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Management summary 
 

  This paper focuses on the problem of volatility forecasting in the financial 
markets. It begins with a general description of volatility and its properties, and 
discusses its usage in financial risk management. The paper then examines the 
accuracy of several of the most popular methods used in volatility forecasting: 
historical volatility models (including Exponential Weighted Moving Average), the 
implied volatility model, and autoregressive and heteroskedastic models (including 
ARMA model and GARCH family of models). We also test two methods from a new 
class of models which utilizes the Artificial Neural Networks. The forecasting 
accuracy of the models is tested using the S&P 500 stock index; the advantages and 
disadvantages of each model are discussed. This research is designed to be of interest 
to both theoretical researchers and practitioners in the finance industry.  
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Introduction 
 

The main characteristic of any financial asset is its return. Return is typically 
considered to be a random variable.  An asset’s volatility, which describes the spread 
of outcomes of this variable, plays an important role in numerous financial 
applications. Its primary usage is to estimate the value of market risk. Volatility is 
also a key parameter for pricing financial derivatives. All modern option-pricing 
techniques rely on a volatility parameter for price evaluation.  Volatility is also used 
for risk management applications and in general portfolio management. It is crucial 
for financial institutions not only to know the current value of the volatility of the 
managed assets, but also to be able to estimate their future values. Volatility 
forecasting is especially important for institutions involved in options trading and 
portfolio management.     

Accurate prediction of the values of financial indicators is complicated by 
complex interconnections, which are often convoluted and not intuitive. This makes 
the prediction of volatility a challenging task even for experts in this field. 
Mathematical modeling can assist in detecting the dependencies between current 
values of the financial indicators and their future expected values. Model-based 
quantitative forecasts can provide financial institutions with a valuable estimate of a 
future market trend. Although some experts believe that future events are 
unpredictable, evidence to the contrary exists. For example, financial volatility has a 
tendency to cluster and exhibits considerable autocorrelation (i.e., the dependency of 
future values on past values). These features provided the justification for formalizing 
the concept of volatility and creating volatility-forecasting mathematical techniques, 
which started appearing the late 70’s. Since then, a number of successful models for 
volatility forecasting have been introduced.      

The purpose of this work is to compare different mathematical methods used in 
volatility forecasting, and to describe their advantages and disadvantages. Another 
objective is to examine the concept of volatility and other related issues, which is 
expected to influence the forecasting ability of certain methods. Specifically, we 
tested several classes of volatility forecasting models that are widely used in modern 
practice: historical (including moving averages), autoregressive, conditional 
heteroscedastic models, and the implied volatility concept. In addition, we examined 
a relatively new class of models – those based on artificial neural networks. Their 
ability to capture a non-linear behavior is an important feature, which can improve 
current ‘classical’ methods. All of the models were tested on the volatility of the S&P 
500 index, which is one of the main indexes of the US stock market and plays an 
important role not only for US economy but for the world economy as well. Although 
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the results of this work are applicable primarily to a well-diversified equity indexes, 
there are no stringent restrictions, and the principal results are applicable to other 
markets and products. 

Volatility concept and its usage in financial risk management 
 

Volatility refers to the spread of all outcomes of an uncertain variable. In 
finance, we are interested in the outcomes of assets returns. Volatility is associated 
with the sample standard deviation of returns over some period of time.  It is 
computed using the following formula: 

ොߪ ൌ ඩ
1

ܶ െ 1
෍ሺݎ௧ െ ሻଶߤ
்

௧ୀଵ

 

where ݎ௧is the return of an asset over period ݐ and ߤ is an average return over ܶ 
periods. 

The variance, ߪଶ, could also be used as a measure of volatility. But this is less 
common, because variance and standard deviation are connected by simple 
relationship. 

 Volatility is a quantified measure of market risk. Volatility is related to risk, 
but it is not exactly the same. Risk is the uncertainty of a negative outcome of some 
event (e.g. stock returns); volatility measures a spread of outcomes. This includes 
positive as well as negative outcomes. 

  Financial time series data sets have several characteristics which are crucial to 
note for the purposes of modeling and forecasting: 

• Fat tails. Market returns have distributions with fatter tails than the normal 
distribution. This results to a higher kurtosis. The normal distribution has the 
fourth moment equal to three, however several studies, e.g. (J. Knight, 2007), 
have shown that the distribution of market returns have sample fourth moments 
larger than three. 

• Volatility Clustering.  Volatility is not constant over time. Moreover it exhibits 
certain patterns.  This means that large movements in returns tend to be 
followed by further large movements. Thus the economy has cycles with high 
volatility and low volatility periods. High volatility periods usually refer to 
economic crises and recessions.  
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• Leverage effect. Price movements are negatively correlated with volatility. This 
means that the volatility of stock tends to increase when the prices drops. This 
effect is particularly important for options markets. (Black F. , 1976) 

• Co-movements in volatility. Volatility of different markets tends to move in 
certain patterns. For example, a high volatility of one currency pair listed on 
the FOREX exchange will most likely cause higher volatility of the returns for 
holders of other currency pairs.    

 Volatility is a key parameter for derivatives pricing models. The market of 
financial derivatives is one of the biggest financial markets. Derivatives are financial 
contracts for which values are derived from the prices of the underlying assets. Major 
classes of derivatives are: futures/forwards, options and swaps. There is a great 
variety of derivative contracts within these classes.  The Black-Scholes formula and 
the binomial tree models are the most widely used approaches for derivative 
evaluation. All approaches, however, have the volatility of the underlying asset as a 
key parameter. Moreover, an accurate forecast of the future volatility results in a 
more precise derivative pricing.  

