
Optimal route in a road traffic
network

BMI Paper

Author:
Valentina Maccatrozzo

VU University Amsterdam
De Boelelaan 1081

1081 HV Amsterdam
The Netherlands

Optimal route in a road traffic
network

BMI Paper

Author:
Valentina Maccatrozzo

Supervisor:
Dr. Sandjai Bhulai

March 3, 2011

Abstract

We develop a road traffic Cellular Automata model suitable to an urban envi-
ronment. North, east, south and west car displacements are possible and road
crossings are naturally implemented as rotary junctions. We consider the traffic
in a small part of Amsterdam, a Manhattan city-like area. Besides the simu-
lation, we apply a Reinforcement Learning technique to derive optimal routes.
The Reinforcement learning approach implies to define a value function V on
the state space X, and to learn the values for each state x ∈ X. To make a
complete description of the system, the state space becomes too large. There-
fore we propose the use of a Temporal-Difference Q-Learning algorithm, that
avoids having to learn the complete transition model because the Q-value of a
state can be related directly to those of its neighbours.

iii

Preface

This paper is part of acquiring the Masters degree in Business Mathematics
and Informatics. Business Mathematics and Informatics is a multidisciplinary
program, aimed at business process optimization by applying a combination
of methods based upon mathematics, computational intelligence and business
management. These three disciplines will also play a central role throughout
this paper.
The subject of this study is on how to determine the optimal route in a road
traffic network. To model the behavior of vehicles in a network system, we will
use Cellular Automata (CA) and Reinforcement Learning (RL) techniques. The
purpose is to find an appropriate model to describe the traffic network system,
where multiple streets are connected to each other. We will use RL techniques,
which are techniques to learn optimal decisions based on the simulation type
of algorithms. We will investigate how to apply the Temporal-Difference (TD)
Q-Learning algorithm to derive optimal routes.
We will provide an overview of existing approaches to simulate a road traffic
network and to determine optimal routing. Then we will give a basic introduc-
tion to the mathematical background of these techniques. After implementing
a simulation program based on CA to model the traffic dynamics, we will define
the TD Q-Learning algorithm to derive routing policies. Eventually we will
validate the model by applying it.
Finally, I would like to thank my first supervisor, Dennis Roubos, and my actual
one, Sandjai Bhulai, for their help and support in writing this paper.

Valentina Maccatrozzo
Amsterdam, 2011

v

Contents

Abstract iii

Preface v

Introduction ix

1 Road traffic network models 1

1.1 Different points of view . 1

1.1.1 Simulation models . 1

1.1.2 Optimization models . 2

1.2 Our approach . 3

1.2.1 Cellular Automata . 3

1.2.2 Reinforcement Learning 5

2 Mathematical Models and Methods 11

2.1 Cellular automata . 11

2.1.1 A model for urban traffic 11

2.1.2 Routing of vehicles . 13

2.2 Reinforcement Learning . 13

2.2.1 Active Reinforcement Learning 13

3 Deriving optimal routes 17

3.1 Simulation . 17

3.1.1 Scheduling of vehicles . 17

3.2 Reinforcement Learning . 17

3.3 The shortest path . 18

3.4 Conclusions . 19

Bibliography 21

vii

Introduction

Road transportation, e.g., the efficient movement of people and goods through
physical road and street networks, is a fascinating problem. Traffic systems are
characterised by a number of features that make them hard to analyze, con-
trol and optimise. The systems often cover wide physical areas, the number of
active participants is high, the goals and objectives of the participants are not
necessarily parallel with each other or with those of the system operator (sys-
tem optimum vs. user optimum), and there are many system inputs that are
outside the control of the operator and the participants (the weather conditions,
the number of users, etc.).
In addition, road and street transportation systems are inherently dynamic in
nature, that is, the number of units in the system varies with time, and with a
considerable amount of randomness. The great number of active participants at
present at the same time in the system means a great number of simultaneous
interactions.
In this work we propose a Cellular Automata (CA) model to describe the be-
havior of the vehicles. By means of simulation and the implementation of the
CA model in the simulation, the behavior of the vehicles through a network
can be modeled. At each intersection, a vehicle can make a decision to either
turn left, turn right or drive forward. The optimal decision is learned by means
of Reinforcement Learning (RL) techniques. The purpose is to define a value
function on the state space, and to learn the values for each state. A complete
description of the system would consist of the actual position for every vehi-
cle in the network, therefore the state space becomes very large. The solution
we propose is to use a Temporal-Difference Q-Learning algorithm. This is a
particular RL algorithm which avoids having to learn the complete transition
model because the Q-value of a state can be derived directly from those of its
neighbours. One can identify a direct relation with the act of driving a car,
during which we are actually concerned with what happens around us.

ix

Chapter 1

Road traffic network models

In this chapter we provide an overview of existing methods to find optimal
routing in road traffic networks and a presentation of our choices.

