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1. Introduction and Background 
 

Identifying and quantifying dependencies is the core of econometric modeling, especially in the 

risk management. Historically measuring and modeling dependencies has centered on the 

Pearson correlation because of its ease in use. However, the Pearson correlation is not a measure 

of general but only of linear dependence (Aas, 2006). Embrechts, McNeil & Straumann (2002) 

argue that the Pearson correlation suffer from several shortcomings when looking at the four 

desired properties of dependence measures. So the Pearson correlation is not invariant under 

non-linear transformations, which are frequently used especially when working with financial 

data. According to Embrechts, McNeil & Straumann (1999) it is better to use rank correlation 

measures such as Kendall’s tau and Spearman’s rho instead of Pearson correlation. However, 

they argued that one should use a dependence measure that reflects more knowledge about the 

dependence structure instead of summarizing in just a single number. Embrechts et al. (2002) 

indicates the superiority of copulas in modeling dependence because of their flexibility and the 

various types of dependence that they allow for.  

Copulas were first introduced by Sklar (1959). The benefits from using copulas in finance were 

indicated in 1987 by Genest and MacKay. The study of Embrechts et al. (1999) was the first 

study that uses copulas in the financial context.  

Estimating the joint distribution of risk factors is in general a hard task. The copula approach 

provides a way of isolating the marginal behavior from the dependence structure (McNeil, Frey 

and Embrechts (2005). Alcock and Hatherley (2007) suggested that through copulas, the non-

normal dependence structure could be modeled by using only uniforms of the marginal 

distributions which, in turn, permitted to avoid the restrictive assumptions of normality and 

linear dependence. This means that the marginals can be modeled using each type of 

distributions without influencing the dependence structure between them. 

Three types of copulas can be distinguished: fundamental copulas, implicit copulas and explicit 

copulas. Fundamental copulas are copulas that represent perfect positive dependence, 

independence and perfect negative dependence. Implicit copulas are copulas extracted from well-

known multivariate distributions and do not have closed form expressions. Explicit copulas, also 

called Archimedean copulas, are copulas with simple closed form expressions and follow general 

mathematical constructions to yield copulas. This research focuses on the last type of copulas, 
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namely the Archimedean copulas. Archimedean copulas represent a class of copulas that are 

broadly used to model the dependence structure between risk factors.  

Archimedean copulas have a simple closed from and do not need to be represented by a 

multivariate distribution. This class of copulas became very popular due to the easiness of the 

construction and the implementation of their copulas next to the wide range of dependence that 

they allow for (Cherubini, Luciano and Vecchiato, 2004). 

 

This research focuses on bivariate Archimedean copulas.  The most important copulas within this 

class will be discussed in details: namely the Clayton copula, the Gumbel copula and the Frank 

copula.  

In this research we will try to answer the following questions: 

1) What are Archimedean copulas? 
2) How are Archimedean copulas linked to dependence measures? 
3) How can Archimedean copula be fitted to financial data? 

The remainder of this thesis is organized as follows. Section 2 discusses in details different 

dependence measures. Section 3 introduces the copula theory and how copulas can be related to 

dependence measures. Section 4 illustrates an application of the Archimedean to a portfolio 

composed from two stock indices. Section 4 provides conclusions. Recommendations for further 

research are discussed in Section 6. 
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2. Dependence measures 
 

In this section the desirable properties of dependence measures are discussed. Furthermore, 

different types of dependence measures will be discussed namely: the Pearson linear correlation, 

the rank correlation and the tail dependence. It will be shown that the Pearson linear correlation 

does not always meet the desired properties of dependence measures. Further, the copula based 

dependence measures (rank correlation and tail dependence) which meet the desired properties 

will be discussed. Since this research focuses on the bivariate copulas, the discussion of 

dependence will be restricted to the bivariate case. 

 

2.1 Desirable properties of dependence measures 
 

Before discussing the desirable properties of dependence measures an introduction to the concept 

of dependence is needed. Two random variables X and Y are said to be dependent or associated 

if they do not satisfy the independence property:(   )    ( )    ( ), where   ( ) and   ( ) 

are the marginal distributions functions of the random variables X and Y (Trivedi, 2005). 

Let δ express a simple scalar measure of dependence. Four desired properties of δ are described 

by (Embrechts, McNeil & Straumann, 2002).  

 

(I)               (   )   (   ), known as the condition of symmetry. 

(II)           (   )   , known as the condition of normalization. 

(III)         (   )   , then (   ) are comonotonic.   

   (   )    , then (   ) are countermonotonic. 

(IV)      ( ( )  )  {
 (   )            

  (   )            
  

 

For strictly monotonic transformation        of  . 

 

2.2 Pearson linear correlation 
 
Pearson linear correlation is the most widely used type of dependence measures. The Pearson 

linear correlation measures the direction and the degree to which one variable is linearly related 
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to the other variable. For non-degenerating random variables X and Y, the linear correlation 

coefficient is defined by:  

 (   )  
        

    
 

Where          is the covariance between X and Y,    and    are the standard deviations of the 

random variables X and Y respectively. The Pearson linear correlation takes values between -1 

and 1. When  (   )    then the variables X and Y are said to be perfectly dependent by an 

increasing relationship. When  (   )     then the variables X and Y are perfectly dependent by 

a decreasing relationship. Furthermore, if the random variables X and Y are independent then the 

correlation between these two variables is equal to zero (Embrechts, McNeil and Straumann, 

2002). 