 Volatility is used in many financial ratios. For example, the Sharp-ratio is a 
measure of excess return per unit of risk. It is one of the most frequently used 
measures for comparison of the investment performance. 

ܵ ൌ
ሾܴሿܧ െ ௙ܴ

ߪ
 

where   ܧሾܴሿ is the expected return of the portfolio, ௙ܴ the risk free rate and ߪ the 
volatility of the portfolio.  

  Volatility can be used in some risk management applications, such as Value at 
Risk (VaR). VaR is a maximum loss over ܰ days, that will not be exceeded, and a 
financial institution is  ܺ percent certain about this. The management of financial 
institutions (FI) is usually interested in such a risk characteristic: “We are X percent 
certain, that we will not lose more than ܸ dollars, in the next ܰ days” (Hull, 2002); 
Where ܸ is VaR, ܺ is a confidence level and ܰ is the time horizon in days.  

Market risk is the risk that an investment (equity, fixed income, commodity, 
etc.) will decrease in value due to movements in market factors. VaR is a key 
characteristic of a market risk. This methodology is a component of regulatory 
requirements for FI’s capital under market risk.  Regulators typically use ܰ ൌ 10 
and ܺ ൌ 99%. However, some FI (e.g. clearing houses) can use a daily VaR with a 
higher confidence level. For example,  Daily earnings at risk (DEaR) is a measure of 
VaR for a 1 day period, typically using a 95% confidence level. Under the model-
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building approach (Hull, 2002) VaR is calculated using the daily volatility of an asset 
 : ௗߪ

ܸܴܽ ൌ ௗߪ ڄ ܣ ڄ ݂݊݋ܥ ڄ √ܰ 

Where ߪௗ is the daily volatility of an asset,  ܣ is the total amount of money in 
an open position on this asset, ݂݊݋ܥ is the confidence level and ܰ is the time horizon 
in days. As we can see, daily volatility is a key parameter in VaR calculations. A FI 
which can more accurately compute  ߪௗ can produce a better estimation of its VaR.  

Volatility is an input parameter in many financial models. For example, 
Modern Portfolio Theory (MPT) uses volatility (in the form of standard deviations) to 
compute the market portfolio. The Market portfolio is an optimal portfolio in a sense 
of reducing diversifiable risk and maximizing expected return. MPT is widely used in 
asset allocation decision making by many FI.  

As we can see, volatility is used in many aspects of, among others, financial 
risk management, investment decisions, regulatory policies and capital budgeting.   

Forecasting financial volatility   
 

  Formally, forecasting volatility could be seen as finding such ߪ௧ෝ  that will 
minimize the error  ߝ ൌ ݂ሺߪ௧ െ  ௧ is an actual (or observed) volatilityߪ ො௧ሻ , whereߪ
over period ݐ and ݂ሺ·ሻ is an error function. Discussion of different forms of error 
functions can be found below.   

 Volatility can be forecasted over different time ranges. Typically, it is divided 
into one day volatility, 10 day volatility, monthly volatility, and bigger time frames. 
Daily volatility is usually used for computing risk metrics (e.g. DEaR). 10 day 
volatility is most often used in risk management; under Basel II regulatory 
requirements a Financial Institution should track its 10-day VaR. Monthly and bigger 
timeframes could be used for options evaluation and in portfolio management. The 
methods, which are described in this work, do not depend on the choice of a 
timeframe. The forecasting performance of methods could, however, vary on 
different timeframes. 

 To estimate volatility on a certain timeframe one could use data of a smaller 
timeframe and compute the standard deviation. For example, if we are interested in 
monthly volatility, we can compute the standard deviation of daily returns. 
Sometimes it is difficult to find data for a smaller timeframe, in which case different 
methods for volatility estimation can be used. The simplest way of estimating 



9 
 

volatility is taking daily squared returns. Unfortunately, this method gives an 
inaccurate estimation of volatility (Taylor, 1986). Daily returns are calculated using 
the closing price of an asset in the end of a trading session. The intraday jumps of the 
prices are not reflected in daily returns. These jumps can be significant and can 
influence the estimate of volatility.    

 In order to estimate the forecasting performance of some methods or to 
compare several methods we should define error functions. The following are the 
most used error functions: 

1. Root Mean Square Error (RMSE): 

ܧܵܯܴ  ൌ  ඩ
1
ܰ
෍ሺߪො௧ െ ௧ሻଶߪ
ே

௜ୀଵ

 

2. Mean Absolute Error (MAE): 

ܧܣܯ  ൌ  
1
ܰ
෍|ߪ௧ෝ െ |௧ߪ
ே

௜ୀଵ

 

 
3. Mean Absolute Percent Error (MAPE): 

ܧܲܣܯ  ൌ  
1
ܰ
෍

ො௧ߪ| െ |௧ߪ
௧ߪ

ே

௜ୀଵ

 

4. Mean Error (ME): 

ܣܯ ൌ 
1
ܰ
෍ሺߪ௧ෝ െ ௧ሻߪ
ே

௜ୀଵ

 

5. Mean Square Error (MSE): 

ܧܵܯ ൌ  
1
ܰ
෍ሺߪ௧ෝ െ ௧ሻଶߪ
ே

௜ୀଵ

 

6. Mean Logarithm of Absolute Error (MLAE): 

ܧܣܮܯ  ൌ  
1
ܰ
෍ln ௧ෝߪ| െ |௧ߪ
ே

௜ୀଵ

 

 
There are other error measures (e.g. Theil-U or LINEX loss function) but they 

are less intuitive and infrequently used (Poon, 2005).  
There are many volatility models and forecasting methods. An overview of 

some of them will be given in the next chapters. All these models can work in 
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different time frames and on different markets. Historically most of these models 
were created for stock market analysis, but they can be easily applied to the analysis 
of commodities, foreign exchanges and other markets. 

