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                         1. Introduction  

In many engineering design problems, processes are so 

complex to the point to make experiments either time con-

suming or computationally expensive. As a challenging is-

sue in most optimization procedures, the objective function 

usually has a large number of local minima, a large number 

of local maxima and is represented as a ‘Black box’ func-

tion (a black box function is a function that without been 

explicitly described and given a list of a finite number of 

points in the input space, corresponding outputs can be ob-

tained). Consequently, existing techniques applied to non-

linear optimization problems often require a large number 

of function evaluations. Therefore, solution methodologies 

need to be custom developed for computationally expen-

sive analysis and unknown function properties (i.e., black-

box function).    

   Recent developments in the field of optimization have 

lead to an increasing interest in approximation models or 

surrogate models as alternatives that may help to solve 

those problems. Surrogate models or response surfaces 

have been shown to be effective approaches in constructing 

fast models that mimic the behavior of computationally 

expensive and complex systems. Within the optimization 

area, surrogate-models both speed optimization processes 

of problems with non-smooth or noisy responses and pro-

vide insight into the relationship between output responses, 

y, and input design, x.   

   Numerous methods exist to generate surrogate models, 

each with their relative merits. Examples include: rational 

functions, Kriging models, Artificial Neural Networks 

(ANN), spline, and Support Vector Machines (SVM). 

Some of the different real-world applications of surrogate 

models are documented in [11]. For instance, least square 

support vector machine (LSSVM) has been used in the de-

cision-making processes associated with supply chain 

management [12]. Recently, a radial basis neural network 

(RBNN) has been employed in optimization of Wire-

Wrapped Fuel Assembly [13]. So far most frequently used 

models in engineering designs and aerospace design prob-

lems have been Gaussian processes [4, 14, 15]. For exam-

ple, kriging or Gaussian process has been utilized in find-

ing the optimal values of reorder point and the maximum 

inventory level in an inventory optimization problem [14].  

   The aim of this paper is to review the literature concern-

ing surrogate models, highlighting concepts, techniques 

and other methods used within surrogate-based optimiza-

tion approaches. In particular, this review is centered 

around Kriging-an approximation technique made popular 

due to its ability to model complex landscape and provide 

error estimate.   

   This paper has been divided into two parts. The first part 

deals with the key stages of the surrogate-based optimiza-

tion processes putting more emphasis on the surrogate 

model building process. 

   In the second part, I will summarize the Efficient Global 

Optimization (EGO) approach proposed by Jones et al. 

(1980). This approach is based on a Gaussian process 

based method of Kriging (first proposed by, and named af-

ter, Danie Krige (1951)). Finally, the problems associated 

with failed design evaluations and noisy data will be dis-

cussed, before drawing conclusions in the final section.   

 

2. Overview of Surrogate-based optimization  

 

Alexander I.J. Forrester [4], has suggested that most opti-

mization-based search using surrogate models requires 

similar steps as those indicated in the following figure: 



 

 

Figure 1: a surrogate-based optimization framework. Forrester 

[4]. 

      Figure 1 illustrates the essential steps involved in most 

surrogate-based optimization approaches. There are several 

options for each of these steps, as well as several advan-

tages and disadvantages of each option.  In the following 

sections I will briefly describe the first two steps and then 

will focus on the model choice and model fitting steps of 

the framework.  

 

 2.1 Sampling Plan 

 

The first step from the above framework suggests the de-

sign and analysis of some preliminary experiments. These 

preliminary experiments allow choosing the variables that 

will be taken forward to optimize the design space. That is, 

choosing a subset of design variables from all existing 

variables. However, there are some challenges faced in se-

lecting the right number of variables that provide enough 

information to achieve good performance in prediction. 

Some bottlenecks in this stage might be the curse of di-

mensionality of some design spaces and the relative spar-

sity of the observations.    