The popularity of the Pearson linear correlation coefficient is mainly due to its ease in use and 

intuitive comprehension (Cherubini, Luciano and Vecchiato, 2004). However, when looking 

back at the four desired properties of dependence measures, proposed by Embrechts, McNeil and 

Straumann (2002), several shortcomings can be detected. Independency implies that the 

correlation is equal to zero but zero correlation does not imply that the random variables are 

independent. Consider two random variables,    (   )   and     . In this case, the 

correlation between X and Y is equal to zero. However, the variables X and Y are perfectly 

dependent. So a linear correlation coefficient of zero only needs the covariance between X and Y 

to be equal to zero. Whereas zero dependence requires       ( )   ( )    for each function 

of    and   . So if the variables (   ) are independent, then the Pearson linear correlation 

coefficient equals zero. However, the converse is not true because  (   ) only detects linear 

dependence. Only in the case where (   ) are jointly normally distributed, uncorrelatedness is 

equivalent to independence (Embrechts, McNeil and Straumann, 1999). Another shortcoming of 

the Pearson linear correlation is that is not defined when the variance of X or Y is not finite. This 

means that the linear correlation is not a suitable dependence measure when dealing with 

distributions that are characterized by fatter tails, which is the case in the most financial time 

series data (Cherubini, Luciano and Vecchiato, 2004).  

Further, the Pearson linear correlation does not satisfy the invariance property (the fourth 

desirable property of dependence measures). This means that the Pearson linear correlation is not 
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invariant under non-linear monotone transformations. This can be explained by the fact that 

linear correlation does not only depend on the joint distribution of r.v.s but also on their 

marginals (Cherubini, Luciano and Vecchiato, 2004). 

Anscombe (1973) argued in his paper on the role of the graphs in statistical analysis that the 

Pearson linear correlation can be misleading if it not combined with scatter plots. He introduced 

the Anscombe’s quartet where he illustrates four datasets with the same statistical properties but 

the variables show different relationships (Figure A1-Appendix A).  

 

2.3 Rank correlation  
 

In order to deal with the shortcoming of the Pearson linear correlation, two rank correlation 

measures will be discussed namely: the Spearman’s rank correlation (  ) and the Kendall’s rank 

correlation (  ).Because these two measures both lay on the concept of concordance, this 

concept will be introduced first.  

The observations (     ) and (     )are said to be concordant if (     ) and (     )  or if 

(     ) and (     ) . This means that large (small) values of the random variable X are 

associated with large (small) values of the random variable Y. If the opposite is true, discordance 

arises. In the following the two rank correlation measures will be discussed in more details. 

 

2.3.1 Spearman’s rank correlation 
 

The spearman linear correlation is a non-parametric correlation measure defined by (Embrechts, 

McNeil, and Straumann, 2002): 

      
  ∑  

 (    )
 

Where n is the number of the paired ranks, and d is the difference between the paired ranks. In 

this sense, Spearman’s rank correlation can be seen as the Pearson linear correlation between the 

ranked variables. The variables are ranked by assigning the highest rank to the highest value. 

The most attractive property of Spearman’s rank correlation is that it does not make any 

assumption about the frequency distribution of the two variables. Another attractive feature of 

Spearman’s rank correlation is its ability to capture the non-linear dependence between the two 

variables.  
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2.3.2 Kendall’s tau 
 

Kendalls’s rank correlation is a non-parametric correlation measure that measures the difference 

between the probability of concordance and the one of discordance between the r.v.s X and Y 

(Cherubini, Luciano and Vecchiato, 2004). Except that Kendall’s rank correlation represents a 

probability, it is considered equivalent to Spearman’s rank correlation. Kendall’s tau is given by 

(Embrechts, McNeil, and Straumann, 2002): 

   
(   )

 (   )  
 

Where C is the number of concordant pairs and D is the number of discordant pairs. 

Like the Spearman’s rho, Kendall’s rank correlation is invariant under monotonic non-linear 

transformations of the underlying variables. 

 

If X and Y are variables with continuous marginal distributions and unique copula then 

Spearman’s rho and Kendall’s tau can be expressed as follows (Cherubini, Luciano and 

Vecchiato, 2004): 

  (   )    ∫ ∫  (   )      
 

 

 

 

 

  (   )   ∫ ∫  (   )  (   )   
 

 

 

 

 

Where  (   ) is the copula of the bivariate distribution function of X and Y. Both   (   ) and 

may be considered as measures of the degree of monotonic dependence between X and Y, 

whereas linear correlation measures the degree of linear dependence only. According to (McNeil, 

Frey and Embrechts, 2005), it is slightly better to use these measures than the linear correlation 

coefficient. In their opinion, however, one should choose a model for the dependence structure 

that reflects more detailed knowledge of the problem at hand instead of summarizing dependence 

with a single number like linear correlation or rank correlation (Aas, 2004). One such measure is 

tail dependence which is discussed in the next sub-section. 
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2.4 Tail dependence 
 
Tail dependence is a dependence measure that looks at the concordance between extreme values 

