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Abstract. Airlines estimate block times almost a year in advance, as
it is an essential building block of the season’s schedule, and to timely
acquire airport slots. Accurate estimation of block times is important for
customer satisfaction, slot retention and optimal deployment of crew and
aircraft. Like most airlines, Dutch airline Transavia estimates block times
selecting a quantile of the previous season’s actual block times per route.
Based on data that is available a year in advance this paper investigates
whether the performance of the current method can be improved up on
and shows under what circumstances taking a quantile of historical block
times is a robust method to determine future block times.
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1 Introduction

Airlines need to estimate the block times for all their Origin / Destination pairs
almost a year in advance. The time it takes to get from an Origin airport to
a Destination airport is input to determine an optimal (good) roster for the
crew and the fleet of aircraft. Also airport slots need to be secured on time and
schedules need to be published well in advance. The definition of block time ac-
cording to the Eurocontrol lexicon, https://ext.eurocontrol.int/lexicon/
index.php/Flight_time, is found under flight time: “The total time from the
moment an aircraft first moves under its own power for the purpose of taking
off until the moment it comes to rest at the end of the flight”, pointing out in
note 1 “Flight time as here defined is synonymous with the term ’block-to-block’
time”.
The stochastic nature of the block times on airline operations has been sub-
ject of many studies. Hansen and Hao [1] (2013) use data made public by the
US Department Of Transportation, to deduce the policies of how different US
based airlines determine and publish their block times. Sohoni et al (2011)[5]
state ”the schedules ignore block-time uncertainty (variance) and hence fail to
capture robustness measures”. Litvay (2012) [3] also uses DOT data to design
and test a novel way of determining next season’s block times. Litvay proposes
as a better solution by taking the mean of the block time of the previous sea-
son, grouped by month, day of the week and he divides the day in to three
blocks: departure times until 10:00h in the morning and from 10:00h in the



morning until 20:00h in order to capture congestion in the prediction. Maier
and Sinai [2] also use DOT data to explain their title “Why Do Airlines Sys-
tematically Schedule Their Flights to Arrive Late?”. All these papers have three
things in common: they use publicly available data, are about US airlines and
are relatively outdated. When observing European low cost carriers arrival on
time performance (OTP) at urlhttp://www.flightstats.com/company/monthly-
performance-reports/airlines/ these are closer to 80% than more late than not.
One important difference may be the strict EU261 regulation “Regulation (EC)
No 261/2004 of the European Parliament and of the Council of 11 February 2004
...” which give passengers the right to a compensation often several times as high
as the ticket price, when they arrive more than 3 hours late at their destination.

This paper consists of two parts. In the first part the circumstances under
which taking the current method of taking a percentile performs well, are ex-
plained. In the second part simple statistical tests, linear regression and a tree
based model will be applied to actual historical Transavia flight data in an at-
tempt to find patterns and improve upon the performance of the current method
of determining next season’s SBT.

Some basic definitions and practices first need to be established and the
impact of not arriving as scheduled clarified.

1.1 Block time definition and composing parts

The block time consists of three parts, taxi out time, flight time and taxi in time.

Taxi out time is the time it takes from the literal removal of big rubber
blocks in front and behing the wheels of the aircraft to keep it from rolling away
unintendedly, after which the aircraft is pushed back (aircraft can not move
backwards under their own power, they need a ”push back”) from the gate or
stand to the runway, including deicing procedures.

Flight time is the time from the moment the plane is “airborne” until “touch
down”: the time spent in the air.

Taxi-in time is the time that elapses from ”touch down” on the runway to
taxiing to the gate or stand at the destination airport, where again the big
rubber blocks are placed around the wheels, keeping the aircraft in place.

1.2 Influences on block time components

Taxi times are influenced by the distance from the gate or stand to the runway:
at Amsterdam’s Schiphol Airport taxiing to and from the “polderbaan” may
take up to 18 or 23 minutes depending on the “Zwanenburgbaan” being in use



or not, while the mean taxi out time is only 13 minutes. Wind directions at the
flight level may influence the flight time. The pilot may influence the flight time
by pushing down on the throttle, though for the distances Transavia operates on,
these differences are small. Also when delayed, the pilot may asked local ATC
for a direct route, which may be granted, for example, when military airspace
that otherwise needs to be circumnavigated is not in use. Aircraft do not fly in
straight lines, but from way point to way point. The maximum distance reduction
by flying a direct route, may differ from route to route. Also thunderstorms that
increase after take of need to be circumnavigated to avoid lightning strikes.
Like most airlines, Transavia starts creating schedules almost a year in advance,
in order to timely involve internal stakeholders and to secure airport slots on
time. None of the above described factors causing randomness is available at
that time and cannot be used as input for models.

1.3 Impact of Scheduled Block Time errors

Assuming an aircraft takes off at the scheduled time it may still arrive earlier or
later than scheduled if the Actual Block Time (ABT) differs from the Scheduled
Block Time (SBT). Arriving late may cause passenger dissatisfaction, the ground
handler may have moved on to another plane, causing the turn around processes
to start later and further increase the delay. Being structurally late may even
cause the airline to loose its (sometimes very) valuable airport slot, which is
the right to use airport facilities at a certain time window during a predefined
period. Arriving early will cause both the aircraft and the crew to go idle and
will seldom lead to an earlier departure, since passengers will not all be present
yet and the original flight plan needs to be adhered to. Scheduling the block
times too long may cause less aircraft and crew utilization because less rotations
fit the crew schedule. This is easily understood since, all other things being
equal, longer SBT’s will cause more aircraft arriving early and both crew and
aircraft will idly be waiting for the turnaround process. Scheduling block times
too short, according to Mayer and Sinai [2] (2003) results in ”airlines minimize
labor costs at their passengers’ expense, although there is also some support in
favor of airlines trying to maintain greater aircraft utilization”. Scheduling block
times too short will also lead to delays, which may propagate throughout the
day, which is well described by Beatty et al as early as 1999 [4].

2 Part I performance of the current method

2.1 Algorithms and design choices

Performance of the current method To determine some statistics of the
current performance of the scheduled block times, a histogram is made of the
block time differences, i.e. the difference between the scheduled block time and
the actual block time per leg, resulting in a negative number if the actual block
time is shorter than scheduled and a positive number if the actual block time



exceeds the scheduled block time. The percentage of flights with an actual block
time shorter than the scheduled block time is calculated to measure current
performance. On time performance is measured as the percentage of flights that
arrive within 15 minutes of the scheduled arrival time. To clarify the impact
of the current method on the arrival on time performance of the company, the
percentage of actual block times that exceed the scheduled block time by fifteen
minutes or more is also calculated. All other things being the same, that is the
percentage of delayed flight inherent to the schedule.

Distribution of the block times Box plots, histograms and QQ-norm-plots
are made for all routes, to investigate the distribution of the block times and its
main components. Also the changes of the distributions of the block times per
route will be examined. Observing how the distributions develop over time will
help understand why the different models perform the way they do.

2.2 Distribution of the block times

The following two histograms show what all histograms display:

(a) fig:Barcelona - Amsterdam (b) label 2

Fig. 1: Distributions resemble normality

The shape of the histograms of the block times shows the typical symmetrical
bell shape of the normal distribution.

Applying the Shapiro test for normality to the block times, at 95% confidence
level for 25%of the block times normality is not rejected by the test.

The box plots almost all show similar images as below. The median in summer
is some of the cases higher in others lower and there are more outliers on the
higher percentiles than on the lower percentiles.

The QQ-plots also all are almost perfect straight lines except for the tails.

