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Abstract 

Football analytics has been on the rise, yet no previous efforts have been made to 
compute the probability a possession becomes a goal, like in basketball. In this paper 
goal probabilities will be modeled for the English Premier League for the season 
2016/2017. Ridged logistic regression with a sliding window approach will be used to 
model the sequential information in possession chains. Several sizes of sliding 
windows will be used, as well as recurrent sliding windows. The performance of the 
models will then be tested using the AUC from the ROC Curve, the Log Loss, and the 
RMSE. These metrics will then be compared with benchmark models to see if a 
significant improvement has been made. Finally, a top 15 of players will be deducted 
from the results, showing the applicability of possession probability models to 
football clubs. 
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1 Introduction 

Football is the biggest sport in the world with almost 4 billion people following the 
sport. It is therefore no surprise that the amount of money being spent in football is 
still on the rise. For instance, in the Premier League, one of the biggest football 
leagues in the world, each club receives 84.4 million pounds from the sale of TV 
rights only. The importance of success has thus become not only emotional, but also 
financial. Football clubs embrace every possibility that could improve the 
performance of their first team.  

Following the surge for analytics in baseball, football has now begun to follow 
suit. The value of mathematical modeling has become clear, and the search for models 
that could improve the performance of the club has started.  

 
This paper will cover the mathematical modeling of goal probabilities for 

possessions. The main goal is to test whether it is possible to model this more 
accurately than a base line benchmark. Furthermore, the difference between models 
with and without sequential variables will be compared, to see if adding sequential 
information will improve model performance. 
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2 Background & literature research 

Analysts have been using mathematical models in sports for a long time. Charles 
Reep has been credited to be the first person to apply mathematics in football1. 
Around 1950, he used mathematics in order to try to improve the probability of his 
team winning a game. As a pioneer, he is believed to have a great impact on football 
in British and Norwegian football. Back then, the mathematics used were simple and 
done by hand. Advances in mathematics and computer science now makes it possible 
for sports teams to use data science in order to analyze the sport. This can be used to 
gain edges in a competitive world where every improvement can make a world of 
difference.  
 
Where football has been slow to adapt to mathematical advances, other sports have 
been much faster to adapt new methodologies in their analyses. Baseball has always 
been at the forefront of mathematical analysis, mostly due to the static nature of the 
sport making it easy to analyze. The success story of the Oakland A’s surrounding 
data analysis has even been captured in the movie Moneyball, after the book by 
Michael Lewis published in 2003.   
 
Where a static sport like baseball can easily be analyzed with data analysis, more 
fluent and dynamic sports like basketball, ice hockey, and football, face more 
difficulties. Not many papers are focused around sports analytics, and therefore a 
historical track of progress is mostly lacking. Public analysts fill this gap somewhat 
by writing about progress in an open manner, even though these ‘blogs’ tend to be of 
a less official nature. 
 
Public research into goal probabilities first arose in ice hockey in 2004, when several 
public analysts wrote about differences in shot quality. Alan Ryder noticed that the 
probability of a shot being converted was highly dependent on the distance from 
where the shot was taken.2 Individual statements of factors influencing goal 
probabilities later changed into models, predicting the goal probability of a shot 
giving its pre-shot characteristics.  
 
Similar models were soon adapted to football, and models determining the probability 
of a shot being converted were called ‘Expected Goal’ (or xG short) models. The first 
to introduce the concept of xG in football was Sam Green in 2012.3 Since this 
introduction, the metric has been widely adopted in football analysis, and is one of the 
most used metrics in public analysis. 
 
While xG is only based on shots, the search for models calculating goal probabilities 
for other actions was less active. In basketball, however, these models became easier 
to build with the introduction of tracking data. In 2014, Cervone et al. released a 
paper on EPV, or Expected Possession Value, at the Sloan Sports Analytics 
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Conference.4 This was the first attempt at modeling possession goal probabilities that 
became widely known. This method has since been adapted by many analysts to 
evaluate decision-making in basketball.  
 
However, the lack of public availability to tracking data in football has made the 
progress into a similar metric in football analytics difficult and slow. Alternatives 
have been opted, like the model by Neil Charles which he introduced at the 2017 
OptaPro Forum. He constructed a model to evaluate decisions in a similar way to 
EPV in football.5 This, however, still requires either tracking data or manual data 
entry for every individual situation. 
 