(tail of the joint distribution) of the r.v.s X and Y. This dependence measure is the most 

appropriate when interested in the probability that one variable exceeds or falls below some 

given threshold. Geometrically, tail dependence measures the dependence between X and Y in 

the upper-right and lower-left quadrant of the joint distribution function (Cherubini, Luciano and 

Vecchiato, 2004). According to Nelson (2006), the parameter of asymptotic lower tail 

dependence, noted by   , is the conditional probability in the limit that one variable takes a very 

low value, given that the other also takes a very low value. Similarly, the parameter of the 

asymptotic upper tail dependence   , is the conditional probability in the limit that one variable 

takes a very high value, given that the other also takes a very high value. The asymptotic tail 

dependence parameters for copula function are given by Nelson (2006): 

       
    

 (   )

 
 

        
    

   (   )

   
 

The most attractive property of tail dependence measures is that they are independent of the 

marginal distributions of the variables and that they are invariant under strictly monotone 

transformations of X and Y. The variables X and Y are said to be asymptotically independent if 

  (   )    (   )    but the controversy is not true.  
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3. Copula’s 
 

Copulas are parametrically specified joint distributions generated from given marginals (Trivedi, 

2005). Therefore properties of copulas are analogous to properties of joint distributions. The 

main advantage of copulas is that they enable us to separate the marginal behavior and the 

dependence structure of the variables from their joint distribution function. This separation 

explains the modeling flexibility provided by copulas and thus the wide interest in copulas for 

modeling the dependence structure between variables. 

3.1 Copula Definition and Properties 
 

A copula is a multivariate distribution function from the unit d-cube         to the unit interval 

      which satisfies the following properties: 

 

  (              )                           

This property means that if the realizations of the d-1 variables are known with marginal 

probability one, then the d outcomes of the joint probability is equal to the one with 

uncertain outcome (  ). 

  (       )          =0      . This property says that if the realization of one 

variable has the marginal probability zero than the joint probability of all outcomes is 

zero. This property is also known as the grounded property. 

                    This property ensures that the joint probability will be not 

negative. This is because the volume ( C) of any d-dimensional interval is non-negative  

 Fréchet Bounds 

   {∑        

 

   

}    ( )     {       } 

The upper bound is called the Frechet –Hoeffding upper bound and the lower bound is 

called the Frechet –Hoeffding lower bound. 
 

Sklar’s Theorem 

Let F be a joint distribution function with margins       .There exist a copula such that for all 

        in        
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 (       )   (  (  )     (  )) 

If the margins are continuous then C is unique; otherwise C is uniquely determined on        

              . And conversely, if C is a copula and         are univariate distribution 

functions, then   defined above is a multivariate distribution function with margins       . 

This theorem states that not only are copulas joint distribution functions, but also joint 

distribution functions can be written in terms of a copula and of the marginal distributions. That 

is the reason why modeling joint distributions can be reduced to modeling copulas (Schweizer, 

1991). 

Sklar’s theorem states also that copulas represents the dependence between the variables that 

results from splitting the joint distribution into a copula and the marginals. This is why copulas 

are also called dependence functions (Deheuvels, 1978). 

Since this research focus on bivariate copulas some probabilistic properties of copulas will be 

discussed. If the random variables X and Y are standard uniform distributed: 

  ( )           ( )     

Then Sklar’s theorem involves: 

  (       )   (  ( )   ( )) 

  (       )    ( )   (  ( )   ( )) 

  (       )    ( )   (  ( )   ( )) 

  (         )  
 (  ( )   ( ))

  ( )
 

  (         )  
  ( )   (  ( )   ( ))

    ( )
 

  (         )      (  ( )   ( ))  
  (   )

  
     ( )     ( ) 

As copulas are dependence measures, they allow us to distinguish the perfect dependence and the 

independence in a straightforward way. 
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Independence: 

 The random variables X and Y are says to be independent if C they have the product copula   , 

i.e.,  (  ( )   ( ))    ( )  ( ).  

 

Comonotonicity: 

The perfectly positive dependence or comonotonicity is equivalent to the Fréchet-Hoeffding 

upper bound. For any (     ) (     ) a comonotonic set is that for which: 

{
     

     
     {

     

     
 

This property says that higher (lower) realizations of the variable X correspond with higher 

(lower) realizations of Y. 

 

Countermonotonicity: 

Also called perfect negative dependence, obtained when the copula attains the Fréchet- 

Hoeffding lower bound. 

For any (     ) (     ) a comonotonic set is that for which: 

{
     

     
     {

     

     
 

Countermonotonicity states that higher (lower) realizations of X correspond with lower (higher) 

realizations of Y.  

 

Invariance property: 

The invariance property can be seen as the most attractive property of copulas. This property 

says that the dependence captured by a copula is invariant under monotone transformations of 

the marginal distributions. For example, when applying the logarithmic transformation to the 

marginal distribution the copula will be not affected. The fact that copulas are invariant under 

decreasing or increasing transformations makes from copulas a powerful tool in applied work. 

  

There are two parametric families of copulas namely implicit copulas and explicit copulas. 