2.3 Performance of the current method to schedule block times

Over the whole period of the dataset, 77.7% of all block times are shorter than
or equal to the scheduled block time. Of the block time differences 97.7% is



Fig. 2: Typical boxplot 2014 - 2017

Fig. 3: Typical QQ-plot 2014 - 2017

smaller than 15 minutes. Ergo 2.3% of the arrival delays are inherent to the
way block times are planned. If the planning unit would have used exactly the
80% quantile of the block times of summer 2015, mathematically rounded to
the nearest 5 minutes to determine the scheduled block times of summer 2016,
80.8% of all actual block times would have been shorter than or equal to the
SBT and 98.2% of all legs would have had an ABT less than 15 minutes longer
than the SBT.

2.4 Changes in distribution over the years per route

A one way anova performed on the top 30 summer and top 30 winter routes,
shows that the means per route do change from year to year. For the 30 routes 16
in summer and 12 in winter the null-hypothesis of the mean being the same over
the three years is rejected, with α = 0.05. However when we look closer at how



Fig. 4: Histogram of difference between schedule and actual block time

many of the 100 most flown routes have a difference in mean change of at least
five minutes between the minimum and the maximum of the three years, there are
only four: ”AYT AMS”, ”CMN AMS”, ”GZP AMS” and ”HRG AMS”, which
are all routes longer than 2, 300 kilometers, the longer distances. There are only
3 routes on which the difference between the maximum and minimum standard
deviations are 3 minutes or more - no standard deviations differ 5 minutes or
more over the years Next interesting result is how the standard deviations com-
pare to the means of the different routes: they increase linearly and little with
the increase of the block time.
This can also be seen if we plot the actual block times on the distances of the

Fig. 5: Standard deviations plotted to mean block times with trend



destinations: the variation of the block times increases as distances increase. The

Fig. 6: Distances and block times of Transavia

largest standard deviation is little over 15 for a mean block time of close to 300.

2.5 Robustness of the 80% quantile for Transavia

The distributions of the block times all resemble normal distributions. Visually
they are all nicely bell shaped around a mean with a slightly longer right tail
than left. The longer right tail is easily explained by the fact that the block times
are the sum of the taxi-out, flight and taxi-in times. Both taxi-times have a lower
bound of zero, but no upper bound and the flight times also have a lower bound
(straight line, maximum speed) but only the fuel on board as an upper bound.
This tail causes the median to be a little better at predicting next season’s block
time than the mean.

The distributions are approximately normal, it was shown that the means
shift only a little from year to year for the same season and the standard devi-
ations are small. Because of the normality and the small changes in mean and
standard deviation over the year, a one minute change in mean or a one minute
change in standard deviation causes the 80% quantile to change one minute in
the same direction. In table ?? an example is shown of a normal distribution with
a mean comparable to the shortest of routes flown by Transavia. One minute
mean or standard deviation change, only changes the 80% quantile one minute.



If the distribution would be more skewed the change in mean will start shifting
the 80% quantile more.

Table 1: 80% Quantile changes
sigma

mu 15 16 17 18 19 20 21 22 23 24 25

82 95 96 96 97 98 99 100 101 101 102 103
83 96 96 97 98 99 100 101 101 102 103 104
84 97 97 98 99 100 101 102 103 103 104 105
85 98 99 99 100 101 102 103 103 104 105 106
86 99 99 100 101 102 103 104 105 105 106 107
87 100 101 101 102 103 104 105 105 106 107 108
88 101 101 102 103 104 105 106 106 107 108 109
89 102 103 103 104 105 106 107 108 108 109 110
90 103 103 104 105 106 107 108 109 109 110 111
91 104 105 105 106 107 108 109 109 110 111 112
92 105 105 106 107 108 109 110 110 111 112 113

2.6 Conclusion part I

The way Transavia block times are distributed, symmetrical and small standard
deviation, and the way these behave over time, very small changes, makes the
80% percentile over previous similar seasons a very robust method of predicting
block times.

2.7 Future research

It could be interesting to explore more distributions to find the limits where a
80% or other quantiles are a good rule of thumb that allows 80% of next season’s
events occur on time.



3 Part II Improving on the current method

4 Algorithms and design choices

4.1 Data

For all operations R software and packages will be used. The choice for R is
partly personal preference, R can perform all tasks required and the data set is
not that large that performance issues might be expected.

The data available for this research is all Transavia flight data from 1-1-2014
until 10-07-2017, which includes scheduled departure and arrival date times, ac-
tual off-blocks, take off, touch down and on blocks date times, (IATA) delay
reason and duration, aircraft type (Boeing 737-700 or 737-800 mainly). Full list
of the data available is added as appendix A. Also public data containing the
longitude and latitude of European Airports was downloaded and used to among
others calculate distances between Origin / Destination pairs.

First step is to clean up the data, removing features and records of no inter-
est as well as data errors and outliers. There is some iteration between the data
cleaning step and the analysis step, since new outliers and impossibilities may
become apparent only after deeper inspection.

From the literature and from functionaries of the company, the following
relations are assumed to exist and are investigated:

– seasonality;
– difference per day of the week;
– differences per part of the day;
– differences per aircraft type
– differences depending on how much traffic is present.

Visual inspection is performed on the dataset to investigate the distribution
of the block times, the presence of these relations and patterns in the block
times, over the data as a whole as well as per route.

Statistical tests, specifically the sign-test and one way anova is performed.
Clear and present danger of performing these tests repeatedly, is making type I
errors. In the evaluation of the results this will be taken in to account and no
strong conclusions will be based solely on the outcome of the tests. The tests are
used as a quick and easy procedure to check the presence of something worth
investigating deeper.

Significance will be determined at the 95% confidence level. There is no point
in weakening any conclusions by exchanging the type I errors for type II errors.

The method of Litvay (2012) [3] will be applied as closely as possible to the
Transavia data set.

A linear regression and XGboost model are used to attempt to improve on
the block time estimates.

The model that initially performs best, will be trained and tested on different
cross sections of the data and features.



The performance of all methods will be compared to the median of the train
set per OD-pair as a prediction for the test set. This is the simplest of all models.
The mean might even be simpler but will only perform better than the median
if the distributions are exactly normal, which they are not exactly.

Error measure for each test will be the Root Mean Squared Error (RMSE)
and the Mean Absolute Error (MAE) so all errors will be in minutes.

5 Experimental set up

5.1 Data clean up

A summary of the full original dataset is added in Appendix A. First non-existing
and irrelevant flights, i.e. flights without an aircraft registration to it, canceled
flights, flights without fuel use, Origin and destination are identical, test and
training flights are removed (flight numbers smaller than 71) as well as some
other data errors. Details are in the code. These actions reduce the data set to
135.111 records.

5.2 Feature creation

Sixty new features are created. A full list is in the Appendix B. Here only
the most used and most important features are described: First, all important
durations are calculated by subtracting date-times, for instance the actual taxi-
in, flight, taxi-out and block times as well as the scheduled block time. Also
different combinations of the date time of each leg are created, like the month and
week number, the season, day of the week, different subdivisions of the day, for
example departure and arrival slots of 20 minutes, hours, 6 hour blocks and the
10/10/4 hours subdivision Litvay uses. The Origin / Destination pair is added
(route). From the Open Flights website https://openflights.org/data.html

the longitude and latitude of all airports was downloaded and join on to the
data, which was used to calculate the distance between OD-pairs.

Visual inspection of trend and seasonality If there is a strong relation
between time of the year and the length of the block time this should become
visible. Time series are plotted and inspected for the top 20 most flown routes.

5.3 Tests and models

Since, as was shown in the part I, the assumption of normality does not hold
for all routes, a test without assumptions with regard to the distribution is
needed. To investigate whether block times show different values over different
time periods, the sign test was used. Main idea of using this simple statistical
test was to have a quick insight in patterns that might be visible over different
time periods. The sign test is performed



– block time per route per departure hour;

– block time per route per Litvay-block;

– block time per route per season per Litvay-block;

– block time per route per weekday per Litvay-block;

– block time per route busy yes / no;

– block time per route per aircraft type;

The test is performed for every route. For speedy insight only the p-values below
the α = 5% threshold are aggregated. Also for evaluating the practical implica-
tions of the findings, the results are filter for median differences of 5 minutes or
more.