In this paper, I propose a way of modeling goal probabilities in football without 
tracking data, but with the more publicly available event data from Opta. 
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3 Data 

The data used in this research is F24 Opta event data. Opta is a company that records 
football data from match footage by manual labor. Every event (e.g., pass, shot, etc.) 
on the pitch is recorded with additional variables describing each event. The data is 
stored in XML files. One XML file contains data for one match. For this research, I 
will be using data from the last 5 seasons of the English Premier League. A season 
consists of 380 matches, which makes the total 1,900 XML files. 
 
An example of a part of such an XML file is the following: 

 
Fig. 1. Example of part of XML file data structure. 

As can be seen, every event in the match has a separate element that starts with 
<event> and ends with </event>. Which attributes are given within an element 
depends on the type of event.  

3.1 Data pre-processing 

Data transformation 
To make the data usable for this research, it needs to be converted to a data frame. 
Every event becomes a single row, with columns describing the attributes of the 
event. Since some events have attributes that others do not, some attributes are not 
included in the data frame, while other attributes may be empty for certain events. 
The following variables can be directly extracted from the data: 
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Variable Description 
mins The minute of the match in which the event took place. 
secs The second of the minute in which the event took place. 
player_id The id of the player who executed the event. 
team_id The id of the team in which that player plays. 
opponent_id The id of the opposing team. 
home The id of the team that plays at home. 
away The id of the team that plays away. 
type The type of the event (e.g., pass/shot/long ball). 
headed 1 if the event is executed with the head, 0 otherwise. 
x_start The x-coordinate of where the event started. 
y_start The y-coordinate of where the event started. 
x_end The x-coordinate of where the event ended. 
y_end The y-coordinate of where the event ended. 
completed 1 if the event is completed, 0 if it failed. 

Table 1. Variable description. 

Data creation 
Opta event data only includes events that took place. This means that if a pass was 
completed from A to B, the next event could be a pass from C to D from the same 
team. In such a case, a player most probably dribbled from B to C, however, since this 
is not an ‘action’, no event is recorded. This situation is shown in Figure 2.  
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Fig. 2. Example of a possession containing a gap due to a dribble. 

It is, however, possible to create these ‘events’ by extrapolating the data. This way we 
can ensure that there are no gaps in the possession chains. A dribble is added in the 
data if the following criteria are met: 

• The end location of the first event != the start location of the following event. 
• The team that executes the first event, also executes the second event. 
• The first event is a completed event. 
• The first event is of a passing type, i.e., the event type is from {pass, 

long_ball, through_ball, headed_pass, throw_in}, or a takeon event. 
• The second event is an event that could take place after a dribble, i.e., the 

event type is from {pass, long_ball, through_ball, shot, takeon, cross}. 
• The speed of the dribble is at most 10 m/s. 

In total, this means that roughly 150,000 dribbles per season are added, bringing the 
total number of rows per season to roughly 600,000. 
 
Dribbles that follow a takeon type event are defined as a ‘takeondribble’ type, since it 
is expected that these types of dribbles are significantly different from normal 
dribbles. 
 
For both dribble and takeondribble type events, the remaining columns are filled as 
follows. For mins and secs the average between the preceding and the following event 
is taken. The player_id is the id of the player who made the dribble, in this case 
assumed to be the player who executed the following event. The team_id, 
opponent_id, home and away variables are the same as those from the 
preceding/following event. The headed variable is set to 0, as you usually do not 
dribble with your head.  The start location is the end location of the preceding pass. 
The end location is the start location of the following pass.  Finally, the completed 
variable is set to 1. Incomplete dribbles are not recorded. 

3.2 Feature engineering 

In this section, some extra variables are created. Some are created to simplify future 
programming, whereas some variables are added that are expected to influence the 
probability of a possession ending with a goal. Also, the dependent variable is created 
and explained. 
 

Variable Description 
game_id A unique id for every game. Used for easier data manipulation. 
possession_id A unique id for every possession. A new id is chosen when 

possession changes team. Used for easier data manipulation. 
event_id A unique id for every event. Used for easier data manipulation. 
goal The dependent variable. 1 if the current possession ends with a shot 
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that was a goal, 0 otherwise.  
time The time between the execution of this event and the next event. 
distance The distance between the start location of this event and the end 

location. 
speed Distance (in meters) divided by time (in seconds). 

Table 2. Feature engineering variable description. 

Apart from these variables, one more variable will be modeled. Previous research into 
goal probabilities from shots have shown that the location of a shot has a great 
influence on its goal probability.6 Given that a player can decide to shoot at any time 
during a possession, it follows that the location of a possession is most likely also of 
great importance to its goal probability. To accurately include this factor, one can 
choose to estimate the probability of a goal when the ball was at a certain location on 
the field.  
 