Implicit copulas do not have a simple closed form. Copulas from this family are implied by well-
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known multivariate distribution functions. The most known copulas from this class of copulas 

are the Gaussian copula and the Student’s t-copula. Explicit copulas also called Archimedian 

copulas represent a class of copulas that are broadly used to model the dependence structure in 

the data. This class of copulas became very popular due to the easiness of the construction and 

the implementation of their copulas (simple closed form) next to the wide range of dependence 

that they allow for. Since this research focuses on bivariate Archimedean copulas, the most 

important copulas within this class will be discussed in details: namely the Clayton copula, the 

Gumbel copula and the Frank copula. First the general properties of this class of copulas will be 

discussed, and then each of the early named copulas will be defined. Furthermore, the main 

properties of each copula will be discussed and how these copulas are related to dependence 

measures. 

3.2 Archimedean Copulas 
 

Archimedean copulas are all constructed by specifying a particular generator1 function  , such 

that (Cherubini, Luciano and Vecchiato, 2004): 

Let   be a strict2 generator, with ( )   completely monotonic on     )[0, ∞), than bi-variate 

Archimedean copula can be defined as: 

  (      )     ( (  )   (  ))                

An important source of generators for Archimedean copulas consist of the inverses of the 

Laplace transform of c.d.f. (Feller, 1971)3.   

One of the attractive features of Archimedean copulas is that they are easily related to 

dependence measures. Genest and MacKay (1986) proved that the relation between the copula 

generator function and Kendall’s    in the bivariate case can be given by (Cherubini, Luciano and 

Vecchiato, 2004): 

      ∫
 ( )

  ( )

 

 

    

                                                           
1 A generator   is a function defined from I to     and have the following properties: continuous, decreasing, 
convex and  ( )=0. 
2 A strict generator is a generator with  ( )=  . 
3A function   on (0;∞) is the Laplace transform of a c.d.f. F if and only  if    is compelterly monotonic and 
 ( )     
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The relation between Archimedean copulas and tail dependency was demonstrated by Joe 

(1997). The theorem says that if   is a strict generator. If   ( ) is finite and different from zero, 

then (Cherubini, Luciano and Vecchiato, 2004); 

 (     )      ( (  )   (  )) 

Does not have tail dependence. If the copula has upper tail dependence, then   

  ( )
    

And the coefficients of upper tail dependence and lower tail dependence are given by (Cherubini, 

2004): 

              
  ( )

  (  )
     and                 

  ( )

  (  )
 

In the following part the closed formula for the Frank, Clayton and Gumbel copulas is given. 

Also the explicit formulas between the copula parameter and the dependence measures will be 

given. 

 

3.2.1 Clayton copula 
 
The Clayton copula is first introduced by Clayton (1978). The Clayton copula is mostly used to 

study correlated risks because of their ability to capture lower tail dependence. The closed from 

of the bivariate Clayton copula is given by: 

   (       )  (  
     

    )
   ⁄

 

Where   is the copula parameter restricted on the interval (   ). If     then the marginal 

distributions become independent; when     the Clayton copula approximates the Fréchet-

Hoeffding upper bound. 

Due to the restriction on the dependence parameter, the Fréchet-Hoeffding lower bound cannot 

be reached by the Clayton copula. This suggests that the Clayton copula cannot account for 

negative dependence. 

The dependence between de Clayton copula parameter and Kendall’s tau rank measure is simply 

given by: 
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The parameter of lower tail dependence for this copula can be calculated by:         . 

(Cherubini, Luciano and Vecchiato, 2004). 

While the relation between the Clayton copula parameter and the dependence measures: 

Kendall’s tau and the tail dependence are simple; the association between the copula parameter 

and the Spearman’s rho is very complicated. 

 
 3.2.2 Gumbel copula 

 
The Gumbel copula (1960) is used to model asymmetric dependence in the data. This copula is 

famous for its ability to capture strong upper tail dependence and weak lower tail dependence. If 

outcomes are expected to be strongly correlated at high values but less correlated at low values, 

then the Gumbel copula is an appropriate choice. The bivariate Gumbel copula is given by: 

   (       )     ( [(      )
  (      )

 ]
  ⁄

) 

Where   is the copula parameter restricted on the interval     ). When   approaches 1, the 

marginals become independent and when   goes to infinity the Gumbel copula approaches the 

Fréchet-Hoeffding upper bound. Similar to the Clayton copula, the Gumbel copula represents 

only the case of independence and positive dependence.  

The relation between the Gumbel copula parameter and the Kendall’s tau is given by:  

         

The parameter of the upper and lower tail dependence of the Gumbel copula can be calculated 

respectively by                     . While the relation between the dependence 

measures: Kendall’s tau and the tail dependence and the copula parameter have simple closed 

forms, the relation between the copula parameter and the Spearman’s rho has no closed form. 

 

3.2.3 Frank copula 
 

The Frank copula (1979) is given by: 
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   (       )         {  
(       )(       )

(     )
} 

Where   is the copula parameter that may take any real value. Unlike the Clayton and the 

Gumbel copula, the Frank copula allows the maximum range of dependence. This means that the 

dependence parameter of the Frank copula permits the approximation of the upper and the lower 

Fréchet-Hoeffding bounds and thus the Frank copula permits modeling positive as negative 

dependence in the data. When   approaches          the Fréchet-Hoeffding upper and 

lower bound will be attained. The independence case will be attained when   approaches zero. 

However, the Frank copula has neither lower nor upper tail dependence (        ). The 

Frank copula is thus suitable for modeling data characterized by weak tail dependence. 