1.1 Different points of view

1.1.1 Simulation models

Simulation of road traffic networks can be divided into two categories: micro-
scopic and macroscopic. Road traffic micro-simulation models are computer
models where the movements of individual vehicles travelling around road net-
works are determined by using simple car following, lane changing and gap
acceptance rules. They are becoming increasingly popular for the evaluation
and development of road traffic management and control systems.
Macroscopic models provide an aggregated representation of traffic, typically
expressed in terms of total flows per hour. In such models, all vehicles of a par-
ticular group obey the same rules of behaviour. A key limitation of macroscopic
simulation models is their aggregate nature. Because they treat traffic flow as a
continuous process, they are incapable of capturing the discrete dynamics which
arise from the interactions of individual vehicles. In addition, because they are
deterministic, these models can provide only average traffic flow metrics. Higher
moments of throughput, travel time, and speed are impossible to characterize.
The usefulness of most of these models is limited to characterizing the long run
behavior of traffic flow and cannot be used for real time traffic analysis and
control. [5]
By contrast, micro-simulation models provide a better, and ‘pure’, representa-
tion of actual driver behaviour and network performance. They are the only
modelling tools available with the capability to examine certain complex traffic
problems, e.g. intelligent transportation systems, complex junctions, shock-
waves, effects of incidents. In this paper, we will concentrate on microscopic
simulation models.
One way to model microscopic simulation is represented by car-following and
lane changing models. Car-following models focus on describing the detailed
manner in which one vehicle follows another. Lane change models try to im-
itate the behaviour of a vehicle that does a lane changing, behaviour that is

1

Chapter 1

hard to simulate. There are many simulators that use such models. For in-
stance PARAMICS [7], MITSIM [25], AIMSUN2 [4] and HUTSIM [11]. In
particular, such simulators implement both models in a complementary way.
In [15] a microscopic model of interurban traffic is developed, which uses fuzzy
modelling techniques to describe behavioural processes. Fuzzy logic [26] al-
lows the introduction of a quantifiable degree of uncertainty into the modelled
process in order to reflect ‘natural’ or subjective perception of real variables
and these can include measures of degrees of ‘desire’ and ‘confidence’ in each
information source. This approach allows the formation of a traditional (mod-
ular) rule base, but is far easier to define and redefine as new data becomes
available. Behavioural rules are developed to describe car-following and lane-
changing models.
Another interesting apporach is proposed in [17]. In order to be able to have
a simulator tool that can work for different models, they adopt a traffic model
based on a road database built according to the physical road conditions. As
a result, our vehicle model can run only along running lines in a running line
network and is able to omit operations of the steering wheel like railways. So, a
vehicle runs reasonably on one-dimensional spaces but not on two-dimensional
spaces. Therefore the simulation needs not to consume considerable execution
time because of the running line network.

1.1.2 Optimization models

The growth of road traffic and the increasing inconvenience and environmen-
tal damage caused by road congestion require a significantly more efficient use
of the infrastructure for physical transport. Traffic load is highly dependent
on parameters such as time, day, season, weather and unpredictable situations
such as accidents, special events or construction activities. If these parameters
are not taken into account, the traffic control system will create bottlenecks
and delays. So the key is to develop such models in order to consider every, or
at least the more important features of the whole system. In [18] the authors
propose a ‘system-optimum approach, but honor the individual needs by im-
posing additional constraints to ensure that drivers are assigned to acceptable
paths only’. Actually they combine the traffic authority’s point of view with the
users’ point of view. The result is the introduction of the concept of the normal
length of a path, and this could be either its traversal time in the uncongested
network, its traversal time in user equilibrium, its geographic distance, or any
other appropriate measure. The only condition imposed on the normal length
of a path is that it may not depend on the actual flow on the path. Equipped
with this definition, they achieve the goal of finding solutions that are fair and
efficient at the same time. Another interesting approach is proposed in [10].
Here the authors underline the importance of considering uncertainty in order
to find an optimal path, instead of suboptimal ones. They claim that deter-
ministic solutions ignore the inherent stochasticity of traffic as well as changing
traffic conditions. The idea is to use utility or cost functions in order to express
the trade-off between speediness and reliability: in particular they consider a
variety of stochastic route planning problems, with an emphasis on cost func-
tions that value timeliness without time-wasting.
In [3] a hierarchical routing system is developed, i.e., traffic networks are splitted
into several smaller and less complex networks by introducing a hierarchy. The

2

Road traffic network models

system therefore consists of several distributed routing systems where each one
is responsible for one network of the hierarchical network. The route optimiza-
tion is done with an adapted version of the AntNet-algorithm, a decentralized
routing algorithm, which uses intelligent agents that explore the network and
find the shortest routes.

1.2 Our approach

In this work we decided to use Cellular Automata (CA) as simulation model
and Reinforcement Learning (RL) as optimization model. Our objective is to
find optimal routes to drive from one location to a destination. So CA will be
used to model the network and the optimal decision has to be learned by means
of RL techniques. First we give a general overview of the methods, and in the
following chapter we will give a more mathematical description.

1.2.1 Cellular Automata

Take a board, and divide it up into squares, like a chess-board or
checker-board. These are the cells. Each cell has one of a finite
number of distinct colors — red and black, say, or (to be patriotic)
red, white and blue. (We do not allow continuous shading, and every
cell has just one color.) Now we come to the ‘automaton’ part. Sit-
ting somewhere at one side of the board is a clock, and every time the
clock ticks the colors of the cells change. Each cell looks at the col-
ors of the nearby cells, and its own color, and then applies a definite
rule, the transition rule, specified in advance, to decide its color in
the next clock-tick; and all the cells change at the same time. (The
rule can say ‘Stay the same’.) Each cell is a sort of very stupid com-
puter — in the jargon, a finite-state automaton — and so the whole
board is called a cellular automaton, or CA. To run it, you color the
cells in your favorite pattern, start the clock, and stand back1.