       After identifying the design space, we must then 

choose which designs we wish to evaluate in order to con-

struct the surrogate model. That is designing the plan in 

such a way that the resulting data will contain a representa-

tive sample of the parameters of interest. The most fre-

quently used techniques in this stage of the process are 

Latin Hypercube Design, Full-factorial Design, Orthogonal 

Arrays and Box-Behnken Design. Each of these methods 

has its own advantages and disadvantages depending on 

the characteristics of the design problem. However, 

Forrester [5] favors the Latin Hypercube Design technique, 

which efficiently samples large design spaces and provides 

a sample of points whose projections onto each variable 

axis are uniform. In fact Latin Hypercube Design algo-

rithm divides uniformly the design space for each factor 

and combines randomly these levels to specify n points de-

fining the final design matrix. I will not cover all methods 

here and the reader may wish to consult Forrester for an in-

depth description, including Matlab code. 

 

 2.2. Modeling Approaches  
 

In order to predict accurately the function landscape we are 

trying to imitate, an initial surrogate must be constructed 

using a limited number of intelligently chosen data points. 

Again, there are a variety of options to accomplish this task 

and several benefits and limitations of each option. Donald 

R. Jones [1], has proposed a more specific discussion of re-

sponse models, where he contrasts seven existing modeling 

approaches using response surfaces for global optimiza-

tion. In the table below the seven approaches have been 

represented and classified into two major categories. The 

first category contains non-interpolating surfaces (method 

1) and the second category contains interpolating models, 

where the interpolator goes through all available data 

points (methods 2,3,4,5,6 and 7).  
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Figure 2. Taxonomy of response-surface-based global optimization methods. The seven
methods shown are discussed in the text.

As for selecting search points, a key distinction will be between two-stage and
one-stage methods. Most (but not all) current approaches are two-stage methods.
In the first stage, one fits a response surface, estimating any required parameters. In
the second stage, these parameters are treated as if they are ‘true’ and the surface
is used to compute new search points. The potential pitfall with two-stage methods
is that the initial sample may give a misleading picture of the function. As a result,
one may grossly underestimate the error in the response surface and either stop
prematurely or search too locally.

One-stage methods skip the initial step of fitting a surface to the observed data.
Instead, the mathematical machinery of response surfaces is used to evaluate hy-
potheses about the location of the optimum. For example, the ‘credibility’ of the
hypothesis that the optimum occurs at a point x∗ with function value f ∗ may be
determined by examining the properties of the best-fitting response surface that
passes through the observed data and the point (x∗, f ∗). At an intuitive level,
the smoother is this surface, the more credible is the hypothesis (we will make
this notion precise later). The key thing to note is that the credibility of the hypo-
thesis is not based on parameters obtained by fitting a surface to the observed data
alone—parameters that may be greatly in error if the initial sample is sparse and
misleading.

In what follows, we will discuss all seven methods using graphical examples.
As we will see, many of these methods have non-obvious failure modes. As we
move from Method 1 to Method 7, we will progressively remove potential failure
modes at the cost of increasing algorithmic complexity. Although the focus of
this paper is on global optimization, along the way we will point out some highly
successful ways in which response surfaces have been used forlocal optimization.

 

Figure2. Taxonomy of response-surface-based global optimiza-

tion methods. [1] 

 

As can be deduced from figure 2, almost all the approaches 

are based on the procedure of fitting a surface, finding the 

minimum and iterating. However, the implemented func-

tion and the methods used to select search points differ 

from one approach to another.  As Donald R Jones [1] 

notes, simple approach that are implemented using quad-

ratic response surface such as method 1 fails in finding the 

global minimum and still adding more points will not im-

prove the finding. In addition, approaches that used another 

type of function such as splines perform well for local op-

timization, although they can easily miss the global mini-

mum (i.e. method 2). However, Alexandrov [18] has 

shown the possibility to insure a locally convergence by 

obliging the gradient of the surface to match the gradient of 

the function where the search stops. Methods 3-7 were 

found promising to converge to the goal by   exploiting the 

kriging’s ability to estimate potential error in its predic-

tions. Although, methods 6 and 7 are a one stage approach 

in selecting search points and can be computationally very 

intensive if Kriging is used for the surface. Overall, 

method 5 stands out as a most promising method that uses 

Kriging as a response surface and selects search points by 

maximizing the expected Improvement function. In what 

follows, a powerful algorithm based on method 5 from fig-

ure 2 will be discussed, its benefits and so its possible limi-

tations.   

   

  3. Efficient Global Optimization algorithm    

Jones et al. [2], proposed the Efficient Global Optimization 

(EGO) approach based on Kriging model and the Expected 

Improvement method. This approach consists of the fol-

lowing steps:  

Step 1. Build an initial Kriging model for the objective 

function. 