Historical volatility models 
 

  Historical volatility models (HIS) are one of the simplest classes of volatility 
models.  The name, HIS, is different in different literature, but most often it is used to 
stress that these models differ from the implied volatility models. In this chapter the 
following models will be discussed: constant volatility model, simple moving 
average, exponential smoothing, and exponential weighted moving average.  

 Historical average model (HAM) is the simplest model. ߪො௧ାଵ  is a mean 
standard deviation calculated over some time interval and then used to forecast future 
values. 

ො௧ାଵߪ ൌ
1
ݐ
෍ߪ௜

௧

௜ୀଵ

 

Off course this method produces poor results, but it can be used as a quick method. 
The error of this method can be used as a benchmark for other methods. 

 Simple moving average (SMA) is a more advance method than HAM. This 
method uses the most recent information to build a prediction. Under this method the 
forecasted volatility at time ݐ ൅ 1 is computed using the following formula: 

ො௧ାଵߪ ൌ
1
߬
෍ߪ௧ି௜

ఛିଵ

௜ୀ଴

 

where  ߬ ൏  .In this method information older than ߬ is not taken into consideration . ݐ
The parameter ߬ can be arbitrary or taken in such a way that the error ߝ ൌ ݂ሺߪ௧ െ ௧ሻ෢ߪ  
is minimal on some training set.    

    Exponential smoothing (ES) is another method to compute ߪො௧ାଵ based on 
historical values. This method is described by the following formulas:  

ො௧ାଵߪ   ൌ ሺ1 െ ௧ߪሻߚ ൅  ො௧ߪߚ

where ߪො଴ ൌ 0  :ߚ ଴ , and smoothing parameterߪ ൑ ߚ ൑ 1 are found by minimizing in-
sample forecast error ߦ௧of the relation ߪ௧ ൌ ሺ1 െ ௧ିଵߪሻߚ ൅ ො௧ିଵߪߚ ൅  ,௧. This method ߦ
unlike SMA, gives more weight to the recent volatility. 
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   Exponential weighted moving average (EWMA) is another HIS volatility 
model. This moving average method is represented by the following formula: 

ො௧ାଵߪ  ൌ
∑ ௧ି௜ఛିଵߪ௜ߚ
௜ୀ଴
∑ ௜ఛିଵߚ
௜ୀ଴

 

 Again the smoothing parameter ߚ is estimated by minimizing the error on a 
training set. The JP Morgan Riskmetrics model is a procedure that uses Exponentially 
Weighted moving Average.  

Black-Scholes formula and implied volatility  
 

 Implied volatility models are another important class of volatility models. A 
number of definitions should be introduced first. 

European call option is a financial contract that gives the holder the right but not an 
obligation to buy an underlying asset at a certain date (expiry date) for a certain price 
(exercise or strike price).  

European put option, unlike call option, gives to its holder right to sell an underlying 
asset at a certain date for a certain price. 

In early 1970s, Fischer Black, Myron Scholes and Robert Merton made a 
major breakthrough into stock option pricing (Hull, 2002).This involved the 
development of what became known as the Black-Scholes model. In 1997 Myron 
Scholes and Robert Merton received a Nobel Prize in economics for their 
contribution in derivatives pricing. Let us introduce the assumptions and some 
important results of this model.  The original assumptions are (Black & Scholes, 
1973): 

• The underlying stock price (ܵ) is describe by the following process: 
 ௗௌ
ௌ
ൌ ݐ݀ߤ ൅   is the ߪ ,is expected rate of return (the drift) ߤ where , ܹ݀ߪ

constant volatility of the returns, ܹ is a Brownian Motion.  
• There are no transaction costs and all securities are perfectly divisible. 
• There are no arbitrage opportunities. 
• The risk free interest rate, ݎ, is constant and the same for all maturities. 

Investors can freely borrow and lend money for the risk free interest 
rate.   

The assumptions of the Black-Scholes model are rather strong and unrealistic. 
Extensions of the Black-Scholes model manage to overcome most of these 
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restrictions (Wilmott, Howison, & Dewynne, 1995). Still the assumption of constant 
volatility ߪ is one of the strongest. 

Let us denote price of a European call option as ܥ,ܲ െ European put and ܭstrike 
price. Than ܥand ܲ could be found by the following formulas:  

ܥ ൌ ܵ଴݁ି௤்ܰሺ݀ଵሻ െ  ௥்ܰሺ݀ଶሻି݁ܭ

ܲ ൌ ௥்ܰሺെ݀ଶሻି݁ܭ െ ܵ଴݁ି௤்ܰሺെ݀ଵሻ 

where ݀ଵ ൌ
୪୬ሺௌబ ௄⁄ ሻାሺ௥ି௤ାఙమ ଶሻ்⁄

ఙ√்
  

 ݀ଶ ൌ ݀ଵ െ                           ܶ√ߪ

ܰሺݔሻ- is the cumulative probability distribution function for standard normal         
distribution. 

 ܵ଴ - is a price of underlying asset at time ݐ ൌ 0. 

 .is a dividend rate -  ݍ 

Other types of options (American, Asian, etc.) can be priced using the Black-
Scholes partial differential equation. The Black-Scholes model and its extensions are 
widely used in practice. The one parameter of these formulas that cannot be directly 
observed is the volatility; implied volatility is used as a proxy.  Implied volatilities 
are the volatilities implied by the market prices of the options. Let us assume that we 
have the market prices of call and put options for different maturities and all other 
parameters are known (except volatility). Using those prices we can compute Black-
Scholes formulas by working ‘backwards’ and estimate the volatility. This volatility 
will be the implied volatility.  Unfortunately there is no direct formula for computing 
the implied volatility (Hull, 2002). However, a method of trial-and-error can be 
introduced which allows us to compute implied volatility with a good accuracy.  