Cellular automata models are a very efficient way to implement car motion, as
it has been demonstrated by many authors (see for instance [14]). A pioneer-
ing work is that of Nagel and Schreckenberg who showed that a CA, i.e., fully
discrete dynamics of simple idealized vehicles, can capture several essential fea-
tures of the real traffic flow [6,16,20]. In this approach, cars are represented as
points moving on a discretized road with only a small set of possible velocities
and accelerations.
In a vehicle-based model, cars represent the ‘microscopic’ constituents of the
system. However, car traffic is a macroscopic phenomena whose typical time
and spatial scale extends much beyond that of the single vehicle. The fact
that over-simplified microscopic modeling provides an accurate description of
the macroscopic level is a common observation for many complex systems. As a
matter of fact, the CA approach has been a very successful tool to model several
processes in physics and related domains [9].
Single lane car traffic can be modelled as follows. The road is represented as a

1C.R. Shalizi, http://www.cscs.umich.edu/~crshalizi/notabene/cellular-automata.
html

3

Chapter 1

line of cells, each of them being occupied or not by a vehicle. All cars travel in
the same direction (say to the right). Their positions are updated synchronously,
in successive iterations (discrete time steps). During the motion, each car can
be at rest or jump to the nearest neighbor site, along the direction of motion.
The rule is simply that a car moves only if its destination cell is empty. In
this model, the drivers do not know whether the car in front will move or is
blocked by another car. Therefore, the state of each cell si ∈ {0, 1} is entirely
determined by the occupancy of the cell itself and its two nearest neighbors si−1
and si+1. This dynamics can be summarized by the relation:

si(t+ 1) = si−1(t)(1− si(t)) + si(t)si+1(t), (1.1)

where t denotes the iteration step.
A richer version of the above CA model has been developed in [14,16,24]. The
cars may have several possible velocities u = 0, 1, 2, ..., umax. Let ui be the
velocity of car i and di the distance, along the road, separating cars i and i+1.
The updating rule is:

• The cars accelerate when possible: ui → u′i = ui + 1, if ui < umax.

• The cars slow down when required: u′i → u′′i = di − 1, if u′i ≥ di.

• The cars have a random behavior: u′′i → u′′′i = u′′i − 1, with probability pi
if u′′i > 0.

• Finally the cars move u′′′1 sites ahead.

This rule captures some important behaviors of real traffic on a highway: veloc-
ity fluctuations due to a non-deterministic behavior of the drivers, and âĂĲstop-
and-goâĂİ waves observed in a high density traffic regime (i.e., some cars get
stopped for no specific reasons).
In [8] a two-dimensional road network model is presented. They assume that
horizontal roads consists of two lanes, one for eastward motion and the other for
westward motion. Vertical streets are composed of northbound and southbound
lanes. The road junction is defined as a rotary: a central point around which
the traffic moves always in the same direction. A vehicle in a rotary has priority
over any entering car.
Figure 1.1 illustrates how the implementation works. The four middle cells
constitute the rotary. A vehicle in the rotary (like b or d) can either rotate
counterclockwise or exit. A local flag f is used to decide the motion of a car in a
rotary. If f=0, the vehicle (like d) exits in the direction allowed by the color of its
lane (see figure caption). If f=1, the vehicle moves counterclockwise, like b. The
value of the local turn flag f can be updated according to the modeling needs:
it can be constant for some amount of time to impose a particular motion at a
given junction, completely random, random with some bias to favor a direction
of motion, or may change deterministically according to any user-specified rule.
As in the one-dimensional rule, a vehicle moves only when its destination cell is
empty. Far from a rotary, the state of the destination cell is determined by the
occupation of the down-motion cell. This is also the case for a vehicle turning
at the rotary. On the other hand, a car wanting to enter the rotary has to check
two cells because it has not the priority. This check is made by looking at the
turn flag f of the neighboring cells having the priority.

4

Road traffic network models

Figure 1.1: Example of a traffic configuration near a junction. The four cen-
tral cells represent a rotary which is traveled counterclockwise. The grey levels
indicate the different traffic lanes: white is a northbound lane, light gray an
eastbound lane, grey a southbound lane and, finally, dark grey is a westbound
lane. The dots labeled a, b, c, d, e, f, g and h are cars which will move to the
destination cell indicated by the arrows, as determined by the cell turn flag f.
Cars without an arrow are forbidden to move.

For instance, car c cannot enter the rotary because b is going to move to the
white cell. Car e cannot move either because it sees b (and cannot know whether
or not b will actually move). Car a, on the other hand can enter because it sees
that d is leaving the rotary and that the grey cell ahead is free.
Similarly, the incoming vehicle to a given cell is computed differently inside and
outside of the rotary. The light grey cell occupied by car b has two possible
inputs: with priority, it is the vehicle from the grey cell at west; if this cell is
empty, the input will be the incoming lane, namely the car labeled e.