5.4 Advanced models

A linear model and extreme gradient boost, which is a tree based model, are
used, to test whether more advanced models can predict block times better.
For both algorithms 10 fold cross validation is used to determine parameter
settings. For the xgb expandgrid, trainControl and train functions from the R
caret package will be used to find optimal parameters. First both models will be
run with summers 2014 and 2015 will be used as train set, using summer 2016
as test set and the models will be trained and tested for each route individually
- only for routes present in both the train and the test set. Features will be
month number, weekdaynr and deelblok (the 10/10/4 subdivision).

Over all routes Next both models will be trained on all routes, in stead of
on each route separately, which opens the possibility to add features that are
stationary per individual route, like scaled distance and direction and may reveal
patterns that are not visible for individual routes.

The best performing model will be trained on the winter of 2014 and 2015
and tested on winter 2016. Finally the calendar years 2014 and 2015 will be
used as train set and 2016 as test set. The performance of the models for each
test will be compared to the performance of current method of determining the
Scheduled Block Times, the train median and the mean per month, per weekday,
per part of the day Litvay proposed.

5.5 Dependent variable

With the models the actual block time and not the 80% quantile of the block
times is the dependent variable which is predicted.



6 Results

6.1 Seasonality

Time series were plotted for the top thirty routes. Two plots are displayed here:
one that best displays seasonality of all plots inspected, and one that shows what
most plots show: no discernible seasonality.

The plot of the block times from Amsterdam to Las Palmas Airport, Gran
Canaria, shows some seasonality. The block times from Barcelona to Amsterdam

Fig. 7: Actual block times Las Palmas - Amsterdam 2014 - 2017

show a clear trend, but no clear seasonality: in the winter less legs are flown and
the shorter block times appear to be less present.

Block time per route per departure hour, weekday, part of the day
Weekdays show possibly only type I errors. Other tests show few significant
results - and must contain some type I errors. Some indication that morning and
day departures result in longer block times, evening departure shorter.

Block time per route busy yes / no Busy is defined as the periods in
which the number of legs flown by Transavia was greater than the mean of the
whole period. Not busy is defined as less legs than average. Here there are 115
significant differences to the median of each route on 498 records. This could
be considered a pattern. In figure 9 these 115 significant results are summarized
again and during busy periods the block times appear to be more often shorter
than the median of the route and during less busy periods more often longer.



Fig. 8: Actual block times Barcelona Amsterdam 2014 - 2017

Fig. 9: Pattern of busy or not

Per aircraft type The subdivision in 737-700’s and 737-800’s showed clearly,
with significant p-values, a difference. After subdividing the data in distances:
the 800’s are deployed on the longer distance, hence have significantly more
often longer block times. After correcting for this the p-values stop being at a
significant level.

7 Advanced models

7.1 Linear model

When we fit a linear model with the ”day of the week”, ”part of the day” and
the ”month number” as variables to predict the block time, the linear model
does better than the median in sixty out of the 150 routes. The average error
over all 150 routes is displayed in table 2. The median of the difference between

Table 2: Average error of current method, linear model and Litvay
RMSE.cpu RMSE.model RMSE.litv MAE.cpu MAE.model MAE.litv

9,05 9,21 9,80 7,09 7,27 7,74



the MAE of the linear model and the MAE of the median is −0.10 minute.

XGBoost Averaged over all 150 routes that are both in the train and in the
2016 test set, table 3 shows RMSE.cpu of the current method, the 80% quantile
of last season, the RMSE of the xgboost model and the RMSE for the Litvay-way
and on the right the same for the Mean Absolute Error.

Table 3: Average error of current method, XGBoost model and Litvay
RMSE.cpu RMSE.model RMSE.litv MAE.cpu MAE.model MAE.litv

9,05 9,75 9,80 7,09 7,69 7,74

When we add two features, ”drukte” and ”number of passengers”, the per-
formance of the xgboost model actually deteriorates to 10.33 averaged over all
150 routes.

There are ten routes on which the model (or the Litvay-way) perform better,
so in 140 of the 150 routes using the median of previous periods results in the
smallest RMSE.

Expanding the features of the linear model to the following:

– AIRCRAFT CAPACITY,
– NUMBER OF ADULTS,
– NUMBER OF PAX,
– weeknr,
– YEAR,
– weekdaynr x,
– weekdaynr y,
– weekend,
– deelblok,
– month nbr

increases the error of the linear model: the average RMSE increases to 9.74 and
the average MAE to 7.73.

On the whole set of routes Training the linear model on all routes, and
features summed up in table 4, returns the following feature importance after 10
fold cross validation: The average RMSE of the linear model increases to 10.95.
The average RMSE of the train median per route remains 9.05, of course. The
average MAE increases to 8.91 and the MAE of the median remains at 7.09.

XGB on al routes The average RMSE of the XGBoost model on the same set
of variables is 9.51, the average MAE 7.51



Table 4: Feature importance Linear model - all routes
distance 100
aantal route 3.3689
deelblok 0.5315
YEAR 0.4948
weekend 0.4361
weekdaynr y 0.3338
weekdaynr x 0.2909
NUMBER OF PAX 0.2886
AIRCRAFT CAPACITY 0.2481
NUMBER OF ADULTS 0.201
weeknr 0.1067
month nbr 0

Linear model on winter The average RMSE of linear model trained on
the winter seasons of 2014/2015 and 2015/2016 and tested on the winter of
2016/2017 is 10.70, while the average RMSE of the median is 10.18. The average
MAE of the median is: 7.87, of the model 8.37. On one route, ”MUC EIN”
the linear model performed very poorly, causing a RMSE of 8 times as high
as the median. When deleted the differences become even smaller. Only one
route ”AMS FNC” was the difference in MAE 5.7 minutes. The median of the
differences in MAE is zero. On 49 out of 94 matching winter routes the linear
model does better than the mean. When the features ”month” and ”weekday”
are removed, the RMSE decreases to 10.20.

Linear model on Calender years The average RMSE of the model is 9.88
compared to the median 9.42. The average MAE of the model is 7.75; of the
median: 7.33. The model performs really poor on 4 routes inflating the difference.
In 80 out of 172 routes the model does better than the median. The median value
of the differences in MAE of all the routes is 0.1 minute.

8 Analysis and Discussion

Applied tests Applying a statistical test repeatedly creates a serious risk for
type I errors, which influences the reliability of the results we see. These can only
be seen as a possible indication. Also on some of the tests trying to subdivide
the data, leaves them spread over too many bins. The very weak indications that
come from the tests are in line with what the seasonality and models show: the
patters, if there at all are very weak.

Seasonality and other patterns in time The visual inspection of the sea-
sonality of the block times revealed hardly visible seasonality, contrary to expec-
tations of myself and experienced functionaries of Transavia. The lack of clear
patterns can be explained by a number of facts.



Lack of volume per route per day. Transavia has less than 50 aircraft (de-
pending on the season) in use. The number of data in each subdivision just is
not as large as, for example, the data set of SWA that Litvay used. SWA had at
the time well over 500 aircraft in use.

Air Traffic Management Slots EuroControl http://www.eurocontrol.int/
news/what-slot or what the FAA calls GDP, Ground Delay Program may well
be the best explanation for the lack of seasonality and other patterns: there is
a process in place that, for environmental and safety reasons, prevents as much
as possible that delays occur once the aircraft is underway.

IATA Delay Code 89 When the runway on the departing airport is con-
gested, the delay does not show up as a longer taxi-out time, but as a code 89
/urlhttps://www.eurocontrol.int/sites/default/files/content/documents/official-
documents/facts-and-figures/coda-reports/standard-iata-delay-codes-ahm730.pdf
: the plane is not allowed to push-back but has to wait at the gate, thus saving
fuel and not increasing further the already congested taxi routes to the runway.