 The implied volatility of options of different maturities has an interesting 
characteristic. There is a pattern that implied volatility is not constant for different 
strike prices. This pattern is called volatility skew or volatility smile. An example of 
this pattern can be found in figure 1.  
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Figure 1. A common shape of the volatility skew pattern. A non linear relationship between the 
moneyness of the option and it’s implied volatility. 

The volatility skew is used by the investors to price options in a foreign currency 
market and the equity options market. Investors typically calculate implied volatility 
for actively traded options and then use the volatility smile to price more exotic 
options. Nowadays, implied volatility is an important market indicator. It helps to 
price financial derivatives and is an overall indicator of investors ‘moods’. 

Autoregressive and Heteroskedastic models 
 

Financial market volatility is known to cluster (Tsay, 2005). A highly volatile 
period tends to persist for some time before the market returns to a more stable 
environment. An autoregressive approach helps to build more accurate and reliable 
volatility models.  

The Autoregressive Moving Average (ARMA) model is a combination of the 
SMA model and Autoregressive model. It consists of two components and can be 
expressed by the following formula: 

ො௧ାଵߪ ൌ෍ߚ௜ߪ௧ାଵି௜

௣

௜ୀଵ

൅෍ߛ௜ߦ௧ାଵି௜

௤

௜ୀଵ

 

where ߚଵ,ߚଶ, ,ଶߛ,ଵߛ ௣ andߚ… … ,ଶߦ,ଵߦ  ௤ are parameters of the model andߛ …  ௧ are theߦ
error terms of the model  ߪ௜ ൌ ො௜ߪ ൅ ,௜ߦ ݅ ൌ 1,  തതതത . We will refer to the first model asݐ
the ܣܯܴܣሺ݌,  ሻ and autoregressive݌ሻ model. The length of the moving average ሺݍ
term ሺݍሻ as well as the parameters could be found by minimizing the error on the 
testing set. The ARMA model is a popular model for forecasting not only in financial 
markets but in many other applied areas as well.    

Strike price 

Im
pl
ie
d 
vo
la
til
ity
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The Autoregressive Conditional Heteroskedasticity (ARCH) model was 
first introduced by Engle in 1982 (Engle, 1982). ARCH model and its extensions 
(GARCH, EGARCH, etc.) are among the most popular models for forecasting market 
returns and volatility. Originally, the ARCH model rather than using standard 
deviations used the variance. Let us call the variance of the returns ߪଶas ݄. The 
ARCH model can be defined as following: 

௧ݎ ൌ ߤ ൅  ௧ߝ

௧ߝ ൌ ඥ݄௧ݖ௧ 

݄௧ ൌ ߸ ൅෍ߙ௝ߝ௧ି௝ଶ

௤

௝ୀଵ

 

where ݎ௧- return at time ݐ 

 mean return - ߤ 

 ௧- residuals (or error terms)ߝ           

௧ݖ           ׽ ݅݅݀ ܰሺ0,1ሻ normally distributed random variable 

,ଵߙ ݀݊ܽ ߸  ,ଶߙ  ௤ - parameters of the modelߙ …

The process  ݖ௧  is scaled by ݄௧, the conditional variance, which follows an 
autoregressive regression process. The parameters ߸ ൐ 0, ௝ߙ ൒ 0 insure that the 
variance ݄௧ is positive. The one step ahead forecast is simply the square root of the 
variance ߪො௧ାଵ ൌ ඥ݄௧ାଵ. The parameter ݍ could be estimated by minimizing the error 
on a particular training set. The discussion of theoretical properties of the ARCH 
process could be found in (Tsay, 2005) . 

 The name ARCH refers to this structure: the model is autoregressive, since ߝ௧ 
clearly depends on previous ߝ௧ି௜, and conditionally heteroscedastic, since the 
conditional variance changes continually. 
 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 
is a general version of the ARCH model. It differs from ARCH by the form of ݄௧. 
Formally, the GARCH(p,q) model can be defined as following: 

௧ݎ ൌ ߤ ൅  ௧ߝ

௧ߝ ൌ ඥ݄௧ݖ௧ 



15 
 

݄௧ ൌ ߸ ൅෍ߚ௜

௣

௜ୀଵ

݄௧ି௜ ൅෍ߙ௝ߝ௧ି௝ଶ

௤

௝ୀଵ

 

where ݎ௧- return at time ݐ 

 mean return - ߤ 

 ௧- residuals (or error terms)ߝ           

௧ݖ           ׽ ݅݅݀ ܰሺ0,1ሻ - normally distributed random variable 

 ߸ , ,ଵߙ ,ଶߙ ,௤ߙ … ,ଵߚ ,ଶߚ  ௣ - parameters of the modelߚ …

 

As before, parameters ߸ ൐ 0, ௜ߚ ൒ 0, ௝ߙ ൒ 0 are positive. There are additional 
constrains on  ߚ௜,  ௝for models with higher orders than GARCH(1,1) (Tsai, 2006) . Anߙ
optimization procedure can be introduced to find the parameters p and q. As in the 
ARCH model, at time ݐ all the parameters are known, and ݄௧ can be easily computed. 
The one-step a head forecast of volatility is again, just ߪො௧ାଵ ൌ ඥ݄௧ାଵ.  

There are a number of extensions of the GARCH model, such as Integrated 
GARCH, Exponential GARCH, GJR- GARCH and others (J. Knight, 2007). The 
GARCH family of models is widely used in practice for prediction of financial 
market volatility and returns.  