1.2.2 Reinforcement Learning

Reinforcement learning is a method used to find the best solution to a real
problem facing a learning agent interacting with its environment to achieve a
goal. The most important feature distinguishing reinforcement learning from
other types of learning is that it uses training information that evaluates the
actions taken rather than instructs by giving correct actions. As a result the
challenge of making a trade-off between exploration and exploitation arises. To
obtain a lot of reward, a reinforcement learning agent must prefer actions that
it has tried in the past and found to be effective in producing reward. But to
discover such actions, it has to try actions that is has not selected before. The
agent has to exploit what it already knows in order to obtain rewards, but it
also has to explore to make better action selections in the future. Another key
factor of reinforcement learning is that it explicitly considers the whole problem,
which is in contrast with many approaches that consider subproblems without
addressing how they might fit into a larger picture.
Beyond the agent and the environment, one can identify four main subelements
of a reinforcement learning system:

• The policy is the core of a reinforcement learning agent in the sense that
it alone is sufficient to determine behavior.

5

Chapter 1

• A reward function defines the goal in a reinforcement learning problem.
Roughly speaking, it maps each perceived state (or state-action pair) of
the environment to a single number, a reward, indicating the intrinsic
desirability of that state.

• A value function specifies what is good in the long run. Roughly speaking,
the value of a state is the total amount of reward an agent can expect to
accumulate over the future, starting from that state.

• A model mimics the behaviour of the environment. For example, given
a state and action, the model might predict the resulting next state and
next reward.

Markov Decision Process

A stochastic process has the Markov property if the conditional probability
distribution of future states of the process, given the present state and a number
of past states, depends only upon the present state and not on the given states
in the past, i.e., it is conditionally independent of these older states. In other
words, the evolution of a Markov process from some point in time tn does not
depend on the history but only on the current state Sn. It can be seen as a
memoryless property. In mathematical formulas this looks like:

Pr{Stn = sn|St1 = s1, . . . ,Stn−1
= sn−1}

= Pr{Stn = sn|Stn−1
= sn−1}, (1.2)

for all t1 < · · · < tn.
In the case of real-time travel-time predictions, we would like to develop a
Reinforcement Learning task in the framework of Markov Decision Processes
(MDPs). Therefore we need state and action spaces, denoted by S and A(s),
respectively, which we assume are finite. A particular finite MDP is defined by
its state and action sets and by the dynamics of the environment. The policy,
π, is a mapping from each state to an action, i.e. π(s) = a means that in state
s action a is taken. Given any state and action, s and a, the probabilities of the
next state, s’, is

Pass′ = Pr{st+1 = s′|st = s, at = a},

These quantities are called transition probabilities. Similarly, given any current
state and action, s and a, together with any next state, s’, the expected value
of the reward is

Rass′ = E{rt+1|at = a, st = s, st+1 = s′},

These quantities, Pass′ and Rass′ , completely specify the most important apsects
of the dynamics of a finite MDP. Before we move on, we will make the follow-
ing three assumptions. Relaxing any of these is possible, but usually leads to
additional constraints or complications. Moreover, in practical situations all
these constraints are satisfied, but we have to check them before we can ap-
ply this method on the real-time travel time problem. Before formulating the
assumptions, it is convenient to define the notion of a path in a Markov chain.

6

Road traffic network models

Definition A sequence of states z0, z1, . . . , zk−1, zk ∈ S with the property that
p(z0, z1), . . . , p(zk−1, zk) > 0 is called a path of length k.

Assumption 1 |S| <∞ and |A(s)| <∞ for all s ∈ S.

Assumption 2 For every policy π, there is at least one state s ∈ S (that may
depend on π), such that there is a path from any state to s. If this is the case
we call the chain unichain, and state s is called recurrent.

Assumption 3 For every policy π, the greatest common divisor of all paths
from s to s is 1, for some recurrent state s. If this is the case we call the chain
aperiodic.

Value functions

Almost all reinforcement learning algorithms are based on estimating value func-
tions - functions of states (or of state-action pairs) that estimate how good it
is to perform a given action in a given state. Informally, the value of a state s
under a policy π, denoted V π(s), is the expected return when starting in s and
following π thereafter. For a MDP two value functions can be defined:
• the state-value function for policy π, V π(s), defined as the expected return

when starting in s and following π thereafter.

V π(s) = Eπ

T−1∑
t=0

r(st) = Eπ

T−1∑
t=0

∑
s′∈S

pt(s, s′)r(s′), (1.3)

where Eπ{} denotes the expected value given that the agent follows policy
π.

• the action-value function policy π,Qπ(s, a), defined as the expected return
starting from s, taking the action a, and thereafter following policy π.

Qπ(s, a) = r(s0, a)+Eπ

T−1∑
t=1

r(st) = r(s0, a)+Eπ

T−1∑
t=1

∑
s′∈S

pt(s, s′)r(s′).

(1.4)

A fundamental property of value functions used throughout reinforcement learn-
ing is that they satisfy particular recursive relationships.
Define V (s) = minπ V

π(s), then for any policy π we have

V (s) + g = r(s, π(s)) +
∑
s′∈S

p(s, π(s), s′)V (s′). (1.5)

This equation is called the Poisson equation. This equation averages over all
the possibilities, weighing each by its probability of occuring. It states that the
value of the start state must equal the value of the expected next state, plus the
reward expected along the way. Note that Equation (1.5) does not have a unique
solution. There are two possible solutions to this problem: either take V (0) = 0
for some reference state 0, or add the additional condition

∑
s∈S π∗(s)V (s) = 0.