IATA Delay Code 81 If any of the sectors en route, i.e. for the exact route for
which a flight plan was filed, is congested either by too many aircraft wanting to
cross the same airspace at the same altitude at the same time so that minimum
distances can not be maintained, or if there are just not enough Air Traffic
Controllers to safely handle all passing aircraft, the aircraft is not allowed to
push back. Instead it suffers a departure delay at the gate, IATA delay code 81.

IATA Delay Code 83 It is also possible for the destination airport to be
congested, which also causes a departure delay if the aircraft is not already on
its way, code 83 ATFM due to RESTRICTION AT DESTINATION AIRPORT.

Code 81 avoidance Code 81 is the second most frequent delay suffered by
Transavia (I do not think Transavia will appreciate me summing up actual figures
here). These en-route delays can be avoided if the Operational Controller of
Transavia files a new flight plan, circumnavigating the congested area. Obviously
they will only do that if the time it takes to execute the new flight plan is shorter
than the original flight plan plus the expected wait time for the ATM-slot.

Overall the seasonality of the congestion and weather is definitely there. Most
of it is managed away and never reaches the block times, but is captured by the
process in departure delays. This system of slots, causes the actual block times
to have little variation and seasonality. The variation in the block times that is
left is caused by other causes that occur once the plane has pushed back. These
can be weather or congestion related, but become apparent only after the plane
is en route. The variation may also be caused by pilots asking for, and being
granted, a direct route, but most importantly it is the actual route flown.



Models over all routes in stead of per individual route The poor perfor-
mance of the models over all routes, is likely to be caused that patterns are not
the same over all routes. The XGBoost model did better on the overall routes,
where the linear model does better per route. Possibly if more years of data is
available results of the XGBoost model might improve some more.

Future research It would be a challenge to be able to completely explain
the variation of block times in hindsight, using the exact route flown and wind
conditions en route. These data are not yet available, but when that happens it
would be clear exactly what forces make block times vary, and that might make
it possible to either predict or control the variance better.

9 Conclusions

Conclusion is that there are few obvious patterns in the block times. Those that
may be visible, are dependent on routes: some routes display the patterns others
do not, or show opposite patterns. The differences are too small to be of much
business relevance, but may be used to apply small tweaks to improve on the
schedule. Linear regression and a more advanced machine learning method can
not capture the patterns that may be present to predict block times better than
the median, making the median the best predictor for next season’s block times
and the 80% quantile a good scheduled block time if the aim is to have 80% of
next season’s aircraft to arrive on time.
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A Appendix Available Data

’data.frame’: 197416 obs. of 95 variables:
$ ..AIRPORT PLANNED : chr ”” ”” ”SXF” ”” ...
$ COUNTRY PLANNED : chr ”” ”” ”DE” ”” ...
$ AIRPORT ACTUAL : chr ”” ”” ”SXF” ”” ...
$ COUNTRY ACTUAL : chr ”” ”” ”DE” ”” ...
$ AIRPORT CODE : chr ”MAD” ”MAD” ”MUC” ”OPO” ...
$ HANDLING FOR AIRLINE : chr ”HV” ”HV” ”HV” ”HV” ...
$ AREA MANAGER : chr ”functionary names removed” ...
$ AIRCRAFT REGISTRATION : chr ”PHHZW” ”PHHZW” ”PHXRV” ”PH-
HXC” ...
$ AIRLINE : chr ”KL” ”KL” ”HV” ”HV” ...
$ REPORTING AIRLINE : chr ”HV” ”HV” ”HV” ”HV” ...
$ LEG NUMBER : int 1700 1704 9515 6507 9352 5496 5292 6332 9216 6654 ...
$ SUFFIX : chr ”” ”” ”” ”” ...
$ LEGDATE : chr ”2017-03-29 08:20:00” ”2017-03-29 15:10:00” ...
$ CANCELLED : chr ”” ”” ”” ”” ...
$ AIRPORT FROM IATA : chr ”MAD” ”MAD” ”MUC” ”OPO” ...
$ AIRPORT TO IATA : chr ”AMS” ”AMS” ”SXF” ”FUE” ...
$ SCHEDULED AIRPORT TO IATA : chr ”AMS” ”AMS” ”SXF” ”FUE” ...
$ COMPOSITION FLIGHTDECK : chr ”” ”” ”C1F1” ”” ...
$ COMPOSITION CABIN : chr ”” ”” ”1P 2CA1” ”” ...
$ ON TIME Y N : int 0 0 1 0 1 0 1 1 1 0 ...
$ FLIGHTTYPE CODE : chr ”S” ”S” ”J” ”J” ...
$ HANDLING AGENT ON BLOCKS : chr ”2017-03-29 11:10:00” ”2017-03-29
17:51:00” ...
$ HANDLING AGENT TOUCHDOWN : chr ”2017-03-29 10:57:00” ”2017-03-
29 17:38:00” ...
$ HANDLING AGENT AIRBORNE : chr ”2017-03-29 08:52:00” ”2017-03-29
15:37:00” ...
$ HANDLING AGENT OFF BLOCKS : chr ”2017-03-29 08:38:00” ”2017-03-29
15:26:00” ...
$ ACTUAL ON BLOCKS : chr ”2017-03-29 11:10:00” ”2017-03-29 17:51:00” ...
$ ACTUAL TOUCHDOWN : chr ”2017-03-29 10:57:00” ”2017-03-29 17:38:00”
...
$ ACTUAL AIRBORNE : chr ”2017-03-29 08:52:00” ”2017-03-29 15:37:00” ...
$ ACTUAL OFF BLOCKS : chr ”2017-03-29 08:38:00” ”2017-03-29 15:26:00” ...
$ AIRCRAFT ON BLOCKS : chr ”” ”” ”2017-03-28 17:45:00” ”2017-03-28 10:42:00”
...
$ AIRCRAFT TOUCHDOWN : chr ”” ”” ”2017-03-28 17:39:00” ”2017-03-28
10:36:00” ...
$ AIRCRAFT AIRBORNE : chr ”” ”” ”2017-03-28 16:49:00” ”2017-03-28 08:30:00”
...
$ AIRCRAFT OFF BLOCKS : chr ”” ”” ”2017-03-28 16:35:00” ”2017-03-28
08:11:00” ...