Models based on artificial neural networks 
  

Artificial Neural Networks (or Neural Networks) are popular statistic 
techniques for machine learning. Originally, they were created as an attempt to model 
the biological neuron system. This attempt was made to create a new approach to the 
computing, and to possible mimic the behavior of a human brain. This field of a 
science was created in a late 1950s, and was extensively developed in 1980s. Some 
definitions have to be given, before introducing the volatility model based on the 
Neural Networks. 

Informally, Neural Network is a black box which takes some variables as an 
input, and gives other as an output. The network consists of neurons that are 
connected with each other. A neuron transforms the input information according to 
some rule and propagates the result further to other neurons. The Neural Network can 
be considered as an algorithm for an approximation of unknown functions. A number 
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of definitions should be introduced first. A reader who is not interested in the 
technical details can skip the following definitions.             

 The Neural Networks are not a new technique for the financial applications. 
They were successfully used for the prediction of the stock/index returns (White, 
1988), (Sharda, 1990), (Kimoto, 1990), (Brown, 1998), (Gencay, 1998); the 
economic time series forecasting (Swanson, 1995), (Zhang, 1994); interest rate 
prediction (Swanson, 1995), (Kim S. H., 1997); earnings prediction (Charitou, 1996); 
fraud detection (Fanning, 1998); bond risk analysis (Dutta, 1988), (Kim J. W., 1997), 
(Maher, 1997); and other fields. 

There is a number of Neural Network models used for volatility forecasting. 
The (Donaldson, 1997) proposes a Neural Network modification of a GARCH model. 
In this paper a multilayer perception and density estimating neural network is used to 
forecast the returns and volatility of the DAX stock index. This paper shows that 
Neural Networks can be successfully used for volatility forecasting. In the (Gonzales, 
1997) authors are investigating the use of Neural Networks for predicting volatility 
for Ibex35 index. This paper shows advantages of the non-linear Neural Networks 
over the linear models for volatility forecasting. This paper describes a successful 
application of Neural Networks for volatility forecasting on an hourly basis. The 
(Hamid, 2004) describes the usage of a feed forward Multilayer Perceptron for 
forecasting the volatility of S&P 500 futures. The network uses 13 different financial 
indicators as inputs, and gives the forecast for futures of different maturities. This 
paper had shown the advantages of the Neural Networks over the implied volatility.  

Forecasting accuracy of the Neural Networks compared to other methods is 
different in the literature. The performance of the networks is heavily influenced by 
the choice of the testing asset, the timeframe, the type and the number of the inputs. 
However, the majority of papers are suggesting better forecasting accuracy of NN 
compared to the linear algorithms. The Neural Network model described in this paper 
is a generalization of approaches suggested in the literature. It describes the general 
framework for using the feed-forward NN in one period ahead volatility forecasting. 
We do not make any constrains on the number of input parameters and their nature. 
We implicitly specify the optimal number of hidden layers and the reason for this 
(The Universal Approximation Theorem).    

 A detailed description of the volatility models based on Neural Networks can 
be found in Appendix A.   
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Comparison of volatility forecasting models 
 

  The empirical tests of the volatility models were performed on the volatility of 
the S&P 500 index. This index includes 500 stocks of US companies with the largest 
capitalization; it is widely diversified and actively traded on the markets. All the 
models are tested using the monthly volatility which is constructed from the daily 
returns. We use 360 observations for the tests. The data is divided into two data sets:  

• Training set – December 1978 to October 2000 (263 observations); 
• Testing set – November 2000 to November 2008 (97 observations). 

The parameters of all the models are optimized on a training set; the testing set is 
used to compare quality of the models. Training and testing sets are shown in    
Figure 2.  

 

 

Figure 2. Observed monthly volatility of the S&P 500. Training and testing sets. 

 The volatility for the data sets was computed using daily data from 
finance.yahoo.com. The volatility was computed in annualized terms (a standard 
deviation of a daily returns is scaled by multiplying by √252). We than used the 
following error functions: Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE), and Mean Absolute Percent Error (MAPE). All the models performed one-
step a head forecast (e.g. forecasting volatility for ‘next’ month).     

   The following historical volatility models were tested using the testing set: 
Historical average model, Simple moving average, Exponential smoothing and 
Exponential weighted moving average (EWMA). The results can be found in Table 1 
and Figures 3-4. 
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Model RMSE MAE MAPE 

Historical average 0.1235  0.0718  0.3745 

Simple moving average 0.0773  0.0477  0.2580 

Exponential smoothing 0.0886  0.0517  0.2660 

Exponential weighted moving average 0.0784  0.0473  0.2497 

Table 1. Performance of simple models. 

  Simple moving average was used with ߬ ൌ 2 previous observations taken into 
consideration. Exponential weighted moving average had ߬ ൌ 3 . The optimal 
parameter of Exponential smoothing yielded  ߚ ൌ 0.771 while for EWMA ߚ ൌ
0.744. All the parameters were found by minimizing RMSE on the training set.  

  

 
Figure 3.Observed volatility compared to simple volatility models. 
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Figure 4. Exponentially weighted moving average and observed volatility over testing set. 

Historical volatility models are the simplest class of volatility forecasting 
methods. It is easy to implement and to optimize these models. At the same time 
Exponential smoothing and Exponentially weighted moving average give one of the 
best results among all volatility forecasting models. These two models have the 
lowest RMSE using the testing set. They do have one disadvantage, however, in that 
they purely manage to adjust for the sudden jumps or drops in the volatility. It takes 
some ‘time’ for these models to switch to another volatility cluster. 