Only under the latter condition, V has the interpretation as the total expected
difference in reward between starting in a state and starting in stationarity.

7

Chapter 1

Optimal value functions

Solving a reinforcement task means, roughly, finding a policy that achieves a
lot of reward over the long run. For finite MDPs, we define an optimal policy
in the following way. Value functions define a partial ordering over policies. A
policy π is defined to be better than or equal to a policy π′ if its expected return
is greater than or equal to that of π′ for all states. In other words, π ≥ π′ if
and only if V π(s) ≥ V π

′
(s) for all s ∈ S. There is always at least one policy

that is better than or equal to all other policies. This is an optimal policy.
Although there may be more than one, we denote all the optimal policies by
π∗. They share the same state-value function, called the optimal state-value
function, denoted by V ∗, and defined as

V ∗(s) = max
π

V π(s), (1.6)

for all s ∈ S. Optimal policies also share the same optimal action-value function,
denoted by Q∗, and defined as

Q∗(s, a) = max
π

Qπ(s, a), (1.7)

for all s ∈ S and a ∈ A(s). For the state-action pair (s,a) this function gives
the expected return for taking action a in state s and thereafter following an
optimal policy. Thus, we can write Q∗ in terms of V ∗ as follows:

Q∗(s, a) = max
a∈A(s)

{
r(s, a) +

∑
s′∈S

p(s, a, s′)V ∗(s′)

}
. (1.8)

Because V ∗ is the value function for a policy, it must satisfy the self-consistency
condition given by the Bellman equation for state values (1.5). Because it is
the optimal value function, however, V ∗’s consistency condition can by written
in a special form without reference to any specific policy. This is the Bellman
equation for V ∗, or the Bellman optimality equation. Intuitively, the Bellman
optimality equation expresses the fact that the value of a state under an optimal
policy must equal the expected return for the best action from that state:

r(s, π∗(s))+
∑
s′∈S

p(s, π∗(s), s′)V π
∗
(s′) = max

a∈A(s)

{
r(s, a) +

∑
s′∈S

p(s, a, s′)V π(s′)

}
.

At the same time, by the Poisson equation:

V π
∗
(s) + gπ

∗
= r(s, π∗(s)) +

∑
s′∈S

p(s, π∗(s), s′)V π
∗
(s′).

Combining these two gives the Bellman optimality equation for V ∗:

V π
∗
(s) + gπ

∗
= max
a∈A(s)

{
r(s, a) +

∑
s′∈S

p(s, a, s′)V π
∗
(s′)

}
. (1.9)

The Bellman optimality equation for Q∗ is:

Qπ
∗
(s, a) + gπ

∗
= max
a′∈A(s′)

{
r(s, a′) +

∑
s′∈S

p(s, a′, s′)Q∗(s′, a′)

}
. (1.10)

8

Road traffic network models

For finite MDP’s, the Bellman optimality equation (1.9) has a unique solution
independent of the policy. The Bellman optimality equation is actually a sys-
tem of equations, one for each state, so if there are N states, then there are
N equation in N unknowns. If the dynamics of the environment are known
(Rass′ and Pass′), then in principle one can solve this system of equations for V ∗
using any one of a variety of methods for solving systems of nonlinear equations.
This can be done by using Dynamic Programming. One can solve a related set
of equations for Q∗.

Once one has solved V ∗, it is relatively easy to determine an optimal policy.
For each state s, there will be one or more actions at which the maximum is
attained in the Bellman optimality equation. Any policy that assigns nonzero
probability only to these actions is an optimal policy. You can think of this as
a one-step search. If you have the optimal value function, V ∗, then the actions
that appear best after a one-step search will be optimal actions. Another way
of saying this is: any policy that is greedy with respect to the optimal expected
long-term return is turned into a quantity that is locally and immediately avail-
able for each state. Hence, a one-step-ahead search yields the long-term optimal
actions.

Having Q∗ makes choosing optimal actions still easier. With Q∗, the agent does
not even have to do a one-step-ahead search: for any state s, it can simply
find any action that maximizes Q∗(s, a). The action-value function effectively
caches the results of all one-step-ahead searches. It provides the optimal ex-
pected long-term return as a value that is locally and immediately available for
each state-action pair. Hence, at the cost of representing a function of state-
action pairs, instead of just of states, the optimal action-value function, when
Q∗ is known, allows optimal actions to be selected without having to know any-
thing about possible successor states and their values, that is, without having
to know anything about the environment’s dynamics.

Explicitly solving the Bellman optimality equation provides one route to find-
ing an optimal policy, and thus to solve the reinforcement learning problem.
However, this solution is not always directly useful. It is akin to an exhaustive
search, looking ahead at all possibilities, computing their probabilities of occur-
rence and their desirabilities in terms of expected rewards. This solution relies
on at least three assumptions that have to be checked before we can use this
method:

1. we accurately know the dynamics of the environment;

2. we have enough computational resources to complete the computation of
the solution;

3. meet the Markov Property.

If the solution cannot be implemented exactly, there are many different decision-
making methods which can be viewed as ways of approximately solving the
Bellman optimality equation [2].

9

Chapter 2

Mathematical Models and
Methods

In this chapter we give a detailed mathematical explanation of the methods we
used.