Step 2. Use cross validation to ensure that the Kriging pre-

diction and measure of uncertainty are satisfactory. 

Step 3. Find the location that maximizes the expected Im-

provement (EI) function. If the maximal EI is sufficiently 

small, stop. 

Step 4. Add an evaluation at the location where the EI is 

maximized. Update the Kriging model using the new data 

point. Go to Step 3   

The decision of whether using the Kriging method or not 

will depend upon various factors.  One important factor is 

the lack of random error that makes computer experiments 

different from physical experiments, calling for other me-

thods. The other basic requirement of using Kriging is to 

have a sufficient number of data points and the data being 

estimated are stationary.   

 

3.1 Overview of Kriging 

 

The Kriging approach treats the function of interest as a re-

alization of a random function (stochastic process) . 

For this reason the mathematical model of Kriging has 

been presented as a linear combination of a global model 

plus departures:   

 

                      y(x) = f (x)+ Z(x)                               (1) 

                                                   

Where y(x) is the unknown deterministic response, 

f (x) is a known (usually polynomial) function of x, and 

Z(x)  is a realization of a stochastic process with mean 

zero, variance !
2

, and non-zero covariance.  

 

3.1.1 The stochastic process model  

 

The response surface methodology described in this paper 

is based on modeling the function of interest with stochas-

tic processes. A stochastic process X(t),t !T{ } is a set 

of random variables where the index set T may be discrete 

( (T = 0,1,2...{ })  or continuous (T = [0,!)) . In a sto-

chastic model the change of the system is at least partially 

random and if the process is run several times, it will not 

give identical results. Moreover, fitting a stochastic process 

to data provides us with an insight on how the function 

typically behaves and how much the function tends to 



change as we move by different amounts in each coordi-

nate direction [2].    

 

3.1.2 The mathematics of kriging   

 

In contrast to linear regression models, the stochastic proc-

ess approach assumes that the errors are dependent. In 

other words, the correlation between errors is related to the 

distance between the corresponding points. In this model, 

the distance used is the spatial weighted distance obtained 

using the distance formula:  

 

 

  (2) 

 

 (The meaning and the roles played by the parameters !
h

 

and ph will be discussed shortly)  
In kriging model, the uncertainty about a value function at 

a new point is modeled as a realization of a random vari-

able Y (x)  that is normally distributed with mean µ  and 

variance !
2

[1] . In addition, the correlation between the 

random variables in the Kriging model is given by  

 

 

   

 (3) 

      

From this, one can represent the uncertainty about the 

function’s values at the n points using a random vector 

with a mean equal to , where 1 is a n  vector of ones, 

and covariance matrix equal to  

          

                             Cov(Y ) =!
2
R                                (4) 

                         
Where R is a n ! n  matrix with (i, j) element given by 

Eq. (3). The parameter in the distance formula (2) 

can be interpreted as measuring the activity of the variable 

x
h

. For instance, if  is very large, then small values 

of  xh
(i )
! xh

( j )
 translate to large ‘distance’ and hence low 

correlation.           

 

       Therefore, in order to predict the value of the function 

at some new points x*, we need first to estimate the pa-

rameters of the likelihood formula: 

 

 

 (5) 

 

 

 

 Then, if we maximize the log of the likelihood formula, 

set the derivatives with respect to  to zero and 

solve, we will get the optimal values expressed as function 

of R: 
   

                                                                                           

 

                                                                                                                    

                                   

                                                               (6) 

 

   

                                                                                                                        

                                    (7)                              

                                                                                

          

     Substituting (6) and (7) on (5) we get a concentrated 

log-likelihood function, as called in the literature, which 

depends only on R [1]:  

 

                                                               

                                   (8) 

 

     In the first place the maximization of this function pro-

vides the estimated parameters , in 

the second place these parameters will be used to compute 

the estimates  and .  

Overall the basic idea behind Kriging prediction at some 

point x*, is guessing a function value y*, adding the point 

(x*, y*) to the data as the  and computing the 

‘augmented ‘likelihood function using parameter values 

obtained in the maximum likelihood estimation. Conse-

quently, the augmented log likelihood will become a func-

tion of y* and demonstrates how consistent the point (x*, 

y*) with the observed pattern of variation. The value of y* 

that maximizes this augmented log likelihood function 

proved to be the Kriging predictor and is given by: 

 

 

                                (9) 

                                          

 

Where r denotes the vector of correlation Y (x
new
)  with 

Y (x
i
)  for i = 1,....n.  