Implied volatility is an important class of volatility models. The Chicago Board 
Options Exchange is tracking VIX index – an index of implied volatilities for the 
S&P500 stock index. VIX is a key barometer of volatility for the S&P 500. VIX is 
calculated as a weighted average of implied volatilities of call and put options of the 
S&P 500 index with different maturities. The main goal of VIX is to estimate 30 days 
implied volatility. We are using two versions of the implied volatility: VIX and 
adjusted VIX. The adjustment is made by multiplying the value of VIX by √22 and 
dividing by √30 . This adjustment is done in order to switch to daily volatility and 
then scale it back by the average number of trading days in a month (22). The results 
of these methods are presented in Table 2 and Figure 5.  
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Model RMSE MAE MAPE 

VIX 0.0792  0.0546  0.3610 

VIX adjusted 0.0783  0.0439  0.2396 

Table 2. Implied volatility performance. 

The implied volatility is a popular method for measuring volatility. It gives 
good results in terms of the error. The ‘shape’ of the implied volatility tends to mimic 
the realized volatility. The main disadvantage of this method is that on average it 
tends to overestimate the observed volatility. Implied volatility reflects the ‘fears’ of 
market players. Another disadvantage is that for some assets this method is hard to 
implement as there are no options traded or traded options are not liquid. Off course, 
this is never the case with the S&P 500. 

 

 

Figure 5. Index of implied volatility VIX and its adjusted version in comparison with the observed 
volatility.  

 We have also tested a number of Autoregressive and Heteroskedastic models. 
Their performance could be found in the Table 3. The parameters of the models were 
optimized using the Gradient descent algorithm.  
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  Model RMSE MAE MAPE 

ARMA(1,1) 0.0890  0.0505  0.2597 

ARMA(5,1) 0.0871  0.0503  0.2620 

ARCH(1) 0.1029  0.0905  0.7045 

GARCH(1,1) 0.1014  0.0857  0.6104 

GARCH(2,2) 0.1011  0.0856  0.6117 

Table 3.Performance of ARMA and ARCH/GARCH methods 

 These methods are complex to implement. In addition they yield a poor level 
of accuracy relative to their complexity and theoretical background. The main 
disadvantage of these models is their complex procedure of parameter estimation.  

Figure 6. GARCH(2,2) performance on the testing set. 

 The Neural Network model was proposed to improve on the forecasting 
performance of ‘classical’ methods. We have tested two architectures of NN for 
volatility forecasting. Setups of these models are presented in Table 4. 

Neural networks are non linear adaptive algorithms. For a given setup and data 
set they can give different results after training. In order to produce an accurate 
estimate, we calculate errors on the average forecast produced by 10 networks of the 
same architecture. An average error is presented in Table 5. 
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Architecture  NN_1  NN_2 

Type  Multi Layer Perceptron 

Number of hidden layers  1 

Activation function  Linear 

Number of neurons in 
hidden layer 

20  10 

Input  30 input neurons: 10 
previous observations of 
S&P 500 returns,10 previous 
observations of S&P 500 
volatility, 10 previous 
observations of S&P 500 
trading volume   

8 input neurons: 2 previous 
observations of S&P 500 
returns, 2 previous 
observations of S&P 500 
volatility, 2 previous 
observations of S&P 500 
trading volume , 2 previous 
VIX value 

Number of epochs during 
training 

2000 

Learning algorithm  Scaled conjugate gradient optimization 

Table 4. Two networks for volatility forecasting 

   Model RMSE MAE MAPE 

NN_1 0.0919  0.0527  0.2734 

NN_2 0.0820  0.0435  0.2029 

Table 5. Error of mean forecast produced by two neural network models 

Neural networks generate small forecasting errors. They capture non-linear 
dependences in the index reruns and volatility clusters. The main disadvantage of the 
Neural Network approach is that the network can only ‘learn’ patterns that appeared 
in the past. This approach requires a skilled tuning of the parameters.    
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Figure 7. One period forecast of volatility of two implementations of the models based on Neural 
Networks. 

The comparison of the volatility forecasting models is summarized in Table 6. 
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Class of the models RMSE MAE MAPE 

Historical volatility models 

Historical average 0.1235  0.0718  0.3745 

Simple moving average 0.0773  0.0477  0.2580 

Exponential smoothing 0.0886  0.0517  0.2660 

Exponential weighted moving average 0.0784  0.0473  0.2497 

Advantages: Easy to use, relatively good results (except historical average). 

Disadvantages: after sudden price movements these models tend to significantly 
overestimate the volatility 

Implied volatility 

VIX 0.0792  0.0546  0.3610 

VIX adjusted 0.0783  0.0439  0.2396 

Advantages: Good results, these model are based on strong theoretical results. 

Disadvantages:  complex to implement; not suitable for all products (only for that, 
which are an underlying for an actively trading options); are dependent on sometimes 
irrational expectations of investors.    

Autoregressive and Heteroskedastic models 

ARMA(1,1) 0.0890  0.0505  0.2597 

ARMA(5,1) 0.0871  0.0503  0.2620 

ARCH(1) 0.1029  0.0905  0.7045 

GARCH(1,1) 0.1014  0.0857  0.6104 

GARCH(2,2) 0.1011  0.0856  0.6117 

Advantages: an existence of a big number of theoretical researches of this models;  

Disadvantages:  moderate forecasting accuracy; complex to implement and optimize;  

Models based on Neural Networks 

NN_1 0.0919  0.0527  0.2734 

NN_2 0.0820  0.0435  0.2029 

Advantages: relatively good results; an ability to build models which use not only 
historical returns as an input, but also other related financial time series and variables.    