 The calculation of the Kendall’s tau and the Spearman’s rho (  ) from the copula parameter 

requires the computation of the Debye4 function and are given by: 

         ( )       

and 

                (  )    (  )    

 The relationship between the discussed Archimedean copulas and the copula based dependence 

measures: Kendall’s tau, Spearman’s rho and tail dependence is summarized in Table 3.1. 

Copula Kendall’s tau Spearman’s rho Upper tail Lower tail 

Clayton  

   
 

complicated         

Gumbel       No closed form          

Frank       ( )                 (  )    (  )    0 0 

Table 3.1:Association between some Archimedean copulas and the rank correlation measures: Kendall and 

Spearman and the tail dependence 

                                                           
4   ( )  

 

   ∫
  

   ( )  
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3.3 Copula parameter estimation 
 

All Archimedean copulas that are discussed are characterized by one dependence parameter that 

needs to be estimated. The most widely used estimation methods are the full maximum 

likelihood (FML) estimation method and the inference for margins (IFM) approach. In the 

following sub-sections, these two estimation methods will be discussed in more details. 

 

3.3.1 Full maximum likelihood estimation 
 

The FML is the most direct estimation method. Using the FML approach, the copula parameter 

and the marginal distribution parameters are estimated simultaneously.        

Following Sklar’s theorem the following canonical form for the bivariate joint density of two 

random variables   and    can be used (Cherubini, Luciano and Vecchiato, 2004): 

 (     )   (  (  )   (  ))  (  )  (  )        

Where  (  (  )   (  ))  
   (  (  )   (  ))

   (  )   (  )
, c is the copula density,    and    are the marginal 

density and distribution function respectively.  

Now the log-likelihood function for the bivariate case can be expressed as follows (Cherubini, 

Luciano and Vecchiato, 2004): 

 ( )  ∑    (  (    )   (    ))

 

   

  ∑∑     (    )

 

   

 

   

 

Then the maximum likelihood estimator maximizes the log likelihood and is given by:  

 ̂        
 

 ( ) 

The estimates of the maximum likelihood parameter can be found using a numerical 

maximization method. Furthermore under certain regularity conditions the asymptotic theory can 

be used for both the marginal as the copula. Under these regularity conditions, the maximum 
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likelihood estimator exists, is consistent, asymptotically efficient and asymptotically normal. 

Furthermore (Cherubini, Luciano and Vecchiato, 2004):  

√ ( ̂    )  (     (  )) 

Where   is the Fisher’s information matrix and   is the true value. 

3.3.2 Inference for the margins 

 

Compared to FML, the IFM method is computationally more attractive (Kole et all, 2005).The 

IFM estimates the marginal distribution parameters separately from the copula parameters. 

Hence, here the estimation procedure is divided in two steps (Cherubini, Luciano and Vecchiato, 

2004).  

In the first step the parameters for the models of the marginals are estimated: 

 ̂          
∑ ∑      (       )

 
   

 
          

In the second step the parameter of the copula model are estimated, given  ̂ : 

 ̂          
∑     (  (    )   (    )     ̂ )

 
         

This results in the IFM estimator:  

 ̂  ( ̂   ̂ )     

Under certain regularity conditions5, the IFM estimator verifies the property of asymptotic 

normality and can be seen as a highly efficient6 estimator compared to the FML estimator (Joe, 

1997).         

  

3.4 Copula selection 
 

Up to now, there is no consensus about a statistic criterion that selects the copula that provides 

the best fit to the data. Dias and Embrechts (2004) and Palaro and Hotta (2006) used the AIC 

criterion to select the copula that provides the best fit. However, various simulation studies 
                                                           
5 Regularity conditions include interchange of differentiation, integration and summation. For more details see Joe 
(1997) 
6 With efficient it is mean asymptotic relative efficient.  
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shows that the Schwarz Information Criterion (SIC or BIC) performs better in large samples 

whereas the AIC tends to be superior in small samples (Shumway and Stoffer, 2011). In this 

research, both criterions were implemented and the copula that provides the best fit is the one 

that correspond with the lowest values of these criterions. The AIC and the SIC can be defined as 

follows: 

                        

                        ( )    

where k is the number of parameters of the copula model and n is the number of observations.  
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4. Application  
In this section an application to a portfolio composed by two stock indices will be discussed. 

 

4.1 Data description 
 

A portfolio is considered composed by the Germany Dax-30 index and the French CAC-40 

index. As these represent the two strongest economies in the Eurozone. The daily closing prices 

in Euro from DataStream for the period ranging from 03-01-2000 to 22-05-2012 are used. 

Further, the price indices are transformed to log-returns. This results in 3231 observations per 

stock index.  

Figure 4.1 presents the time plots and the distribution plots of the Dax-30 and the CAC-40 stock 

indices. Both time plots show the stylized fact of volatility clustering where large (small) returns 

are followed by large (small) returns. The same time plots show also the effect of the recent 

financial crisis characterized by high deviations in the return series. Further, Figure 4.1 shows 

that the distribution plots (mentioned by the straight line) of the Dax-30 and the CAC-40 stock 

indices deviate from the normal distribution (mentioned by the dotted line). The distribution 

plots of both return series tend to be more leptokurtic. This can be concluded from the high peak 

around the mean.  

