the most robust network and 7 for the least robust, can be found in Table
5. For cases with similar outcomes (EC, CC), fewer numbers are used.
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Coronet L1 GpENI L1 Tiscali L3 GpENI L2 USmw AT&T L1 Sprint L1

EC 1 2 2 2 2 2 2

AD 4 1 2 3 5 6 7

EF 4 1 2 3 5 6 7

CC 6 6 1 2 3 4 5

AC 4 1 2 3 6 5 7

NST 4 7 5 6 1 2 3

EGR 4 1 2 3 7 6 5

NC 4 7 1 2 3 5 6

PL 5 7 1 2 3 4 6

Table 5. An ordering of the robustness values for some ‘real’ networks, 1 meaning most robust, 7
indicating least robustness.

The number of spanning trees depends on the size of the graph, and therefore any com-
parison between unequal matrices seems unfair. Still, it is striking to see that most networks
are repeatedly awarded the same ‘position’. GpENI L1 gets the opposing positions 1 and 7
repeatedly, but this might be influenced by the size of this small network. GpENI L2 is in
nearly all cases ranged as second or third, and Tiscali L3 also receives good scores. Coronet L1,
AT&T L1 and Sprint L1 on the other hand do not seem to do very well. For these networks, it
seems that the different robustness measures score them more or less according to a trend.
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6 Conclusion and further research

To gain insight in the relation between different robustness measures that have been developed
over the years, we compared eleven of those measures in this paper. The main question we
wanted to answer is: For each combination of robustness measures, is it possible to find a pair
of graphs such that the robustness measures point in opposite directions? At the beginning we
were not sure whether it would be possible to find examples for all measure combinations and
we had no idea how hard it would be to find nice graphs. It turned out that it was not that
difficult to find inconsistencies between measures.

To address the main question, we started with gaining insight into the eleven robustness
measures and we chose some theoretical graphs where we calculated the measures for. With
these values we made a comparison between robustness measures and graph couples. For seven
large, real world networks we did the same thing; we calculated their robustness values and
compared the results (even though the networks we used were not easily comparable in size).

After carrying out these comparisons, we can come to four main results of our work:

• It turned out to be quite easy to find graph pairs that show incompatibility between the
robustness measures.

• It was possible to find examples for all measure combinations, this is something that was
not clear from the beginning.

• For a lot of graph pairs and measures similarities were visible as well.

• For large networks we found the same results: inconsistencies as well as trends are visible.

It turned out it is important to mention for all values what the range of the outcomes is and
what values indicate high robustness. These two factors can easily lead to misunderstandings.
It would therefore be easier if there is a way to rescale all measures in such a way that all
measures return values between [0, 1], where 1 is high robustness and 0 is not robust (i.e. a
disconnected graph). This can be something of interest for further research.

We have been able to fill 41 of the 55 measure combinations with contradictions with graph
pairs of the same size. This means the two graphs had the same number of vertices and
edges. For 14 measure combinations, we were not able to find such combinations. It would be
interesting for future work to focus on finding graphs of the same size for these 14 positions as
well.
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A Measure abbreviations

In sections 4 and 5, some abbreviations have been used to refer to the robustness measures.
Here we list the abbreviations used.

n = number of vertices

m = number of edges

EC = edge connectivity

AD = average distance

EF = efficiency

CC = clustering coefficient

AC = algebraic connectivity

NST = number of spanning trees

EGR = effective graph resistance

NC = natural connectivity

PL = percolation limit

RF = resilient factor

TGD = total graph diversity
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