One way to do this is to split the field into many small two-dimensional bins, and 
calculate the observed probability per bin. This gives the following image: 
 

 
Fig. 3. Observed goal probabilities for possessions. The whiter, the bigger chance of a goal. 

The team in possession attacks to the right. 

Due to sample size issues in a lot of the bins, the probabilities vary greatly from one 
bin to the next. Some smoothing is needed.  
 
To find the relation between location on the field and goal probability, a GAM 
(General Additive Model) is fitted using a tensor product smooth. A tensor product 
smooth is used since the units of the x-coordinate and the y-coordinate are not the 
same. Both run from 0 to 100, but since a football field is not square the distance 
covered by a change of 1 in the x-coordinate is not the same as the distance covered 
by a change of 1 in the y-coordinate.  
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In a tensor product smooth, the probability 𝑧  will be estimated by the following 
formula: 
 

𝑧 =  �𝛽𝑥1 +  𝛽𝑥2𝑥 + 𝛽𝑥3𝑓𝑥1(𝑥) + ⋯+ 𝛽𝑥𝑥𝑓𝑥(𝑥−2)(𝑥) +  𝜀𝑥�
∗  �𝛽𝑦1 +  𝛽𝑦2𝑦 +  𝛽𝑦3𝑓𝑦1(𝑦) + ⋯+  𝛽𝑦𝑦𝑓𝑦(𝑦−2)(𝑦) + 𝜀𝑦�, 

 
where the functions f are simple functions on x and y respectively. Since this can be 
seen as a tensor product, it is possible to rewrite this in order to find the least squares 
estimators of the coefficients 𝛽. 
 
After fitting the model for 𝑖 and 𝑗 equal to 15 (due to computational constraints), we 
get the following smoothed space: 

 
Fig. 4. Smoothed goal probabilities for possessions. The whiter, the bigger chance of a goal. 

The team in possession attacks to the right. 

This smoothed space can be used to predict goal probabilities by location. This will be 
used later on in the model, and such predictions of location based goal probabilities 
will be referred to as the variable locationxG. 
 
How all these extra variables will be used in the models will be explained in the next 
chapter.  
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4 Modeling 

4.1 Model choice 

The model that will be used is a ridged logistic regression. A logistic regression is a 
perfect fit for this problem, due to the fact that the data is very unbalanced. About 
1.2% of all possessions has a positive response variable (a goal). This means that a lot 
of machine learning methods can be eliminated due to poor performance for 
unbalanced data sets, such as random forests.  
 
Another characteristic of a logistic regression model, is that predictions from such a 
model can easily be explained and derived from the models results. This means that it 
will be clear ‘why’ the model will have predicted a certain score. 

Ridged logistic regression 
A logistic regression is a generalized linear model. A generalized linear model 

allows the distribution of the response variable to be different than usually. The basic 
structure of a generalized linear model is: 

 

𝑔(𝜇𝑥) =  𝑿𝒊𝜷, 

 
where g denotes the link function. For a logistic regression, we have a binomial link 
function, given by: 
 

𝑔(𝜇𝑥) = log �
𝜇𝑥

1 −  𝜇𝑥
�. 

 
The log-likelihood of 𝛽 for a generalized linear model is given by: 
 

𝑙(𝜷) =  �
[𝑦𝑥𝜃𝑥 −  𝑏𝑥(𝜃𝑥)]

𝑎𝑥(𝜑) + 𝑐𝑥(𝜑,𝑦𝑥).
𝑛

𝑥=1

 

 
The optimal 𝛽 is the one that maximizes this function. The outcome of such a model 
is a value between 0 and 1, denoting the probability of a positive response variable 
given the explanatory variables. In a ‘ridged’ logistic regression, we adjust the 
maximization function as follows: 
 

𝑙𝜆(𝜷) =  𝑙(𝜷) −  𝜆‖𝜷‖2, 
 
such that if we choose λ equal to zero, we will get a regular logistic regression, and 
such that if we choose λ very big the coefficients 𝜷  will go towards zero. This 
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addition usually increases the mean-squared error of the fit on the training data, but 
improves the predictive value and thus decreases the mean-squared error in out-of-
sample predictions. The actual value of λ will be chosen by the algorithm used to fit 
the ridged logistic regression.  
 