2.1 Cellular automata

In this work, we are interested in simulating the traffic of the city of Amsterdam.
The model presented in the previous chapter can be adapted and extended ac-
cording to the situation to be simulated. In particular we will concentrate on a
small part of the city.

2.1.1 A model for urban traffic

Each road segment is discretized into cells of constant length (7,5 meters long)
to form a one-dimensional CA. In any given cell, there is at most one vehicle.
Each vehicle will move if the next cell is free. We consider one possible velocity,
since we consider only cars driving in the city.
The behavior of cars at crossings is modelled as a rotary on which entering
and exiting lanes are connected. The junctions are the vertices of the graph
representing the city and the connecting road segments are the edges.
A rotary is also a 1D CA in which the first and last cells are connected. Clearly,
the maximum capacity of such a junction is limited by the capacity of a 1D CA,
which is 1 vehicle every 2 steps. The advantage of representing a junction as a
rotary is twofold:

1. the rule of motion for road segments or crossings can be implemented in
the same way;

2. vehicles in rotaries always have priority over the other cars; this gives a
natural and simple way to deal with concurrency problems in a situation
where all car move synchronously.

11

Chapter 2

Just before entering a rotary, the vehicle has to give the right of way if there is
a vehicle already in the rotary, otherwise it enters the rotary. When in a rotary
cell, a vehicle has a probability 1/2 to exit the rotary. We can distinguish three
types of rotaries:

1. rotaries composed by one cell: the crossing of two one-way streets;

2. rotaries composed by two cells: the crossing of a one-way street and a
two-way street;

3. rotaries composed by three cells: the crossing of two two-way streets.

Figure 2.1: The area considered is from the corner made by Prinsengracht and
Westermarkt and the corner made by Spuistraat and Reestraat, as indicated by
the rectangle.

12

Mathematical Models and Methods

2.1.2 Routing of vehicles

We consider a very small part of the city of Amsterdam. Figure 2.1 shows the
part of the city we considered.
The full network comprises 9 road segments and 20 junctions for about 47 km.
After discretization, there are 6308 road cells, 45 entrance and exit cells which
connect the junctions to the roads.
In a typical traffic problem, every vehicle follows a given path, which is pre-
scribed by the so-called Origin-Destination (OD) matrix. In our case, the OD
matrix is built manually.

2.2 Reinforcement Learning

Reinforcement learning is a computational approach to understand and auto-
mate goal-directed learning and decision-making. It is distinguished from other
computational approaches by its emphasis on learning by the individual from
direct interaction with its environment, without relying on exemplary supervi-
sion or complete models of the environment.
Reinforcement learning uses a formal framework defining the interaction be-
tween a learning agent and its environment in terms of states, actions, and
rewards. This framework is intended to be a simple way of representing es-
sential features of the artificial intelligence problem. These features include a
sense of cause and effect, a sense of uncertainty and nondeterminism, and the
existence of explicit goals.
The concepts of value and value functions are the key features of the reinforce-
ment learning methods. Value functions are essential for efficient search in the
space of policies. The use of value functions distinguishes reinforcement learn-
ing methods from evolutionary methods that search directly in the policy space
guided by scalar evaluations of entire policies.
We can distinguish between passive and active learning. With passive learning
the agent’s policy is fixed and the task is to learn the utilities of the states (or
state-action pairs); also the rewards are given. With active learning the agent
must also learn what to do. In this case the main issue is exploration: an agent
must experience as much as possible of its environment in order to learn how to
behave in it. In our case we can speak about partial active learning, since our
agent knows the basic driving rules.

2.2.1 Active Reinforcement Learning

As we already underlined, an active agent must decide what actions to take, so,
if it learns a value function V , it will need to learn a model in order to be able
to choose an action based on V via one-step look-ahead as explained by Figure
2.2.

Temporal-difference Q-Learning

Temporal-difference learning is one of the possible ways to approach a reinforce-
ment learning task. This approach uses the observed transitions to adjust the
utilities of the observed states so that they agree with the constraint equations.

13

Chapter 2

Figure 2.2: We decide how to update each state by looking forward to future
rewards and states.

When a transition occurs from state s to state s′, we apply the following update
to Uπ(s):

Uπ(s) = Uπ(s) + α (R(s) + γUπ(s′)− Uπ(s)) , (2.1)

where α is the learning rate paramater, R(s) is the reward of state s and γ is the
discount factor. Because this update rule uses the difference in utilities between
successive states, it is often called the temporal-difference (TD) equation.
There is an alternative TD method, called Q-learning, which learns an action-
utility function representation instead of learning utilities. We will use the
notation Q(s, a) to denote the value of doing action a in state s. Q-values are
directly related to utility values as follows:

U(s) = max
a

Q(s, a). (2.2)

Q-functions may seem like just another way of sorting utility information, but
they have a very important property: a TD agent that learns a Q-function
does not need a model of the form P (s′|s, a), either for learning or for action
selection. For this reason, Q-learning is called a model− free method. As with
utilities, wa can write a constraint equation that must hold at equilibirum when
the Q-values are correct:

Q(s, a) = R(s) + γ
∑
s′

P (s′|s, a)max
a′

Q(s′, a′). (2.3)

We can use this equation directly as an update equation for an iteration process
that calculates exact Q-values, given an estimated model. This does, however,
require that a model also must be learned, because the equation uses P (s′|s, a).
The temporal-difference approach, on the other hand, requires no model of
transitions, all it needs are the Q-values. The update equation for a TD Q-
learning is:

Q(s, a)← Q(s, a) + α
(
R(s) + γmax

a
Q(s′, a′)−Q(s, a)

)
, (2.4)

which is calculated whenever action a is executed in state s leading to state
s′ [19].