 
Figure 4.1: Time plots and distribution plots of the DAX-30 and the CAC-40 log-return series 
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Table 4.1 shows that both return series have a negative mean. Further, both the DAX-30 and the 

CAC-40 returns have a distribution that is slightly right-tailed (positive skewness). As it was 

expected from the distribution plots, both return series have a kurtosis value higher than the 

kurtosis value of the normal distribution (3). This means that both distributions are leptokurtic. 

 

Stock Index  Mean  Median  Maximum  Minimum  Std. Deviation  Skewness  Kurtosis 
DAX_30 -0.00001 0.00031 0.10798 -0.08875 0.01622 0.00774 7.18579 
CAC_40 -0.00020 0.00000 0.10595 -0.09472 0.01565 0.02982 7.70429 

 

Table 4.1: Descriptive statistics of the DAX-30 and the CAC-40 stock indices 
 

The non-normality of the DAX-30 and the CAC-40 returns was assessed by mean of the Jarque-

Bera (JB) test. JB test strongly reject the null hypothesis that the return series are normally 

distributed at the 1% significance level.  

The volatility clustering observed from the time plots of the DAX 30 and the CAC-40 stock 

indices was also tested by mean of Ljung-Box Q-test (LB). The LB test performed on the first 8 

lags of the squared log-returns strongly rejects the hypothesis of no serial correlation at the 1% 

significance level (Table 4.2).  

 

Stock Index Jarque-Bera JB P-value Ljung Box for squared log returns LB P-value 

DAX_30 2359 0 1330 0 

CAC_40 2980 0 1260 0 

Table 4.2: Jarque-Bera and Liung Box tests to test respectively for the normality of the log returns and for the 
ARCH effect in the squared log returns  
 

The fact that log return series are not normally distributed and exhibit serial correlation suggest 

the use of the class of ARMA-GARCH. The ARMA-GARCH model work as a filter which 

provides serially independent innovations. 

 

4.2 Model 
 

To specify the bivariate model, the two models must be specified for the marginal distributions 

and one model that describes the dependence structure between the marginals. 
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4.2.1 Modeling the marginal distributions 

 

For the reasons discussed early, the univariate log return series will be modeled by the ARMA-

GARCH model with student-t distributed error terms. If      is the log return of index   at time  , 

then the ARMA(p,q)-GARCH(m,s) model is given by: 

        ∑           
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The parameters of the ARMA-GARCH models are estimated using the conditional likelihood 

approach, where the log-likelihood function is given by: 
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Where                                                             

Then the maximum likelihood estimator maximizes the log likelihood and is given by:  

 ̂        
  

 (  ) 

The maximum likelihood estimator can be found using a numerical maximization approach. 
Once the parameter estimates are obtained, the model can be used to obtain the one-step ahead 
forecasts of the volatility and the value of the log-likelihood. For the starting value of      

  the 
empirical variance of the market index series over the sample period is used. 

The identification of the ARMA lags was done empirically by means of PACF and ACF plots for 

AR lags and MA lags respectively for the return series. The same functions were used for 

identifying the lag parameters of the GARCH model but for squared log-returns (See Figure BI). 

Next, the model with the specified lags was estimated. Then a general to specific approach was 

applied. The estimates were tested for significance by means of a t-test and the parameters that 
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seemed to be not significant at the 1% significance level will be removed. The adequacy of the 

final model was graphically assessed by means of ACF plots and tested by means of LB test for 

the presence of serial correlation in the mean or in the variance equation. 

The optimal model that seems to fit the DAX-30 returns the best is the ARMA(2,2)-

GARCH(1,1) model. The model that provides the best fit to the CAC-40 return series is the 

ARMA(1,1)-GARCH(1,1) model. The estimated parameters and their standard errors are 

reported in Table 4.3 (more estimation details can be found in Table BII). 

 

 

Parameter 
 

DAX-30 CAC-40 

Estimate Error Estimate Error 

  0.001 0.000 0.001 0.000 
   0.427 0.050 0.613 0.113 
   -0.905 0.033 - - 
   -0.436 0.042 -0.672 0.117 
   0.920 0.035 - - 
   0.000 0.006 0.000 0.005 
   0.090 0.011 0.087 0.011 
   0.904 0.010 0.908 0.011 
 7 10.401 2.171 10.744 2.048 

Table 4.3: ARMA-GARCH-t estimation 

 

Table 4.3 shows that the sum of the estimated parameters    and    for both stock indices is 

lower than 1. This means that the unconditional variance of the error terms is finite where the 

conditional variance evolves over time (Tsay, 2005).  

The adequacy of the estimated models was assessed graphically by drawing ACF plots of the 

standardized residuals and the squared standardized residuals. Figure BII indicates no significant 

serial correlation in the standardized residuals and the squared standardized residuals. The 

adequacy of the estimated models was also tested by mean of LB test. LB test is applied to the 

standardized residuals and the squared standardized residuals. The LB test fails to reject the null 

hypothesis of no serial at the first 88 lags of the standardized residuals for both stock indices at 

the 1% significance level. The corresponding p-values are 0.013 and 0.023 for the DAX-30 and 

                                                           
7 The number of the degrees of freedom corresponding to the estimated student-t distribution 
8 According to Tsay (2005), using LB test with      ( ) lags where T is number of observations provides better 
power performance.  
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the CAC-40 index, respectively. LB test also fail to reject the null hypothesis for the squared 

standardized residuals at the first 8 lags for both indices at the 1% significance level. The LB test 

on the squared standardized residuals corresponding to the DAX-30 shows that LB (8) = 16.206 

with a p-value = 0.013. This means that the volatility equation is adequate at the 1% significance 

level. For the CAC-40 index, the LB test also fails to reject the null hypothesis of no serial 

correlation in the first 8 lags at the 1% significance level. The LB test has a value equal to 14.665 

with a p-value equal to 0.023. From these results it can be concluded that the estimated models 

are adequate in the sense that they provide serially independent innovations. These serially 

independent innovations will be used to model the dependence structure between the marginal 

distributions of the DAX-30 and the CAC-40 stock indices. 