The values of the coefficients 𝜷 are dependent on the variance of the corresponding 
variables. Therefore, if we want to penalize all coefficient values fairly, we have to 
standardize the variables to their variance. An additional advantage this gives is that 
the absolute values of the coefficients can be used to measure feature importance on 
model prediction. 
 
This method is a good fit for the problem, since for different models different number 
of variables will be used. It is unknown if all these variables will have a positive 
effect on predictability. Using a ridged regression will ensure that insignificant 
variables will get a low coefficient, negating their influence on the prediction of the 
model. This should make sure the model does not overfit.  

Sliding window 
 To test whether sequential information will improve the quality of the model, 
a sliding window approach will be used. In a regular sliding window method, the 
value of 𝑦𝑥,𝑡  is predicted by using the variables 
�𝑥𝑥,𝑡−𝑑 ,𝑥𝑥,𝑡−𝑑+1, … , 𝑥𝑥,𝑡 , … , 𝑥𝑥,𝑡+𝑑−1, 𝑥𝑥,𝑡+𝑑� , where 𝑑  is the size of the sliding 
window.7 

 
Since the problem at hand does not allow for use of variables that occurred after the 
event (𝑥𝑥,𝑡−𝑞 𝑓𝑓𝑓 𝑞 > 𝑡), the sliding window will go backwards only. This method 
will be applied to this problem for 𝑑 = {0,1,2,3}. 
 
A way in which a sliding window approach can be improved is by making them 
recurrent. This means that in addition to the variables used in a regular sliding 
window approach, also the values of �𝑦𝑥 ,𝑡−𝑑,𝑦𝑥 ,𝑡−𝑑+1, … ,𝑦𝑥,𝑡−1� will be used to predict 
𝑦𝑥 ,𝑡. Since the true values of these variables are not known, the prediction from the 
model �𝑦�𝑥,𝑡−𝑑,𝑦�𝑥,𝑡−𝑑+1, … , 𝑦�𝑥,𝑡−1� will be used.  
 
This second method does bring with it some problems regarding training. What values 
of 𝑦�𝑥,𝑡−𝑥  should be used? One approach opted by T.G. Dietterich7 involved first 
predicting 𝑦�𝑥,𝑡−𝑥 using a non-recurrent classifier, and use that as input. Using iteration, 
we can then use the output of the fitted model as input again, and repeat this process 
until the changes in predictions are sufficiently small. This is the method used in this 
paper. The iterations are stopped when the maximum change of all predictions is 
smaller than 0.01 in comparison to the previous iteration. For out-of-sample 
prediction, iteration is also used to get a final prediction. This method will be applied 
for 𝑑 = {1,2,3}. 
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4.2 Variables 

The response variable ‘goal’ is given a 1 when the same possession ends in a goal, 
and a 0 otherwise. Four different explanatory variables will be used: 

 
Variable Description 
locationxG As described in Section 3.2. 
type As described in Section 3.1. 
headed 1 if the current action ends on the head of a teammate, 0 otherwise. 
speed As described in Section 3.2. 
direct_speed The speed of the direct distance covered. Example below. 

Table 3. Variables used in the models. 

When using sliding windows, these variables will also be used from previous actions. 
To avoid confusion, the value of the corresponding 𝑑 in 𝑥𝑥,𝑡−𝑑 will be appended to the 
variable name. When recurrent sliding windows are used, the value of 𝑦�𝑥,𝑡−𝑑 will be 
denoted by the variable name xG, appended by the value of 𝑑. To illustrate this, an 
example is given below: 

 
Fig. 5. An illustration of the variables corresponding to different time steps. 

In the above example, the variables corresponding to different actions are given. For 
instance, the variables type0, headed0, and speed0 correspond to the final action. As 
you can see, the variables direct_speed1 and direct_speed2 correspond to the distance 
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between the final location and the second-to-last and third-to-last location, 
respectively. 

4.3 Evaluation method 

To evaluate the predictions of the different models on the test set, three evaluation 
metrics will be used.  

RMSE 
RMSE or Root Mean Squared Error is an evaluation metric used to assess the 

quality of probability estimation. It is given by: 
 

�
1
𝑛
�(𝑦𝑥 −  𝑦�𝑥)2
𝑛

𝑥=1

, 

 
where 𝑦𝑥  is the outcome, which is 1 or 0, and 𝑦�𝑥  is the predicted probability. The 
RMSE is a good fit for this problem, since we want to measure the actual accuracy of 
the probability estimations. 