$ HEAVY CABIN CREW Y N : chr ”” ”” ”N” ”” ...
$ HEAVY FLIGHTDECK CREW Y N : chr ”” ”” ”N” ”” ...
$ SERVICE TYPE : chr ”J” ”J” ”J” ”J” ...
$ AIRPORT NAME TO : chr ”AMSTERDAM - SCHIPHOL INTERNATIONAL”
”AMSTERDAM - SCHIPHOL INTERNATIONAL” ”BERLIN SCHONEFELD
APT” ”PUERTO DEL ROSARIO” ...
$ AIRPORT CITY TO : chr ”AMSTERDAM” ”AMSTERDAM” ”BERLIN”
”FUERTEVENTURA” ...
$ AIRPORT COUNTRY CODE TO : chr ”NL” ”NL” ”DE” ”ES” ...
$ AIRPORT NAME FROM : chr ”MADRID BARAJAS APT” ”MADRID BARA-
JAS APT” ”FRANZ JOSEF STRAUSS” ”PORTO” ...
$ AIRPORT CITY FROM : chr ”MADRID” ”MADRID” ”MUNICH” ”PORTO”
...
$ AIRPORT COUNTRY FROM : chr ”ES” ”ES” ”DE” ”PT” ...
$ AIRPORT NAME TOP : chr ”AMSTERDAM - SCHIPHOL INTERNATIONAL”
”AMSTERDAM - SCHIPHOL INTERNATIONAL” ”BERLIN SCHONEFELD
APT” ”PUERTO DEL ROSARIO” ...
$ AIRPORT CITY ARRIVAL TOP : chr ”AMSTERDAM” ”AMSTERDAM”
”BERLIN” ”FUERTEVENTURA” ...
$ AIRPORT COUNTRY CODE TOP : chr ”NL” ”NL” ”DE” ”ES” ...
$ AIRLINE CODE : chr ”KL” ”KL” ”HV” ”HV” ...
$ AIRLINE DESCRIPTION : chr ”KLM ROYAL DUTCH AIRLINES” ”KLM
ROYAL DUTCH AIRLINES” ”TRANSAVIA AIRLINES” ”TRANSAVIA AIR-
LINES” ...
$ ICAO AIRLINE DESIGNATOR : chr ”KLM” ”KLM” ”TRA” ”TRA” ...
$ AIRCRAFT TYPE : chr ”73H” ”73H” ”73W” ”73H” ...
$ AIRCRAFT NAME : chr ”Boeing 737-800 Winglets” ”Boeing 737-800 Winglets”
”Boeing 737-700 Winglets” ”Boeing 737-800 Winglets” ...
$ AIRCRAFT CAPACITY : int 189 189 149 189 149 189 149 189 149 189 ...
$ AIRCRAFT GENERAL TYPE : chr ”737” ”737” ”737” ”737” ...
$ AIRCRAFT VERSION : chr ”738H” ”738H” ”73W” ”738H189” ...
$ AIRCRAFT CATEGORY : chr ”J” ”J” ”J” ”J” ...
$ AIRCRAFT INDICATOR WHIDE BODY : chr ”N” ”N” ”N” ”N” ...
$ DEPARTURE DELAY MIN : int 18 16 5 31 0 35 0 6 0 20 ...
$ NUMBER OF FLIGHTS STD MINUS 0 : int 0 0 0 0 0 0 0 0 0 0 ...
$ NUMBER OF FLIGHTS STD 0 : int 0 0 0 0 1 0 1 0 1 0 ...
$ NUMBER OF FLIGHTS STD 15 : int 0 0 1 0 0 0 0 1 0 0 ...
$ NUMBER OF FLIGHTS STD 60 : int 1 1 0 1 0 1 0 0 0 1 ...
$ NUMBER OF FLIGHTS STD 180 : int 0 0 0 0 0 0 0 0 0 0 ...
$ NUMBER OF FLIGHTS STD PLUS 180: int 0 0 0 0 0 0 0 0 0 0 ...
$ NUMBER OF ADULTS : int NA NA 110 160 127 157 58 181 105 150 ...
$ NUMBER OF CHILDREN : int NA NA 1 5 2 0 2 0 3 1 ...
$ NUMBER OF INFANTS : int NA NA 0 3 0 0 0 0 1 1 ...
$ NUMBER OF DISEMBARKING : int NA NA 0 0 0 0 0 0 0 0 ...
$ NUMBER OF EMBARKING : int NA NA 111 0 129 157 60 181 109 152 ...



$ NUMBER OF TRANSIT : int NA NA NA NA NA NA NA NA NA NA ...
$ NUMBER OF PASSENGERS : int 0 0 111 165 129 157 60 181 108 151 ...
$ NUMBER OF PAX : int 0 0 111 168 129 157 60 181 109 152 ...
$ FUEL USED IN LITERS : int 0 0 2627 6947 10610 5431 4332 7010 5848
8084 ...
$ FUEL USED IN GALLONS : int 0 0 694 1835 2803 1435 1144 1852 1545
2136 ...
$ FUEL UPLIFT : chr ”” ”” ”4350” ”1750” ...
$ SCHEDULE DEPARTURE : chr ”2017-03-29 08:20:00” ”2017-03-29 15:10:00”
”2017-03-28 16:30:00” ”2017-03-28 07:40:00” ...
$ SCHEDULE ARRIVAL : chr ”2017-03-29 10:55:00” ”2017-03-29 17:50:00”
”2017-03-28 17:40:00” ”2017-03-28 10:00:00” ...
$ NUMBER OF LEGS : int 1 1 1 1 1 1 1 1 1 1 ...
$ DEPARTURE DELAY INDICATOR : chr ”Y” ”Y” ”Y” ”Y” ...
$ MK DIM LEG : int 17546391 17546392 17546404 17546409 17547169 17547170
17547172 17547173 17547174 17547031 ...
$ MK DIM OPERATING AIRLINE : int 138 138 113 113 113 113 113 113 113
113 ...
$ MK DIM AIRPORT DEPARTURE : int 2743 2743 3071 3445 4605 4877 4910
4922 4922 85 ...
$ MK DIM AIRPORT DEST PLANNED : int 169 169 4403 1448 3071 169 3996
169 3071 1227 ...
$ MK DIM AIRPORT DEST ACTUAL : int 169 169 4403 1448 3071 169 3996
169 3071 1227 ...
$ MK DIM AIRPORT DIVERSION : int -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
$ MK DIM AIRCRAFT : int 156 156 181 32547 181 32545 185 52545 178 32549
...
$ MK DIM HANDLING AGENT : int 0 0 3061 34 28 9 3069 49 49 9 ...
$ MK DIM HANDLING SUPERVISOR : int 0 0 0 0 0 0 0 0 0 0 ...
$ MK DIM COMMERCIAL ROUTE : int 3354 3354 77207 0 79225 300 363 47
66321 321 ...
$ FLIGHT ID : chr ”KL169920170329AMSMAD” ”KL170320170329AMSMAD”
”HV951520170328MUCSXF” ”HV650720170328AMSOPO” ...
$ YEAR WEEK : int 201713 201713 201713 201713 201713 201713 201713
201713 201713 201713 ...
$ YEARMONTH : int 201703 201703 201703 201703 201703 201703 201703
201703 201703 201703 ...
$ DELAY : int NA NA NA 20 NA 35 NA 6 NA 20 ...
$ SEQUENCENO : int NA NA NA 1 NA 1 NA 1 NA 1 ...
$ IND CORRECTED : chr ”” ”” ”” ”N” ...
$ REASONCODE : int NA NA NA 93 NA 55 NA 89 NA 93 ...
$ REASONALTCODE : logi NA NA NA NA NA NA ...



B Appendix created features

C Appendix full result of linear model

rankdef == TRUE indicates that some covariates of the linear model are collinear.
Once on LPA AMS this leads to a ridiculous model-result.