 Disadvantages: complex to implement and to find suitable architecture; can forecast 
only dependencies from a previous observations      

Table 6. A summary of the results 
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Conclusions and Perspectives  
 

 This project is dedicated to addressing the problem of forecasting volatility in 
financial markets. We have selected several methods that are heavily used in practice 
and tested their accuracy using real data (i.e., S&P 500 stock index). Each family of 
methods has its advantages and disadvantages, which are described in this work. 
Some methods are simple but yield poor results (e.g., historical average model).  
Other methods provide improved results but are difficult to implement (e.g., Implied 
Volatility method).  In short, there is no single perfect approach.  Nevertheless, we 
found that the Exponentially Weighted and Simple Moving Average methods are 
both efficient and are relatively easy to implement. Our results are also consistent 
with those published by other researches who examined these methods (McNeil, 
Frey, & Embrechts, 2005). We suggest that Moving Average can be used for a quick 
approximation of the volatility forecast. Although it can give a good initial 
benchmark of a forecast, the final estimations should always rely on several models. 
We have also tested models based on Neural Networks. This is a relatively new class 
of models, and we confirmed that this class of models can be successfully used for 
volatility forecasting.  

 A logical continuation of this work would be to combine several volatility-
forecasting models into a single predictor.  Application of such a predictor can 
potentially overcome the disadvantages of individual models and provide the best 
forecast. The predictor can be viewed as a linear combination of outputs of selected 
best models: 

ො௧ାଵߪ ൌ ଴ߙ ൅ ଵߙ ଵܲሺ݀௧, ଵሻߛ ൅ ଶߙ ଶܲሺ݀௧, ଶሻߛ ൅ ൅ڮ ேߙ ேܲሺ݀௧,  ேሻߛ

where  ௜ܲ - models for volatility forecasting (e.g. SMA, EWMA, GARCH, VIX, etc.) 

  ௜ – weight of the ݅-th modelߙ             

   ௜ – optimal set of parameters and their values utilized by ௜ܲߛ             

            ݀௧ – available market data at time ݐ  

The practical application of the outlined approach, however, will require further 
theoretical and empirical testing that goes beyond the scope of this paper.   
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Appendix A 
 

A Neural Network (NN) is a sorted triple ሺܰ, ܸ,  ሻ. Here ܰ is a set of neuronsݓ
and ܸ ൌ ሼሺ݅, ݆ሻ|݅, ݆ א Գሽ is a sorted set of connections between the neurons, while the 
function ݓ: ܸ ՜ Թ defines the weights of the connections. ݓሺሺ݅, ݆ሻሻ is a weight of a 
connection between neuron ݅ and ݆, it can be also denoted as ݓ௜௝. 

 A neuron is a computational unit, which transforms the input information 
based on some rule.  The neuron is characterized by this ‘rule’ which is described by 
the propagation and activation functions.  

 Let ܫ ൌ ሼ݅ଵ, ݅ଶ, … , ݅௡ሽ be the set of neurons such that ݖ׊ א ሼ1,… , ݊ሽ  ݓ׌௜೥௝ and 
൛݋௜భ,݋௜మ, … ,  Then the propagation function of .ܫ ௜೙,ൟ be the set of outputs of neurons݋
the neuron ݆ is defined as: 

௣݂௥௢௣: ൛݋௜భ,݋௜మ, … , ௜೙,ൟ݋ ൈ ሼݓ௜భ௝, ,௜మ௝ݓ … , ௜೙௝ሽݓ ՜  ௝ݐ݁݊

Most often the propagation function is a weighted sum of the neuron’s inputs 

௝ݐ݁݊  ൌ෍ ௜௝ݓ௜݋
௜אூ

 

 A neural network is a desecrate time model. In this chapter by time I mean the 
step ݐ of the work of a neural network. It should be not confused with the time scale 
of the financial time-series.  

The activation state of a neuron is inspired by the properties of the biological 
neuron. It can be in an “active state” when the electric impulse is running through it.   
Let ݆ be a neuron, the activation state ௝ܽሺݐሻ is a level of activation, explicitly assigned 
to ݆ . The activation function transforms the activation state of the neuron from the  
previous state ௝ܽሺݐ െ 1ሻ to a new one ௝ܽሺݐሻ. The activation function is defined as: 
 ߮: ௝ݐ݁݊ ൈ ௝ܽሺݐ െ 1ሻ ՜ ௝ܽሺݐሻ. The activation function can be a binary threshold, step 
function, sigmoid function, Gaussian function or identical function among others.  
For example, a binary threshold function is:  

߮ሺݒሻ ൌ ൜ ݒ ݂݅  1 ൒ 0
െ1 ݂݅ ݒ ൏ 0 

  The output function of a neuron  ௢݂௨௧: ௝ܽ ՜  ௝ calculates the output value based݋
on the activation state. Often, the output function is taken as an identity, so  ݋௝ ൌ ܽ௝.  

 A layer of a NN is a group of neurons which have a common property.  
Usually, a layer refers to topological similarities of neurons. The network topology is 
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defined by the way the neurons are connected.  The most popular topologies are a 
feed forward and a recurrent topology. In a feed forward network there is one input 
layer of neurons, ݊ processing layers and one output layer. The neurons of each layer 
are connected only with the neurons of a following layer. The layers are clearly 
separated in this topology.  A recurrent network is characterized by more complex 
connections between the neurons. The layers could be connected with following as 
well as previous layers.       

 In general, the learning of a neural network can be described as a changing of 
the weights ݓ of a network to adopt its outputs to certain inputs. One of the concepts 
of machine learning is so called supervised learning. Under supervised learning the 
set of training patterns is given. Each pattern ݌ א ௧ܲ consists of the inputs and the 
desired outputs ݌ ൌ ሼݔ;  ሽ. By training of the neural network we will call theݕ
procedure of finding such weights כݓ that will minimize the error function between 
outputs of a network and desired outputs.  