 

Moreover, kriging is more attractive because of its ability 

to provide error estimates in the predictor. This mean-

squared error is derived using the standard stochastic-

process approach and can be computed using: 

 

 

             (10)           
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This formula has a property that reflects no uncertainty 

about the point we have already sampled. To see this for 

every   =  the formula should be equal to zero [1]. 

 

    The possibility of missing the global optimum when ex-

ploring the optimum point, introduce the need of a criterion 

value called the expected improvement (EI).  

This approach involves computing how much improve-

ment we expect to achieve if we sample at a giving point. 

In what follows, the Expected improvement approach will 

be described as well as the mathematics behind this 

method will be highlighted.  

 

3.2 Optimization using the surrogate  

 

Once the Kriging model is built using a set of training data 

(as is any surrogate model), the parameters of the model 

have to be estimated to give the best fit to the training data. 

After finding an optimum design by the Kriging model, 

this design evaluation (infill point) has to be added to the 

training data set. Then the Kriging parameters have to be 

re-estimated and again re-search the model. This process is 

iterated until we reach some convergence criterion.  

       In the following section, the researcher will discuss the 

Expected Improvement method (EI), the mathematics be-

hind this formula and how we can imply (EI) to find the 

global minimum/maximum.  

 

 3.2.1 The Expected Improvement Approach  

 

As described in the previous section, using Kriging tech-

nique in optimization requires fitting the kriging model, 

finding the point that maximizes expected improvement, 

evaluating the function at this point, and –ultimately- iter-

ating. The second step of this procedure is based on the 

fact that Kriging helps in estimating the model uncertainty 

and stresses on exploring points where we are uncertain. 

This uncertainty is demonstrated and measured by the 

standard error of the predictor from the previous section. 

  The ‘expected improvement approach EI’ is a method that 

incorporates both local and global search to find an opti-

mum. In fact, the EI function is an infill criterion that bal-

ances local and global search and helps computing how 

much improvement we will expect if we sample at a giving 

point. In order to do this, kriging treats the value of the 

function at x as if it were the realization of a stochastic 

process Y(x), with the mean giving by the predictor  

and variance  . 

     Furthermore, if we assume that the current best function 

value is  , one can make an improvement denoted by I 

if   

 

To put this in mathematical perspective, the likelihood of 

achieving this improvement is given by the normal density 

function  

  

       

               (11) 

 

 

Finally, If we integrate over this density function, we will 

find the expected value of the improvement [1]  

 

 

                                                                    

(12) 

 

 

Using integration by parts we can solve this integration and 

express it as: 

 

   

                               

(13) 

 

 

Where !  and  ! are respectively the normal cumulative 

distribution function and density function.  

In short, the EI approach is based on employing an infill 

criterion that balances local exploitation of  and global 

exploration using  by maximizing the expectation of 

improving upon the current best solution. As a result, using 

(EI) permits the selection of update points where the model 

needs more improvement and adding those points as ele-

ments of exploration. Using expected improvement can be 

advantageous and may guarantee global convergence in 

optimization problems. However, this approach treats the 

estimated standard error founded in the modeling step as if 

it is correct. Consequently, points that are close to the cur-

rent best points have high-expected improvement and the 

algorithm will require exhaustive search around the initial 

best point before it begins to search more globally. Moreo-

ver, Kleijnen has demonstrated bootstrapped EI as an al-

ternative for the classic EI, and estimates the effect of the 

initial sample size in some applications bootstrapped EI 

can find the global optimum faster than classic EI does 

[17].  