Log Loss 
Log Loss is a widely used evaluation metric to measure the performance of a 

classification model. In our specific case, if we have predicted probability 𝑝𝑥  and 
outcome 𝑥𝑥 of a certain row 𝑖, the Log Loss of that row is given by: 

 
𝑙𝑓𝑔𝑙𝑓𝑙𝑙𝑥 =  −𝑥𝑥 log 𝑝𝑥 − (1 − 𝑥𝑥) log(1 − 𝑝𝑥). 

 
Generalizing this for N rows, we get a total Log loss of: 
 

𝑙𝑓𝑔𝑙𝑓𝑙𝑙 =  
1
𝑁
�𝑙𝑓𝑔𝑙𝑓𝑙𝑙𝑥

𝑁

𝑥=1

. 

 
Log Loss thus heavily penalizes high probability estimations for which the 

outcome was negative, or low probability estimations for which the outcome is 
positive. In other words, the metric measures the amount of surprise between a 
prediction and the actual outcome. The bigger surprise, the worse. A good model 
would minimize the Log Loss, as that would mean surprises were kept to a minimum. 

AUC 
The AUC or Area Under Curve is an evaluation metric coming from the ROC, or 

Receiver Operating Characteristic. The ROC is a curvature described by the ‘false 
positive rate’ on the x-axis, and the ‘true positive rate’ on the y-axis. It calculates 
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points on this plane by using different thresholds, above which all instances with a 
probability estimation of at least that threshold is taken as a positive prediction. 
Similarly, all instances with a lower probability estimation than the threshold is taken 
as a negative prediction. By going through different threshold values, a curvature 
between the coordinates [1,0] and [0,1] is created.  

The AUC is the area under this ROC curve. For a random prediction, this AUC has 
a value of 0.5. The optimal predictor will have a value of 1.0.  

 
The AUC can be used as a metric to evaluate the ability of the predictions to 

distinguish between positive and negative instances. There are some issues with using 
the AUC regarding this problem though. First of all, the AUC does not measure the 
accuracy of the probability estimations. It merely looks at the relative difference 
between different instances, regardless of the actual values. Therefore, a model that 
estimates probabilities much better, might only see a slight increase in AUC. 
Furthermore, as Davis & Goadrich8 noted, in unbalanced data the AUC might not be 
the best metric to use.  

Significance 
In this paper, these three metrics will be used to evaluate the quality of different 
models. Two benchmark models will be introduced. The first benchmark represents 
the minimum performance that has to be achieved. This benchmark will be the values 
of locationxG0, taken from the smoothed surface introduced in Figure 4. To check if 
goal probabilities can be accurately measured, a bootstrap between the scores of the 
best model and the benchmark will be used. If the difference is significant, the 
conclusion will be that it is possible to model goal probabilities.  
 
To get an idea of how much better the model can become, another benchmark will be 
introduced. This benchmark will consist of the predicted probabilities, but different 
outcomes than the observed outcomes. As outcomes, Bernoulli trials on the predicted 
probabilities will be used. This way, we can say that the probabilities are the true 
probabilities. The average of 1000 simulations will be used as the model’s evaluation 
score. This will give an indication as to how good the model’s performance scores are 
compared to a ‘perfect’ model. 
 
Finally, the best model will be compared to the model without sequential information. 
The difference in scores will be bootstrapped to check for significance. When the 
difference is significant, it can be concluded that including sequential information 
significantly increases model performance.  

4.4 Measuring player performance 

To try to capture player performance, the following method will be used. For every 
action, the difference between the 𝑦𝑥,𝑡 at the moment the player receives the ball and 
the 𝑦𝑥,𝑡 after the player has had the ball. The idea behind this is, that a good player 
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will be able to progress the ball to a more dangerous situation regularly. Or, put the 
other way around, when a player is able to systematically progress the ball into a 
more dangerous situation, he presumably is a good player. To check whether this 
method yields any useful results, the top 15 players will be evaluated by looking at 
their market value according to Transfermarkt.com. These values will be compared to 
the league average.  
The expectation is that the 15 will consist of more expensive players than the average. 
This is not a perfect way to measure this, as strikers are usually the most expensive, 
but not known for progressing the ball. These strikers will likely fall outside the top 
15, and thus negatively influence the results somewhat. The expectation is that the 
best midfielders will come out on top of the list, as their job is to progress the ball to a 
more dangerous situation.  
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5 Results 

5.1 Model results 

The models are denoted as Lr_𝑥 , where 𝑥  is the value of the size of the sliding 
window 𝑑. If the recurrent sliding window is used, an 𝑓 is appended to the model 
name. 
 