14

Mathematical Models and Methods

The algorithm

The problem model consists of an agent, states S and a set of actions per state
A. By performing an action a ∈ A, the agent can move from state to state, i.e.,
move from cell to cell. Each state provides the agent a reward (a real or natural
number). The goal of the agent is to maximize its total reward. It does this
by learning which action is optimal for each state. The algorithm therefore has
a function which calculates the Quality of a state-action combination. Before
the learning phases has started, Q returns a fixed value, chosen by the designer.
Then, each time the agent is given a reward (the state has changed) new values
are calculated for each combination of a state s from S, and action a from A.
The core of the algorithm is a simple value iteration update. It assumes the old
value and makes a correction based on the new information.

Q(st, at)← Q(st, at)︸ ︷︷ ︸
old value

+ α(st, at)︸ ︷︷ ︸
learning rate

expected discounted reward︷ ︸︸ ︷

R(st+1)︸ ︷︷ ︸
reward

+ γ︸︷︷︸
discountfactor

max
a

Q(st+1, a)︸ ︷︷ ︸
max future value

−
old value︷ ︸︸ ︷
Q(st, at)

 ,
where R(st+1) is the reward observed from st+1, α(A, a)(0 < α ≤ 1) is the
learning rate. The learning rate determines to what extent the newly acquired
information will override the old information. A factor of 0 will make the agent
not learn anything, while a factor of 1 would make the agent consider only the
most recent information. In our case, it is a function that decreases as the
number of times a state has been visited increases. The discount factor γ is
such that 0 ≤ γ < 1. the discount factor describes the preference of an agent
for current rewards over future rewards. When γ is close to 0, rewards in the
distant future are viewed as insignificant, while a factor approaching 1 will make
it strive for a long-term high reward. In our case it is 0.7.

15

Chapter 3

Deriving optimal routes

In this chapter, we are going to describe in details the application and the re-
sults obtained with our model. The results of this work can be divided into
two sections: the first section regards the application of the Cellular Automata
simulation technique to a road traffic network; the second regards the applica-
tion of a Reinforcement Learning technique to learn in a simulated road traffic
network optimal routes.

3.1 Simulation
Since we are simulating a very central area of Amsterdam, we miss information
about the real evolution of the traffic state in the city. Information about the
main highways can be found, but not about the center. Despite this, we reached
some important results that can validate our model.

3.1.1 Scheduling of vehicles

Any vehicle in the network is put in the grid from one of the entrances. The
entrance is selected by the generation of a random number. Once in the network,
the car will follow a predefined path, as described in the OD matrix. In our
model, each car is characterized by a path number which indicates the sequence
of crossroads the vehicle must travel to reach its destination. Each junction is
labeled. A centralized table gives, for each path number and current junction
label, what is the next junction to reach. When the vehicles reach a crossing,
they enter the rotary and select the appropriate exit, as specified by the routing
direction.

3.2 Reinforcement Learning
Active reinforcement learning needs to get familiar with the model, in order to
learn to behave in the right way. This is the part of the algorithm which is
called exploration. The objective of this part is to maximize the long-term well
being and to try to get to unexplored states. The part that actually uses the
results of the exploration is called exploitation. The objective of this part is to
maximize the agent’s reward and it depends upon the current utility estimation.

17

Chapter 3

Pure exploitation risks getting stuck in a rut, while pure exploration to improve
one’s knowledge is of no use if one never puts that knowledge into practice. The
agent should make a trade off between the two. We adopted a simple combined
approach:

• choose 10000 random actions in the beginning;

• then follow the greedy policy.

3.3 The shortest path

The area of Amsterdam we considered is quite a Manhattan city-like area, but
we had to ‘shorten’ or ‘strech’ some streets, in order to create a real Manhattan
map. Due to this fact, we decided to compare our results with Google Maps1
looking at the shortest path, and not the fastest, since our results would be not
reliable.

Figure 3.1: The results of the Q-Learning agent.

In the graph, the x-axis represents the number of times the agent repeats the
attempt to reach its destination, after exploration, while on the y-axis is shown
the number of actions taken (visited cells) by the agent to arrive at the destina-
tion cell. What we can observe from this data is that the agent learns quite fast,
and most of the time after a few trials, it arrives at the optimal policy. Com-
paring the results with those of Google Maps, the paths are the same. However,
the behavior of the agent is not always optimal, as it is shown in Figure 3.2.
This figure shows the path number 4 ((79, 67)-(52,46)).