 

3.2 Missing data  

 

When failures occur at any stage of the design evaluation 

process, no infill point can be added to the surrogate and 

hence the model will stay unchanged. Unfortunately, most 

of optimization processes tend to stall and require en-
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! ŷ(x)

s
)+ s#(

c
min

! ŷ(x)
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hanced techniques to deal with missing data. In order to 

solve this problem via the medium of surrogate-based op-

timization, Forrester [5] proposed an imputation model that 

interpolates the feasible data and provide significant time 

saving over direct global search methods. In this model he 

uses a penalized imputation (prediction + error estimate) to 

add some information or perturb the model 

 

3.3 Noisy data  

 

Similarly to missing data, most data sets are corrupted by 

noise due to experiments errors or human errors. However, 

in the context of surrogate-based optimization, we are in-

terested in deterministic noises. Deterministic noise is a 

non-random noise such that if we repeat experiments we 

will get the same results.  

      Although the Kriging stands out other regression mod-

els, this approach fails when dealing with noisy data and is 

unable to approximate noisy function. However, Forrester 

(2006) introduced an approach to solve this problem by al-

lowing the Kriging model to regress the data. In this ap-

proach, adding a regression constant to the diagonal of the 

Kriging correlation matrix R, will oblige the predictor to 

deviate from the sample points ensuring an improvement 

of the likelihood of the data. Furthermore, he also sug-

gested using the re-interpolation method, which guarantees 

the global convergence of the maximum expected im-

provement criterion while benefiting from the regression 

model.       

 

4. Closing remarks and discussion 

 

In general, therefore, it seems that surrogate-based optimi-

zation is an extremely promising area for further research 

and has made significant progress in addressing the analy-

sis and optimization of a variety of complex and expensive 

systems. In this paper, I have covered the EGO approach, 

which is based on the Kriging method and the Expected 

improvement criterion and have noted the advantages of 

this approach regarding the prediction and the optimization 

stages.   

   While Kriging is an exciting and promising technique to 

build a model for the function of interest, we should bear in 

mind that the applicability of this method may be problem 

dependent and must be chosen carefully. Furthermore, the 

choice of which surrogate to use should be based on the 

problem size. Unfortunately, Fitting a Kriging model can 

be beneficent only for relatively low dimensional problems 

due to the expense of training model. Moreover, since pre-

diction with the kriging model requires the inversion and 

multiplication of many matrices, prediction may become 

computationally expensive when the number of sample 

points increases.  

    However, there are other extensions of the ordinary 

Kriging method that may enhance the processes of predic-

tion and optimization. For instance, Sluiter (2009) lists 

many extensions that have been made to Ordinary Kriging 

for particular applications-Cokriging, Universal Kriging, 

Residual Kriging, Blind Kriging, Probability Kriging, and 

Disjunctive Kriging. Co-kriging is a form of Kriging that 

involves multiple variables and the estimations of this 

method are based on a linear weighted sum of all examined 

variables. Residual kriging is widely used in meteorology 

where the residuals from a previously fitted regression are 

interpolated using ordinary Kriging [10]. Disjunctive Krig-

ing is non-linear procedure we assume the all data pairs 

originate from a bivariate normal distribution and where 

the data set must be transformed using a series of additive 

functions.  In universal Kriging [4] the mean term is ex-

pressed as a set of function of x, 

 

  

  

 

Where v
i
’s are some known function and the u

i
’s are un-

known parameters. The idea behind universal kriging is 

that the model can be tuned regarding the trends in the 

data, giving better accuracy. In blind kriging, some data-

analytic procedures used to identified the v
i
’s which en-

hance the accuracy of the model [4].   

These extensions need to take into account the adaptive 

and iterative nature of the optimization problem, which can 

vary from trivial to impossible.  

 

5. References  

 

[1] D. R. Jones.  A taxonomy of global optimization  

      methods based on response surfaces.  Journal of   

      Global Optimization, 21:345-383, 2001. 

[2] W. J. Welch. D.R. Jones, M. Schonlau. Efficient global   

      optimization of expensive black-box function. Journal of  

      Global Optimization, 13:455-492, 1998. 

[3] A. I. J. Forrester, A.J. Keane, and N.W. Bressloff. Design and 

    analysis of “noisy” computer experiments. AIAA Journal, 

    44:2331-2339, 2006. 

[4] A. I. J. Forrester and A. J. Keane. Recent advances in  

      surrogate-based optimization. Progress in Aerospace 

      Sciences, 45:50-79, 2009. 

[5] A. I. J. Forrester, A. Sobester, and A.J. Keane. Engineering  

      Design via Surrogate Modelling. John Wiley and Sons, 2008. 
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