First, the Lr_1 is fitted. This gives an optimal λ of 0.01. Due to computational 
constraints, this same value for λ was chosen for the other models. This might 
decrease their performance somewhat, but finding an optimal λ for all models was 
infeasible due to computational and time constraints. 
 
For the recurrent models, iteration was used until predictions were stable. In practice, 
this convergence occurred very quickly. The convergence of the maximum change of 
a single prediction between iterations is shown for all recurrent models: 
 

 
Fig. 6. Convergence of the recurrent models. 

To get an idea of variable coefficients, the coefficients of the Lr_3r model are shown 
below. These coefficients are de-standardized, and are thus applicable to the variables 
in their original state: 
 

  Coefficients  
Variable 𝑑 = 0 𝑑 = 1 𝑑 = 2 𝑑 = 3 
Intercept -4.722 - - - 
locationxG 14.524 9.678 3.416 1.481 
headed -0.229 -0.111 -0.087 -0.027 
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speed 0.004 -0.003 -0.004 -0.005 
direct_speed - 0.011 0.003 0.003 
xG (recurrent) - -1.369 0.785 0.649 
type: clearance - -0.017 -0.027 -0.029 
type: corner - 0.399 0.279 0.215 
type: cross 0.059 -0.184 -0.257 -0.086 
type: dribble 0.042 0.049 0.059 0.055 
type: foul - -0.025 -0.107 -0.128 
type: headed_duel - -0.081 -0.081 -0.041 
type: headed_pass -0.112 -0.100 -0.053 -0.068 
type: interception - 0.085 0.061 0.049 
type: long_ball -0.075 -0.024 -0.025 -0.021 
type: pass -0.031 -0.022 -0.010 0.012 
type: shot - -0.172 -0.071 -0.025 
type: tackle - -0.033 -0.087 -0.072 
type: takeon -0.227 0.017 -0.003 -0.036 
type: takeondribble 0.428 0.209 0.184 0.198 
type: through_ball 1.745 1.383 0.717 0.408 
type: throw_in -0.158 -0.154 -0.129 -0.110 

Table 4. Coefficients for all variables for the Lr_3r model. 

These coefficients vary for each model, but are in general very close to one another. It 
is also interesting to see that the coefficients for each variable are relatively stable 
across different values for 𝑑. For instance, only 4 out of 22 variables have a change of 
sign across all values for 𝑑. Furthermore, it looks like variables with a relatively high 
coefficient for 𝑑 = 0 or 𝑑 = 1, have their coefficients weakened as 𝑑 increases. This 
makes sense, as the further back we go the less influence from these variables we 
expect. Examples of this in the above table include but are not limited to: locationxG, 
headed, and the type factors: corner, shot, takeondribble, and through_ball. 
 
To get an idea of feature importance, we can look at the absolute values of the 
standardized coefficients. Since all variables are standardized to their respective 
variances, the coefficients describe the influence of each variable on the predictions. 
The top ten most influential variables are shown below: 
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Fig. 7. Feature importance in the Lr_3r model. 

The end location of the final pass (locationxG (𝑑 = 0)), is by far the most importance 
variable. In general, the locations of the passes are amongst the most influential 
variables. Other important variables include the type, when the factor is either a 
through_ball, takeondribble, or a dribble. Finally, variables from more recent events 
(with a low 𝑑), seem to have a higher influence than events from longer ago. The 
complete table with all standardized coefficients can be found in the Appendix. 

5.2 Performance evaluation 

All models are used to predict the response variable for the test set. The quality of 
these predictions is tested using the AUC from the ROC curve, as well as the RMSE 
and the Log Loss between the predictions and the outcomes. This gave the following 
results: 

 
Model AUC RMSE Log loss 
Benchmark 1: location 0.6735 0.1226311 0.07546543 
Benchmark 2: perfect 0.6163 0.1202387 0.07437248 
Lr_0: no sequential info 0.6651 0.1222823 0.07541043 
Lr_1 0.6750 0.1221798 0.07531453 
Lr_2 0.6730 0.1221382 0.07525101 
Lr_3 0.6725 0.1221305 0.07523350 
Lr_1r 0.6744 0.1221737 0.07530323 
Lr_2r 0.6729 0.1221141 0.07522148 
Lr_3r 0.6725 0.1221073 0.07520444 
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Table 5. Performance measures for all models. 