D Appendix full result of XGBoost model



Fig. 10: Full set of features



Table 5: Results of linear model
route RMSE.cpu RMSE.model RMSE.litv MAE.cpu MAE.model MAE.litv rankdef
AMS KGS 8.7 8.7 9.04 7 7.1 7.3 FALSE
KGS AMS 8.29 8.45 8.88 6.6 6.8 7.2 FALSE
AGP AMS 11.36 11.29 12.03 8.9 8.9 9.4 FALSE
VIE RTM 6.46 6 6.71 5.2 4.7 5.4 FALSE
AGP RTM 9.36 9.43 9.67 7.4 7.5 7.7 FALSE
ALC EIN 8 8.14 8.15 6.3 6.5 6.8 FALSE
AMS CHQ 9.37 9.12 9.93 7.7 7.5 8.5 FALSE
AMS FAO 10.07 10.12 10.83 7.9 8 8.5 FALSE
AMS NCE 7.43 7.43 8.1 5.6 5.7 6.3 FALSE
AMS OPO 9.08 8.85 9.57 7.3 7.1 7.7 FALSE
AMS IBZ 8.67 8.83 9.51 6.9 7 7.5 FALSE
AMS LCA 8.34 8.9 9.6 6.7 7.5 7.9 FALSE
AMS RAK 13.17 12.78 13.34 10.7 10.4 10.9 FALSE
LIS AMS 10.96 10.64 11.48 8.5 8.3 9.3 FALSE
ALC AMS 10.72 10.54 11.42 8.5 8.4 9 FALSE
AMS ACE 12.32 12.17 12.43 9.7 9.7 9.9 FALSE
AMS AGP 10.38 10.49 11.23 8.1 8.2 8.8 FALSE
AGP EIN 9.57 9.7 10.24 7.6 7.7 8.1 FALSE
AMS BCN 9.24 9.39 9.81 7.2 7.4 7.6 FALSE
AMS GRO 9.01 9.14 9.98 6.7 7.1 7.6 FALSE
ALC RTM 7.61 7.98 9.17 5.8 6.2 7.3 FALSE
TFS AMS 13.4 13.38 15.4 10.7 10.8 11.5 FALSE
TFS LPA 6.59 6.19 6.01 5.5 5 4.9 FALSE
TLV AMS 10.8 11.75 11.97 8.7 9.8 9.8 FALSE
FAO AMS 11.67 11.4 12.33 9.1 8.9 9.6 FALSE
FAO EIN 8.97 9.44 9.98 7.2 7.4 8 FALSE
FAO GRQ 10.55 10.6 11.24 8.2 8.5 9.3 FALSE
HER AMS 9.37 9.36 10.1 7.4 7.5 8.1 FALSE
IBZ AMS 9.66 9.58 9.81 7.5 7.5 7.7 FALSE
LIS EIN 9.49 9.83 11.15 7.1 7.4 8.7 FALSE
PSA AMS 8.46 8.5 9.03 6.7 6.7 7.3 FALSE
ACE AMS 11.42 11.53 12.79 9.1 9 10.3 FALSE
CMN AMS 12.04 12.17 13.9 9.7 9.7 11.1 FALSE
CPH EIN 5.78 5.77 6.58 4.1 4.1 4.9 FALSE
CTA AMS 10.25 10.09 10.32 8.2 8.1 8.3 FALSE
AMS BOJ 10.71 11.23 12.76 8.3 8.1 8.8 FALSE
AMS BRI 6.96 7.02 7.02 5.5 5.5 5.5 FALSE
AMS CMN 10.79 10.91 12 8.6 8.8 9.7 FALSE
AMS ALC 9.85 10.06 10.69 7.5 7.8 8.3 FALSE
AMS AYT 8.77 9.22 10.06 7 7.3 7.9 FALSE
AMS LIS 10.82 10.84 11.07 8.3 8.4 8.5 FALSE
AMS PSA 7.92 8.01 8.78 6.2 6.3 6.9 FALSE
AMS TLV 9.98 11.03 10.21 7.7 8.5 7.9 FALSE
AMS RHO 11.04 10.83 10.26 8.3 8.1 7.8 FALSE
AMS SKG 7.53 7.21 8.08 5.9 5.7 6.4 FALSE
GZP AMS 7.89 8.02 9.5 6.2 6.3 7.7 FALSE
IBZ EIN 7.81 7.83 7.92 5.8 5.9 6.1 FALSE
INN AMS 7.03 7.36 7.11 5.8 6 5.7 FALSE
LPA RTM 13.14 12.94 12.72 9.7 9.6 9.8 TRUE
AMS ATH 8.58 8.66 9.24 6.8 6.9 7.4 FALSE
FUE AMS 13.34 13.46 15.45 10.8 10.9 13.1 FALSE
AGA AMS 12.36 12.67 13.31 9.5 9.6 10.1 TRUE
AMS INN 6.22 6.91 7.86 5.2 5.9 6.4 FALSE
AMS LPA 13.37 13.3 14.49 10.8 10.7 11.4 FALSE
AMS NAP 7.48 7.55 7.87 5.9 6 6.2 FALSE
AMS BJV 9.76 9.55 9.1 7.6 7.3 7.1 FALSE
AMS CTA 8.22 8.34 8.36 6.3 6.4 6.3 FALSE
NAP AMS 9.34 9.59 10.47 7.2 7.5 8.2 FALSE
BCN AMS 10.86 10.75 11.27 8.3 8.3 8.7 FALSE
BCN RTM 8.26 8.38 9.32 6.4 6.5 7.2 FALSE
BLQ EIN 5.23 5.46 6.5 4.1 4.4 4.9 FALSE
BRI AMS 10.29 10.42 10.79 8.5 8.6 8.9 FALSE
BUD RTM 5.91 5.92 5.83 4.6 4.7 4.8 FALSE
MAH AMS 10.43 10.81 13.52 8.2 8.5 10.9 TRUE
MLA AMS 11.36 11.39 11.24 8.5 8.6 8.8 FALSE
NCE AMS 8.87 9.14 9.58 7.3 7.3 7.5 FALSE
OPO AMS 10.81 10.44 11.57 8.4 8.2 8.8 FALSE
RTM FCO 6.14 6.71 6.12 4.6 5.1 4.9 FALSE
AMS GZP 8.45 8.45 8.48 6.8 6.7 6.7 FALSE
NCE EIN 6.06 6.05 6.86 4.6 4.7 5.3 FALSE
FCO RTM 7.79 7.75 8.77 5.9 5.9 6.8 FALSE
GRO AMS 9.94 9.94 10.57 7.7 7.8 8.2 FALSE