 

4.2.2 Modeling the dependence structure 

 

After filtering the data using ARMA-GARCH models, the obtained pair of innovations 

(standardized residuals) was transformed to uniforms using the estimated student-t distributions. 

The uniform series will be used as input for the bivariate Clayton, Gumbel and Frank copula 

discussed in section 3.2.  

The estimated parameter corresponding to each copula, the confidence interval (CI) of the 

estimated parameters the AIC, and the SIC values are reported in Table 4.4. 

Copula Estimated Parameter 95% CI AIC SIC 

Clayton 3.718 [3.611, 3.825] -4591.805 -4585.725 

Gumbel 3.840 [3.746, 3.935] -5445.510 -5439.430 

Frank 13.770 [13.370, 14.171] -5301.488 -5295.407 
Table 4.4: Copula parameter estimation 
 

Table 4.4 shows that the Gumbel copula is the one that provides the best fit to the data since it 

has the lowest values for both criterions: the AIC and the SIC. 

As discussed under theoretical framework, the Gumbel copula is known as an extreme copula 

and is suitable for modeling the upper tail dependence. However, the level of dependence 

between the marginals depends on the value of the copula parameter. As discussed in the theory, 

when the copula parameter value is equal to 1 then the marginals are independent, and when the 

parameter value goes to infinity then the Gumbel copula approaches the Fréchet-Hoeffding upper 

bound and the marginals become comonotonic or perfectly dependent. From the estimated value 
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of the Gumbel copula parameter, a positive dependence is expected between the data. To get 

more insight in the dependence structure given by this copula, plots of the copula, its density, 

scatter plot of random sample simulated from this copula and the copula contour plots were 

drawn (Figure 4.2). As expected from the estimated copula parameter, the plots of the copula and 

its density illustrated in Figure 4.2 shows that the estimated Gumbel copula is characterized by 

strong upper tail dependence. The same result can be concluded from the scatter plot where the 

simulated values are more concentrated in the upper tail. 

 For the interpretation of the contour plot, this plot needs to be compared with the contours in the 

case of independence and perfect dependence. Comparing the contours of the estimated Gumbel 

copula with the contours that correspond to the independence case and the comonotonic case 

illustrated respectively in Figure CI and Figure CII in Appendix B, it can be seen that the contour 

plot of the estimated Gumbel copula have more resemblance with the one that illustrate the 

comonotonic case. 

 

Figure 4.2: Copula density plot (upper left), copula plot (upper right), 1000 simulated points and the copula contour 
plot of the Gumbel copula with parameter 3.840. 
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After discussing the dependence generated by the optimal copula, it is interesting to see how the 

dependence captured by this copula causes the joint distribution to have upper tail dependence. 

Figure 4.3 shows the density and the contour plot of the distribution obtained by coupling the 

estimated Gumbel copula and the student-t margins (obtained from the GARCH estimation). 

This figure shows clear upper tail dependence. This indicates that large gains from the DAX-30 

index and the CAC-40 index have more tendencies to occur simultaneously than large losses.  

 
Figure 4.3: Density and contour plot of the joint distribution obtained by coupling the Gumbel (3.84) with the 
estimated student-t margins 
 

4.2.2.3 Dependence Measures 

 

Based on the estimated copula and according to the theory described in sub-section 3.2.2, the 

calculation of the copula based dependence measures: Kendall’s tau, Spearman’s rho, tail 

dependence is straightforward. The estimated Kendall’s tau, Spearman’s rho and tail dependence 

are illustrated in Table 4.5. As can be seen from Table 4.5, both rank correlation measures: 

Kendall’s tau and Spearman’s rho are positive and have a value that is closer to 1. This means 

that the two stock indices are strongly positively correlated. The estimated Kendall’s tau and 

Spearman’s rho are closer to their sample counterparties, which are respectively equal to 0.725 



31 
 

and 0.891. The fact that estimated Kendall’s tau and Spearman’s rho are close to the Sample 

ones lead to more flexibility when modeling the dependence with copulas. If one expects that the 

dependence between risk factors will be captured by a certain Archimedean copula, than 

computing the sample Kendall’s tau or Spearman’s rho allow the computation of any joint 

probability between these risk factors. 

 Table 4.5 shows that the stock indices exhibit higher upper tail dependence. However, the value 

of the lower tail dependence is equal to zero. This is because the Gumbel copula is unable to 

capture the lower tail dependence.  