The results are very surprising. Where the scores for the RMSE and Log Loss follow 
intuition, and agree on model quality, the AUC results are very different. Not only 
does Benchmark 1 have one of the best scores, the simpler models seem to give 
higher scores than the more complex models. While these are somewhat unexpected, 
especially the score for the perfect model, which is by far the lowest, casts some 
doubt on the usability of the AUC for model selection in this paper. Similar 
contradicting results seem unprecedented in literature. The reasons for these 
contradicting results remain unclear, and could be a starting point for further research. 
For now, however, the AUC scores will be ignored.  
 
For the RMSE and Log Loss, model performance seems to improve with model 
complexity. Bigger sliding windows yield better results, and recurrent sliding 
windows outperform non-recurrent sliding windows. The best model in both measures 
is the Lr_3r model, the most complex model. This might indicate that including 
sequential information from a bigger sliding window will improve performance even 
more. The Lr_3r model will be compared to Benchmark 1 to check if it is possible to 
improve goal probability estimation from standard methods. Furthermore, the Lr_3r 
model will be compared to the Lr_0 model to check if adding sequential information 
will significantly improve model performance.  
 
To check whether the obtained differences in scores are significant, bootstrapping 
methods (𝑛 =  1,000) are applied. First, we see the comparison of the Lr_3r model to 
the Benchmark 1 model. Positive values mean the model outperformed the 
benchmark: 
 

 
Fig. 8. Bootstrapped difference in RMSE and Log Loss between Lr_3r and Benchmark 1. 

As can be seen, in both performance measures, the Lr_3r model significantly 
outperforms the Benchmark 1 model. Indeed, in every single instance the Lr_3r 
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model outperformed the benchmark, which is indicated by the percentages in the 
graph. This indicates that it is indeed possible to model goal probabilities better than a 
simple benchmark model. 

Next, we see the comparison between the Lr_3r model and the Lr_0 model. 
Positive values mean the Lr_3r outperformed the Lr_0 model: 

 

 
Fig. 9. Bootstrapped difference in RMSE and Log Loss between Lr_3r and Lr_0. 

As can be seen, in both performance measures the Lr_3r model significantly 
outperforms the Lr_0 model. Just like in the previous test, in every single instance this 
is the case. Even though the differences are smaller than in the previous test, so is the 
variation in the differences. We can conclude that sequential information does indeed 
improve the model quality. 

5.3 Results from player performance 

Finally, we take the Lr_3r model, since it performs best, to measure player 
performance. For every player, we look at the difference between goal probabilities 
for every action he made. The sum of all these differences will then give an indication 
of the total amount of danger that player created. Since some players had more 
playing time than other players, the total is given as an average per 90 minutes, the 
length of a single football match. Players that had fewer than 1,350 minutes (15 full 
games) of playing time are not taken into account, to avoid players with a limited 
sample size. This leaves a total of roughly 260 players, or about 13 per team. The top 
15 is given below: 
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Fig. 10. The top 15 players of the English Premier League 16/17, in improving the probability 

of his team’s possessions.  

All of these players are players whom are generally praised by the public. To get a 
somewhat objective evaluation of these players, their market value is compared to the 
average market value of the other players that were considered. Market values are 
taken from Transfermarkt.com.  
 
The average market value of the top 15 is roughly 40 million euros, whereas the other 
players have an average market value of roughly 15 million. It must be noted that this 
is not a very good way to assess player quality. Other variables, like player age, 
position, and more, also have great influence on market value. For this purpose, 
however, it can be used to give a general idea of the possible value of the model in 
this paper.  
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6 Conclusion & Discussion 

6.1 Conclusion 

Using a ridged logistic regression, it is possible to model goal probabilities in football 
above a standard base line. Furthermore, including sequential information in the 
model by using a sliding window approach, will improve the model quality 
significantly. While the optimal size of the sliding window in this research turned out 
to be 𝑑 = 3, it is possible that a bigger sliding window will improve performance 
even more. Adding a recurrent variable improved model performance in all cases, but 
these differences are possibly not significant. The added modeling complexity might 
not be worth the additional performance, although this is dependent on the purpose of 
the model and the time available. 
 
Even though it is indeed possible to improve model quality by using sequential 
information, the location of the ball at 𝑑 = 0 is by far the most important factor in 
determining the goal probability. Other important variables include but are not limited 
to the previous locations of the ball, and whether a through ball has been played 
recently. 
 