1http://maps.google.com/

18

Deriving optimal routes

Figure 3.2: Agent vs GoogleMaps

3.4 Conclusions

The model we built has given reasonable results, even if there is still room for
improvements.
We can state that it is a good model to represent a traffic road networks and to
keep a little state-space description. Actually we think that it is a good model
for a driver simulator since a driver actually needs to keep under control only
the nearby area.
As it is shown in Figure 3.2, sometimes the agent is stuck on a path. This is
probably due to the fact that the exploration part is made by random deci-
sions. So it could happen that some cells are never visited by the agent during
exploration, and, therefore, during exploitation, these cells have a very low prob-
ability to be visited. Besides, also during exploration, when the agent is in a
rotary and the possible cells have the same Q-value, the decision is random.
One possible improvement could be to manage the exploration part with a not
completely random strategy. Maybe a different update rule or reduce the ran-
domness in order to visit all the cells. Another possibility could be that of

19

Chapter 3

mixing the exploration and the exploitation part: after an exploration period,
an exploitation period starts, and when (and if) the agent gets stuck on a (not
optimal) path, another exploration period starts. This approach could allow
the agent to explore cells it has never visited before. As in Figure 3.2, an explo-
ration period once the agent got stuck on the wrong path, could have helped it
to turn left at the right cross.

20

Bibliography

[1] Dupuis A. and Chopard B. Cellular automata simulations of traffic: A
model for the city of Geneva. Networks and Spatial Economics, 3, January
2003.

[2] Sutton R.S.and Barto A.G. Reinforcement Learning: An Introduction. MIT
Press, 2000.

[3] Tatomir B., Dibowsky H., and L.J.M. Rothkrantz. Hierarchical routing in
traffic networks. In Proceedings of the Belgium-Netherlands Artificial In-
telligence Conference (BNAIC 2004), Groningen, The Netherlands, pages
75–82, October 2004.

[4] J.L. Ferrer D. Garcias Barceló J., J. Casas. Modelling advanced transport
telematic applications with microscopic simulators: The case of aimsun2. In
Heidelberg: Springer, editor, Traffic and Mobility: Simulation-Economics-
Environment., pages 205–221, 1999.

[5] Saifallah Benjaafar, Kevin Dooley, and Wibowo Setyawan. Cellular au-
tomata for traffic flow modeling, 1997.

[6] W. Brilon and N. Wu. Evaluation of Cellular Automaton for Traffic Flow
Simulation on Freeway and Urban Streets. Berlin: Springer Verlag, 1999.

[7] Gordon Cameron, Brian J. N. Wylie, and David McArthur. Paramics–
moving vehicles on the connection machine. In Supercomputing ’94: Pro-
ceedings of the 1994 conference on Supercomputing, pages 291–300, Los
Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[8] B. Chopard, P. O. Luthi, and P.-A. Queloz. Cellular automata model of
car traffic in a two-dimensional street network, 1996.

[9] Bastien Chopard and Michel Droz. Cellular Automata Modeling of Physical
Systems. Cambridge University Press, 1998.

[10] Nikolova E., Brand M., and Karger D.R. Optimal route planning under
uncertainty. In ICAPS, pages 131–141, 2006.

[11] Kosonen I. HUTSIM- A Simulation Tool for Traffic Signal Control Plan-
ning. PhD thesis, Helsinki University of Technology.

[12] Tania Jiménez, Philippe Mussi, and Günther Siegel. A road traffic simula-
tor: Car-following and lane-changing. In Proceedings of the 14th European
Simulation Multiconference on Simulation and Modelling, pages 241–245.
SCS Europe, 2000.

21

[13] Pursula M. Simulation of Traffic Systems - An Overview. Journal of
Geographic Information and Decision Analysis, (3(1)):1–8, 1999.

[14] Schreckenberg M. and D.E.Wolf. Proceedings of the conference Traffic and
Granular Flow 97. Singapore: Springer-Verlag, 1998.

[15] J. Wu M. Brackstone McDonald, M. Development of a fuzzy logic based mi-
croscopic motorway simulation model. In Proceedings of ITSC97, November
1997.

[16] K. Nagel and M. Schreckenberg. A cellular automaton model for freeway
traffic. J. Phys., 2:2221–2229, 1992.

[17] Y. Ueda Namekawa, M. and A. Satoh. A road traffic simulation system
with a microscopic model using a running line. In Proceedings of the 18th
World IMACS/MODSIM Congress, 2009.

[18] Jahn O.and Möhring R.H., Schulz A.S., and Stier Moses N.E. System-
optimal routing of traffic flows with user constraints in networks with con-
gestion. Operations Research, 53:4394–2, 2002.

[19] Russell S. and Norvig P. Artificial Intelligence: a modern approach. Pear-
son, third edition, 2010.

[20] A Schadschneider and M Schreckenberg. Cellular automaton models and
traffic flow. Journal of Physics A: Mathematical and General, 26(15), 1993.

[21] W.R. Gilks S.Richardson and D.J. Spiegelhalter. Markov Chain Monte
Carlo in Practice. Chapman & HallCRC, 1995.

[22] Philippe L. Toint. Transportation modelling methods and advanced trans-
port telematics (ATT), 1992.

[23] Pottmeier A. Wahle J., Chrobok R. and Schreckenberg M. A microscopic
simulator for freeway traffic. Networks and Spatial Economics, 2:371–
386(16), December 2002.

[24] D. E. Wolf, M. Schreckenberg, and A. Bachem, editors. Traffic and Gran-
ular Flow, Singapore, 1996. World Scientific.

[25] QI Yang and Haris N. Koutsopoulos. A microscopic traffic simulator for
evaluation of dynamic traffic management systems. Transportation Re-
search Part C: Emerging Technologies, 4(3):113–129, 1996.

[26] L. A. Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

22