SVQ AMS 11.1 10.89 13.13 9 8.9 10.5 FALSE
SPC AMS 13.13 13.3 14.74 10.3 10.5 12 FALSE
VRN AMS 9.77 9.82 10.2 8 8.2 8.5 FALSE
LPA AMS 12.7 12.56 13.81 10.3 10.1 11.2 FALSE
EIN AGP 10.11 9.99 9.99 7.7 7.7 8 FALSE
EIN ALC 9.48 9.8 11.68 7.3 7.5 8.9 FALSE
EIN ATH 6.87 6.81 6.69 5.3 5.3 5 FALSE
AMS SVQ 10.11 10.05 10.61 7.9 7.9 8.1 FALSE
AMS TFS 14.12 13.83 14.43 11.1 10.8 11.1 FALSE
VLC EIN 7.43 7.85 8.79 6 6.4 6.8 FALSE
BCN EIN 7.26 7.51 7.9 5.7 6 6.1 FALSE
EIN CPH 5.31 5.24 6.15 3.8 3.9 4.6 FALSE
EIN VLC 7.8 7.85 8.66 6.1 6.2 6.9 FALSE
AMS PMI 8.89 8.96 9.87 7 7 7.7 FALSE
AMS VLC 9.49 9.63 10.46 7.5 7.7 8.1 FALSE
RTM BUD 5.46 5.58 6.21 4.3 4.4 5.1 TRUE
RTM GRO 6.29 6.49 7.28 4.8 5.1 5.6 FALSE
RTM PMI 9.06 9.02 9.97 6.8 6.7 7.5 TRUE
RTM VIE 6.14 6.2 7.07 4.6 4.8 5.3 FALSE
AMS FUE 12.1 12.59 13.22 9.8 10.4 11 TRUE
RTM BCN 7.48 7.45 8.09 5.8 5.9 6.3 FALSE
EIN BCN 7.64 7.9 8.17 6 6.2 6.4 FALSE
EIN LIS 8.41 8.38 8.92 6.8 6.8 7.4 FALSE
RAK AMS 11.35 11.59 11.89 8.9 9 9.2 FALSE
RTM FAO 9.19 9.16 10.09 7.5 7.5 8.4 FALSE
RTM TFS 12.54 12.07 12.96 9.6 9.3 10 TRUE
AMS VCE 6.92 6.95 7.77 5.1 5.2 5.7 FALSE
ATH AMS 10.17 9.89 9.97 8.1 7.9 7.9 FALSE
EIN FAO 9.6 9.61 10.42 7.7 7.8 8.4 FALSE
RHO AMS 9.51 9.56 9.57 7.2 7.3 7.6 FALSE
EIN NCE 8.78 8.42 9.05 6.6 6.2 6.9 FALSE
FAO RTM 8.88 8.94 9.83 6.9 7 7.8 FALSE
AMS VRN 6.09 6.31 6.75 5 5.1 5.6 FALSE
AMS HER 10.13 10.02 10.24 7.6 7.6 7.9 FALSE
VLC AMS 9.61 9.58 9.41 7.5 7.4 7.6 FALSE
AMS TRN 7.09 7.17 7.48 5.3 5.6 5.8 FALSE
EFL AMS 9.41 9.25 11.1 7.7 7.3 8.9 FALSE
EIN BLQ 5.14 5.14 5.58 4.1 4.1 4.3 TRUE
AMS PVK 9.15 9.14 10.14 7 7 7.5 FALSE
CFU AMS 9.09 9.14 10.21 7.3 7.3 7.9 FALSE
BJV AMS 9.1 8.85 10.68 7.4 7.2 8.1 FALSE
AMS SMI 9.39 9.38 10.23 7.6 7.6 8.3 TRUE
EIN IBZ 7.6 7.91 8.45 6.1 6.4 6.8 FALSE
AMS ZTH 9.92 9.98 10.77 7.5 7.7 8.5 FALSE
CHQ AMS 12.2 12.72 16.93 8.9 9.9 13.3 FALSE
HER EIN 8.53 8.22 8.37 6.7 6.4 6.8 TRUE
DLM AMS 7.67 7.74 8.23 6.2 6.5 6.8 FALSE
ATH EIN 8.02 8.42 9.5 6.4 6.9 8 FALSE
GRO RTM 8.83 8.41 8.89 7 6.6 7 FALSE
AMS CFU 7.93 8 9.1 6.4 6.5 7.2 FALSE
PMI AMS 9.91 9.68 10.9 7.6 7.6 8.5 FALSE
AMS SPC 13.83 13.41 14.41 10.7 10.6 10.8 FALSE
AYT AMS 8.76 8.96 9.78 6.8 7 7.8 FALSE
SKG AMS 8.36 8.62 9.82 6.7 7 8.1 FALSE
AMS DLM 7.34 7.5 8.1 5.5 5.6 6.3 FALSE
AMS FNC 12.79 12.36 12.26 10 10 9.8 TRUE
RTM IBZ 9.33 9.34 10.38 6.6 6.8 7.8 FALSE
LPA EIN 10.66 26.94 13.01 8.6 23.6 10.8 TRUE
MPL RTM 7.04 6.67 6.68 5.2 5 4.9 FALSE
FNC AMS 10.97 10.69 11.4 8.8 8.8 9.4 TRUE
EIN PMI 7.77 7.72 8.42 6.1 6.1 6.7 FALSE
PMI EIN 7.89 8.15 8.33 6.1 6.4 6.3 FALSE
RTM AGP 10.08 10.04 10.59 8 7.9 8.3 FALSE
RTM MPL 5.84 5.79 5.86 4.4 4.4 4.6 FALSE
VCE AMS 8.34 8.31 9.02 6.4 6.5 7.3 FALSE
EIN HER 6.88 6.96 7.23 5.5 5.7 6 FALSE
TRN AMS 8.13 8.4 8.6 6.3 6.7 7 FALSE
SPU RTM 7.06 6.84 8.05 5 4.8 6 FALSE
ZTH AMS 9.59 9.83 11.21 7.4 7.8 9.1 FALSE
RTM ALC 9.42 9.43 10.45 7.1 7.1 7.9 FALSE
IBZ RTM 7.65 7.53 8.02 6.2 6.2 6.5 FALSE
PMI RTM 8.56 8.44 9.57 6.5 6.5 7.6 FALSE
PVK AMS 7.98 8.08 8.64 6.2 6.4 6.8 FALSE
AMS MLA 8.94 9.3 9.94 7.1 7.4 8.1 FALSE
GRQ RTM 4.85 5.19 5.86 3.8 4.2 5.2 TRUE
RTM SPU 4.77 4.69 5.16 3.8 3.7 4.2 FALSE
RTM TLN 5.1 5.37 5.61 3.9 4.3 4.5 FALSE
TLN RTM 6.36 6.24 5.99 5 4.9 4.8 FALSE