כݓ ൌ argmin
௪אௐ

,ሻݔ௡௘௧ሺ݋ሺݎݎܧ  ሻݕ

where ݎݎܧሺڄ,ڄሻ is a given error function, ݋௡௘௧ሺݔሻ is an output of the network for an 
input ݕ ,ݔ is a desired output, ܹ is a set of all possible combinations of weights.  

 An Input neuron is an identity neuron. It forwards the signal received. An 
information processing neuron (or information processing unit) is a neuron that 
changes the input information according to some rule. For example, a binary neuron 
sums up the weighted input, and then applies a binary activation function. A linear 
activation function is actually the identity activation function. An information 
processing neuron with this activation function generates the weighted sum of the 
input signals as an output. An example of an information processing neuron is given 
on Figure 8. The layer of information processing neurons is called trainable layer. 

 

Figure 8. A scheme of a simple information processing neuron. 
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 A Perceptron is a feed forward neural network which consists of the following 
layers: one layer of the input layer, and one or more sequentially connected layers of 
the trainable layers (Rosenblatt F. , 1958). One neuron layer is completely linked 
with the following layer. The input layer consists of input neurons, and the trainable 
layers consist of information processing neurons.  The information processing units 
of this network use summation as a propagation function.  

A Multilayer Perceptron (MLP) is a Perceptron with more than one layer of 
information processing neurons. An example of a MLP network is shown in Figure 9.  

 

Figure 9. A Multilayer Perceptron with 3 inputs, 4 neurons in a hidden layer, and 2 outputs. 

 A multilayer Perceptron can be trained with the Back Propagation algorithm 
(Haykin, 2003). We will not go into details of the learning procedure in this paper. 
For us it is important that there is a procedure of finding the optimal weights כݓ.  

Another important result from the theory of Neural Networks is the Universal 
approximation theorem (Cybenko, 1989).  

Theorem: Let ߮ሺ·ሻ be the bounded, monotonically increasing and continuous 
function. Let ܫ௠బ be the ݉଴ dimensional cube ሾ0,1ሿ௠బ and  ܥሺܫ௠బሻ is a space of all 
continuous functions on ܫ௠బ. Than ݂׊ א ߝ׊ ௠బሻ  andܫሺܥ ൐ 0 there exists  ݉ଵ and 
,௜ߙ ,௝ߚ ݅ , ௜௝ݓ ൌ 1,݉ଵതതതതതതത , ݆ ൌ 1,݉଴തതതതതതത such that the function 

,ଵݔ൫ܨ … , ௠బ൯ݔ ൌ෍ߙ௜߮ሺ෍ݓ௜௝ݔ௝ ൅ ௝ߚ

௠బ

௝ୀଵ

ሻ
௠భ

௜ୀଵ

 

is an approximation of the function ݂, e.g.  

หܨ൫ݔଵ, … , ௠బ൯ݔ െ ݂൫ݔଵ, … , ௠బ൯หݔ ൏  ߝ

for any ݔଵ, … ,   .௠బ  from an input spaceݔ
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 For the derivation and the discussion of the theorem see (Haykin, 2003), 
(Cybenko, 1989). As we can see, the theorem suggests that a Multilayer Perceptron 
with one hidden layer can be used as a universal approximator. This is one of the 
reasons for building a volatility model based on the MLP.  

 

Figure 10. A Multilayer Perceptron with one hidden layer for volatility forecasting. The 
input consists of previous values of volatility and other market data available on time ݐ. The output 

of the network is a value of expected volatility. 

Volatility can be modeled as a function of previous market data1: ߪ௧ ൌ
࣠ሺࣞ௧ିଵሻ where ߪ௧ is observed volatility and ࣞ௧ିଵ is all market data available at 
time ݐ െ 1. We will try to approximate the unknown function ࣠ሺ·ሻ with the known 
function ܨሺ·ሻ.Then the model for volatility will be:  ߪො௧ ൌ  ሺࣞ௧ିଵሻ. The Universalܨ
approximation theorem states that such a function  ܨሺ·ሻ exists and can be found. 
From the application of the theorem we will take the Multilayer Perceptron with one 
hidden layer as a realization of  ܨሺ·ሻ.  

Let us now describe the architecture of the neural network for volatility 
forecasting. As was mentioned before, this is a Multilayer Perception (e.g. a feed 
forward network) with the one hidden layer of the information processing neurons 
and the one output layer. The architecture of this network is presented in Figure 10. 

The input layer consists of the  ݉ ൅ ݊ neurons. The output layer is one neuron 
which corresponds to the forecast. Information processing neurons use summation as 
a propagation function and an identity as an activation function. This network takes 
                                                            
1 The assumptions of this model are based on violation of hypothesis of the market efficiency in the weak or the semi‐
strong form. But this discussion is beyond this paper.  
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the previously observed volatilities ߪ௧ିଵ,… ,  ௧ି௠ and other market informationߪ
݀௧ିଵ, … , ݀௧ି௡ as inputs to produce the forecast ߪො௧ . The structure of the input of the 
network is flexible: ݀௧ିଵ, … , ݀௧ି௡  and could be the previous returns, the trading 
volumes, any indicators that influence ߪො௧. In the simplest case   ݀௧ିଵ,… , ݀௧ି௡  could 
be dropped.  This simplification will not influence the networks architecture. 

This network is trained on a previous history of the time series. The training 
patterns are the following  ݌௧ ൌ ሼߪ௧ିଵ, … , ,௧ି௠ߪ ݀௧ିଵ, … , ݀௧ି௡; ݐ    ௧ሽߪ ൌ 1, ܶതതതതത . The 
training procedure is the same as for MLP network. This type of MLP could be 
trained using the back propagation algorithm (Kriesel, 1998). 