 

Kendall's tau Spearman's rho Upper tail Lower tail 

0.740 0.905 0.802 0.000 
Table 4.5: The Estimated Kendall’s tau, Spearman’s rho and tail dependence based on the estimated copula 
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5. Conclusion  
 

This paper discussed the shortcomings of the Pearson correlation regarding the desired properties 

of dependence measures. Among them are: 1) the Pearson correlation is unable to capture the 

non-linear dependencies. 2) The Pearson correlation is undefined when extreme events are 

frequently observed. 3) Pearson correlation is not invariant under strictly increasing 

transformations. 

Further the copula approach is discussed, which provide a powerful modeling tool that deals with 

the shortcomings of the Pearson correlation. Among the different classes of copulas, this paper 

focused on the Archimedean class due to their simple closed form and the various types of 

dependence that they allow for. Specifically, this paper discussed one parameter Archimedean 

copulas: the Clayton, the Gumbel and the Frank copula. Furthermore, the relations between these 

three copulas and the dependence measures were discussed.  

Finally an application of the Archimedean copulas to two stock indices (the DAX-30 and the 

CAC-40) was considered. To deal with non-normality, heavy tails and heteroskedasticity in the 

return series an ARMA-GARCH with student-t distributed error terms was applied. The ARMA-

GARCH model serves as a filter for the data and provided serially independent innovations. The 

standardized residuals (serially independent innovations) were transformed to uniform series 

using their empirical distribution and the estimated student-t distribution from fitting ARMA-

GARCH. The discussed Archimedean copulas were fitted to uniform data and the copula that 

provides the best fit was selected. 

Results of this analysis show that the Gumbel copula with a parameter value equal to 3.84 is the 

one that provides the best fit to our data. Further, the dependence given by this copula was 

deeply discussed. It was shown also how the given copula causes the joint distribution of the 

return series to show the same dependence pattern. Results of this analysis show that the joint 

distribution of the DAX-30 and the CAC-40 stock indices exhibit higher upper tail dependence. 

This means that large gains from the DAX-30 index and the CAC-40 index have more tendency 

to occur simultaneously than large losses. 

Finally, it was discussed how the rank correlations: Kendall’s tau and Spearman’s rho, and the 

tail dependence could be calculated from the estimated copula. The estimated rank correlations 



33 
 

values were also compared to sample ones. It was found the estimated rank correlations are 

closed to their sample counterparties. 

 

6. Suggestions for further research 

 

In this paper a dependence structure of a portfolio that consists of two stock indices was modeled 

using bivariate Archimedean copulas, however the most portfolios consists in general of more 

than two indices. In order to model the dependence structure of such portfolios this analysis 

needs to be extended to the multivariate case. 

The only copula that was used that accounts for both tail dependencies is the Frank copula. 

However, this copula is characterized by weak tail dependency. For further research the use of 

copulas that allow modeling different tail dependencies such as the Symmetrized Joe Clayton 

copula is suggested.  
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Appendix A 

  

  

Figure A1:This figure illustrates the four datasets with identical statistical properties but different correlation 
patterns (Anscombe, 1973). 
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Appendix B 

 
Figure BI: ACF and PACF plots of the log returns and the squared log returns of the DAX-30 and the CAC-40 stock 
indices. The ACF plot of the DAX 30 returns indicates the presence of some serial correlation at the 4th and the 5th 
lag. The same plot indicates that the DAX 30 returns may be modeled by an ARMA(5,5) model. The big spikes in 
the PACF plot of the squared returns of the DAX 30 index indicates that the DAX 30 returns are not serially 
independent and have some ARCH effect. The ACF plot of the CAC 40 returns indicates the presence of serial 
correlation in the first 5 lags. The ACF and PACF plot of the CAC 40 indicates that the return series may be well 
modeled by an ARMA(5,5). As in the case of the DAX 30 index, the ACF plot of the CAC 40 indicates the returns 
are not independent and exhibit some ARCH effect. 
 

Parameter 
 

DAX-30 CAC-40 
Estimate Error T-statistic P-value Estimate Error T-statistic P-value 

   0.001 0.000 3.802 0.000 0.001 0.000 3.172 0.002 
   0.427 0.050 8.576 0.000 0.613 0.113 5.423 0.000 
   -0.905 0.033 -27.590 0.000 - - - - 
   -0.436 0.042 -10.500 0.000 -0.672 0.117 -5.761 0.000 
   0.920 0.035 26.410 0.000 - - - - 
   0.000 0.006 3.153 0.002 0.000 0.005 3.175 0.002 
   0.090 0.011 8.385 0.000 0.087 0.011 7.885 0.000 
   0.904 0.010 86.220 0.000 0.908 0.011 84.780 0.000 
   10.401 2.171 4.790 0.000 10.744 2.048 5.246 0.000 

 

Table BII: ARMA-GARCH-t estimation 
 
 



38 
 

 
Figure BII : ACF plot of the standardized residuals and the squared standardized residuals (Sq) of the DAX-30 
and the CAC-40 stock indices. The ACF plot of the DAX-30 and the CAC-40 standardized residuals indicate that 
the series are serially independent. The ACF plots of the squared standardized show no high spikes which 
indicate that the variance equations are well modeled by the GARCH-t model. 
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Appendix C 

 
Figure CI: Scatter plot and contour plot of the product copula (case of independence) 
 

 
Figure CII: Scatter plot (1000 simulated values) and contour plot of the Frechet-Hoeffding upper bound estimated 
Gumbel (infinity) 
 

 