9.05 9.21 9.80 7.09 7.27 7.74



Table 6: result of XGBoost
route RMSE.cpu RMSE.model RMSE.litv MAE.cpu MAE.model MAE.litv
AMS KGS 8,7 8,9 9,04 7 7,2 7,3
KGS AMS 8,29 8,53 8,88 6,6 6,9 7,2
AGP AMS 11,36 11,82 12,03 8,9 9,3 9,4
VIE RTM 6,46 6,34 6,71 5,2 5 5,4
AGP RTM 9,36 9,62 9,67 7,4 7,7 7,7
ALC EIN 8 8,65 8,15 6,3 7,1 6,8
AMS CHQ 9,37 9,16 9,93 7,7 7,7 8,5
AMS FAO 10,07 10,67 10,83 7,9 8,4 8,5
AMS NCE 7,43 7,89 8,1 5,6 6,1 6,3
AMS OPO 9,08 9,33 9,57 7,3 7,6 7,7
AMS IBZ 8,67 9,15 9,51 6,9 7,2 7,5
AMS LCA 8,34 9,49 9,6 6,7 7,8 7,9
AMS RAK 13,17 13,29 13,34 10,7 10,9 10,9
LIS AMS 10,96 11,3 11,48 8,5 9,2 9,3
ALC AMS 10,72 11,32 11,42 8,5 8,9 9
AMS ACE 12,32 12,75 12,43 9,7 10,1 9,9
AMS AGP 10,38 11,2 11,23 8,1 8,8 8,8
AGP EIN 9,57 10,3 10,24 7,6 8,2 8,1
AMS BCN 9,24 9,75 9,81 7,2 7,6 7,6
AMS GRO 9,01 10,05 9,98 6,7 7,7 7,6
ALC RTM 7,61 8,83 9,17 5,8 7,1 7,3
TFS AMS 13,4 16,81 15,4 10,7 12,9 11,5
TFS LPA 6,59 6,01 6,01 5,5 4,9 4,9
TLV AMS 10,8 12,33 11,97 8,7 9,8 9,8
FAO AMS 11,67 12,06 12,33 9,1 9,4 9,6
FAO EIN 8,97 10,1 9,98 7,2 8 8
FAO GRQ 10,55 11,25 11,24 8,2 9,4 9,3
HER AMS 9,37 10,4 10,1 7,4 8,3 8,1
IBZ AMS 9,66 10,07 9,81 7,5 7,9 7,7
LIS EIN 9,49 11,02 11,15 7,1 8,5 8,7
PSA AMS 8,46 8,85 9,03 6,7 7,1 7,3
ACE AMS 11,42 12,81 12,79 9,1 10,3 10,3
CMN AMS 12,04 13,71 13,9 9,7 11,1 11,1
CPH EIN 5,78 7,35 6,58 4,1 5,6 4,9
CTA AMS 10,25 10,63 10,32 8,2 8,5 8,3
AMS BOJ 10,71 12,85 12,76 8,3 9,5 8,8
AMS BRI 6,96 7,35 7,02 5,5 5,9 5,5
AMS CMN 10,79 10,92 12 8,6 8,6 9,7
AMS ALC 9,85 10,58 10,69 7,5 8,2 8,3
AMS AYT 8,77 9,97 10,06 7 7,8 7,9
AMS LIS 10,82 11,04 11,07 8,3 8,5 8,5
AMS PSA 7,92 8,83 8,78 6,2 7 6,9
AMS TLV 9,98 12,91 10,21 7,7 9,9 7,9
AMS RHO 11,04 10,22 10,26 8,3 7,8 7,8
AMS SKG 7,53 8 8,08 5,9 6,4 6,4
GZP AMS 7,89 9,24 9,5 6,2 7,5 7,7
IBZ EIN 7,81 8,1 7,92 5,8 6,1 6,1
INN AMS 7,03 7,48 7,11 5,8 6,1 5,7
LPA RTM 13,14 12,71 12,72 9,7 9,9 9,8
AMS ATH 8,58 9,09 9,24 6,8 7,3 7,4
FUE AMS 13,34 14,99 15,45 10,8 11,9 13,1
AGA AMS 12,36 13,09 13,31 9,5 9,8 10,1
AMS INN 6,22 7,82 7,86 5,2 6,4 6,4
AMS LPA 13,37 14,53 14,49 10,8 11,5 11,4
AMS NAP 7,48 7,76 7,87 5,9 6,1 6,2
AMS BJV 9,76 9,28 9,1 7,6 7,3 7,1
AMS CTA 8,22 8,64 8,36 6,3 6,7 6,3
NAP AMS 9,34 10,15 10,47 7,2 7,9 8,2
BCN AMS 10,86 11,06 11,27 8,3 8,6 8,7
BCN RTM 8,26 9,16 9,32 6,4 7 7,2
BLQ EIN 5,23 6,17 6,5 4,1 4,8 4,9
BRI AMS 10,29 10,66 10,79 8,5 8,9 8,9
BUD RTM 5,91 6,36 5,83 4,6 5,1 4,8
MAH AMS 10,43 13,02 13,52 8,2 10,3 10,9
MLA AMS 11,36 12,11 11,24 8,5 9,2 8,8
NCE AMS 8,87 9,57 9,58 7,3 7,6 7,5
OPO AMS 10,81 11,32 11,57 8,4 8,8 8,8
RTM FCO 6,14 6,35 6,12 4,6 4,9 4,9
AMS GZP 8,45 8,34 8,48 6,8 6,5 6,7
NCE EIN 6,06 6,39 6,86 4,6 5 5,3
FCO RTM 7,79 8,67 8,77 5,9 6,7 6,8
GRO AMS 9,94 10,66 10,57 7,7 8,3 8,2
SVQ AMS 11,1 12,31 13,13 9 10 10,5
SPC AMS 13,13 16,21 14,74 10,3 13,4 12
VRN AMS 9,77 10,43 10,2 8 8,7 8,5
LPA AMS 12,7 13,92 13,81 10,3 11,2 11,2
EIN AGP 10,11 10,22 9,99 7,7 7,9 8
EIN ALC 9,48 10,91 11,68 7,3 8,4 8,9
EIN ATH 6,87 6,81 6,69 5,3 5,2 5
AMS SVQ 10,11 10,64 10,61 7,9 8,3 8,1
AMS TFS 14,12 14,61 14,43 11,1 11,2 11,1
VLC EIN 7,43 8,77 8,79 6 6,9 6,8
BCN EIN 7,26 8,18 7,9 5,7 6,4 6,1
EIN CPH 5,31 5,66 6,15 3,8 4,3 4,6
EIN VLC 7,8 7,92 8,66 6,1 6,3 6,9
AMS PMI 8,89 9,55 9,87 7 7,4 7,7
AMS VLC 9,49 10,33 10,46 7,5 8,1 8,1
RTM BUD 5,46 6,11 6,21 4,3 4,9 5,1
RTM GRO 6,29 7,17 7,28 4,8 5,7 5,6
RTM PMI 9,06 9,34 9,97 6,8 7 7,5
RTM VIE 6,14 7,54 7,07 4,6 5,9 5,3
AMS FUE 12,1 14,28 13,22 9,8 11,6 11
RTM BCN 7,48 7,72 8,09 5,8 6 6,3
EIN BCN 7,64 8,28 8,17 6 6,5 6,4
EIN LIS 8,41 9,23 8,92 6,8 7,4 7,4
RAK AMS 11,35 11,87 11,89 8,9 9,2 9,2
RTM FAO 9,19 9,76 10,09 7,5 8 8,4
RTM TFS 12,54 12,85 12,96 9,6 9,9 10
AMS VCE 6,92 7,42 7,77 5,1 5,5 5,7
ATH AMS 10,17 10,16 9,97 8,1 8,1 7,9
EIN FAO 9,6 10,38 10,42 7,7 8,3 8,4
RHO AMS 9,51 9,9 9,57 7,2 7,7 7,6
EIN NCE 8,78 8,84 9,05 6,6 6,7 6,9
FAO RTM 8,88 9,7 9,83 6,9 7,7 7,8
AMS VRN 6,09 6,68 6,75 5 5,5 5,6
AMS HER 10,13 10,28 10,24 7,6 7,8 7,9
VLC AMS 9,61 9,9 9,41 7,5 7,8 7,6
AMS TRN 7,09 7,43 7,48 5,3 5,8 5,8
EFL AMS 9,41 10,58 11,1 7,7 8,4 8,9
EIN BLQ 5,14 5,46 5,58 4,1 4,2 4,3
AMS PVK 9,15 9,78 10,14 7 7,5 7,5
CFU AMS 9,09 10,72 10,21 7,3 8,4 7,9
BJV AMS 9,1 10,14 10,68 7,4 7,9 8,1
AMS SMI 9,39 10,19 10,23 7,6 8,3 8,3
EIN IBZ 7,6 8,31 8,45 6,1 6,7 6,8
AMS ZTH 9,92 10,82 10,77 7,5 8,5 8,5
CHQ AMS 12,2 14,97 16,93 8,9 11,8 13,3
HER EIN 8,53 8,71 8,37 6,7 7 6,8
DLM AMS 7,67 8,05 8,23 6,2 6,6 6,8
ATH EIN 8,02 9,42 9,5 6,4 8 8
GRO RTM 8,83 9,04 8,89 7 7,2 7
AMS CFU 7,93 9,16 9,1 6,4 7,3 7,2
PMI AMS 9,91 10,69 10,9 7,6 8,3 8,5
AMS SPC 13,83 13,99 14,41 10,7 10,8 10,8
AYT AMS 8,76 9,96 9,78 6,8 7,9 7,8
SKG AMS 8,36 9,78 9,82 6,7 7,9 8,1
AMS DLM 7,34 7,96 8,1 5,5 6,1 6,3
AMS FNC 12,79 12,87 12,26 10 10,4 9,8
RTM IBZ 9,33 9,76 10,38 6,6 7,3 7,8
LPA EIN 10,66 10,83 13,01 8,6 8,8 10,8
MPL RTM 7,04 6,57 6,68 5,2 4,9 4,9
FNC AMS 10,97 11,03 11,4 8,8 9 9,4
EIN PMI 7,77 8,26 8,42 6,1 6,5 6,7
PMI EIN 7,89 8,32 8,33 6,1 6,4 6,3
RTM AGP 10,08 10,87 10,59 8 8,5 8,3
RTM MPL 5,84 5,92 5,86 4,4 4,5 4,6
VCE AMS 8,34 9,13 9,02 6,4 7,3 7,3
EIN HER 6,88 7,19 7,23 5,5 5,8 6
TRN AMS 8,13 8,57 8,6 6,3 6,9 7
SPU RTM 7,06 7,32 8,05 5 5,2 6
ZTH AMS 9,59 10,93 11,21 7,4 8,8 9,1
RTM ALC 9,42 9,94 10,45 7,1 7,4 7,9
IBZ RTM 7,65 7,84 8,02 6,2 6,4 6,5
PMI RTM 8,56 9,4 9,57 6,5 7,3 7,6
PVK AMS 7,98 8,43 8,64 6,2 6,7 6,8
AMS MLA 8,94 10,16 9,94 7,1 8,1 8,1
GRQ RTM 4,85 5,7 5,86 3,8 4,3 5,2
RTM SPU 4,77 5,28 5,16 3,8 4,2 4,2
RTM TLN 5,1 5,68 5,61 3,9 4,4 4,5
TLN RTM 6,36 6,48 5,99 5 5,2 4,8

9,05 9,75 9,80 7,09 7,69 7,74