Using the best model to assess player performance in the Premier League yields 
promising results. The players that are rated highly turn out to be generally more 
expensive players. The same technique can be used on other leagues, where players 
might be lesser known. This method then offers a way to objectively rate players 
without having to follow that specific league closely. 

6.2 Discussion 

Theoretically possible improvement 
Even though we have found it is possible to outperform standard base lines, there is 
still much improvement to be made. This can be seen when looking at the difference 
between the theoretically perfect model scores, and the Lr_3r model scores. Part of 
this gap might be able to be closed by improving modeling techniques. However, it is 
very likely that without using tracking data a significant gap is going to persist. This 
is because without tracking data, a lot of important information, like defender 
positioning, will be missing. Without this extra information, improvement will 
probably be limited. 
 
Another reason why there is a cap on performance, is that the game of football is 
inherently random. We will never be able to predict at the start of a possession, 
whether that possession will be converted to a goal. This is because whether the 
possession ends successfully, is dependent on events that are unknown at the start of a 
possession. The occurrence of these events will be paired with an increase or decrease 
in goal probability, but beforehand this information will not be available/predictable. 
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While this caps model performance, this is not a problem for the practical use of the 
model. In the proposed use of the model, for instance, the fact that certain events 
change the goal probability is needed to assign scores to players. If we already knew 
if a possession would become a goal at the start of a possession, this would not be 
possible.  

Practical improvement possibilities 
There were also some issues in modeling. The most notable is the non-intuitive results 
of the AUC metric. Whether this has to do with the models, or with the metric itself, 
is unknown. Since the AUC is one of the most generally used evaluation metrics for 
classification problems, it is interesting to see these unexpected results. 
 
Improvement in the modeling process is possible in a few ways. First of all, a bigger 
sliding window can be used to possibly increase model performance. Secondly, the 
value of λ can be estimated for all models individually. Even though this is not done 
in this research due to computational constraints, improving the value of λ may 
increase performance as well. Finally, other machine learning techniques may be used 
to try to increase performance. It must be noted that whatever technique is used, it 
should be able to handle imbalanced data properly. 
 
The use of the model for the purpose of evaluating players can be significantly 
improved upon. For instance, negative scores can be counted for every time a player 
loses the ball. Also, the value of a ‘negative’ pass can be capped, to avoid penalizing 
players who are forced to pass backwards due to a lack of support. Many more 
improvements are likely possible, but since that is not the aim of the paper this will 
not be visited in depth. 

Applications 
Even though this paper is focused around football, the methods used can also be 
applied to other areas of research. The most obvious application is the use of similar 
methodology in other sports, like ice hockey and rugby. Any sport which consists of 
possessions of a ball could be applicable. Outside of sports, these methods can also be 
interesting. Think of a manufacturing line where it can be used to predict faulty 
products. Basically, any situation where you want to predict success in a system with 
consecutive actions can make use of this methodology. It is, however, not necessarily 
true that results from this paper will also translate to different scenarios. 
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8 Appendix 

8.1 Feature importance 

 Absolute standardized coefficients 
Variable 𝑑 = 0 𝑑 = 1 𝑑 = 2 𝑑 = 3 
locationxG 0.2428 0.1002 0.0331 0.0139 

headed 0.0313 0.0181 0.0160 0.0046 

speed 0.0155 0.0108 0.0160 0.0192 

direct_speed - 0.0318 0.0104 0.0116 

xG (recurrent) - 0.0199 0.0086 0.0065 

type: clearance - 0.0026 0.0043 0.0041 

type: corner - 0.0112 0.0071 0.0042 

type: cross 0.0050 0.0133 0.0224 0.0071 

type: dribble 0.0203 0.0229 0.0270 0.0235 

type: foul - 0.0022 0.0095 0.0107 

type: headed_duel - 0.0068 0.0070 0.0032 

type: headed_pass 0.0182 0.0186 0.0093 0.0109 

type: interception - 0.0102 0.0072 0.0052 

type: long_ball 0.0150 0.0053 0.0052 0.0042 

type: pass 0.0156 0.0111 0.0050 0.0058 

type: shot - 0.0162 0.0067 0.0023 

type: tackle - 0.0031 0.0090 0.0069 

type: takeon 0.0130 0.0016 0.0002 0.0030 

type: takeondribble 0.0439 0.0171 0.0137 0.0127 

type: through_ball 0.0577 0.0524 0.0227 0.0125 

type: throw_in 0.0188 0.0182 0.0143 0.0114 

Table 6. Absolute standardized coefficients of the Lr_3r model, indicating the feature 
importance. 
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